
Deep Heterogeneous Social Network Alignment

Lin Meng�, Yuxiang Ren�, Jiawei Zhang�, Fanghua Ye†, Philip S. Yu‡
�IFM Lab, Department of Computer Science, Florida State University, FL, USA

†Department of Computer Science, University College London, UK
‡Department of Computer Science, University of Illinois at Chicago, IL, USA

{lin, yuxiang, jiawei}@ifmlab.org, smartyfh@outlook.com, psyu@uic.edu

Abstract—The online social network alignment problem aims
at inferring the anchor links connecting the shared users across
social networks, which are usually subject to the one-to-one
cardinality constraint. Several existing social network alignment
models have been proposed, many of which are based on the
supervised learning setting. Given a set of labeled anchor links,
a group of features can be extracted manually for the anchor
links to build these models. Meanwhile, such methods may
encounter great challenges in the application on real-world
social network datasets, since manual feature extraction can
be extremely expensive and tedious for the social networks
involving heterogeneous information. In this paper, we propose
to address the heterogeneous social network alignment problem
with a deep learning model, namely DETA (Deep nETwork
Alignment). Besides a small number of explicit features, DETA
can automatically learn a set of latent features from the het-
erogeneous information. DETA models the anchor link one-to-
one cardinality constraint as a mathematical constraint on the
node degrees. Extensive experiments have been done on real-
world aligned heterogeneous social network datasets, and the
experimental results have demonstrated the effectiveness of the
proposed model compared against the existing state-of-the-art
baseline methods.

Index Terms—Social Network Alignment; Information Fusion;
Deep Learning; Data Mining

I. INTRODUCTION

Formally, social network alignment denotes the problem of

inferring the anchor links connecting the shared user accounts

across different online social networks [11]. In recent years,

numerous online social networks have appeared, which can

provide various featured services for the users. For instance,

Facebook allows users to establish connections with their

friends, family members and classmates; Twitter provides

users with the latest news information from the public;

LinkedIn helps people to establish their professional profiles

for job hunting; Foursquare enables people to keep track of

their visited locations in the offline world. To enjoy such di-

verse social network services simultaneously, users nowadays

are usually involved in multiple online social networks at the

same time. However, in the real world, these online social

networks are typically separated from each other without any

correspondence relationships [11].

Social network alignment can be the prerequisite task for

information fusion across multiple online social platforms.

By integrating the information about the shared users from

multiple social sites together, it will provide researchers

and practitioners with the opportunity to achieve a more

comprehensive knowledge about the users’ social activities.

Meanwhile, for the social network service providers, social

network alignment also allows them to improve their services

greatly by retrieving useful information from other external

social network platforms. Various application services can ben-

efit from the alignment results, e.g., friend recommendation,

community detection and information diffusion, which renders

the social network alignment to be a crucial learning task.

Many existing social network alignment models are mainly

proposed based on the supervised algorithms. Given a set

of labeled anchor links, the anchor link inference problem

can be modeled as a binary classification task [11], where

the existing and non-existing anchor links are labeled as the

positive and negative instances, respectively. Based on the

social network information, a set of features will be extracted

manually for the anchor links. These features are usually

designed for the specific input social networks, which can

hardly be generalized to other regular social networks. Such a

problem will be much more severe when it comes to the real-

world heterogeneous social networks, involving multiple types

of nodes and complex links, since manual feature design and

extraction across these heterogeneous networks will become

extremely expensive and tedious.

Problem Studied: In this paper, we propose to study the

heterogeneous social network alignment problem, which aims

at finding common users among multiple heterogeneous net-

works. Besides a small number of simple explicit features

extracted from user pairs, we further propose to learn a group

of latent features automatically based on deep learning models

from the heterogeneous social networks, which will be fused

together to infer the anchor links across networks.

The heterogeneous social network alignment problem is

hard to address due to the following challenges:

• Network Heterogeneity: The online social networks usu-

ally contain heterogeneous information, involving vari-

ous categories of nodes and links, which creates great

challenges for both explicit feature extraction and the

automatic latent feature representation learning for the

anchor links.

• Information Integration: There exists a two-phase infor-

mation integration in the studied problem: (1) explicit and

latent feature integration for each information category,

and (2) cross-category information integration. A new

information fusion model which can achieve both of these

objectives will be desired and necessary.
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Fig. 1. The DETA Framework.

• One-to-One Constraint: The anchor links to be inferred

across networks are subject to the one-to-one cardinality

constraint [11], where each user should be connected by

at most one anchor link across networks. Such a strict

constraint will pose great challenges on both problem

formulation and the model learning.

To resolve the aforementioned challenges, in this paper,

we will propose a novel deep heterogeneous social network

alignment model, namely DETA (Deep nETwork Alignment).

DETA extracts a very small number of general and explicit

features for the anchor links across the networks, and learns a

group of latent features from each information category with

specific deep learning models (including deep autoencoder for

social connections, LSTM for trajectory records, and CNN

for textual words). Furthermore, DETA fuses these diverse

features across information categories with a deep model. The

one-to-one cardinality constraint on anchor links is modeled

as the mathematical constraint on the node degrees in DETA.

II. TERMINOLOGY AND PROBLEM DEFINITION

In this section, we will first define the terminologies used

in this paper and then provide the formulation of the hetero-

geneous social network alignment problem.

A. Notations

In the following sections, we will use the lower case letters

(e.g., x) to represent scalars, lower case bold letters (e.g., x) to

denote column vectors, bold-face upper case letters (e.g., X) to

denote matrices, and upper case calligraphic letters (e.g., X ) to

denote sets. Given a matrix X, we denote X(i, :) and X(:, j) as

the ith row and jth column of X. The (ith, jth) entry of matrix

X can be denoted as either X(i, j) or Xi,j . We use X� to

represent the transpose of matrix X. The F -norm of matrix X
can be represented as ‖X‖F = (

∑
i,j |Xi,j |2)

1
2 . The element-

wise product of vectors x and y of the same dimension is

represented as x⊗y. The concatenation of vectors x and y is

denoted as x � y and Tr(X) denotes the trace of matrix X.

B. Terminology Definition

To study the social network alignment problem, we need to

defined several terminology first.

Definition 1 (Heterogeneous Social Network): Formally, the

heterogeneous social network studied in this paper includes

multiple types of entities V and multiple types of links E . We

will use U , T , and D to represent the sets of users, trajectories

and textual words involved in the network respectively and

Eu,u, Eu,t and Eu,d to denote those different types of links

among the entities. Hence, a heterogeneous social network can

be represented as a graph G = (V, E), where V = U ∪ T ∪D
and E = Eu,u ∪ Eu,t ∪ Eu,d.

For each user ui ∈ U , via the connections, we can easily

retrieve his/her neighbors, historical trajectory and used words

from the network. If the data types of a user are incomplete,

we will discard the component corresponding to the missing

data type.

Definition 2 (Aligned Heterogeneous Social Networks):

Given n heterogeneous social networks G(1), G(2), ..., G(n)

sharing common users, we can represent them as the

multiple aligned heterogeneous social networks G =(
(G(1), · · · , G(n)), (A(1,2),A(1,3), · · · ,A(n−1,n))

)
. In the no-

tation, A(i,j) denotes the set of undirected anchor links be-

tween networks G(i) and G(j), which can be represented as

follows formally:

A(i,j) = {(u(i), v(j))|u(i) ∈ U (i), vj ∈ U (j),

u(i) and v(j) are the same user.}
where U (i) and U (j) denote the user sets of networks G(i) and

G(j), respectively. Furthermore, as indicated in the existing

works [11], anchor links between social networks are subject

to the one-to-one cardinality constraint, which means each user

in G(i) can only be connected to at most one user in G(j).

C. Problem Formulation

To simplify the settings, in this paper, we will use pairwise

network alignment as an example to introduce the problem

definition and the proposed models. An easy extension of

the proposed model can be applied to the alignment problem

among more than two heterogeneous social networks as well.

Problem Definition: Formally, given a pair of partially aligned

social networks G =
(
(G(1), G(2)), (A(1,2))

)
with a very small

number of observed anchor links A(1,2), we can represent all

the potential anchor links between networks G(1) and G(2) as

C = U (1) × U (2). Based on the known anchor links A(1,2)

together with the information in networks G(1) and G(2), we

aim at building a mapping f : C → Y to project the potential

anchor links to a pre-defined label space Y = {+1, 0}, where

the existing anchor links will be assigned with label +1 while

the non-anchor links are assigned with label 0. Significantly

different from the classification tasks of regular links [15], [7],

as mentioned above, the anchor links studied in this paper are

subject to the one-to-one cardinality constraint, which poses a

strict constraint on the prediction task.

III. PROPOSED METHOD

In this section, we will introduce our method in detail.

As indicated in Fig. 1, given a user pair from two different

social networks, the proposed model DETA is capable of
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computing the users’ feature representations based on their

heterogeneous information, which will be further fused to

generate the output. Among the functional modules in the

framework, the main components include the “latent repre-

sentation learning network” and “explicit feature extraction”,

and their detailed architecture is illustrated in Fig. 2. In this

section, we will first introduce the representation learning

network model with the heterogeneous social information,

including social connections, trajectories and textual words

in Sections III-A - III-C, respectively, and then provide the

overall framework and learning algorithm in Section III-D.

A. Social Connection Representation Learning

Users’ social connections can clearly indicate their social

preferences, which provide important signals for inferring the

shared users across networks. As indicated by the central part

in Fig. 2, the DETA can extract a set of explicit features and

latent features from the social network for the anchor links. In

this part, we will introduce these latent and explicit features

extracted from the social network information in detail.

1) Latent Feature Extraction: In DETA, the social con-

nection latent feature vectors are learned with an extended

deep autoencoder model. Traditional deep autoencoder [25]

is an unsupervised model, which aims at learning a dense,

low-dimensional feature representation for the sparse and high-

dimensional input. The autoencoder model includes two parts:

encoder and decoder.The encoder maps the input vector into

a target low-dimensional space, then the decoder restores the

mapped vector to the input vector in a reconstructed space (the

same dimension as the original input). The deep autoencoder

model aims at minimizing the differences of the input vector

against the reconstructed vector, so as to learn the model

variables.

When applying the deep autoencoder model to learn the

latent features for social connections, we regard users’ social

neighborhood information as the input. Formally, given the

user set U and the social connection set Eu,u in network G
(which can be either G(1) or G(2)), we can represent the

social links available in network G as the adjacency matrix

A ∈ {0, 1}|U|×|U|, where A(i, j) = 1 iff (ui, uj) ∈ Eu,u and

ui, uj ∈ U . User ui’s social neighborhood can be indicated by

his/her corresponding row in A (i.e., xi = A(i, :)). Because

of the nature of A, the original objective function is capable

to capture the second-order proximity of nodes in the network,

i.e., nodes with similar neighbors (i.e., the input vectors to the

model) will have similar latent representations (i.e., the output

vectors).

However, slightly different from the classic learning settings

with independent data instances, the user nodes in social

networks are highly connected, whose learning results will

be strongly correlated with each other. For instance, given

two connected user nodes (even if they have totally different

neighbors), their learned latent feature vectors should be

close to each other in the objective low-dimensional space.

Based on such an intuition, we extend the deep autoencoder

model by incorporating such a first-order proximity [26] into

consideration. Formally, given users ui and uj , based on their

input feature vectors xi and xj , we can represent their learned

latent feature vectors as zi and zj , respectively. To preserve

the first-order proximity, we introduce a loss term as follows:

L1 =
∑

ui,uj∈U
Si,j · ‖ zi − zj ‖22= Tr(Z�LZ),

where L is the laplacian matrix, which can be compute by

L = D−S, and D is the diagonal matrix corresponding to S.

Matrix entry Si,j denotes whether ui and uj are connected or

not. Here we give its mathematical represention as follows:

Si,j =

{
1, if ui and uj are connected;

−1, if ui and uj are not connected.

Instead of A, S can capture difference between users better.

Normally, the social network connections are very sparse and

most of the elements in A are zeros. In such a setting, simply

adopting the traditional deep autoencoder may lead to trivial

solutions, and the social network information may get lost

in the learned user representation vectors. Hence, we further

extend loss function with the second-order proximity of the

deep autoencoder model by adding a vector bi to emphasize

the importance of the non-zero entries and the embedding loss

term can be changed into:

L2 =
∑
ui∈U

‖ (xi − x̂i)⊗ bi ‖22,

where the x̂i denotes the recovered input vector from zi and

the elements of bi is defined based on the input vector xi as

follows:

bi(j) =

{
α, if xi(j) = 1;
1, if xi(j) = 0.

where α > 1 is the larger weight assigned for the non-zero

elements. In the experiments, α is usually determined by the

ratio of the numbers about the zeros and ones in vector xi.

By adding up the loss terms of the first-order proximity and

the second-order proximity, we can represent the latent social

connection feature extraction objective function as follows:

LSNE = β · L1 + η · L2.

Parameters β and η denote the corresponding loss term

weights. According to the descriptions, we can represent the

extracted latent feature vectors for users u
(1)
i and u

(2)
j as

vectors xLAT
S,i and xLAT

S,j , respectively.

2) Explicit Feature Extraction: Besides the latent features

learned by the model automatically, to get more concrete

information of social networks, we also propose to extract

several explicit features across social platforms to improve

performance of the model. These extracted features include

the product of user pair’s degree, the extended common

neighbors, the extended Jaccard’s coefficient and the ex-

tended Adamic/Adar measure, respectively. Given a user pair

(u
(1)
i , u

(2)
j ), the extracted product of node degrees can be

represented as:

Degree(u
(1)
i , u

(2)
j ) =

∥∥∥x(1)
i

∥∥∥
1
×

∥∥∥x(2)
j

∥∥∥
1
,
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Fig. 2. Deep Representation Learning Model.

where x
(1)
i and x

(2)
j denote the social neighbor vectors of u

(1)
i

and u
(2)
j , respectively. As for extended common neighbors,

extended Jaccard’s coefficient and extended Adamic/Adar

measure, they are defined based on the known anchor links in

the training set. The key idea of calculating the three features

is based on the observation that users in different networks can

be linked by known anchor links. CN(u
(1)
i , u

(2)
j ) represents

the number of extended common neighbors between u
(1)
i in

network G(1) and u
(2)
j in network G(2) and it can be formally

defined as follows:

CN(u
(1)
i , u

(2)
j ) =

∣∣∣Γ(u(1)i )
⋂
A Γ(u

(2)
j )
∣∣∣

= |{(u(1)p , u
(2)
q ) ∈ A, u

(1)
p ∈ Γ(u(1)i ), u

(2)
q ∈ Γ(u(2)j )}|,

where Γ(u
(1)
i ) denotes the neighbors of u

(2)
i in network G(1)

and Γ(u
(2)
j ) denotes the neighbors of u

(2)
j in network G(2).

For the extended Jaccard’s coefficient, it rescales the “extended

common neighbor” by considering the anchor links between

users:

JC(u
(1)
i , v

(2)
j ) =

|Γ(u(1)
i )

⋂
A Γ(v

(2)
j )|

|Γ(u(1)
i )

⋃
A Γ(v

(2)
j )|

,

∣∣∣∣∣Γ(u(1)i )
⋃
A
Γ(u

(2)
j )

∣∣∣∣∣ = |Γ(u(1)i )|+ |Γ(u(2)j )| −
∣∣∣∣∣Γ(u(1)i )

⋂
A
Γ(u

(2)
j )

∣∣∣∣∣ .
For the extended Adamic/Adar measure, it further assigns

each “extended common neighbor” a unique weight, which

is determined by their degrees:

AA(u
(1)
i , u

(2)
j ) =

∑
∀(u(1)

p ,u
(2)
q )∈Γ(u(1)

i )
⋂

A Γ(u
(2)
j )

log−1
(
|Γ(u(1)p )|+ |Γ(u(2)q )|

2

)
.

These four extracted features compose the explicit social

features xEXP

S(i,j) for the user pair (u
(1)
i , u

(2)
j ) across networks.

B. Trajectory Representation Learning
Nowadays, online social networks provide the services to

allow users having check-ins at various locations, which has

become a significant feature in heterogeneous social networks.

From users’ trajectory information, we can capture users’

spatial social behavior patterns, which will be useful for

inferring the anchor links connecting the shared users. In

order to make a good use of trajectory information, besides

several simple explicit features, we propose to use Long Short-

Term Memory (LSTM) [8] to extract a set of latent trajectory

features for users.
1) Latent Feature Extraction: The trajectory latent features

vector is learned with a one-layer LSTM. For the sequence

input, LSTM has a wonderful advantage in maintaining an

effective “memory” of the information in a sequence. Given

the check-in records of one user in an online social network,

we will first divide the activity regions into a set of blocks,

where each block is assigned with a unique ID. For the

locations within the same block, they will be assgined with

the same block ID by default. This is reasonable since the

social network check-in coordinate pairs are not precise. Also,

our goal is to predict the anchor links, the exact check-in

location matching can hardly get more useful information

for identifying the common users. Therefore, grid blocks can

provide a fuzzy representation of users’ check-in activities.

Formally, given a user’s check-in records, we will represent

them as a sorted sequence according to the timestamps, where

the entries denote the corresponding block IDs.
Given a user set U , the complete timestamp set Q, and

user-trajectory set Eu,t in network G (which can be either

G(1) or G(2)), we first divide the activity regions into n
blocks and represent the user’s trajectory records as a decimal

matrix Tdec ∈ {0, 1, 2, ..., n}|U|×|Q|. Matrix entry Tdec(i, j) ∈
{1, 2, ..., n} denotes the block that user ui ∈ U visited at time

τj ∈ Q in his historical trajectory. In model learning, binary

representations may take fewer rounds to achieve convergence
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than decimal representations. Therefore, for each entry in

Tdec, we can replace it with the binary code, which will lead

to a binary trajectory matrix Tbin ∈ {0, 1}|U|×(log n·|Q|) and

it can be simply denoted as T by default in this paper.

In order to ensure similar trajectories will have similar

latent feature representations, we make some extensions to the

traditional LSTM model. First, we add one fully-connected

layer to project T(i, :) to a vector x̂i as follows:

x̂i = σ(W1T(i, :) + b1).

where W1 and b1 denote the weight and bias variables. These

projected vectors, e.g., x̂i, will be fed to a RNN model with

k LSTM cells, whose outputs can be denoted as vectors yi,1,

yi,2, · · · , yi,k respectively. To make sure all information can

be maintained, we will combine all the outputs of LSTM

cells via another fully-connected layer with sigmoid activation

function as indicated by the following equation:{
ŷi = yi,1 � yi,2 � ... � yi,k,
zi = σ(W2ŷi + b2).

where zi will be the final latent feature vector learned for

user ui based on the trajectory. In the equation, W2 and b2

denote the weight and bias variables involved in the model.

According to the descriptions, we can represent the extracted

latent feature vectors based on the trajectory for users u
(1)
i and

u
(2)
j as vectors xLAT

T,i and xLAT
T,j , respectively.

2) Explicit Feature Extraction: We extract several explicit

features from the trajectory data as well. The first one coming

into our mind is the locations shared by users u
(1)
i and u

(2)
j .

Formally, we will use M(1)
i and M(2)

j to denote the location

sets of u
(1)
i and u

(2)
j and it can be defined as follows:

CL(u
(1)
i , u

(2)
j ) =

∣∣∣M(1)
i ∩M(2)

j

∣∣∣ .
In online social networks, different users have different activity

regions, and the active region distances can be effectively in-

dicated by the average distances of the check-in locations. The

second explicit feature extracted for the user pair (u
(1)
i , u

(2)
j )

is the average distance between two location sets of u
(1)
i and

u
(2)
j , which can be denoted as:

AD(u
(1)
i , u

(2)
j ) =

∑
lp∈M(1)

i

∑
lq∈M(2)

j
‖lp − lq‖2

|M(1)
i | × |M(2)

j |
,

where lp ∈ M(1)
i and lq ∈ M(2)

j denote the (longitude,

latitude) pairs of the locations and their distance can be

denoted as the L2 norm ‖lp − lq‖2 as indicated in the equation.

The third extracted explicit feature for user pair (u
(1)
i , u

(2)
j )

is based on the cosine similarity score of the user pair’s

binary trajectory representations in matrices T(1) and T(2),

respectively, which can be represented as

cos(u
(1)
i , u

(2)
j ) =

T(1)(i, :) ·T(2)(j, :)�∥∥T(1)(i, :)
∥∥
2
×

∥∥T(2)(j, :)
∥∥
2

Moreover, the check-in number reveals the activeness of one

user and it is another important signal for inferring the anchor

links across networks. Therefore, we have the last two explicit

features denoting the check-in numbers of u
(1)
i and u

(2)
j :

act(u
(1)
i ) = |M(1)

i |, act(u
(2)
j ) = |M(2)

j |.
These five features will compose the explicit feature vector

xEXP

T(i,j) extracted from the trajectory data for the user pair

(u
(1)
i , u

(2)
j ).

C. Textual Word Representation Learning

Textual data is ubiquitous in online social networks and it

contains a large amount of information. From the historical

textual data, we can find out the language usage preference of

each user. Analyzing their textual words can help us to identify

the anchor links across networks. Meanwhile, convolutional

neural network (CNN) achieves a big success on relevent areas

and it performs better than word2vec [20] in [9]. Therefore,

we will extract a set of latent and explicit features for the user

pairs, where the latent feature extraction is based on the CNN.

1) Latent Feature Extraction: Convolutional neural net-

work [13], [12], [9] is one famous neural network proposed

in recent years. It is usually used in processing image data

[13], [12]. With suitable convolutional kernels, CNN can also

achieve an excellent performance on textual word processing

[9]. When applying CNN to text data, we need to first get

a suitable input. One possible method for the textual word

representations utilizes the classic bag-of-word model. We will

first get the statistical information of the words used by users

in online social networks. By tokenizing each tip/post message

into unigrams, we count the occurrence of each word, based

on which we are able to transform the words of a user into a

vector representation as introduced in the following part.

Formally, given the user set U , word set D, and user-word

set Eu,d of network G, we can represent the user-word matrix

D ∈ R
|U|×|D|, where D(i, j) denotes the frequency that user

ui ∈ U uses word dj ∈ D. The occurrence frequency of all

the words used by ui can be indicated by ith row in matrix

D. Each row of matrix D will be reshaped into a matrix of

dimensions
√
|D|×

√
|D|, and be fed as the input to the CNN

where it has two convolutional layers and two max-pooling

layers. For each convolutional layer, we adopt ReLU function

(e.g. δ(·)) as the activation function. After the last pooling, we

get the desired feature matrix. we flat the feature matrix first,

and then use one fully-connected layer to project it to dense

feature representations. Assuming flatten vector is xi ∈ R
m,

the output zi can be calculated by

zi = δ(W3xi + b3),

where W3 and b3 are the weight and bias of the fully-

connected layer. Therefore, we can obtain our text feature rep-

resentations xLAT
W,i and xLAT

W,j for users u
(1)
i and u

(2)
j , respectively,

showing the language usage patterns of users.
2) Explicit Feature Extraction: For textual word informa-

tion, we extract four explicit features. For each user pair

(u
(1)
i , u

(2)
j ), we use D(1)(i, :), D(2)(j, :) to denote bag-of-

word vectors of u
(1)
i , u

(2)
j in network G(1) and network G(2),
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respectively. Based on these two vectors, the first extracted

explicit textual feature is the word vector inner product, which

can be computed as:

IN(u
(1)
i , u

(2)
j ) = D(1)(i, :) ·D(2)(j, :).

Also, the number of commonly used words of u
(1)
i and u

(2)
j

also illustrates the similarity between users, which can be

computed as:

CW (u
(1)
i , u

(2)
j ) = |{k|D(1)(i, k) ∈ N+ ∧D(2)(j, k) ∈ N+}|.

Based on CW (u
(1)
i , u

(2)
j ), we can further extend it to capture

more precise features by considering the total words used by

the user pairs, which can be denoted as follows:

NCW1(u
(1)
i , u

(2)
j ) =

CW (u
(1)
i , u

(2)
j )

|{d|D(1)(i, d) ∈ N+}|+ |{d|D(2)(j, d) ∈ N+}|
,

NCW2(u
(1)
i , u

(2)
j ) =

CW (u
(1)
i , u

(2)
j )

|{d|D(1)(i, d) ∈ N+} ∪ {d|D(2)(j, d) ∈ N+}|
.

We will integrate these four features to a vector xEXP

W(i,j) for

(u
(1)
i , u

(2)
j ), representing the explicit features extracted from

users textual word usage.

D. Deep Network Alignment Model Learning
we will introduce DETA and its learning algorithm in this

part. DETA focuses on fusing those features and how to

add our alignment goal into the objective function. Besides,

maintaining the one-to-one constraint is another important

objective in the network alignment problem. Thus, our model

includes two shared representation learning networks and the

joint objective function subject to the one-to-one constraint.
1) Feature Representation Fusion: In DETA, we propose

to combine all features in the above sections together to get

the representations of user nodes in the social networks. In

order to obtain representations of user nodes in G(1) and

G(2) simultaneously, we use two same representation learning

networks. As indicated in Fig. 1, the two parts have shared

weights, which will not only greatly reduce the variable

learning costs but also effectively project the data to the same

feature space.
Based on the above descriptions, we get three types of latent

features extracted for user u
(1)
i and u

(2)
j for the heterogeneous

social networks as xLAT
S,i ,xLAT

T,i , xLAT
W,i and xLAT

S,j , xLAT
T,j , xLAT

W,j ,

respectively. By concatenating these features together, we can

further project the latent features of users u
(1)
i and u

(2)
j to more

dense representations according to the following equation:{
x̂i = σ(Ws1xi + bs1), where xi = xLAT

S,i � xLAT
T,i � xLAT

W,i ,
x̂j = σ(Ws1xj + bs1), where xj = xLAT

S,j � xLAT
T,j � xLAT

W,j .

In the above equation, Ws1 and bs1 are the shared weight

and bias in this layer. Meanwhile, to effectively integrate the

latent and explicit features together, we adopt a deep fusion

layer as follows:⎧⎪⎨
⎪⎩
xi,j = xLAT

i,j � xEXP
i,j ,

xLAT
i,j = σ (Ws2(x̂i � x̂j) + bs2) ,

xEXP
i,j = xEXP

S(i,j) � xEXP

T(i,j) � xEXP

W(i,j),

where Ws2 and bs2 denote the weight and bias in the fusion

layer and the xEXP
i,j represents the concatenation of all explicit

features between user pair (u
(1)
i , u

(2)
j ).

2) Joint Objective Function: According to the representa-

tion fusion step aforementioned, we can represent the complete

feature vectors of all the potential anchor links in set C as

X ∈ R
|C|×d′

(where d′ denotes the fused feature vector

length). Formally, for all the anchor links in set C, we can

denote their labels as vector y ∈ {0, 1}|C|. Based on the

fused feature representations of the anchor link (u
(1)
i , u

(2)
j )

(i.e. X(i, j) ), we can represent the introduced loss term on

all the links in C as follows:

LDETA = ||Xr− y||22.

where r denotes the mapping function for transforming X to

y. Considering the one-to-one cardinality constraint, which

can be modeled as a constraint on node degrees. Formally, we

can represent the joint objective function of the DETA as

min
r,y

1

2
· ||r||22 +

γ

2
· ||Xr− y||22

s.t. y ∈ {0, 1}|C|, yi,j = 1, ∀(u(1)
i , u

(2)
j ) ∈ A(1,2),

0 ≤
∑

u
(2)
j ∈G(2)

yi,j ≤ 1, ∀u(1)
i ∈ G(1),

0 ≤
∑

u
(1)
i ∈G(1)

yi,j ≤ 1, ∀u(2)
j ∈ G(2),

where ||r||22 denotes the regularization term on the model

variable. Parameters γ is the scalar used to adjust the weight of

the regularization term. The objective function is a combinato-

rial optimization problem, which is an NP-hard problem [28].

Since this problem cannot be trained by the existing learning

algorithms directly, we will introduce the learning algorithm

to solve the problem in the following section.

3) Optimization Algorithm: In this part, we will introduce a

feasible optimization algorithm to solve the objective function.

Representation Learning Component Pre-Training: Instead

of learning the complete model DETA together, we propose to

pre-train each representation learning component prior to the

prediction component. Formally, according to the descriptions

of the three feature representation learning components, we

propose to feed their learned feature representations to an out-

put layer with two neurons representing the +1/0 class labels,

respectively. For instance, given the learned representations

from the historical trajectory data of user pair (u
(1)
i , u

(2)
j ), i.e.,

xLAT
T,i , xLAT

T,j and xEXP

T(i,j), we can denote the inferred labels as

ȳi,j = σ(Wpre(x
LAT

T,i � xLAT

T,j � xEXP

T(i,j)) + bpre).

Compared against the ground truth label of the links, we can

represent the complete pre-training loss on the training set

Ttrain ⊂ L as:

Lpre = −
∑

(u
(1)
i ,u

(2)
j )∈Ttrain

∑
p

yi,j(p) log ȳi,j(p).
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TABLE I
INFERRING ANCHOR LINK RESULT (PARAMETER λ CHANGES IN {1, 2, · · · , 10}, β = 0.01, η = 1, θ = 1000, γ = 0.01).

Negative/Positive Ratio λ

metric method 1 2 3 4 5 6 7 8 9 10

A
cc

u
ra

cy

DETA 0.924±0.016 0.904±0.008 0.901±0.009 0.903±0.008 0.902±0.008 0.919±0.004 0.954±0.020 0.965±0.003 0.965±0.004 0.967±0.003
DETA NO 0.834±0.021 0.865±0.014 0.891±0.004 0.879±0.010 0.897±0.009 0.894±0.022 0.904± 0.021 0.926± 0.009 0.933± 0.007 0.933± 0.013

PALE 0.517±0.022 0.370±0.016 0.316±0.012 0.290±0.007 0.281±0.011 0.280±0.007 0.285±0.001 0.294±0.005 0.305±0.004 0.315±0.008

D+T+W 0.547±0.028 0.670±0.017 0.747±0.009 0.678±0.209 0.690±0.261 0.713±0.258 0.722±0.297 0.629±0.340 0.577±0.337 0.662pm0.373

DEEPWALK 0.487±0.018 0.667±0.013 0750±0.009 0.800±0.009 0.833±0.008 0.857±0.005 0.875±0.005 0.889±0.005 0.900±0.003 0.910±0.005

WORD2VEC 0.484±0.013 0.667±0.016 0.750±0.009 0.800±0.009 0.833±0.007 0.857±0.005 0.875±0.005 0.889±0.005 0.900±0.003 0.909±0.005

DIME-SH(social) 0.777±0.018 0.819±0.016 0.849±0.009 0.870±0.014 0.885±0.011 0.896±0.009 0.908±0.008 0.906±0.013 0.916±0.012 0.914±0.009

TULER(spatial) 0.663±0.051 0.749±0.019 0.768±0.015 0.811±0.012 0.838±0.008 0.858±0.005 0.875±0.005 0.889±0.005 0.900±0.004 0.909±0.005

CNN(text) 0.572±0.029 0.669±0.014 0.750±0.009 0.800±0.009 0.833±0.007 0.857±0.005 0.875±0.005 0.889±0.005 0.900±0.003 0.909±0.005

MNA-Social 0.791±0.017 0.844±0.013 0.873±0.014 0.893±0.014 0.908±0.007 0.918±0.010 0.927±0.006 0.935±0.003 0.939±0.004 0.944±0.002

MNA-Spatial 0.695±0.021 0.781±0.014 0.826±0.009 0.854±0.009 0.874±0.007 0.887±0.004 0.898±0.005 0.908±0.007 0.916±0.003 0.923±0.003

MNA-Text 0.585±0.021 0.680±0.012 0.754±0.012 0.802±0.010 0.833±0.009 0.857±0.006 0.875±0.005 0.889±0.005 0.900±0.003 0.909±0.005

F
1

DETA 0.928±0.016 0.870±0.009 0.829±0.014 0.797±0.014 0.760±0.024 0.743±0.008 0.813±0.050 0.824±0.015 0.798±0.024 0.791±0.025
DETA NO 0.816±0.025 0.768±0.029 0.752±0.010 0.602±0.035 0.590±0.057 0.421±0.244 0.381±0.254 0.542±0.125 0.532±0.132 0.431±0.236

PALE 0.667±0.020 0.498±0.019 0.402±0.014 0.334±0.012 0.283±0.012 0.247±0.010 0.223±0.009 0.200±0.012 0.182±0.007 0.166±0.011

D+T+W 0.518±0.028 0.166±0.042 0.075±0.065 0.114±0.136 0.106±0.116 0.079±0.103 0.065±0.084 0.087±0.094 0.113±0.093 0.062±0.074

DEEPWALK 0.486±0.032 0.002±0.003 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

WORD2VEC 0.326±0.326 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

DIME-SH(social) 0.743±0.020 0.651±0.040 0.593±0.038 0.538±0.066 0.495±0.066 0.446±0.070 0.429±0.106 0.258±0.191 0.262±0.181 0.102±0.133

TULER(spatial) 0.547±0.153 0.430±0.048 0.141±0.109 0.109±0.091 0.061±0.060 0.022±0.033 0.007±0.009 0.010±0.014 0.029±0.037 0.007±0.011

CNN(text) 0.591±0.028 0.012±0.021 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

MNA-Social 0.757±0.021 0.729±0.017 0.707±0.027 0.690±0.036 0.676±0.014 0.665±0.028 0.652±0.026 0.648±0.020 0.633±0.028 0.633±0.024

MNA-Spatial 0.592±0.028 0.560±0.027 0.529±0.026 0.506±0.028 0.481±0.027 0.446±0.024 0.426±0.024 0.411±0.036 0.395±0.043 0.379±0.035

MNA-Text 0.517±0.050 0.252±0.032 0.172±0.038 0.126±0.034 0.092±0.039 0.044±0.025 0.032±0.013 0.024±0.015 0.017±0.010 0.007±0.008

P
re

ci
si

o
n

DETA 0.877±0.019 0.793±0.014 0.729±0.018 0.685±0.022 0.643±0.022 0.632±0.014 0.893±0.138 0.965±0.010 0.963±0.010 0.962±0.037
DETA NO 0.913±0.017 0.891±0.013 0.867±0.019 0.877±0.035 0.874±0.023 0.901±0.069 0.912±0.072 0.866±0.054 0.860±0.051 0.883±0.087

PALE 0.509±0.021 0.339±0.017 0.258±0.011 0.206±0.009 0.170±0.009 0.145±0.007 0.129±0.006 0.115±0.007 0.103±0.004 0.094±0.007

D+T+W 0.555±0.030 0.524±0.035 0.459±0.118 0.180±0.167 0.358±0.295 0.092±0.110 0.099±0.108 0.080±0.102 0.070±0.060 0.097±0.148

DEEPWALK 0.488±0.014 0.350±0.450 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

WORD2VEC 0.242±0.243 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

DIME-SH(social) 0.873±0.024 0.903±0.021 0.907±0.016 0.924±0.038 0.924±0.038 0.941±0.028 0.919±0.042 0.648±0.426 0.765±0.384 0.477±0.478

TULER(spatial) 0.784±0.127 0.886±0.028 0.933±0.069 0.834±0.288 0.793±0.285 0.307±0.341 0.330±0.424 0.386±0.474 0.387±0.424 0.425±0.448

CNN(text) 0.572±0.041 0.390±0.478 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

MNA-Social 0.899±0.019 0.867±0.039 0.836±0.042 0.831±0.062 0.822±0.057 0.816±0.077 0.809±0.069 0.818±0.057 0.811±0.077 0.794±0.057

MNA-Spatial 0.893±0.024 0.850±0.017 0.814±0.020 0.783±0.038 0.768±0.039 0.740±0.032 0.726±0.047 0.715±0.047 0.712±0.040 0.703±0.035

MNA-Text 0.617±0.034 0.573±0.057 0.553±0.073 0.549±0.106 0.517±0.095 0.477±0.159 0.623±0.219 0.586±0.235 0.544±0.181 0.415±0.390

R
ec

al
l

DETA 0.986±0.016 0.965±0.014 0.961±0.021 0.954±0.014 0.930±0.035 0.901±0.012 0.764±0.050 0.719±0.025 0.681±0.033 0.673±0.037

DETA NO 0.738±0.038 0.676±0.044 0.665±0.023 0.460±0.039 0.448±0.064 0.314±0.190 0.284±0.204 0.409±0.111 0.401±0.113 0.328±0.192

PALE 0.966±0.009 0.937±0.012 0.922±0.013 0.891±0.014 0.854±0.020 0.829±0.022 0.822±0.017 0.796±0.024 0.774±0.022 0.752±0.024
D+T+W 0.488±0.036 0.100±0.030 0.044±0.045 0.225±0.355 0.240±0.384 0.214±0.364 0.212±0.394 0.348±0.442 0.439±0.422 0.307±0.453

DEEPWALK 0.489±0.072 0.001±0.001 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

WORD2VEC 0.500±0.500 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

DIME-SH(social) 0.649±0.034 0.511±0.046 0.442±0.045 0.384±0.065 0.342±0.063 0.296±0.062 0.288±0.091 0.166±0.127 0.166±0.120 0.060±0.082

TULER(spatial) 0.433±0.132 0.286±0.041 0.081±0.070 0.061±0.054 0.033±0.034 0.012±0.017 0.003±0.005 0.005±0.007 0.016±0.020 0.004±0.005

CNN(text) 0.626±0.116 0.006±0.011 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

MNA-Social 0.656±0.034 0.630±0.029 0.615±0.037 0.592±0.041 0.577±0.030 0.567±0.043 0.554±0.059 0.540±0.042 0.526±0.055 0.530±0.042

MNA-Spatial 0.444±0.031 0.418±0.028 0.392±0.027 0.375±0.027 0.350±0.025 0.319±0.024 0.302±0.022 0.289±0.032 0.275±0.037 0.260±0.030

MNA-Text 0.451±0.071 0.163±0.025 0.103±0.026 0.072±0.022 0.052±0.024 0.024±0.014 0.016±0.007 0.012±0.008 0.008±0.005 0.003±0.004

Here, we need to remark that, the pre-training loss term Lpre

will be used for learning the representation learning compo-

nents on both trajectory data and textual data. Meanwhile, for

the social connection representation learning part, we merge

LSNE into the Lpre. The pre-training can be accomplished by

Adam optimization algorithm, and the learned representations

will be used for the prediction component.

Prediction Component Training: Since the joint objective

function is NP-hard, such an objective function can be effec-

tively learned with an alternative variable updating algorithm.

• Fix y, Update r: With y fixed, we can represent the

objective function as follows:

min
r

1

2
||r||22 +

γ

2
||Xr− y||22.

The optimal r∗ which can minimize the objective function

can be represented as

r∗ = γ(I+ γX�X)−1X�y,

where entries of the labeled anchor links in vector y will

be assigned with their labels, while the remaining entries

are initialized with an unbiased value 1
2 .

• Fix r, Update y: With r fixed, we can represent the

objective function as follows:

min
y

γ

2
||ŷ − y||22,

where variable y is subject to both the binary and

the one-to-one constraint as indicated in the original

objective function and the scores for being anchor links

ŷ = r∗X. The objective function can be addressed with

the greedy link selection algorithm proposed in [28].

For the unknown links, we sort them according to their

scores in ŷ and set the elements in y whose positions

corresponding to those with the largest scores label +1,

if the assignments of the labels will not violate the one-
to-one cardinality constraint. Such a greedy link selection

algorithm can achieve an 1
2 -approximation of the optimal

solution.

Such an iterative learning process continues until convergence,

and the final prediction labels of all the unknown anchor links

in vector y will be outputted as the results.
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(a) Social Network Convergence (b) Trajectory Convergence (c) Text Convergence

Fig. 3. Convergence Analysis

IV. EXPERIMENTS

To evaluate the performance of the proposed framework,

extensive experiments will be done on two real-world datasets.

In the following part, we will first talk about the experimental

settings, and then discuss the experimental results in detail.

A. Experimental Settings

1) Experimental Setup: The datasets used in the experi-

ments include a pair of aligned social networks: Foursquare

and Twitter. There are 3282 anchor links between Foursquare

and Twitter. The detailed descriptions of the datasets are

available in [11]. We utilize the anchor links as positive links

as well as a set of non-anchor links as negative links first, and

then extract subset of negative links based on negative/positive

ratios. To eliminate the variance caused by different training

set, we use 10-fold cross validation to partition the links into

two subsets according to ratio 9:1, where the 9 folds are treated

as training set and the rest 1 fold is treated as testing set.

2) Comparison Methods:

• Deep Network Aligment (DETA): DETA can capture

the feature representations of the social connections,

trajectory and textual words and then do the label in-

ference with the three representations and the one-to-one

constraint.

• DETA without one-to-one constraint (DETA NO):

DETA NO is a variant of the DETA model, which

excludes the one-to-one constraint in the label prediction

step.

• DEEPWALK: The DEEPWALK [21] uses local informa-

tion obtained from truncated random walks to learn latent

feature representation based on social connections. The

parameter settings of DEEPWALK involve window size:

5, negative sample: 5, and feature dimension: 64.

• WORD2VEC: WORD2VEC is first proposed in [20] for

natural language processing. Based on users’ textual data,

we use a Google’s pre-trained WORD2VEC model 1 to

get the vector representations of words directly and regard

the concatenation of used words’ vectors as the user’s

representation.

• Single Data Type based Alignment Models: We also

compare DETA with three single data type representa-

tion learning models, including social connection rep-

resentation DIME-SH(social) [29], trajectory representa-

tion TULER(spatial) [5] and textual word representation

1https://code.google.com/archive/p/word2vec/

CNN(text) [9], which are all slightly extended by incor-

porating a small number of explicit features.

• Explicit Feature based Alignment Models: Several

existing explicit feature based network alignment models,

i.e., explicit social features MNA-Social [11], explicit

trajectory features MNA-Spatial [11] and explicit textual

features MNA-Text [11], are also compared in the exper-

iments.

• DEEPWALK+ TULER + WORD2VEC (D+T+W): This

method uses the combination of DEEPWALK for social

connections, LSTM for trajectory and WORD2VEC for

textual words. Here, we adopt the same settings as indi-

cated in the previous descriptions. We take the combined

features of the three types and put it into a SVM classifier.

• PALE: The method is proposed in [17], which adds ad-

ditional links to complement original network according

to known anchor links. In our paper, we only use the

linear mapping function.

3) Evaluation Metrics: In this paper, we will use accuracy,

precision, recall and F1 to measure the experimental results.

B. Experimental Results

1) Experimental Results Analysis: To demostrate the results

more comprehensively, we further have the imbalanced ratio

to test DETA. The imbalanced ratio (i.e., λ) denotes the ratio

of
#negative cases
#positive cases

. We set λ ∈ {1, 2, · · · , 10}. Besides, we

set β = 0.01, γ = 0.01, η = 1, θ = 1000 mentioned in the

section III. Now, we can get the result table I. We use four

sections to denote four metrics respectively. In each section,

each row represents the method and each column represents

the negative/positive ratio. Compared with DETA NO, DETA

has a better performance with these four metrics, which

demostrates the effectiveness of the one-to-one cardinality

constraint. The performances of DETA and DETA NO are

very close on precision, although DETA NO has a better

performance when λ ∈ {1, · · · , 7}. DETA also outperforms

the PALE on four metrics as well. We notice that PALE out-

performs DETA on recall when λ ∈ {7, 8, 9, 10}. The reason

is that the PALE always predicts the positive instances and

the recall measures the number of predicted positive instances.

Hence, the recall becomes higher when λ rises. DETA also

outperforms the hybrid D+T+W, showing the effectiveness of

our learned features works better than that simply adopting the

combination of existing works. In addition, we also show the

results by utilizing one of three kinds of features. Generally,

DETA shows the best performance among DIME-SH(social),
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(a) Social Network (b) Spatial Locations

word counts in both networks
user (Twitter, Foursquare)

Michelle Jacobson
art (65,2), style (16,3)
audit (3,2), grill (19,2)

Nathan Levinson
happy (27,5), enjoy (9,4)
week (18,4), shows (6,6)

Andrew Nystrom
awsm (2,3), kids (20,3)
red (61,3), open (11,4)

Liza Sperling
ask (6,5), coffee (8,3)

mochi (1,3), hangout (5,2)

Tristan Walker
win (19,4), amazing (55,5)

awesome (51,4), please (9,4)
(c) Textual Word Usage

Fig. 4. Case study [11]: five real-world users with their social, spatial and text distributions.

Tristan 
Walker

Nathan 
Levinson

Andrew 
Nystrom

Liza 
Sperling

Michelle 
Jacobson

Tristan 
Walker 1.559 1.637 1.764 1.825 1.999

Nathan 
Levinson 1.581 1.657 1.871 1.842 2.015

Andrew 
Nystrom 2.026 2.383 2.029 2.276 2.645

Liza 
Sperling 1.558 1.638 1.764 1.825 1.999

Michelle 
Jacobson 1.682 1.755 1.873 1.931 1.770

Twitter
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(a) Latent Social Feature based Distance Matrix

Tristan 
Walker

Nathan 
Levinson

Andrew 
Nystrom

Liza 
Sperling

Michelle 
Jacobson

Tristan 
Walker 198.489 216.454 338.386 257.475 268.829

Nathan 
Levinson 154.809 133.382 209.283 179.508 273.587

Andrew 
Nystrom 267.745 254.456 168.132 230.059 354.642

Liza 
Sperling 214.813 240.075 363.670 266.858 266.845

Michelle 
Jacobson 197.479 195.295 158.778 180.031 245.621
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(b) Latent Trajectory Feature based Distance
Matrix

Tristan 
Walker

Nathan 
Levinson

Andrew 
Nystrom

Liza 
Sperling

Michelle 
Jacobson

Tristan 
Walker 970.761 1164.2411357.5431068.010 33.790

Nathan 
Levinson 976.187 1159.558 1357.9631071.939 38.973

Andrew 
Nystrom 987.637 1176.867 1370.252 1081.784 24.536

Liza 
Sperling 998.218 1189.1491382.677 1088.606 14.737

Michelle 
Jacobson 999.859 1190.2301384.5971091.742 16.242

Twitter

F
o

u
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q
u
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(c) Latent Text Feature based Distance Matrix

Fig. 5. Case Study Matrices

CNN(text), TULER(spatial), MNA-Social, MNA-Spatial and

MNA-Text. However, the precision scores of DETA are a little

bit lower when λ ∈ {1, · · · , 6}. It might be that the one-to-one

cardinality constraint will assign each user in network 1 with

exact one user in network 2. Thus, it would eliminate those

truely positive pairs that have insufficient information. When

the ratio higher than 7, the information for the negative pairs

get comprehensive, thus DETA has the better results.

Moreover, we can also illustrate that the importance

among three types of features. From table I, compared with

TULER(spatial) and the CNN(text), DIME-SH(social) have

the best performance among all metrics when the ratio changes

from 1 to 10. It demostrates the social connections are the

biggest contributor for alignment task compared with trajecto-

ries and texts. This is because the checkins are not a must-do

in twitter and the texts online are in informal usages. Besides,

textural features work when the imbalance ratio λ is not high.

By combining these three types of heterogenous information,

the DETA achieves a balance among these metrics despite it

does not rank first in every measurement.

2) Convergence Analysis: Before showing the experimental

results, we will analyze how many epochs are needed to

achieve results. In Fig. 3, we show the loss introduced in three

modules respectively. Fig. 3(a), Fig. 3(b) and Fig. 3(c) show

the pre-training losses of social connection, trajectory, textual

words modules, respectively. As indicated in Fig. 3, the x-

axis denotes the epoch number and the y-axis represents the

corresponding loss. According to the results, each module can

converge within a small epoch number, which means DETA

can converge in a short time.

3) Case Studies on Latent Features: We further examine

the effectiveness of our latent features with a case study

since the explict features are based on pairwise caculations.

In Fig. 4, we show a case of five real-world users who have

both Foursquare and Twitter accounts. These five users are

socially connected in both networks, as shown in the Fig. 4(a).

The check-ins of five users are illustrated in the Fig. 4(b)

and their word usage patterns are provided in the Fig. 4(c).

Based on these observations, we extract their latent features by

three approaches, i.e., DIME-SH(social), TULER(spatial) and

CNN(text). To evaluate the effectiveness of latent features, we

propose to use their pairwise distances based on these different

latent feature representations, aiming to check whether these

learned features can help align these users correctly or not.

By applying the one-to-one cardinality constraint on each

approach, the results are illustrated in the matrices shown in

Fig. 5, where the rows and columns denote users from Twitter

and Foursquare and the matrix entries indicate their pairwise

distances. The results demostrate the latent features can predict

anchor links alomost correctly.

V. RELATED WORK

Network alignment is a significant research problem, which

has been studied in various areas, e.g., protein-protein-

interaction network alignment in bioinformatics [14], [22],

chemical compound matching in chemistry [23], data schemas

matching [19], graph matching in combinatorial mathematics

[18], and figure matching and merging in computer vision

[1]. For online social media, network alignment provides an

effective way for information fusion across multiple social

sites. Many research works manually extract features by

heuristic methods on different networks [11], [30]. Zhang
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et al. ustilize transitivity law to align multiple anonmized

social networks [30] solely on social network connections. [31]

uses the social connections, checkins and posts together to

predict anchor links. Recently, with the great property of

network embedding, researchers starts to take advantages of

the network embedding on the network alignment task. Matrix

factorization based methods ( [32], [10]) can be one type of

network embedding methods to solve network alignment prob-

lem, where the matrix can be formed by both homogeneous

networks and heterogeneous networks. Man et al. propose to

supplement each other networks via anchor links and factorize

the matrices on the complementary networks in [17].
In recent years, many research works propose to apply deep

learning models on graph-structured data, i.e., the network

embedding problems. Network embedding aims at projecting

a graph-structured data to feature vector representations. In

graphs, the relation can be treated as a translation of the

entities, and many translation based embedding models have

been proposed, like TransE [2], TransH [27], and TransR [16].

In recent years, many network embedding works based on

random walk and deep learning models have been introduced,

like Deepwalk [21], LINE [24], node2vec [6], and DNE [26].

Perozzi et al. introduce the Deepwalk algorithm [21]. Chang

et al. [3] learn the embedding of networks involving text and

image information. Chen et al. [4] introduce a task guided

embedding model to learn the representations for the author

identification problem. However, most of these embedding

models are proposed for homogeneous networks and assume

the learned feature vectors can be appropriate to all external

tasks. Meanwhile, by this context so far, few research works

have been done on studying heterogeneous social network

alignment problem with deep learning models yet.

VI. CONCLUSION

In this paper, we study the heterogeneous social network

alignment problem with a deep learning framework, namely

DETA. For each information category in the social net-

works, DETA extracts a small number of explicit features

and employs deep learning models to learn a set of latent

features for the anchor links. These extracted features will be

further integrated together for the anchor link label inference

with a deep fusion. Extensive experiments have been done

on two real-world heterogeneous social networks, and the

experimental results have demonstrated the effectiveness of

the proposed deep social network alignment model.
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