2019 IEEE First International Conference on Cognitive Machine Intelligence (CogMI)

Deep Heterogeneous Social Network Alignment

Lin Meng*, Yuxiang Ren*, Jiawei Zhang*, Fanghua Ye', Philip S. Yu!
*IFM Lab, Department of Computer Science, Florida State University, FL, USA
TDepartment of Computer Science, University College London, UK
tDepartment of Computer Science, University of Illinois at Chicago, IL, USA
{lin, yuxiang, jiawei} @ifmlab.org, smartyfh@outlook.com, psyu@uic.edu

Abstract—The online social network alignment problem aims
at inferring the anchor links connecting the shared users across
social networks, which are usually subject to the one-to-one
cardinality constraint. Several existing social network alignment
models have been proposed, many of which are based on the
supervised learning setting. Given a set of labeled anchor links,
a group of features can be extracted manually for the anchor
links to build these models. Meanwhile, such methods may
encounter great challenges in the application on real-world
social network datasets, since manual feature extraction can
be extremely expensive and tedious for the social networks
involving heterogeneous information. In this paper, we propose
to address the heterogeneous social network alignment problem
with a deep learning model, namely DETA (Deep nETwork
Alignment). Besides a small number of explicit features, DETA
can automatically learn a set of latent features from the het-
erogeneous information. DETA models the anchor link one-to-
one cardinality constraint as a mathematical constraint on the
node degrees. Extensive experiments have been done on real-
world aligned heterogeneous social network datasets, and the
experimental results have demonstrated the effectiveness of the
proposed model compared against the existing state-of-the-art
baseline methods.

Index Terms—Social Network Alignment; Information Fusion;
Deep Learning; Data Mining

I. INTRODUCTION

Formally, social network alignment denotes the problem of
inferring the anchor links connecting the shared user accounts
across different online social networks [11]. In recent years,
numerous online social networks have appeared, which can
provide various featured services for the users. For instance,
Facebook allows users to establish connections with their
friends, family members and classmates; Twitter provides
users with the latest news information from the public;
LinkedIn helps people to establish their professional profiles
for job hunting; Foursquare enables people to keep track of
their visited locations in the offline world. To enjoy such di-
verse social network services simultaneously, users nowadays
are usually involved in multiple online social networks at the
same time. However, in the real world, these online social
networks are typically separated from each other without any
correspondence relationships [11].

Social network alignment can be the prerequisite task for
information fusion across multiple online social platforms.
By integrating the information about the shared users from
multiple social sites together, it will provide researchers
and practitioners with the opportunity to achieve a more
comprehensive knowledge about the users’ social activities.

978-1-7281-6739-8/19/$31.00 ©2019 IEEE
DOI 10.1109/CogMI48466.2019.00015

43

Meanwhile, for the social network service providers, social
network alignment also allows them to improve their services
greatly by retrieving useful information from other external
social network platforms. Various application services can ben-
efit from the alignment results, e.g., friend recommendation,
community detection and information diffusion, which renders
the social network alignment to be a crucial learning task.

Many existing social network alignment models are mainly

proposed based on the supervised algorithms. Given a set
of labeled anchor links, the anchor link inference problem
can be modeled as a binary classification task [11], where
the existing and non-existing anchor links are labeled as the
positive and negative instances, respectively. Based on the
social network information, a set of features will be extracted
manually for the anchor links. These features are usually
designed for the specific input social networks, which can
hardly be generalized to other regular social networks. Such a
problem will be much more severe when it comes to the real-
world heterogeneous social networks, involving multiple types
of nodes and complex links, since manual feature design and
extraction across these heterogeneous networks will become
extremely expensive and tedious.
Problem Studied: In this paper, we propose to study the
heterogeneous social network alignment problem, which aims
at finding common users among multiple heterogeneous net-
works. Besides a small number of simple explicit features
extracted from user pairs, we further propose to learn a group
of latent features automatically based on deep learning models
from the heterogeneous social networks, which will be fused
together to infer the anchor links across networks.

The heterogeneous social network alignment problem is
hard to address due to the following challenges:

e Network Heterogeneity: The online social networks usu-
ally contain heterogeneous information, involving vari-
ous categories of nodes and links, which creates great
challenges for both explicit feature extraction and the
automatic latent feature representation learning for the
anchor links.

o Information Integration: There exists a two-phase infor-
mation integration in the studied problem: (1) explicit and
latent feature integration for each information category,
and (2) cross-category information integration. A new
information fusion model which can achieve both of these
objectives will be desired and necessary.

One-to-One Constraint H Output ‘

Fused Representation

Latent Representation

N 1

Shared Weights

Explicit Representation

=

Latent Representation
Learning Network

Latent Representation
Learning Network

Explicit Feature
Extraction

User Input 1 User Input 2

Fig. 1. The DETA Framework.

e One-to-One Constraint: The anchor links to be inferred
across networks are subject to the one-fo-one cardinality
constraint [11], where each user should be connected by
at most one anchor link across networks. Such a strict
constraint will pose great challenges on both problem
formulation and the model learning.

To resolve the aforementioned challenges, in this paper,
we will propose a novel deep heterogeneous social network
alignment model, namely DETA (Deep nETwork Alignment).
DETA extracts a very small number of general and explicit
features for the anchor links across the networks, and learns a
group of latent features from each information category with
specific deep learning models (including deep autoencoder for
social connections, LSTM for trajectory records, and CNN
for textual words). Furthermore, DETA fuses these diverse
features across information categories with a deep model. The
one-to-one cardinality constraint on anchor links is modeled
as the mathematical constraint on the node degrees in DETA.

II. TERMINOLOGY AND PROBLEM DEFINITION

In this section, we will first define the terminologies used
in this paper and then provide the formulation of the hetero-
geneous social network alignment problem.

A. Notations

In the following sections, we will use the lower case letters
(e.g., x) to represent scalars, lower case bold letters (e.g., x) to
denote column vectors, bold-face upper case letters (e.g., X) to
denote matrices, and upper case calligraphic letters (e.g., X’) to
denote sets. Given a matrix X, we denote X(i, :) and X(:, j) as
the 4,5, row and 7., column of X. The (i1, ji5) entry of matrix
X can be denoted as either X (i,5) or X; ;. We use X' to
represent the transpose of matrix X. The F-norm of matrix X
can be represented as || X|[|p = (3_; ; |X1-,j|2)%. The element-
wise product of vectors x and y of the same dimension is
represented as x ® y. The concatenation of vectors x and y is
denoted as x Uy and Tr(X) denotes the trace of matrix X.

B. Terminology Definition

To study the social network alignment problem, we need to
defined several terminology first.

44

Definition 1 (Heterogeneous Social Network): Formally, the
heterogeneous social network studied in this paper includes
multiple types of entities V and multiple types of links £. We
will use U, T, and D to represent the sets of users, trajectories
and textual words involved in the network respectively and
Euus Eur and &, 4 to denote those different types of links
among the entities. Hence, a heterogeneous social network can
be represented as a graph G = (V,£), where V =L/ UT UD
and £ =&, ,UE, 1 UEy q.

For each user u; € U, via the connections, we can easily

retrieve his/her neighbors, historical trajectory and used words
from the network. If the data types of a user are incomplete,
we will discard the component corresponding to the missing
data type.
Definition 2 (Aligned Heterogeneous Social Networks):
Given n heterogeneous social networks GV, G® .. G™
sharing common users, we can represent them as the
multiple aligned heterogeneous social networks G
((G(l)’ e 7CTY("))7 (A(1v2)7 A(LS)’ e 7‘_,4("71a“)))_ In the no-
tation, A7) denotes the set of undirected anchor links be-
tween networks G and G, which can be represented as
follows formally:

ACD = (0D D) € U o e U,

u and v\9) are the same user.}

where U and ¢4(9) denote the user sets of networks G() and
G, respectively. Furthermore, as indicated in the existing
works [11], anchor links between social networks are subject
to the one-to-one cardinality constraint, which means each user
in G can only be connected to at most one user in G'7),

C. Problem Formulation

To simplify the settings, in this paper, we will use pairwise
network alignment as an example to introduce the problem
definition and the proposed models. An easy extension of
the proposed model can be applied to the alignment problem
among more than two heterogeneous social networks as well.
Problem Definition: Formally, given a pair of partially aligned
social networks G = (G, G®?), (A1:2)) with a very small
number of observed anchor links A2, we can represent all
the potential anchor links between networks G(!) and G() as
C = UM x U®P. Based on the known anchor links A(1»?)
together with the information in networks GM and G@, we
aim at building a mapping f : C —) to project the potential
anchor links to a pre-defined label space Y = {+1,0}, where
the existing anchor links will be assigned with label 41 while
the non-anchor links are assigned with label 0. Significantly
different from the classification tasks of regular links [15], [7],
as mentioned above, the anchor links studied in this paper are
subject to the one-to-one cardinality constraint, which poses a
strict constraint on the prediction task.

III. PROPOSED METHOD

In this section, we will introduce our method in detail.
As indicated in Fig. 1, given a user pair from two different
social networks, the proposed model DETA is capable of

computing the users’ feature representations based on their
heterogeneous information, which will be further fused to
generate the output. Among the functional modules in the
framework, the main components include the “latent repre-
sentation learning network™ and “explicit feature extraction”,
and their detailed architecture is illustrated in Fig. 2. In this
section, we will first introduce the representation learning
network model with the heterogeneous social information,
including social connections, trajectories and textual words
in Sections III-A - III-C, respectively, and then provide the
overall framework and learning algorithm in Section III-D.

A. Social Connection Representation Learning

Users’ social connections can clearly indicate their social
preferences, which provide important signals for inferring the
shared users across networks. As indicated by the central part
in Fig. 2, the DETA can extract a set of explicit features and
latent features from the social network for the anchor links. In
this part, we will introduce these latent and explicit features
extracted from the social network information in detail.

1) Latent Feature Extraction: In DETA, the social con-
nection latent feature vectors are learned with an extended
deep autoencoder model. Traditional deep autoencoder [25]
is an unsupervised model, which aims at learning a dense,
low-dimensional feature representation for the sparse and high-
dimensional input. The autoencoder model includes two parts:
encoder and decoder.The encoder maps the input vector into
a target low-dimensional space, then the decoder restores the
mapped vector to the input vector in a reconstructed space (the
same dimension as the original input). The deep autoencoder
model aims at minimizing the differences of the input vector
against the reconstructed vector, so as to learn the model
variables.

When applying the deep autoencoder model to learn the
latent features for social connections, we regard users’ social
neighborhood information as the input. Formally, given the
user set U and the social connection set &, , in network G
(which can be either G or G(?), we can represent the
social links available in network G as the adjacency matrix
A € {0, 1} X111 where A(i,7) = 1iff (u;,u;) € Euu and
u;, uj € U. User u;’s social neighborhood can be indicated by
his/her corresponding row in A (i.e., x; = A(%,:)). Because
of the nature of A, the original objective function is capable
to capture the second-order proximity of nodes in the network,
i.e., nodes with similar neighbors (i.e., the input vectors to the
model) will have similar latent representations (i.e., the output
vectors).

However, slightly different from the classic learning settings
with independent data instances, the user nodes in social
networks are highly connected, whose learning results will
be strongly correlated with each other. For instance, given
two connected user nodes (even if they have totally different
neighbors), their learned latent feature vectors should be
close to each other in the objective low-dimensional space.
Based on such an intuition, we extend the deep autoencoder
model by incorporating such a first-order proximity [26] into

45

consideration. Formally, given users u; and u;, based on their
input feature vectors x; and x;, we can represent their learned
latent feature vectors as z; and z;, respectively. To preserve
the first-order proximity, we introduce a loss term as follows:

Ly= > Sij |2z —z|3=Tr(2"L2),

uq,u; €U

where L is the laplacian matrix, which can be compute by
L =D -8, and D is the diagonal matrix corresponding to S.
Matrix entry S; ; denotes whether u; and u; are connected or
not. Here we give its mathematical represention as follows:

Sij = { b

—1,
Instead of A, S can capture difference between users better.
Normally, the social network connections are very sparse and
most of the elements in A are zeros. In such a setting, simply
adopting the traditional deep autoencoder may lead to trivial
solutions, and the social network information may get lost
in the learned user representation vectors. Hence, we further
extend loss function with the second-order proximity of the
deep autoencoder model by adding a vector b; to emphasize
the importance of the non-zero entries and the embedding loss
term can be changed into:

Lo=Y | (x—%) @by |3,

u; €U

if u; and wu; are connected,
if u; and wu; are not connected.

where the X; denotes the recovered input vector from z; and
the elements of b; is defined based on the input vector x; as

follows: i 2,(j) = 1
. I 7; =15
bi(j) = ; 7 J a0
if z;(j) = 0.
where a > 1 is the larger weight assigned for the non-zero
elements. In the experiments, « is usually determined by the
ratio of the numbers about the zeros and ones in vector x;.
By adding up the loss terms of the first-order proximity and
the second-order proximity, we can represent the latent social
connection feature extraction objective function as follows:

Q,
L,

Lsyg=p8-L1+n- L.

Parameters /3 and 7 denote the corresponding loss term
weights. According to the descriptions, we can represent the
extracted latent feature vectors for users ugl) and ug?) as
vectors x5 and x¢”f, respectively.

2) Explicit Feature Extraction: Besides the latent features
learned by the model automatically, to get more concrete
information of social networks, we also propose to extract
several explicit features across social platforms to improve
performance of the model. These extracted features include
the product of user pair’s degree, the extended common
neighbors, the extended Jaccard’s coefficient and the ex-
tended Adamic/Adar measure, respectively. Given a user pair
(u§1)7u§2)), the extracted product of node degrees can be
represented as:

i

ot -], <)
egree(u; ', u;”") = |Ix; A

Heterogeneous Text Analysis

Social Network

4+ Cosine Similarity —> ﬁ

. Convolut|on

(e.g., uni—gram

TF-IDF Explicit

Latent
Max-Pooling

time

— s — .
filter)
: Explicit
Grapih‘ An.aly5|s Common Neighbor
: b 4 dJaccard’s Coefficient
b Adar Admic
b o Latent
R AN
N ’J‘i 3 Trajectory Analysis Explicit
. g Common Location
: i ® + Average Distance ~—* ﬁ @ _
i, 7"'3" = ~ ; Latent
¢y [® ® o o o

Fig. 2. Deep Representation Learning Model.

(1)

where x(l) and xgg) denote the social neighbor vectors of u;

and ug), respectively. As for extended common neighbors,

extended Jaccard’s coefficient and extended Adamic/Adar
measure, they are defined based on the known anchor links in
the training set. The key idea of calculating the three features
is based on the observation that users in different networks can
be linked by known anchor links. CN (ugl), u§-2)) represents
the number of extended common neighbors between ul(-l)

network G") and u() in network G and it can be formally
defined as follows:

in

N ul?) = ‘r 1) nAr(u(2>)
= {(o) € Ay

Up *, Ug

where I’(ugl)) denotes the neighbors of u() in network G
and F(uf)) denotes the neighbors of ug) in network G,
For the extended Jaccard’s coefficient, it rescales the “extended
common neighbor” by considering the anchor links between

users:
(1)
I(u™) N4
IT(u{Y) U, T

INOI]
(
J

2|’

JC(’LL 1) (2)

’ J

)=

= ()] + P@{?)] -

ruM)Jre!?)
A

D)).
A

For the extended Adamic/Adar measure, it further assigns
each “extended common neighbor” a unique weight, which
is determined by their degrees:

log™! (

These four extracted features comg)ose the explicit social

features xgz‘i"j) for the user pair () across networks.

AA(uEl),u§2)) =

>

Pher@Myn,re®)

IT(uy))] + T (u$?)]

2
V(u(pl) ,u

Ve rM),ul e PP},

46

B. Trajectory Representation Learning

Nowadays, online social networks provide the services to
allow users having check-ins at various locations, which has
become a significant feature in heterogeneous social networks.
From users’ trajectory information, we can capture users’
spatial social behavior patterns, which will be useful for
inferring the anchor links connecting the shared users. In
order to make a good use of trajectory information, besides
several simple explicit features, we propose to use Long Short-
Term Memory (LSTM) [8] to extract a set of latent trajectory
features for users.

1) Latent Feature Extraction: The trajectory latent features
vector is learned with a one-layer LSTM. For the sequence
input, LSTM has a wonderful advantage in maintaining an
effective “memory” of the information in a sequence. Given
the check-in records of one user in an online social network,
we will first divide the activity regions into a set of blocks,
where each block is assigned with a unique ID. For the
locations within the same block, they will be assgined with
the same block ID by default. This is reasonable since the
social network check-in coordinate pairs are not precise. Also,
our goal is to predict the anchor links, the exact check-in
location matching can hardly get more useful information
for identifying the common users. Therefore, grid blocks can
provide a fuzzy representation of users’ check-in activities.
Formally, given a user’s check-in records, we will represent
them as a sorted sequence according to the timestamps, where
the entries denote the corresponding block IDs.

Given a user set U, the complete timestamp set Q, and
user-trajectory set &£, in network G (which can be either
G or G?), we first divide the activity regions into 7
blocks and represent the user’s trajectory records as a decimal
matrix Tyee € {0,1,2, ..., n} X191 Matrix entry Ty (i,) €
{1,2,...,n} denotes the block that user u; € U visited at time
7; € Q in his historical trajectory. In model learning, binary
representations may take fewer rounds to achieve convergence

than decimal representations. Therefore, for each entry in
T 4ec, we can replace it with the binary code, which will lead
to a binary trajectory matrix Ty, € {0, 1}“Ix(oen QD) anqd
it can be simply denoted as T by default in this paper.

In order to ensure similar trajectories will have similar
latent feature representations, we make some extensions to the
traditional LSTM model. First, we add one fully-connected
layer to project T'(4,:) to a vector X; as follows:

ﬁi = U(WlT(i, Z) + bl)

where W and by denote the weight and bias variables. These
projected vectors, e.g., X;, will be fed to a RNN model with
kE LSTM cells, whose outputs can be denoted as vectors y; 1,
Yiz2, -, Yir respectively. To make sure all information can
be maintained, we will combine all the outputs of LSTM
cells via another fully-connected layer with sigmoid activation
function as indicated by the following equation:
Vit Uyi2 U Uyik,

{ yi=
z; = o(Way; +bo).
where z; will be the final latent feature vector learned for
user u; based on the trajectory. In the equation, W5 and by
denote the weight and bias variables involved in the model.
According to the descriptions, we can represent the extracted
latent feature vectors based on the trajectory for users ugl) and
u§-2> as vectors xy/i' and x”, respectively.

2) Explicit Feature Extraction: We extract several explicit
features from the trajectory data as well. The first one coming
into our mind is the locations shared by users u() and u(z)

Formally, we will use ME”

and M;) to denote the locatlon
(1) (2)

sets of u,; ’ and u; and it can be defined as follows:

1) (2 1 2
O, u®) = [MO A Mm@
In online social networks, different users have different activity
regions, and the active region distances can be effectively in-
dicated by the average distances of the check-in 1ocati(or)1§ ’(l“l;e
1) (2

second explicit feature extracted for the user pair (u;,u;™)

is the average distance between two location sets of u() and

() , which can be denoted as:

ZZPGMEI) Zlquj@) HZIJ
1 2
M| x [MP|

—lall

AD(uZ(-D,u(Q)) =

J

where I, € ME” and [, € M§»2> denote the (longitude,
latitude) pairs of the locations and their distance can be
denoted as the Ly norm ||I,, — I,]|, as indicated in the equation.
The third extracted explicit feature for user pair (ugl) u§-2))
is based on the cosine similarity score of the user pair’s
binary trajectory representations in matrices T!) and T,
respectively, which can be represented as
T(l)(-) T(Q)(; .)T

ITG], > [T
Moreover, the check-in number reveals the activeness of one
user and it is another important signal for inferring the anchor

S

cos(u, (2)) =

47

links across networks. Therefore, we have the last two explicit
features denoting the check-in numbers of u§1> and u§.2

1 1 2 2
act(uf) = |M;V], - act(u”) = M5,

These five features will compose the explicit feature vector
x?’((;’j) extracted from the trajectory data for the user pair

(ugl)7 ugz)).

C. Textual Word Representation Learning

Textual data is ubiquitous in online social networks and it
contains a large amount of information. From the historical
textual data, we can find out the language usage preference of
each user. Analyzing their textual words can help us to identify
the anchor links across networks. Meanwhile, convolutional
neural network (CNN) achieves a big success on relevent areas
and it performs better than word2vec [20] in [9]. Therefore,
we will extract a set of latent and explicit features for the user
pairs, where the latent feature extraction is based on the CNN.

1) Latent Feature Extraction: Convolutional neural net-
work [13], [12], [9] is one famous neural network proposed
in recent years. It is usually used in processing image data
[13], [12]. With suitable convolutional kernels, CNN can also
achieve an excellent performance on textual word processing
[9]. When applying CNN to text data, we need to first get
a suitable input. One possible method for the textual word
representations utilizes the classic bag-of-word model. We will
first get the statistical information of the words used by users
in online social networks. By tokenizing each tip/post message
into unigrams, we count the occurrence of each word, based
on which we are able to transform the words of a user into a
vector representation as introduced in the following part.

Formally, given the user set U/, word set D, and user-word
set £, 4 of network G, we can represent the user-word matrix
D € RIUIXIPI where D(i, j) denotes the frequency that user
u; € U uses word d; € D. The occurrence frequency of all
the words used by u; can be indicated by i;, row in matrix
D. Each row of matrix D will be reshaped into a matrix of
dimensions \/ﬁ X \/@ , and be fed as the input to the CNN
where it has two convolutional layers and two max-pooling
layers. For each convolutional layer, we adopt ReLU function
(e.g. 6()) as the activation function. After the last pooling, we
get the desired feature matrix. we flat the feature matrix first,
and then use one fully-connected layer to project it to dense
feature representations. Assuming flatten vector is x;, € R™,
the output z; can be calculated by

Z; = (S(ngi + bg)7

where W3 and bs are the weight and bias of the fully-
connected layer. Therefore, we can obtain our text feature rep-
resentations xy,'; and xy"; for users u() and u(, respectively,
showing the language usage patterns of users.

2) Explicit Feature Extraction: For textual word informa-
tion, we extract four explicit features. For each user pair
(u<1)7u;2)), we use DM (i,:), DA)(4,:) to denote bag-of-

word vectors of u\"), u§-2) in network G") and network G,

respectively. Based on these two vectors, the first extracted
explicit textual feature is the word vector inner product, which
can be computed as:

IN@u,uf) =D (i) - DA,

Also, the number of commonly used words of u() and u§.2)
also illustrates the similarity between users, Wthh can be
computed as:

oW (ufV,u) = [{k[DW (i, k) € Ny A DD (j,k) € Ny}

Based on CW(uEl) (2>) we can further extend it to capture
more precise features by considering the total words used by
the user pairs, which can be denoted as follows:
CW(uZ(-l), u;2>)
{dD®M (i, d) € Ny} + [{d| D) (5,
C’W(ul(-l),u?))
DM (i, d) € Ny} U {d| D) (5,d)
We will integrate these four features to a vector X5(i)

(ul(-l), u§2)), representing the explicit features extracted from
users textual word usage.

NCW1(

WD @) = 7
d) € N}

NCWa(ufV u{?) = N

EXP fOr

D. Deep Network Alignment Model Learning

we will introduce DETA and its learning algorithm in this
part. DETA focuses on fusing those features and how to
add our alignment goal into the objective function. Besides,
maintaining the one-to-one constraint is another important
objective in the network alignment problem. Thus, our model
includes two shared representation learning networks and the
joint objective function subject to the one-to-one constraint.

1) Feature Representation Fusion: In DETA, we propose
to combine all features in the above sections together to get
the representations of user nodes in the social networks. In
order to obtain representations of user nodes in G') and
G® simultaneously, we use two same representation learning
networks. As indicated in Fig. 1, the two parts have shared
weights, which will not only greatly reduce the variable
learning costs but also effectively project the data to the same
feature space.

Based on the above descrl%otlons we get three types of latent
features extracted for user u,; ’ and u'? for the heterogeneous
social networks as x%‘f,x#AlT, x%,jf and ngjT, x#f}, x%vAg
respectively. By concatenating these features together, we can
further project the latent features of users ugl) and u;m to more
dense representations according to the following equation:

X, 0(Wy,x; + by,), where x; = XLAT U xA L X%VAI,

X; 0(Ws,x; + by,), where x; = xLAT] XLAT L x%f}
In the above equation, W, and b,, are the shared weight
and bias in this layer. Meanwhile, to effectively integrate the

latent and explicit features together, we adopt a deep fusion
layer as follows:

X = XLAT Ux f);P7

xi =0 (WSz(xZ Ux;) +bs,),
EXP —

X0y = X5 UXalg) UXNG,g)

48

where W, and b, denote the weight and bias in the fusion
layer and the x}”" represents the concatenation of all explicit

features between user pair (u, a) ;2)).

2) Joint Objective Funcnon. According to the representa-
tion fusion step aforementioned, we can represent the complete
feature vectors of all the potential anchor links in set C as
X € RICI¥d" (where d’ denotes the fused feature vector
length). Formally, for all the anchor links in set C, we can
denote their labels as vector y € {0,1}/°l. Based on the
fused feature representations of the anchor link (u§1)7u§2))
(i.e. X(i,7)), we can represent the introduced loss term on
all the links in C as follows:

Lpeta = ||Xr — y|3.

where r denotes the mapping function for transforming X to
y. Considering the one-fo-one cardinality constraint, which
can be modeled as a constraint on node degrees. Formally, we
can represent the joint objective function of the DETA as

o1 0
min o - [Jrlf3 + 2 [Xr - 13
ry 2 2

sty e {0, 1} g ;= l,V(ugl),u;Z)) e A2,

0< Y gy <1vul) €GO,
u§2)€G<2)

0< Z Yij < 17Vu§2) S G(z),
uVea®

where ||r||3 denotes the regularization term on the model
variable. Parameters + is the scalar used to adjust the weight of
the regularization term. The objective function is a combinato-
rial optimization problem, which is an NP-hard problem [28].
Since this problem cannot be trained by the existing learning
algorithms directly, we will introduce the learning algorithm
to solve the problem in the following section.

3) Optimization Algorithm: In this part, we will introduce a
feasible optimization algorithm to solve the objective function.
Representation Learning Component Pre-Training: Instead
of learning the complete model DETA together, we propose to
pre-train each representation learning component prior to the
prediction component. Formally, according to the descriptions
of the three feature representation learning components, we
propose to feed their learned feature representations to an out-
put layer with two neurons representing the +1/0 class labels,
respectively. For instance, given the learned representations
from the historical trajectory data of user pair (uzu), u§2)), ie.,
x%j*f, LAT and XE’(‘;’J), we can denote the inferred labels as

S’i.,j = (T(‘Afpr6 (X#‘:\ZT L X#A]T] X"IIE"E(ZP,J)) + bpre)~

Compared against the ground truth label of the links, we can
represent the complete pre-training loss on the training set

ﬁv‘uin C C as:
Z Z Yii(

(u,il) K /;2))67;7'(111:1 p

Lpre - - 10g Yi J (p)

TABLE I

INFERRING ANCHOR LINK RESULT (PARAMETER A CHANGES IN {1,2,---,10}, 8 = 0.01, = 1,0 = 1000, = 0.01).
Negative/Positive Ratio A
metric method 1 2 3 4 5 6 7 8 9 10
DETA 0.9241-0.016 0.90410.008 0.901+0.009 0.9034-0.008 0.902+0.008 0.919+0.004 0.9544-0.020 0.96510.003 0.96510.004 0.96740.003
DETA_NO 0.8344-0.021 0.86510.014 0.89140.004 0.87940.010 0.89740.009 0.8944-0.022 0.9044 0.021 0.926+ 0.009 0.9331 0.007 0.933+ 0.013
PALE 0.51740.022 0.37040.016 0.31640.012 0.29040.007 0.28140.011 0.2804-0.007 0.28540.001 0.29440.005 0.30540.004 0.31540.008
> D+T+W 0.54740.028 0.67010.017 0.74740.009 0.6784-0.209 0.6904+0.261 0.71310.258 0.72240.297 0.62940.340 0.57740.337 0.662pm0.373
§ DEEPWALK 0.48740.018 0.66710.013 07504-0.009 0.80040.009 0.8331-0.008 0.85740.005 0.87540.005 0.88940.005 0.90040.003 0.91040.005
g WORD2VEC 0.48410.013 0.66740.016 0.7504-0.009 0.80040.009 0.83310.007 0.85740.005 0.87540.005 0.889+0.005 0.9004-0.003 0.90940.005
<
DIME-SH(social) 0.77740.018 0.81940.016 0.8494-0.009 0.87040.014 0.88510.011 0.8960.009 0.908+0.008 0.906+0.013 0.91640.012 0.91440.009
TULER(spatial) 0.66310.051 0.74940.019 0.76840.015 0.81140.012 0.8384-0.008 0.85840.005 0.87540.005 0.88940.005 0.90040.004 0.90940.005
CNN(text) 0.57240.029 0.66940.014 0.75040.009 0.80040.009 0.83310.007 0.85740.005 0.87540.005 0.889+0.005 0.90040.003 0.90940.005
MNA-Social 0.79140.017 0.84410.013 0.87340.014 0.89340.014 0.908+0.007 0.91840.010 0.92740.006 0.93540.003 0.93940.004 0.94440.002
MNA-Spatial 0.69540.021 0.78140.014 0.82640.009 0.85440.009 0.87440.007 0.88740.004 0.898+0.005 0.90840.007 0.91610.003 0.92340.003
MNA-Text 0.5854-0.021 0.68040.012 0.7544-0.012 0.80240.010 0.83340.009 0.85740.006 0.87540.005 0.88940.005 0.90040.003 0.9094-0.005
DETA 0.9281+0.016 0.87010.009 0.82940.014 0.79740.014 0.760+0.024 0.743+0.008 0.813+0.050 0.8241+0.015 0.79810.024 0.79110.025
DETA_NO 0.81610.025 0.76840.029 0.75240.010 0.60240.035 0.59040.057 0.42140.244 0.38140.254 0.54240.125 0.53240.132 0.43140.236
PALE 0.66740.020 0.49840.019 0.40240.014 0.33440.012 0.28310.012 0.24740.010 0.22340.009 0.2004-0.012 0.18240.007 0.16640.011
D+T+W 0.51840.028 0.16640.042 0.07540.065 0.11440.136 0.106+0.116 0.07940.103 0.065+0.084 0.08740.094 0.11340.093 0.06240.074
— DEEPWALK 0.4861-0.032 0.0024-0.003 0.00040.000 0.00040.000 0.0004-0.000 0.0004-0.000 0.0004-0.000 0.0004-0.000 0.00040.000 0.00040.000
il WORD2VEC 0.32610.326 0.00040.000 0.00040.000 0.00040.000 0.00040.000 0.0004-0.000 0.00040.000 0.00040.000 0.00040.000 0.00040.000
DIME-SH(social) 0.74340.020 0.65140.040 0.59340.038 0.53840.066 0.49540.066 0.44610.070 0.42940.106 0.25840.191 0.26240.181 0.10240.133
TULER(spatial) 0.54740.153 0.43040.048 0.14140.109 0.10940.091 0.06140.060 0.02240.033 0.00740.009 0.01040.014 0.02940.037 0.00740.011
CNN(text) 0.5914-0.028 0.01240.021 0.00040.000 0.00040.000 0.0004-0.000 0.0004-0.000 0.0004-0.000 0.0004-0.000 0.00040.000 0.00040.000
MNA-Social 0.75740.021 0.72940.017 0.70740.027 0.6904-0.036 0.676+0.014 0.66540.028 0.652+0.026 0.64840.020 0.63340.028 0.63340.024
MNA-Spatial 0.5924-0.028 0.56040.027 0.52940.026 0.50640.028 0.48140.027 0.44610.024 0.42610.024 0.41140.036 0.39540.043 0.37940.035
MNA-Text 051740050 025240032 0.172£0.038 0.12640.034 009240039 0.044-£0.025 0.032+£0.013 0.024+0.015 0.01740.010 0.00740.008
DETA 0.87740.019 0.79340.014 0.72940.018 0.6854-0.022 0.64340.022 0.63240.014 0.89340.138 0.965+0.010 0.9631+0.010 0.96240.037
DETA_NO 0.9131-0.017 0.89140.013 0.86740.019 0.87740.035 0.87440.023 0.9014-0.069 0.91240.072 0.86610.054 0.86040.051 0.8834-0.087
PALE 0.50940.021 0.33940.017 0.25840.011 0.20640.009 0.1704-0.009 0.1454-0.007 0.12940.006 0.1154-0.007 0.10340.004 0.09440.007
= D+T+W 0.55540.030 0.52440.035 0.45940.118 0.18040.167 0.3584+0.295 0.0924+0.110 0.09940.108 0.08040.102 0.07040.060 0.09740.148
:% DEEPWALK 0.48810.014 0.3504-0.450 0.00040.000 0.00040.000 0.0004-0.000 0.0004-0.000 0.0004-0.000 0.0004-0.000 0.00040.000 0.00040.000
§ WORD2VEC 0.24240.243 0.00040.000 0.00040.000 0.00040.000 0.0004-0.000 0.0004-0.000 0.00040.000 0.0004-0.000 0.00040.000 0.00040.000
£
DIME-SH(social) 0.87310.024 0.90310.021 0.90740.016 0.92440.038 0.92410.038 0.94110.028 0.91910.042 0.6481+0.426 0.76540.384 047740478
TULER(spatial) 0.7844-0.127 0.8861-0.028 0.93310.069 0.83440.288 0.79310.285 0.30740.341 0.33040.424 0.38610.474 0.38740.424 0.42540.448
CNN(text) 0.57240.041 0.39040.478 0.00040.000 0.00040.000 0.0004-0.000 0.0004-0.000 0.0004-0.000 0.0004-0.000 0.0004-0.000 0.00040.000
MNA-Social 0.89940.019 0.86740.039 0.83640.042 0.8314-0.062 0.82240.057 0.816+0.077 0.809+0.069 0.81840.057 0.81140.077 0.79440.057
MNA-Spatial 0.8931-0.024 0.85040.017 0.81440.020 0.78340.038 0.76840.039 0.74040.032 0.72640.047 0.71540.047 0.71240.040 0.70340.035
MNA-Text 0.61740.034 0.57340.057 0.55340.073 0.54940.106 0.51740.095 0.47740.159 0.6231+0.219 0.5861+0.235 0.54440.181 0.41540.390
DETA 0.9861+0.016 0.96510.014 0.96140.021 0.95440.014 0.930+0.035 0.901+0.012 0.764£0.050 0.71940.025 0.68140.033 0.67340.037
DETA_NO 0.73840.038 0.67610.044 0.66540.023 0.46040.039 0.44810.064 0.3144-0.190 0.28440.204 0.40940.111 0.40140.113 0.32840.192
PALE 0.9661-0.009 0.93740.012 0.92240.013 0.89140.014 0.8544-0.020 0.8294-0.022 0.82240.017 0.79610.024 0.77410.022 0.75240.024
D+T+W 0.48810.036 0.1004-0.030 0.04440.045 0.22540.355 0.2404-0.384 0.2141-0.364 0.21240.394 0.34810.442 0.43940.422 0.30740.453
7=3 DEEPWALK 0.4894-0.072 0.00140.001 0.00040.000 0.00040.000 0.0004-0.000 0.0004-0.000 0.0004-0.000 0.00040.000 0.00040.000 0.00040.000
2 WORD2VEC 0.5004-0.500 0.0004-0.000 0.0004-0.000 0.00040.000 0.0004-0.000 0.0004-0.000 0.00040.000 0.0004-0.000 0.00040.000 0.00040.000
DIME-SH(social) 0.64940.034 0.51140.046 0.44240.045 0.38440.065 0.34240.063 0.29610.062 0.288+0.091 0.16610.127 0.16640.120 0.06040.082
TULER(spatial) 0.43340.132 0.28640.041 0.08140.070 0.06140.054 0.03340.034 0.01240.017 0.00340.005 0.00540.007 0.01640.020 0.00440.005
CNN(text) 0.62610.116 0.00640.011 0.00040.000 0.00040.000 0.0004-0.000 0.0004-0.000 0.00040.000 0.0004-0.000 0.0004-0.000 0.00040.000
MNA-Social 0.65610.034 0.63040.029 0.61540.037 0.5924-0.041 0.57740.030 0.56740.043 0.55440.059 0.54040.042 0.52640.055 0.5304-0.042
MNA-Spatial 0.4444-0.031 0.41840.028 0.39240.027 0.37540.027 0.3504-0.025 0.3194-0.024 0.3024-0.022 0.2894-0.032 0.27540.037 0.26040.030
MNA-Text 0.45140.071 0.16340.025 0.10340.026 0.07240.022 0.05240.024 0.02410.014 0.01610.007 0.01240.008 0.0084-0.005 0.00340.004
Here, we need to remark that, the pre-training loss term L, e Fix r, Update y: With r fixed, we can represent the

will be used for learning the representation learning compo-
nents on both trajectory data and textual data. Meanwhile, for
the social connection representation learning part, we merge
LsnE into the L. The pre-training can be accomplished by
Adam optimization algorithm, and the learned representations
will be used for the prediction component.

Prediction Component Training: Since the joint objective
function is NP-hard, such an objective function can be effec-
tively learned with an alternative variable updating algorithm.

e Fix y, Update r: With y fixed, we can represent the
objective function as follows:

1 04
min _ e[} + 7 [1Xr — 3.

The optimal r* which can minimize the objective function
can be represented as

r' =4(I+7X'X)"'Xy,

where entries of the labeled anchor links in vector y will
be assigned with their labels, while the remaining entries
are initialized with an unbiased value %

objective function as follows:
IR ATIN
min _ |5 — yl[3,
y 2

where variable y is subject to both the binary and
the one-to-one constraint as indicated in the original
objective function and the scores for being anchor links
¥ = r*X. The objective function can be addressed with
the greedy link selection algorithm proposed in [28].
For the unknown links, we sort them according to their
scores in ¥ and set the elements in y whose positions
corresponding to those with the largest scores label +1,
if the assignments of the labels will not violate the one-
to-one cardinality constraint. Such a greedy link selection
algorithm can achieve an %-approximation of the optimal
solution.

Such an iterative learning process continues until convergence,
and the final prediction labels of all the unknown anchor links
in vector y will be outputted as the results.

49

1400
1300
1200

0
8
S 1100

1000

[20 80 100 [50 100

40 60
Epoch Number

(a) Social Network Convergence

150

Epoch Number

(b) Trajectory Convergence

200 250 300 0 50 100 150 200 250 300 350 400

Epoch Number

(c) Text Convergence

Fig. 3. Convergence Analysis

IV. EXPERIMENTS

To evaluate the performance of the proposed framework,
extensive experiments will be done on two real-world datasets.
In the following part, we will first talk about the experimental
settings, and then discuss the experimental results in detail.

A. Experimental Settings

1) Experimental Setup: The datasets used in the experi-
ments include a pair of aligned social networks: Foursquare
and Twitter. There are 3282 anchor links between Foursquare
and Twitter. The detailed descriptions of the datasets are
available in [11]. We utilize the anchor links as positive links
as well as a set of non-anchor links as negative links first, and
then extract subset of negative links based on negative/positive
ratios. To eliminate the variance caused by different training
set, we use 10-fold cross validation to partition the links into
two subsets according to ratio 9:1, where the 9 folds are treated
as training set and the rest 1 fold is treated as testing set.

2) Comparison Methods:

o Deep Network Aligment (DETA): DETA can capture
the feature representations of the social connections,
trajectory and textual words and then do the label in-
ference with the three representations and the one-to-one
constraint.

o DETA without one-to-one constraint (DETA_NO):
DETA_NO is a variant of the DETA model, which
excludes the one-to-one constraint in the label prediction
step.

o DEEPWALK: The DEEPWALK [21] uses local informa-
tion obtained from truncated random walks to learn latent
feature representation based on social connections. The
parameter settings of DEEPWALK involve window size:
5, negative sample: 5, and feature dimension: 64.

e WORD2VEC: WORD2VEC is first proposed in [20] for
natural language processing. Based on users’ textual data,
we use a Google’s pre-trained WORD2VEC model ! to
get the vector representations of words directly and regard
the concatenation of used words’ vectors as the user’s
representation.

o Single Data Type based Alignment Models: We also
compare DETA with three single data type representa-
tion learning models, including social connection rep-
resentation DIME-SH(social) [29], trajectory representa-
tion TULER(spatial) [5] and textual word representation

Thitps://code.google.com/archive/p/word2vec/

50

CNN(text) [9], which are all slightly extended by incor-
porating a small number of explicit features.

o Explicit Feature based Alignment Models: Several
existing explicit feature based network alignment models,
i.e., explicit social features MNA-Social [11], explicit
trajectory features MNA-Spatial [11] and explicit textual
features MNA-Text [11], are also compared in the exper-
iments.

o DEEPWALK+ TULER + WORD2VEC (D+T+W): This
method uses the combination of DEEPWALK for social
connections, LSTM for trajectory and WORD2VEC for
textual words. Here, we adopt the same settings as indi-
cated in the previous descriptions. We take the combined
features of the three types and put it into a SVM classifier.

o PALE: The method is proposed in [17], which adds ad-
ditional links to complement original network according
to known anchor links. In our paper, we only use the
linear mapping function.

3) Evaluation Metrics: In this paper, we will use accuracy,
precision, recall and F1 to measure the experimental results.

B. Experimental Results

1) Experimental Results Analysis: To demostrate the results
more comprehensively, we further have the imbalanced ratio
to test DETA. The imbalanced ratio (i.e., \) denotes the ratio

#negative cases o .
“posifive cases " We set A € {1,2,---,10}. Besides, we

set 5 = 0.01, v = 0.01, n = 1, 6 = 1000 mentioned in the
section III. Now, we can get the result table I. We use four
sections to denote four metrics respectively. In each section,
each row represents the method and each column represents
the negative/positive ratio. Compared with DETA_NO, DETA
has a better performance with these four metrics, which
demostrates the effectiveness of the one-to-one cardinality
constraint. The performances of DETA and DETA_NO are
very close on precision, although DETA_NO has a better
performance when A € {1,---,7}. DETA also outperforms
the PALE on four metrics as well. We notice that PALE out-
performs DETA on recall when A\ € {7,8,9,10}. The reason
is that the PALE always predicts the positive instances and
the recall measures the number of predicted positive instances.
Hence, the recall becomes higher when A rises. DETA also
outperforms the hybrid D+T+W, showing the effectiveness of
our learned features works better than that simply adopting the
combination of existing works. In addition, we also show the
results by utilizing one of three kinds of features. Generally,
DETA shows the best performance among DIME-SH(social),

Michelle ‘ ¢

Jacobson

Nathan
Levinson

Andrew

Nystrom

Tristan
Walker

Liza

Sperling

user

word counts in both networks
(Twitter, Foursquare)

Michelle Jacobson

art (65,2), style (16,3)
audit (3,2), grill (19,2)

Nathan Levinson

happy (27.5), enjoy (9.4)
week (18,4), shows (6,6)

Andrew Nystrom

awsm (2,3), kids (20,3)
red (61,3), open (11,4)

ask (6,5), coffee (8,3)
mochi (1,3), hangout (5,2)

win (19,4), amazing (55.5)
awesome (51,4), please (9,4)

A = S s
(a) Social Network (b) Spatial Locations (c) Textual Word Usage
Fig. 4. Case study [11]: five real-world users with their social, spatial and text distributions.
Twitter Twitter Twitter
Tristan | Nathan | Andrew Liza Michelle Tristan | Nathan | Andrew Liza Michelle Tristan | Nathan | Andrew Liza Michelle
Walker |Levinson| Nystrom | Sperling [Jacobson Walker |Levinson | Nystrom | Sperling [Jacobson Walker |Levinson | Nystrom | Sperling [Jacobson
Tristan Tristan Tristan
o Walker 1.559 | 1.637 | 1.764 | 1.825 | 1.999 o Waler 198.489|216.454(338.386|257.475268.829 o Walker 970.761 [1164.24111357.54311068.010, 33.790
2 4 4
% (hatnan | 1581 | 1.657 | 1.871 | 1.842 | 2.015 g | Nathan |154.800|133.382/209.283(179.508| 273.587 % Nathan | o76.187 [1159.558(1357.963(1071.939| 38.973
[[(7
§ Rystom | 2.026 | 2.383 | 2.020 | 2.276 | 2.645 § Nystiom [267.745(254.456|168.132|230.059(354.642 ‘g‘ Rytiom | 987637 (1176.867]1370.252(1081.784| 24.536
w Li: w Li w Li:
iza iza iza
sperling | 1:558 | 1.638 | 1.764 | 1.825 | 1.999 Spering |214-813(240.075/363.670(266.858|266.845 Spering | 998:218 [1189.1491382.677]1088.606 14.737
Michelle Michelle Michelle
Jacobson| 1682 | 1.755 | 1.873 | 1.931 | 1.770 Jacobson|197-479(195.295/158.778180.031/245.621 Jacobson| 999-859 [1190.23011384.507[1091.742| 16.242

(a) Latent Social Feature based Distance Matrix (b) Latent Trajectory Feature based Distance (c) Latent Text Feature based Distance Matrix

Matrix

CNN(text), TULER(spatial), MNA-Social, MNA-Spatial and
MNA-Text. However, the precision scores of DETA are a little
bit lower when A € {1,---,6}. It might be that the one-to-one
cardinality constraint will assign each user in network 1 with
exact one user in network 2. Thus, it would eliminate those
truely positive pairs that have insufficient information. When
the ratio higher than 7, the information for the negative pairs
get comprehensive, thus DETA has the better results.

Moreover, we can also illustrate that the importance
among three types of features. From table I, compared with
TULER(spatial) and the CNN(text), DIME-SH(social) have
the best performance among all metrics when the ratio changes
from 1 to 10. It demostrates the social connections are the
biggest contributor for alignment task compared with trajecto-
ries and texts. This is because the checkins are not a must-do
in twitter and the texts online are in informal usages. Besides,
textural features work when the imbalance ratio A is not high.
By combining these three types of heterogenous information,
the DETA achieves a balance among these metrics despite it
does not rank first in every measurement.

2) Convergence Analysis: Before showing the experimental
results, we will analyze how many epochs are needed to
achieve results. In Fig. 3, we show the loss introduced in three
modules respectively. Fig. 3(a), Fig. 3(b) and Fig. 3(c) show
the pre-training losses of social connection, trajectory, textual
words modules, respectively. As indicated in Fig. 3, the x-
axis denotes the epoch number and the y-axis represents the
corresponding loss. According to the results, each module can
converge within a small epoch number, which means DETA
can converge in a short time.

Fig. 5. Case Study Matrices

3) Case Studies on Latent Features: We further examine
the effectiveness of our latent features with a case study
since the explict features are based on pairwise caculations.
In Fig. 4, we show a case of five real-world users who have
both Foursquare and Twitter accounts. These five users are
socially connected in both networks, as shown in the Fig. 4(a).
The check-ins of five users are illustrated in the Fig. 4(b)
and their word usage patterns are provided in the Fig. 4(c).
Based on these observations, we extract their latent features by
three approaches, i.e., DIME-SH(social), TULER(spatial) and
CNN(text). To evaluate the effectiveness of latent features, we
propose to use their pairwise distances based on these different
latent feature representations, aiming to check whether these
learned features can help align these users correctly or not.
By applying the one-to-one cardinality constraint on each
approach, the results are illustrated in the matrices shown in
Fig. 5, where the rows and columns denote users from Twitter
and Foursquare and the matrix entries indicate their pairwise
distances. The results demostrate the latent features can predict
anchor links alomost correctly.

V. RELATED WORK

Network alignment is a significant research problem, which
has been studied in various areas, e.g., protein-protein-
interaction network alignment in bioinformatics [14], [22],
chemical compound matching in chemistry [23], data schemas
matching [19], graph matching in combinatorial mathematics
[18], and figure matching and merging in computer vision
[1]. For online social media, network alignment provides an
effective way for information fusion across multiple social
sites. Many research works manually extract features by
heuristic methods on different networks [11], [30]. Zhang

51

et al. ustilize transitivity law to align multiple anonmized
social networks [30] solely on social network connections. [31]
uses the social connections, checkins and posts together to
predict anchor links. Recently, with the great property of
network embedding, researchers starts to take advantages of
the network embedding on the network alignment task. Matrix
factorization based methods ([32], [10]) can be one type of
network embedding methods to solve network alignment prob-
lem, where the matrix can be formed by both homogeneous
networks and heterogeneous networks. Man et al. propose to
supplement each other networks via anchor links and factorize
the matrices on the complementary networks in [17].

In recent years, many research works propose to apply deep
learning models on graph-structured data, i.e., the network
embedding problems. Network embedding aims at projecting
a graph-structured data to feature vector representations. In
graphs, the relation can be treated as a translation of the
entities, and many translation based embedding models have
been proposed, like TransE [2], TransH [27], and TransR [16].
In recent years, many network embedding works based on
random walk and deep learning models have been introduced,
like Deepwalk [21], LINE [24], node2vec [6], and DNE [26].
Perozzi et al. introduce the Deepwalk algorithm [21]. Chang
et al. [3] learn the embedding of networks involving text and
image information. Chen et al. [4] introduce a task guided
embedding model to learn the representations for the author
identification problem. However, most of these embedding
models are proposed for homogeneous networks and assume
the learned feature vectors can be appropriate to all external
tasks. Meanwhile, by this context so far, few research works
have been done on studying heterogeneous social network
alignment problem with deep learning models yet.

VI. CONCLUSION

In this paper, we study the heterogeneous social network
alignment problem with a deep learning framework, namely
DETA. For each information category in the social net-
works, DETA extracts a small number of explicit features
and employs deep learning models to learn a set of latent
features for the anchor links. These extracted features will be
further integrated together for the anchor link label inference
with a deep fusion. Extensive experiments have been done
on two real-world heterogeneous social networks, and the
experimental results have demonstrated the effectiveness of
the proposed deep social network alignment model.

VII. ACKNOWLEDGEMENT

This work is partially supported by NSF through grant IIS-
1763365 and by FSU. This work is also supported in part
by NSF under grants I1I-1526499, I1I-1763325, I1I-1909323,
CNS-1930941, and CNS-1626432.

REFERENCES

[1] M. Bayati, M. Gerritsen, D. Gleich, A. Saberi, and Y. Wang. Algorithms
for large, sparse network alignment problems. In ICDM, 2009.

[2] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko.
Translating embeddings for modeling multi-relational data. In NIPS.
2013.

52

[3]

S. Chang, W. Han, J. Tang, G. Qi, C. Aggarwal, and T. Huang.
Heterogeneous network embedding via deep architectures. In KDD,
2015.

T. Chen and Y. Sun. Task-guided and path-augmented heterogeneous
network embedding for author identification. CoRR, abs/1612.02814,
2016.

Qiang Gao, Fan Zhou, Kunpeng Zhang, Goce Trajcevski, Xucheng
Luo, and Fengli Zhang. Identifying human mobility via trajectory
embeddings. In IJCAI, 2017.

A. Grover and J. Leskovec. Node2vec: Scalable feature learning for
networks. In KDD, 2016.

M. Hasan, V. Chaoji, S. Salem, and M. Zaki. Link prediction using
supervised learning. In SDM, 2006.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
Comput., 1997.

Y. Kim. Convolutional neural networks for sentence classification. In
EMNLP, 2014.

Giorgos Kollias, Shahin Mohammadi, and Ananth Grama. Network
similarity decomposition (nsd): A fast and scalable approach to network
alignment. TKDE, 24(12):2232-2243, 2011.

X. Kong, J. Zhang, and P. Yu. Inferring anchor links across multiple
heterogeneous social networks. In CIKM, 2013.

A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with
deep convolutional neural networks. In NIPS, 2012.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. In Intelligent Signal Processing, 2001.
C. Liao, K. Lu, M. Baym, R. Singh, and B. Berger. Isorankn:
spectral methods for global alignment of multiple protein networks.
Bioinformatics, 2009.

D. Liben-Nowell and J. Kleinberg. The link prediction problem for
social networks. In CIKM, 2003.

Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu. Learning entity and relation
embeddings for knowledge graph completion. In AAAL 2015.

Tong Man, Huawei Shen, Shenghua Liu, Xiaolong Jin, and Xueqi
Cheng. Predict anchor links across social networks via an embedding
approach. In IJCAI, 2016.

F. Manne and M. Halappanavar. New effective multithreaded matching
algorithms. In IPDPS, 2014.

S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding:
A versatile graph matching algorithm and its application to schema
matching. In ICDE, 2002.

T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed
representations of words and phrases and their compositionality. In
NIPS, 2013.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online
learning of social representations. In KDD, 2014.

R. Singh, J. Xu, and B. Berger. Pairwise global alignment of protein
interaction networks by matching neighborhood topology. In RECOMB,
2007.

A. Smalter, J. Huan, and G. Lushington. Gpm: A graph pattern matching
kernel with diffusion for chemical compound classification. In IEEE
BIBE, 2008.

J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. Line: Large-
scale information network embedding. In WWW, 2015.

P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. Manzagol.
Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion. JMLR, 2010.

D. Wang, P. Cui, and W. Zhu. Structural deep network embedding. In
KDD, 2016.

Z. Wang, J. Zhang, J. Feng, and Z. Chen. Knowledge graph embedding
by translating on hyperplanes. In AAAI, 2014.

J. Zhang, J. Chen, J. Zhu, Y. Chang, and P. Yu. Link prediction with
cardinality constraint. In WSDM, 2017.

J. Zhang, C. Xia, C. Zhang, L. Cui, Y. Fu, and P. S. Yu. BI-
mne: Emerging heterogeneous social network embedding through broad
learning with aligned autoencoder. In /CDM’17, 2017.

J. Zhang and P. Yu. Multiple anonymized social networks alignment.
In ICDM, 2015.

J. Zhang and P. Yu. Pct: Partial co-alignment of social networks. In
WWW, 2016.

Si Zhang and Hanghang Tong. Final: Fast attributed network alignment.
In KDD, 2016.

