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Abstract

A single species spatial population model that incorporates Fickian diffusion,
memory-based diffusion, and reaction with maturation delay is formulated.
The stability of a positive equilibrium and the crossing curves in the two-delay
parameter plane on which the characteristic equation has purely imaginary
roots are studied. With Neumann boundary condition, the crossing curve
that separates the stable and unstable regions of the equilibrium may consist
of two components, where spatially homogeneous and inhomogeneous
periodic solutions are generated through Hopf bifurcation respectively. This
phenomenon rarely emerges from standard partial functional differential
equations with Neumann boundary condition, which indicates that the
memory-based diffusion can induce more complicated spatiotemporal
dynamics.
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1. Introduction

Reaction—diffusion equations have been widely used in mathematical modeling of many dis-
ciplines, such as physics, chemistry and biology [6, 17, 19]. Fickian diffusion, the most com-
monly used form of diffusion, assumes that the flux is proportional to the gradient of the
concentration of the element. However, this is sometimes insufficient for realistically describ-
ing animal movements, especially for highly developed animals, since most animals have
cognition and memory. A recent review paper [8] emphasized the significance of integrating
spatial memory into the modeling of animal movements, and the memory-based diffusion
is extremely complicated and poorly understood. In [23], we first modeled the episodic-like
spatial memory of animals and formulated the following mathematical model by considering
a directed movement toward the negative gradient of density distribution function at past time:

94 — DiAu+ D, div(uVu, ) + g(u), x€Q,t>0,
9u(t,x) =0, x€00,t> 0. (1.1)

Here u = u(t,x), ur = u(t — 7,x); Q is a bounded domain in RY (N > 1) with a smooth
boundary 0f2; a homogeneous Neumann boundary condition is imposed so that there is no
population movement across the boundary 0€2. It has been shown in [23] that the stability of
a spatially homogeneous steady state fully depends on the relationship between the two diffu-
sion coefficients but is independent of time delay.

For (1.1), the reaction term, including both birth and death processes, is considered to
occur instantaneously. In the biological literature [12, 14, 17, 26], time delays are often incor-
porated in the process of modelling, for taking into account such factors like migration, diffu-
sion of populations, gestation and maturation periods. In this paper, we shall consider a time
delay in reaction term say o, to account for renewable resources or animals to reach maturity.
Such maturation delay can be incorporated as in the following model:

{%; =DiAu+ D, div(uVu,) + g(u,u,), x€Qt>0, 12

%(;,x):o, x € 00,t>0.

For D, = 0, the model reduces to a standard partial functional differential equation, which has
been extensively studied in the literature. For Hopf bifurcation problems of (1.2) with D, = 0,
the theoretical framework has been established in [31], and the detailed analyses for different
choices of g are nontrivial [16, 35]. However, the stable periodic solutions generated through
Hopf bifurcation are usually homogeneous for D, = 0, since the associated purely imaginary
roots are usually derived from the characteristic equation of the corresponding delay system
without diffusion. This is also the case for most such models described by parabolic equa-
tions with or without delays, see an example in [34]. It should be pointed out that Dirichlet
boundary condition or higher-codimension bifurcation, such as Turing—Hopf bifurcation, may
give rise to stable spatially inhomogeneous periodic solutions, see [2-5, 10, 25, 27, 28, 33].
In this paper, the stability and bifurcation analysis of a positive spatially homogeneous
equilibrium «* of (1.2) are investigated by analyzing the characteristic equation of the corre-
sponding linearized equation. Since there are two independent delays involved in the equa-
tion, we employ a geometric method, developed in [11], to study the roots of a transcendental
equation with two delays. The equilibrium is assumed to be stable when there are no memory-
based diffusion and maturation delay (D, = 0 and o = 0). The results in this paper reveal that,
when the strength of the memory-based diffusion is strong compared with the Fickian diffu-
sion (|D,|u* > Dy), then the equilibrium u* is always unstable regardless of the maturation
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delay o and the movement delay 7, which generalizes earlier results in [23] for the case of
o = 0. On the other hand, when the memory-based diffusion is weak compared with the
Fickian diffusion (|D;|u* < Dy), the equilibrium «* remains stable for certain values of the
delay pair (7, o), and the set of such values (stable parameter region) © is an open subset of
R2 = {(r,0) : 7 > 0,0 > 0}. The intrinsic growth rates play a more important role here: for
some case, © = Rﬁ_, that is, the equilibrium remains stable for all possible delays; while for
other cases, © is a true subset of R; , and stability switches of the equilibrium occur when
the the parameter (7,0) moves across the boundary of © (crossing curves). Such stability
switches is an indication of emergence of time-oscillatory patterns through Hopf bifurcations.
We characterize the set © and its boundary for all possible cases. Most interestingly, we iden-
tify conditions on the pairs of delay values (7, o), diffusion coefficients (D;, D,) and growth
rates which produce spatiotemporal oscillatory patterns—periodic in time and non-constant in
space.

The above result provides a new mechanism of generating spatiotemporal oscillatory pat-
terns with a combination of memory-based diffusion and maturation delay. Our earlier results
in [23] show that the memory-based diffusion alone does not induce instability, and the stabil-
ity of u* depends on D, but not 7. In the absence of memory-based diffusion, the maturation
delay can only produce a spatially homogeneous time-periodic patterns [16, 35]. Here we find
that a proper combination of the two delay mechanisms can produce spatially inhomogeneous
time-periodic patterns. Note that multiple stability switches are known for some systems with
two delays, but all previous studies are for non-spatial models [1, 13, 15, 18, 21, 22, 30, 32].
This paper appears to be the first study of a two-delay problem with one delay in the spatial
dispersal part and the other one in the birth/death part of the model. Also all these previous
work only produce oscillatory patterns without spatial structure, while spatiotemporal patterns
are found here.

The paper is organized as follows. In the next section, we first prove the well-posedness
of model (1.2), and we also prove the principle of linearized stability so that the linear stabil-
ity implies nonlinear stability. We then study the distribution of the roots to the characteristic
equation associated with (1.2), and find the crossing curves on which the characteristic equa-
tion has purely imaginary roots. In section 3, we apply the results to a diffusive Wright—
Hutchinson equation and its variants, and we obtain crossing curves for generating spatially
homogeneous and inhomogeneous periodic solutions. We discuss our model and results in sec-
tion 4. Throughout the paper, N represents the set of all positive integers, and Ny = N U {0}
represents the set of all non-negative integers.

2. Stability analysis
Throughout the paper, we assume that the initial condition ¢(t, x) satisfies
#(t,x) € C**([— max{r,0},0] x Q), %(l,x) =0, (t,x) € [-max{r,0},0] x 9, € (0,1). (2.1)

And the growth rate g in (1.2) is assumed to satisfy

(H1) g€ C'([0,00) x [0,00),R), g(0,0) = 0, g(u, uy ) /uis bounded, and 3u*, % > 0 such
that g(u*, u*) = 0 and g(u,u) < 0 for u > u.

(H2) Denote A = g,(u*,u*) and B = g, (u*,u*). Assume that A + B < 0. (Otherwise,
the equilibrium u* of u’ = g(u, u,;) is always unstable).

First we have the following well-posedness result for solutions of (1.2).
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Theorem 2.1. Suppose that D; >0, D, € R and 7,0 >0, ¢(t,x) satisfies (2.1)
and g(u) satisfies (HL). Then, equation (1.2) possesses a unique solution u(t,x) for
(t,x) € [0,00) x Q. Moreover if ¢(t,x) >0 for (t,x) € [—~max{r,0},0] x IQ, then
u(t,x) > 0 for (t,x) € [0,00) x Q.

Proof. For ¢ € [0,min{7,0}], u, and u, coincides with the initial function ¢(t — 7,x)
and ¢(t — o,x), respectively. Set F(u) = D, div(uVeo(t — 7,x)) + g(u, ¢(t — o, x)). It fol-
lows from [29, Proposition 7.3.3] that (1.2) has a unique solution u € C*!(Q2 x [0,T))
for some 7> 0. The condition g(u,u) <0 for u > u guarantees that the solution can
be extended to [0, min{7,o}] if min{7,o} > T. Then this process can be repeated to
[kmin{7,0}, (k+ 1) min{r, o }] for k € N as the step method for the existence of solutions to
delay differential equations. Thus the solution can be extended to ¢ € [0, co).

To show that the solution u(t,x) is positive, we observe that u is the solution of the initial-
boundary value problem:

9u(t,x) =0, x €N t>0, (2.2)

{g’; =DiAu+ Dy div(uV,¢(t — 7,x)) + g(u, §(t — 0,x)), x€Q,0<t<min{r,0},
M(O,X) = ()ZS(O’x)a x e Q.

Since g(u, ¢(t — o,x))/u is bounded, it then follows from maximum principle of parabolic
equations that u(t,x) > 0 for (¢,x) € (0, min{7,c}) x 2. Repeating this argument, we obtain
that u(¢,x) > 0 for (£,x) € (0,00) x Q. O

The linearized equation of (1.2) at a constant equilibrium solution u* is

% = D1 Av + Dyu*Av(t — 7,x) + Av + Bv(t — 0, x). (2.3)

Define the real-valued Sobolev space X by
Ou
on

and the complexification of X is given by

X—{uGHZ(Q): —O,xeaﬁ},

Xc=XaiX= {x1 +1ixp : X1, X2 EX}.
By assuming that v(z,x) = e”"y(x), we obtain that the characteristic equation of (2.3) is given
by

1y — DAy — Dyu*e ™" Ay — Ay — Be %y =0, (2.4)

where 0 # y € Xc and p € C. It follows from lemma 3.1 in [23] that (2.4) is equivalent to a
family of transcendental equations with g as eigenvalues:

E(n,7,0,p) == p+ DN, —A+ D" \e ™" —Be " =0,neNy (2.5)
where )\, are eigenvalues of

{A¢+)\¢—O, xeQ,

92 (x) =0, x € 99,

2.6)
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satisfying 0 = Ao < A\ < A < --- < A\, < -+ and lim,—, oo A, = 00. By a similar argument
as the proof of theorem 3.4 in [23], we have the following conclusion on the principle of lin-
earized stability of (1.2).

Theorem 2.2. Assume that Dy > |D;|u*. Then, the zero solution of (2.3) is asymptotically
stable if all the roots of (2.5) have strictly negative real parts.
Proof. For (2.3), we make the following change of variable

Dyv(t,x) + Dyu*v(t — 1,x) = w(t, x).

Then,
(1) = = Y1 e nm) = D)
= — — —n = .

v(t,x Dy 2~ q'w T, X D we (-, x 2.7
where g = Df)—’f*. Substituting (2.7) into (2.3), we have the following linear neutral partial func-
tional differential equation with an infinite number but countably many delays:

ODw(-, _

% = D1 Aw(t,x) + Dw,(-,x) (2.8)
where

Dw,(-,x) = Z(—l)"q”[Aw(t —n7,x) + Bw(t — nt — 0,x)].

n=0

Therefore, the statement will follow from a similar argument as the proof of theorem 3.4 in

[23]. [l

To gain information on the set of roots of (2.5), we make the following definitions. For any
n € Ny, 7> 0and o > 0, denote
So(r,o0)={peC:En,0,u) =0}
We say that u = u* is stable in mode-n if ¥,,(7,0) C C~, and u = u* is stable if the spectral set
X(r,0) =U,2gEn(r,0) CC~, where C~ ={a+bi € C:a<0,beR}. We also define
the mode-n stable parameter region to be

©,={(r,0): 720,06 20,%,(r,0) CC™}, (2.9)

and © = (2, O, is the stable parameter region in the (7, o)-plane. The boundary II, of ©,
are curves on which (2.5) has purely imaginary or zero roots (called crossing curves in the
literature), which is denoted by

I, = {(r.0): 7> 0,0 >0,%,(r,0) C C°}. (2.10)

Here, C° = {bi € C : b € R} represents the imaginary axis. For any (7, 0) € II,, there exists
w € RY such that E(n, 7,0, +iw) = 0. For any n € Ny, we define

Q, ={weR" :E(n,7,0,+iw) =0, (0, 7) € IL,}. (2.11)

Note that under the assumption (H2), u = 0 is not a root of (2.5) for any 7 > 0, ¢ > 0.
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When n = 0, the equation (2.5) is reduced to a single delay situation as Ao = 0, then the
following conclusion is a direct consequence of theorem 4.7 in [26].

Proposition 2.3.

(1) IfA+ B <0and B > A, then all the roots of (2.5) with n = 0 have strictly negative real
parts, that is, ©g = {(1,0) : 7 2 0,0 > 0};

(2)If A+ B <0 and B <A, then there exists oy > 0 such that all the roots of (2.5) with
n = 0 have strictly negative real parts when 0 < o < o0y, and there exists a pair of purely
imaginary roots for (2.5) with n = 0 at oo while all the other roots have strictly negative
real parts, that is, ©y = {(1,0) : 7 2 0,0 < 0 < 0¢}.

When n > 1, (2.5) is a transcendental equation with two distinct time delays. For such
equation, in order to seek the crossing curve II, on (7, 0)-plane on which (2.5) has purely
imaginary roots, we follow the geometric method proposed in [9]. We shall show that the
crossing curves II, can be parameterized by w € €2,,. For that purpose, we first determine the
admissible frequency set €2,,. Let

A, =D\, — A, and B, = Du*)\,.

Proposition 2.4. Let ©,, 11, and Q,, be defined as in (2.9)—(2.11).

(1) When |B,| + |B| < |Aul, Q4 = 0; in particular, if Dy > |Dy|u*, then Q,, = 0 for large n.
(2) When|By| + |B| > |Aul, if —|Au| < |Ba] — |B] < |Au) theny = (0,0 if|Bal — |B| > |Au
or |Bu| —|B| < —|A,} then Q,=[w!,w.), where w)=/(|B.]+|B|)?—A2 and

wh = \/(IBa| — |B|)? — A2. In particular, if Dy < |D,|u*, then wl and ', also satisfy

2|Dou*B
lim W) = lim w/ =00, lim (W —w)) = ﬂ (2.12)
n—o0o n—o0o n—oo .
(Dour)* — Dy
Proof. Denote
n B, n —B
a =— d =—,
1 (1) Ant i 5 (1) Antp
Then (2.5) is equivalent to
(. .0) == 1+ d}()e ™" + ab(p)e ™7 = 0. 2.13)
Define
: : B + |B|
Fl(w) := |a}(iw)| + |a5(iw)| = >
|Bs| — |B|

F3(w) = |di(iw)| - |a3(iw)| =

By proposition 3.1 in [9], the admissible value of w, for which +iw, w # 0 are purely imagi-
nary roots of (2.5) for some 7,0 > 0, must satisfy

Fiw)>1, —1<Fw<I (2.14)
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thatis, Q, = {w e R : F{(w) > 1, -1 < Fj(w) < 1}.

(1) When|B,| + |B| < |A,|, then F}(0) < 1. Since F}}(w) > 0and F|}(w) s strictly decreasing
to 0 as w — 00, we have F(w) < 1 for all w > 0, which violates the first inequality of
(2.14). Therefore, Q, = 0. When D; > |D;|u*, we get |B,| + |B| < |A,| for large n. It
then follows that 2, = () for large n.

(2) When |B,| + |B| > |A,], F7(0) >1 and F/(w)=1 has a unique positive root
wh = /(|B,] +|B|)?2 — A2, such that F!(w)>1 for w € [0,w]. If in addition
—|Au| < |Bn| — |B] < |Ay], we have —1 < F5(0) < 1. As w — oo, Fj(w) is strictly
decreasing to 0 when IB,| > |BIl, and increasing to O when |B,| < |BI. It then follows that
—1 < Fj(w) < lforallw > 0. Therefore, Q, = (0, w}] in this case, since w is not allowed
to take 0, as discussed in [9].

On the other hand if |B,| — |B| > |A,|, we know that IB,| > IBl and F4(0) > 1. By the
monotonicity of Fy(w), it follows that Fj(w)=1 also has a unique positive root
wh = \/(IBa| — |B])* — A2, such that 0 < F}(w) < 1 for w € [w!, oo]. Since F}(w) > F3(w)
for w > 0, we have w!, < w’. Thus, 2, = [w!,w’]. For the case of |B,| — |B] < —|A,|, one can
also prove the statement by a similar argument.

As a special case, if Dy < |D,|u*, it then follows from lim,_,, A, = oo that

|B,| £ |B| = |Da2|u* N\, £ |B| > |Di A, — A| = |A4]

for large n. Hence, €2, = [w!,w’] for large n. From F3(w)) = 1 and F}(w}) = 1, we have

|Dyu* M\, |* 4 B* — 2|Dyu* \,B| = (DM, — A)? + (W),

n

(2.15)
|Dyu* \o|* + B* 4 2|Dou \,B| = (D1 )\, — A)? + (W)
Dividing (2.15) by A2 on both sides, and passing n — oo, this yields
! r
lim <2 = lim <2 = \/(Dyu*)? — D2, (2.16)

Using (2.15) again, we have (w/)? — (w!)? = 4|D,u , which, together with (2.16), im-
plies the second limit in (2.12). O

Whenever the set €2, is nonempty, one can define
1+ |d}(iw)|* — |a5 (iw)[?
2| (i) ’

1+ |aj (iw) | — \a’{(iw)|2>
2|as (iw)]|

07 (w) = arccos (

05 (w) = arccos (
for w € Q,. From proposition 4.5 in [9], for any n > 1, the mode-n crossing curve of (2.5) is

U npq _{ np( ) q( )):weQn}’

where
Za}(iw) + 2p — D)7 + 0} (w
T (w) = (i) - )7 £ 01 ),p=p$n,poi,n+1,p§n+2w",
Zdy(iw) + 2g — 1)w F 05 (w
Uni,q( ): 2( ) ( w ) 2( )’ q:q(:)‘fn’q(:)%n+l’q(:)%n+2”

(2.17)
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Za?(w) represents the argument of @/ (w) for i = 1,2, and paf > Do Qo> 9o, are the smallest
integers such that the corresponding 7.}, (w), 7., (w), 0,7, (w), 0, (w) are nonnegative. Since
Za; and 0; are continuous functions of w on €, i = 1, 2, it follows that flf,,q(w) is also con-
tinuous on §2, for any n, p and g. We remark that, the method developed in [11] is also appli-
cable to (2.5) for deriving the expression of the crossing curves.

Now we are ready to give a precise description of the mode-n crossing curve 11, in the two

cases: (i) Dy < |Dy|u*, and (ii) Dy > |D,|u*.

Proposition 2.5. [f D; < |D,|u®, then there exists Ny € N such that, for any n > N, the
mode-n crossing curve IL, of (2.5) is a sequence of spiral-like curves in (1, c)-plane, oriented
along o-axis, that is, for each fixed p and n, 11, is a spiral-like curve that extends infinitely
along o-axis but is bounded in the direction of T-axis. Moreover, 11,, does not intersect with
the o-axis.

Proof. When D; < |Dy|u*, by (2) in proposition 2.4, there exists N; € N such that
Q, = [w},w!] for n > Nj. Since Fi(w!) = F*(w!) = 1, one can show that

0i(wp) = 0. 3(w,) = 7, 0] (w;) = 03(w}) = 0.

+ . . — _ Z + . .
Therefore, 7,7, ,(w) is connected with 7, , . (w) at w = w,,, and 7,7, (w) is connected with

_ f Lo g +
ﬂ’p,q(w) at w = w!. For fixed p and n, the set {ﬂ?;yq(w) 14 = Qo Ao, T Lao, 200}

forms a spiral-like curve, oriented along o-axis. The other components of the crossing curve
II, can be obtained by varying the index p from pffn to oo.

It follows from (2.16) that
l)2u*

i i) =

o
» Jim a3(iw) =0, (2.18)

D; +iy/(Du*)?* — D}

from which we have lim,_, |a} (iw)| = 1 and lim,,_, » |@4(iw)| = 0. Hence, lim,,_,, 6} (w) = 0.
This implies that T,fp(w) does not change sign on £, for any fixed p and large n. O

By using proposition 2.5, we obtain the instability of the constant equilibrium « = u* when
D < |D,|u* as follows.

Theorem 2.6. Suppose that (H1) and (H2) are satisfied, and Dy < |D,|u*. Then for any
7> 0 and o > 0, the constant equilibrium u = u" is linearly unstable with infinitely many
pairs of complex roots with positive real parts.

Proof. From proposition 2.5, there exists a sequence of spiral-like crossing curves of (2.5)
for large n, oriented along o-axis. In addition, the crossing curve that is closest to o-axis is given
by {Tj;i q(w) tq=qi,.q5, + 1.qt, +2,---} ;== A,. We show that A, approaches o-axis
n, 0,n° ’ ’ >
as n — oo. Recall that Za} (iw) and 67 (w) are bounded for w > 0. Since w € Q,, and w!, — oo,
it follows from the first equation of (2.17) that 7.5 (w) — 0 for any w € €, as n — oo. This
implies that for any (7, o) with 7 > 0, (1,0) &€ ©, for large n. Then © = (1,2, ©, is an empty
set, hence the constant equilibrium u = u* is linearly unstable with infinitely many pairs of
complex roots with positive real parts. O
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For o = 0, it has been proved in [23] that (2.5) always have infinitely many complex roots,

concentrated on the vertical line {z €C:Rez=1In %} in the complex plane. This implies

that the constant equilibrium «* is not stable for any 7 > 0 when |D;|u* > D;. Theorem 2.6
shows that this is also the case for any o > 0.

Next we consider the stability of #* under the assumption D; > |D,|u*. We have the fol-
lowing result in that case.

Proposition 2.7. Suppose that (H1) and (H2) are satisfied, and Dy > |Da|u*. Then for

neN,
(1) if
|Da|u* N, + |B| < |Di A\, — Al (2.19)
the mode-n crossing curve I1,, of (2.5) is an empty set.
(2) if
|Da|u* N, + |B| > |Di A\, — Al, and |Ds|u* N, — |B| > |Di A, — A, (2.20)
the mode-n crossing curve 11, of (2.5) is a series of spiral-like curves, oriented along
o-axis;
(3)if

|D>2|u* A\, + |B| > |Di\, — A, and |Ds|u* ), — |B| < —|Di\, —A|,  (2.21)
the mode-n crossing curve I, of (2.5) is a series of spiral-like curves, orient-
ed along T-axis; furthermore, let o.(Dy) be the minimum of the o-component of

(w):p= p(jfn,p(jfn + l,p(jfn +2,---}, which is the crossing curve closest to the

do'* (Dz)

npaE,
T-axis, then

4)if

IDs|u* A, + |B] > [Di A, — Al

and — |Di\, — A| < |Dylu* N, — |B|] < |DiA, — Al (2.22)

the mode-n crossing curve 11, of (2.5) is open-ended; furthermore, assume
that DA\, —A >0, and let o*(D,) be the minimum of the o-component of

{’7:?; & (w):p= pgtn,pgtn + l,pgtn +2,---}, which is the crossing curve closest to the
210, * ’ ’ ’
T-axis, then % < 0. Here 0*(D,) = O’i:q(w;(Dz)) where W', (D) is the unique posi-

tive root of Fi(w) = L

Proof. (1) is directly from part (1) of proposition 2.4, and for (2), the proof is similar to that
of theorem 2.5, hence it is omitted here.

(3) By exchanging the two delays 7 and o, the existence of crossing curves follows directly
from (2). Define

f(o.s) == ig + DM\ —A—Be™, and Tp, :={z€C:|z| = |Dslu Ay}

It follows from [11, theorem 3.2] that there exist 0 < g¢(D,) < o1(D3) < oo and
s0(D2), s1(D7) € (0, ) such that
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A

Figure 1. For fixed )\,, the region of (A,B) for pattern formation in the case of
Dy > |Dy|u*. The value of (A, B) in colored region, enclosed by the lines: A + B = 0,
A — B=0and |Dy|u*\, + |B| = |D1\, — A}, satisfies (2b) in theorem 2.8.

f(0i(D2),[0,7]) NTp, = {f(0i(D2),s5:{(D2))}, i=0.1,
f(O', [0, 71']) N FDZ = (D, (S [0, O'o(Dz)) U (O’l(Dz), OO),

and for fixed o € (0¢(D2), 01(D2)), the curve f(o,s), s € [0, 7], intersects I'p, exactly twice.
By [11, theorem 3.3], we know that o.(D;) = oo(D;). Since the curve f,(s) moves strictly
downwards in the complex plane as ¢ increases. Therefore, og(D;) is a decreasing function
of D2.

(4) By (2.22) and proposition 2.4, we have Q, = (0,w! (D,)], where w! (D) is the unique
positive root of F{(w) = 1. When w = w),(D,), we conclude that 67 (w) = 83(w) = 0. Thus,
7:%,,] (w) is connected with 7,7, (w) at this end. On the other hand, from (2.17), we know that
T (w) approaches oo with different slopes, as w — 0. Therefore, for fixed n,p, q, 7,5 ,(w)
is an open-ended curve (or V-shaped curve) in (7, o)-plane. This proves the first statement.

From the expression of Fj(w), it follows that w/(D,) is a strictly increasing func-

tion of D,. On the other hand, Zdj(iw,(D,)) = arctan %, which is a strictly de-

creasing function of D,. If the minimum of o, (w) is achieved at w = w}(D,), then

i £
o*(D,) = 1111)1211 o

;

(W) = 075, (wh(D2)) = 4";(1"’"(5}()2);(2‘1_1)” decreases as D, increases. []

Now according to the crossing curve analysis in proposition 2.7, we arrive at the following
stability result of the constant equilibrium »* in the case of Dy > |D,|u*.

Theorem 2.8. Suppose that (H1) and (H2) are satisfied, and Dy > |D,|u*. Then,

(1) IfA + B <0, B > A, then u*is linearly stable for any 7,0 > 0; that is, © = (;
(2) ForA+ B <0, B <A, we have
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(2a)If |Da|u* Ay + |B| < |DiAy — A| for each n € N, then for any T > 0, there exists
oo > 0 such that, u” is linearly stable when o < oy and it is linearly unstable when
o > oo, thatis, © = {(1,0) : 7 2 0,00 > 0 > 0};

(2b)If|Da|u* N, + |B| > |Di N\, — Al for some n € N, then © # 0 and u* is linearly stable
for (1,0) € ©; moreover © is determined by 11, in proposition 2.7, depending on
which condition (2.20), (2.21) or (2.22) is satisfied, and ©g in proposition 2.3;
if in addition, (2.21) or (2.22) is satisfied, then there exists D5 > 0 such that for
0 < |Ds| < D5 and any T > 0, u” is linearly stable when o < oy, and for |D,| > Dj,
u”is linearly stable when (1,0) € ©, where the boundary of © is determined by I1,, in
proposition 2.7 and © in proposition 2.3.

Proof. From A+ B <0, B> A and D, > |D,|u*, we have |Ds|u*\, + |B| < |Di A, — A|
for each n € N. It then follows from proposition 2.4 that Q, = (. Thus X,(7,0) C C~ for
each n € N, and the stability of u* is completely determined by (2.5) with n = 0. By proposi-
tion 2.3, we have ©g = {(7,0) : 7 > 0,0 > 0}. This proves part (1) of the theorem.

ForA + B < 0,B < A,fromproposition2.3,weknowthat®y = {(7,0) : 7 > 0,0 < 0 < 0g¢}.
If Dy |u* Ay + |B| < |D1 Ay — Alfor each n € N, then one can show part (2a) by a similar argu-
ment as above.

If |Dy|u* Ay + |B| > |D1 Ay — A| for some n € N (see figure 1), one of conditions (2.20)—
(2.22) is satisfied. From proposition 2.7, it concludes that the crossing curve I, is either spi-
ral-like or open-ended, which determines the mode-# stability region ©, for u*. On the other
hand, by part (1) of proposition 2.4, we know that when Dy > |D,|u*, there exists N, € N
such that all the roots of (2.5) have strictly negative real parts for any n > N,. Therefore, the
intersection of ©; for 0 < i < N, determines the stability region © of u*.

In the case of (2.21) and (2.22), the crossing curves are spiral-like curves oriented along
7-axis and open-ended curves, respectively. Furthermore, in either case, the minimum o (D)
(or 0*(Dy)) of o-component of II, is a decreasing function of D,, from proposition 2.7.
Thus, there exists a unique D5 > 0 such that all the crossing curves of (2.5) with n > 1 and
D, € (0,D3) are above the line Ily = {(7,0) : 7 > 0,0 = 0y}, and therefore, © = ©y when
D, € (0,D3). On the other hand, when D, > Dj, the stability region © depends on both ©g
and ©; for 1 < i < N,. This completes the proof of part (2b). O

Theorems 2.6 and 2.8 give a complete picture of stability property of the constant equi-
librium u = u* of (1.2). First of all, when the memory-based diffusion strength D, is strong
(D < |Dy|u*), then the constant equilibrium « = u* is unstable for all values of delays 7 > 0,
o > 0. When the memory-based diffusion strength D; is not strong (D > |D|u*), the rel-
ative magnitudes of the instantaneous growth rate A = g,(u*,u*) and delayed growth rate
B =g, (u*,u*) play a role in stability: the constant equilibrium u* always remains stable if
A+ B < 0and A — B < 0, which is in consistence with the case of n = 0 (proposition 2.3 part
(1)). So a stability switch only occurs when Dy > |D;|u*, A+ B <0 and A — B > 0. When
D, is weak (|D;| < D}), then the constant equilibrium u = u* can only lose the stability to a
spatially homogeneous (mode-0) time-periodic solution when o > oy. The interesting case is
in the intermediate strength D, of the memory-based diffusion (D} < |D,| < D;/u*), and the
intersection of the crossing curves of (2.5) forsome n € N and Ijis nonempty. This implies that
the boundary of © consists of two components: one is the line Il := {(7,0) : 7 > 0,0 = 0¢},
and the other part is determined by the crossing curves of (2.5) for some positive n € N. In this
case, if (7, o) crosses 90 \I1, then (2.5) has complex roots with n # 0 crossing the imaginary
axis. As a result, a mode-n spatially inhomogeneous periodic orbit may bifurcate from the
constant equilibrium u* through a Hopf bifurcation.
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Finally, we determine the direction in which the roots of (2.5) cross the imaginary axis, as
(7,0) deviates from the boundary of ©. As in [9], we called the direction of crossing curve
that corresponds to increasing w the positive direction. The region on the left hand side as we
head in the positive direction of the crossing curve is called the region on the left.

Proposition 2.9. Let we Q, and (1,0) € 7%# such that p =1iw is a simple root of
E(n,7,0,u) =0 in the sense that E(n,T,0,iw’) # 0 for any w' > 0 and w’ # w. Then, as
(7, 0) moves from the region on the right to the region on the left of the crossing curve, a pair

of complex roots of (2.5) cross the imaginary axis to the right if
BD; sin(w(r — o)) > 0. (2.23)

The crossing is in the opposite direction if the (2.23) is reversed.

Proof. By proposition 6.1 in [9], it suffices to show that (2.23) is equivalent to
R>I} — Ry, > 0, where

1 9a"(p, 7, . i B .
R, := —Re (Iua(g;—g))”:iw — Re(d!(iw)e “7) = A%anz(A" COSWT — wsinwr),

1 0a"(u,7,0) wre N —iwo —B .
R2 = —Re <;T e = Re(az(IUJ)e ! ) = W(An COSWOo — UJSIH(JJO'),

I == —Im <178“ (. 7.9)
1 or

> = Im(d} (iw)e “7) = A2_ ';)2 (wcoswt + A, sinwr),
p=iw n

(weoswo + A, sinwo).

L .= —Im (lw) — Im(ag(iw)efiwa) _
e (2.24)

7 do CAZ 42
In fact, from (2.24), one can compute that

B,Bsin(w(r — 7))
A2 + 2

Sign(RyI; — RiI) = Sign = Sign[BD; sin(w(T — 7))].

This completes the proof. O

We conclude this section with the following result regarding mode-n stability switch of the
constant equilibrium «*, which follows from theorem 2.8 and proposition 2.9.

Theorem 2.10. Suppose that (H1) and (H2) are satisfied, D1 > |D,|u* > 0,A + B < 0and
B <A. IfIDa2lu* N, + |B| > |D1 Ay — Al for some n € N, then there exists (19, 09) € 00 N1,
and wg € Q, for n € N. Moreover if wy(og — 1) # km for k € Z and p = iwg is a simple
root of E(n, 7,00, 1) =0, then there exists a neighborhood U of (19, 00) such that when
(r,0) € UNGO, u=u"is locally asymptotically stable, and when (1,0) € U\®, u = u" is
unstable which has exactly two eigenvalues with positive real part.

Theorem 2.10 provides a guidance of locating the pairs of delay values (7,0), diffu-
sion coefficients (Dy,D;) and growth rates (A, B) which produce spatiotemporal oscillatory
patterns. In the next section we give a couple of examples and numerical simulations to
demonstrate this mechanism of pattern formation.
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3. Examples

In this section we apply our theory in section 2 to (1.2) with the Wright—Hutchinson form of
delayed reaction and also some variants which are biologically more relevant.

3.1. Wright—Hutchinson form

A typical choice of the delayed growth function in (1.2) is the logistic one in the Wright—
Hutchinson equation g(u, u,) = ru (1 — ). Let

This gives rise to the following nondimensionalized system of (1.2), after dropping the tildes:

% =Au+Ddiv(uVu(t — 7,x)) + u(l —u(t — o,x)), x€Q,t>0,
Su(1,x) =0, x € 90,t>0.
3.D
It is apparent that u*=1 1is the unique positive constant equilibrium, and
A=g,u*,u*) =0, B=g,, (u*,u*) = —1. Therefore,

Ap =M, B, =D\, (3.2)

If n = 0, it is well-known that all the roots of (2.5), with A, and B,, given in (3.2), have strictly
negative real parts when o < 7/2 [24, 26, 32]. Hence, ©g = {(7,0) : 7 > 0,0 € (0,7/2)}.
If |D| > 1, it then follows from proposition 2.5 that the mode-n crossing curve II, consists of
a sequence of spiral-like curves in (7, o)-plane, oriented along o-axis, see figure 2. As a con-
sequence of theorem 2.6, u* is always linearly unstable for any 7,0 > 0, as long as |D| > 1. In
the case of |D| < 1, theorem 2.8 tells that the stable region of (3.1) is given by ©. We illustrate
how to determine © in the following two examples.

Example 3.1. Let the spatial dimension N =1 and Q = (0,]) with /=5 and D = 0.7.
Then, A\; =~ 0.3948, \» ~ 1.5791 and A3 = 3.5531. It can be verified that (2.21) holds for
n =1, (2.22) is satisfied for n = 2, and |B,| + |B| < |A,| for any n > 3. From (1) of proposi-
tion 2.4, we know that 2, = () for n > 3, which implies that all the roots of (2.5) with (3.2) has
strictly negative real parts for all 7,0 > 0 and n > 3.

It remains to determine the crossing curves for n = 1,2. By proposition 2.7, the crossing
curves of (2.5) with n = 1 are a sequence of spiral-like curves, oriented along 7-axis in the
complex plane, as shown by red solid curves in figure 3 (left). For n = 2, it follows from prop-
osition 2.7 that the associated crossing curves of (2.5) consist of a series of open-ended (or
V-shaped) curves, see the blue dotted curves in figure 3 (left). Here, all these crossing curves
are plotted with the aid of DDE-BIFTOOL, a MatLab package for numerical bifurcation and
stability analysis of delay differential equations with several discrete and/or state-dependent
delays, see [7].

These curves determine the stable region O, that is, the horizontal strip enclosed by the
black line, 7- and o-axis, but not including Ry UR, UR3 U - - -, see figure 3 (right). By theo-
rem 2.8, we conclude that the constant steady state u* is asymptotically stable for (7,0) € ©.
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1.6

Figure 2. The mode-n crossing curves for (3.1) with large n in the case of |[D| > 1.
Here, Q = (0,5) and D = 1.2.

Figure 3. The mode-n crossing curves for (3.1) in the case of [D| < 1 for n =0, 1,2.
Here 2 = (0,5) and D = 0.7. Left: crossing curves for (3.2) with n = 0 (black solid),
n =1 (red solid) and n = 2 (blue dotted); right: zoom-in of the bottom for left graph.

Furthermore, for (7,0) € Ry UR, UR3 U - -+, a spatially inhomogeneous periodic solution
can be observed (figure 4 (left)); while for (7,0) € Wy U W, U W5 U - - -, the observed peri-
odic solution is spatially homogeneous (figure 4 (right)). It is also remarked that there exists a
¢ > 0 such that the equilibrium is stable for all 7 > 0 when 0 < 0 < &.

If D is decreased to 0.5, then the crossing curves for (2.5) with n = 1,2 are slightly differ-
ent from the ones for D = 0.7. It can be seen that the bottom red crossing curve for n = 1 will
never intersect the one for n = 0 (black solid line), see figure 5 (left). Therefore, u* is stable
for (7, o) within the rectangle region below the black solid line, and a spatially homogeneous
periodic solution of (3.1) exists for (7,0) lying in R (the region between the red and black
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Figure 4. Periodic solutions of (3.1) with different delays. Left: a spatially
inhomogeneous periodic solution for (7,0) = (2,1.52) € R;; right: a spatially
homogeneous periodic solution for (7,0) = (1,1.7) € W;. Here, = (0,5), D =0.7
and the initial function u(6,x) = 1 + 0.1 cos(mx/5) for § € [—7,0].

4

Figure 5. The mode-n crossing curves for (3.1) in the case of [D| < 1. Here 2 = (0, 5),
D = 0.5 (left) and D = 0.9 (right).

curve). This is verified in (2b) of theorem 2.8 that when |D,| < Dj, the stability switch only
occurs for n = 0 thus there is no spatiotemporal pattern generated in this case.

Next we let D = 0.9. The crossing curves in this case are much more complicated than the
case of D = 0.7 or D = 0.5, see figure 5 (right). In this situation, spatiotemporal patterns of
(3.1) with higher mode-n are also observed, see figure 6. When D = 0.95, figure 7 shows a
spatiotemporal pattern with sharper transition layers between different phases.

Example 3.2. Let the spatial dimension N =2 and Q = (0,1) x (0,]). Then the eigen-

values are A,, = ('"2“;# for myn € Ng. Set /=5 and D = 0.8. It can be verified that
|Bun| + |B] < |Apn| if m* +n* > 12, where A, = Ap, and B,,, = D\,.,. This implies
that all the roots of (2.5) have negative real parts for m* + n> > 12. For m* + n* < 12 and
m,n € N, (2.22) is satisfied. It follows from proposition 2.7 that all the crossing curves are
open ended. All these curves can be plotted as in previous example, and their graphs are simi-
lar to the ones in figure 3 (right) and figure 5, which are omitted here. Since some crossing

curves intersect Oy, if we further assume o < 7/2, then the memory diffusive delay 7 also
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Figure 6. Spatially inhomogeneous periodic solutions of (3.1) with different delays.
Here D =0.9 and 7 = 2, and o = 1.35 (left) or 0 = 1.5 (right). All other parameters
and initial conditions are same as the ones in figure 4.

leads to the existence of purely imaginary roots of (2.5) with (3.2) for some n # 0. In this
case, a spatially inhomogeneous periodic solution of (3.1) bifurcates from the constant equi-
librium u*, as (7, o) passing through the crossing curve from the stable region ©, see figure 8.

We remark that all the spatially inhomogeneous periodic solutions in previous two exam-
ples are plotted for 0 < o < /2 where spatially homogeneous periodic solutions do not exist.
This reveals that such solutions are caused by the memory-based diffusion delay 7 (due to the
existence of purely imaginary roots of (2.5) for some n > 1). In [23], it was shown that the
memory-based diffusion delay 7 does not play a role in pattern formation in the case of o = 0.

3.2. Corrected Wright—Hutchinson form

The Wright—Hutchinson equation (3.1) is classical but also controversial, because the second
term includes both non-delayed and delayed dependent variables. However one event can
only occur at one moment. Actually, the quadratic term from the logistic model is normally
interpreted as self-crowding effect. The delay can be interpreted in many different ways, but
almost all of them lead to a delay in the birth term because it takes a long time for renewable
resources or newly-born animals or newly-divided cells to reach maturity for reproduction or
cell division. As a conclusion, the delayed logistic equation should be corrected as

W' (t) = bu(t — o) — cu (1), (3.3)

~—

where b is the birth rate and c is the crowding effect parameter, which describes the competi-
tion for space or some limiting resources. If we further consider the natural death, then the
equation becomes

W' (t) = bu(t — ) — du(t) — cu?(t). (3.4)

~—

When the factors of random and memory-based diffusions are incorporated, (3.4) becomes

0
2 D, Au+ D, div

o uNVu(t —71,%)) + bu(t — 12, x) — du(t,x) — ci’(t,x).

—
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Figure 7. A spatially inhomogeneous periodic solution of (3.1) with D = 0.95, 7 = 1.18
and o = 1.5. All other parameters and initial conditions are same as the ones in figure 4.

After re-scaling parameters, that is,

we have

where

_ bu - i (b)l/z
u=—,t=bt, x=x —
c l)]

% = Au+ D div(uVu(t — 7,x)) + u(t — 0,x) — ru(t,x) — u*(t,x),  (3.5)
bD d
= C—D?, r= B T=>br, 0 =b1. (3.6)

It is straightforward that (3.5) admits a unique constant equilibrium #* = 1 — r for r < 1, and
A=g,(u*u)=r—2<0, B=g,, (u*,u*) = 1. Therefore, A+ B <0 and B > A. From
theorems 2.6 and 2.8, we know that if D(1 — r) < 1 (or D(1 — r) > 1), u" is always stable (or
unstable) for o, 7 > 0.

In general, from the idea in [20], (3.4) can be extended to the following more general

model:

W' (1) = bu(t — ) f(u(t — 7)) — du(t) — cu?(1). 3.7
There are many options for the birth function f in the literature, such as
1
r— =—— r— =u(t — ),
Fluls =) = Ty O Fl =) = (=)
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Figure 8. A spatially inhomogeneous periodic solution of (3.1) when N = 2. Here
Q2 =(0,5) x (0,5),D=0.8, 7 = 1.7and o = 1.55. The spatial snapshots in a spatially
inhomogeneous periodic solution of (3.1) are plotted at different times, which is a
half period as the first and last snapshots are anti-phased, and the last panel shows the
variation of total mass of u with respect to z.

which are referred to Beverton—Holt type and Pascual type, respectively. Obviously, for
Pascual type f with o = 0, the equation (3.7) is same as the equation (3.4). For Beverton—Holt
type f, the re-scaled equation of (3.7) is

ou . u(t—o,x)
5 = Au+ D div(uVu(r —7.x)) + TFauli—o.x)

— ru(t,x) — u(t,x)
(3.8)
where D, 7,0, r are defined as in (3.6) and o = %. It can be verified that (3.8) has a unique

positive steady state

v —(1+ar)+ /(1 +ar)? —4a(r—1)
2

as long as r < 1. Furthermore, A = g,(u*,u*) = —(r+2u*) <0 and B =g, (u*,u*) =
(1+T1u*)2 € (0,1), which implies B > A. If 1 < (r + 2u*)(1 + au*)?, then A + B < 0. Using
theorems 2.6 and 2.8 again, we conclude that if Du* < 1 (or Du* > 1), u* is always stable
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Figure 9. For (4.1), choose g=ru (1 — [, K(x,y)u(y.,t —o)dy) with triangular
distribution function K(x,y) such that [, K(x,y)dy =1 for any x. Here, D; =1,
D, =095, 0 =15, Q=(0,5) and r=1. The constant equilibrium is stable for
7 = 1.18 (left); and periodic oscillation can be observed for 7 = 80 (right).

(or unstable) for o,7 > 0. Hence (3.5) or more generally (3.8) provides an example of (1.2)
that cannot produce spatiotemporal oscillations, while (3.1) does.

4. Discussion

In this paper, we incorporate the maturation delay into the reaction—diffusion model with spa-
tial memory, that was originally proposed in [23]. We show that the positive constant steady
state is always unstable if the effect of memory-based diffusion is stronger than that of Fickian
one, that is, |D,|u* > Dj, no matter how the memory diffusion delay 7 and the maturation
delay o vary. This conclusion is similar to the one in the case of 0 = 0, which has been studied
in [23]. However, the situation is different when |D,|u* < D;. Without memory-based diffu-
sion, it is known that the change of the maturation delay o can lead to Hopf bifurcation at any
constant steady state, and the stable bifurcated periodic solution is spatially homogeneous. If
the memory-based diffusion is involved, we can find all the crossing curves in (7, o )-plane, on
which the characteristic equation has purely imaginary roots. Moreover, these curves deter-
mine the stable region © of (1.2). The boundary of © consists of two segments, where the
system can give rise to spatially homogeneous and inhomogeneous periodic solutions through
Hopf bifurcation, respectively. These results are illustrated numerically in examples.

It is also worth mentioning that the effects of diffusion and time delays are not independent
of each other, i.e. the individuals located at x in previous time may move to another place at
present. Thus, a more reasonable revision of (1.2) would be

Ou _ D\ Au+ Dy div(uVu,) + g (u,/ K(x,y)u(r — o,y)dy) , 4.1
Q

ot
which is an open problem as future work. The simulation results of the nonlocal reaction
model (4.1), exhibited in figure 9, clearly show the departure from the local reaction model
(1.2).
For the nonlocal reaction model (4.1), we further remark that the memory-based diffusion
term involving the memory delay should be in local form, since animals move due to foot-
prints or their memorized distribution 7 time ago. Footprints cannot move, thus it is clear that
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nonlocal effect is not relevant in this case. For memory-based diffusion, the decision-making
animal moves according to its memorized distribution like using GPS navigation, although the
present distribution of animals is different from the past distribution.
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