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1. Introduction

In the algebra of n by n matrices over the complex field, two normal elements are

unitarily equivalent inly if they have the same eigenvalues counting multiplicities. One
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can also describe the convex hull of unitary orbit of a given self-adjoint matrix using
eigenvalue distribution. Indeed, by the classical Horn’s theorem ([11], see also [2] and
[14]), if z and y are two self-adjoint matrices, then z is in the convex hull of unitary orbit
of y if the eigenvalues are majorized by those of .

In infinite dimensional spaces, one studies the closure of the convex hull of unitary
orbit of an operator. These results were extended to von Neumann algebras (see, for
example, [10] and [13]). Moreover, in [9] (and [3]), the closure of the convex hull of
unitary orbits of normal elements in II; factors were also studied. Since these descriptions
are closely related to the measure theory, via spectral theory, one may expect that the
original description in finite matrix algebras carries out to von Neumman algebras or at
least II; factors.

The situation is rather different in C*-algebras since spectral theory no longer holds.
However, more recently, in [31], [28] and [29], the closure of the convex hull of self-adjoint
elements in unital simple C*-algebras with tracial rank zero (or real rank zero and stable
rank one, as well as other regularities) has been studied. The current research was inspired
by these papers with [12].

One of the conveniences of studying self-adjoint elements is that the C*-subalgebra
generated by a self-adjoint element has a certain weak semi-projective property. More-
over, the assumption that C*-algebras have real rank zero means that self-adjoint ele-
ments can be approximated by those with finite spectrum. These advantages disappear
when x and y are only assumed to be normal.

In the current paper, we study the normal elements in the closure of the convex hull
of unitary orbit of normal elements in unital simple C*-algebras with tracial rank zero.
The weak semi-projectivity property can be partially recovered by the theorem of [7].
However, normal elements in general simple C*-algebras with tracial rank zero may not
be approximated by normal elements with finite spectrum. Nevertheless, a theorem in
[19] shows that the normal elements in general simple C*-algebras with tracial rank zero
can actually be approximated by those with finite spectrum if a K;-related index vanish.
Moreover, unitary orbits of normal elements in general simple C'*-algebras with tracial
rank zero were characterized in [23]. Using these results, in this paper, we characterize
the normal elements in the closure of the convex hull of unitary orbits of normal elements
in a general simple C*-algebra with tracial rank zero (see 4.8 below). This is in the same
spirit as results in II;-factors as in [9] and [3] even though the simple C*-algebra A may
have rich tracial simplex. On the other hand, say, if we assume that A also has a unique
tracial state, then a purely measure theoretical description of normal elements in the
closure of convex hull of normal elements can be presented (see 5.12 below). We also
extend the result slightly beyond the case that A has tracial rank zero (see 5.10).

Suppose that x is a normal element in the closure of the convex hull of the unitary orbit
of a normal element y, and y is in the closure of the convex hull of the unitary orbit of
x. Then, in a IIy-factor M, x and y are approximately unitarily equivalent (see Theorem
5.1 of [3]). In a general unital simple C*-algebra A with tracial rank zero, this no longer
holds simply because the presence of non-trivial K; as well as infinitesimal elements in
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Ky(A). However, when these K-theoretical obstacles disappear, we show that these two
notions still coincide in simple C*-algebra of tracial rank zero. In particular, we show
that, in a unital simple AF-algebra A with a unique trace if both sp(z) and sp(y) are
connected, and x is in the closure of convex hull of the unitary orbit of a normal element
y, and y is in the closure of convex hull of the unitary orbit of x, then x and y are
approximately unitarily equivalent.
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2. Notations

Let A be a unital C*-algebra. We will use the following convention:

(1) U(A) is the unitary group of A.

(2) N(A) is the set of all normal elements of A, A, is the set of all self-adjoint
elements of A and A, is the set of positive elements of A.

(3) Mo(A) ={x e N(A) : VA ¢ sp(z), [N — 2] =0in K;(A)}.

(4) For any a € A, U(a) = {u*au : u € U(A)} is the unitary orbit of a.

(5) For any a € A, conv(U(a)) is the convex hull of the unitary orbit U(a).

(6)
orbit in pAp.

(7) T(A) is the set of all tracial states. If 7 € T'(A), then 7 ® tr is a tracial state of
M,,(A), where tr is the tracial state of M,,(C). We shall continue to use 7 for 7 ® tr.

Denote by QT'(A) the set of all normalized 2-quasi-traces (II.1.1 of [5]). By 11.4.3 of
[5], if A is a simple C*-algebra which has only one quasi-trace, then it is a 2-quasi-trace.
If A is a unital C*-algebra, then QT'(A) is a simplex (see II. 4.4 of [5]). By a result of
Haagrup [8], every 2-quasi-trace on an exact C*-algebra is a trace. We will also use the

If p is a projection of A, a € pAp, conv(Uy(a)) is the convex hull of the unitary

fact that every quasi-trace of a unital simple separable C*-algebra of tracial rank zero is
a trace (see, for example, Corollary 6.3 of [26]).

(8) Let a, b € A and let € > 0. Let us write a ~ b if ||a — b|| < €. Suppose that S C A
is a subset. Let us write a €. S if inf{|ja — s|| : s € S} < e. We may write a €~ S
including the case ¢ = 0 which we mean that a € S.

(9) Denote by GL(A) the set of invertible elements. Recall that A has stable rank
one, if GL(A) is dense in A.

(10) Let p,q € A be two projections. We write [p] = [¢] if there exists a v € A such
that v*v = p and vv* = q. We write [p] < [q], if [p] = [¢] for some projection ¢’ < q.

We write [p] <, [q], if there exists a unitary u € A such that u*pu < ¢, and [p] =, [q],
if u*pu = q. For any integer K > 0, we write K[p] =, [¢] if there are mutually orthogonal
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projections ¢1, qa, ..., qx € A such that ¢; < ¢, [¢;] =u [p],7 = 1,2..., K, and Zfil g = q,
and write K[p] <, [q¢] if there exists a projection ¢’ < ¢ such that K|p|] =, [¢'].

If A has stable rank one, then [p] < [¢] is the same as [p] <, [¢] and [p] = [q] is the
same as [p] =, [q]. Note, almost all the cases in this paper, A has stable rank one.

(11) Let x,y € Ay be positive elements. We write z < y, if there exists r,, € A such
that lim,, o |7} yrn — || = 0. In case z and y are projections, then there exists a partial
isometry v € A such that v*v = x and vv* < y. If A has stable rank one and x < y, then
there exists z € A such that z*z = z and zz* € yAy.

Let K > 1 be an integer. We write K(z) < (y), if there are K mutually orthogonal
positive elements x1, xa, ...,xx € My, (A) for some m > 1,

m—1

1+ a2 + - + o S diag(y,0,...,0),

and z; Szand x S x, 1 =1,2,.., K.

If p € A is a projection and p < z, then there exists partial isometry v € A such that
v*v = p and vv* € TAz.

(12) A linear map ¢ : A — A is said to trace preserving if 7o = 7 for all T € T'(A).

(13) Let F C A be a finite subset and € > 0. Suppose that B is another C*-algebra.
A positive linear map L : A — B is said to be F-e-multiplicative if || L(zy) — L(x)L(y)| <
€ for all z,y € F.

3. Preliminaries

The following lemma is well-known.
Lemma 3.1. Suppose that A is a unital C*-algebra.

(1) Let €1,e2 > 0, and let a,b,c € A such that a €., conv(U(b)) and b €., conv(U(c)).
Then

a4 E¢,te, conv(U(c)).

(2) Let {pi,i = 1,2,...,n} be projections in A with Y ., p;i = 1la and let a;,b; €
piApi, i = 1,2,...,n. Suppose that for some ¢ > 0, a; €, conv(Up,(b;)),i =
1,2,....,n. Then

n n
Zai € conv(Z/{(Z bi)),

=1 =1

where e = max{e; : 1 =1,2,...,n}.
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Proof. (1) There are {u;,v; : i = 1,...,m;5 = 1,...,n} C U(A) and {t;,s; : i =
1,..,m;j=1,...,n} C (0,1) with 7"  t; =1 and Z?:l sj = 1 satisfying

m n
a =, E tiu;bu;, and b=, E 85V} Cv;.

i=1 j=1

Let

n

m
:E E tisju; v; cvojug,
i=1 j=1

then a’ € conv(U(c)) and

m
/ o * ~
a’ =, E tiu;bu; =¢, a
i=1

(2) It is enough to prove the case n = 2. Note that p;ps = 0. Suppose that

n

m
a1 ey E S;U; blui, and a2 e, E tjUj bQUj, (e 31)

i=1 j=1

where s;,t; € [0,1] with > ; s, = 1 and Z;n:1 t; = 1, and uw; € U(p14p1),v; €
U(p2Aps). For any 4,7, let w;; = u; +v; € U(A), and let h;; = s;t; € [0,1]. Then one
can check -, - h;; =1, and

3

n m n

thw (b1 + ba)w;j = Z Zszt] urbiu;)) —l—ZZsitj(v;fbgvj)

7,7 =1 j=1 =1 j=1

m m n
g si(urbiu;) + g E (v7 bQUJ E siu;byu; + g tjv;-‘bgvj.
i=1 7=1 =1 7j=1

3

Combining this with (e 3.1), one obtains that a; + as =~ conv(U(by + b2)). O

Definition 3.2. Recall that D € M, (C) is called a doubly stochastic matrix if D = (d;;)
with d;; € [0,1] with 337", dij = D27, dij = 1 for all i, 5. Denote by D, the set of all
doubly stochastic matrices in M,,(C).

Definition 3.3. For any x = (A1, , A\n),y = (1, , n) € C™, we write x < y if there
is D = (d; ;) € Dy, such that

A1 din -+ din “1
=1 z - (e3.2)
An dpi -+ dpn Hin
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We may also write

(Alv"'7An)71::l)<ﬂlv"'7ﬂn)T

instead of (e 3.2).
The following is a variation of Horn’s theorem (see also [2]).

Lemma 3.4. Suppose x = > \ipi,y = >y piq; are normal elements in M,(C),
where { X\, i 2 i =1,2...,n} C C, and {p;,q; : 1 = 1,2,...,n} are rank one projections
such that Z?:l p; = Z?Zl ¢i = 1ar,(c)- Then the following conditions are equivalent:

(1) A1y An) < (s 5 i)

(2) z € conv(U(y)).

(3) There is a unital trace preserving completely positive linear mapping ® on M, (C)
such that ®(y) = x.

(4) There is a unital positive linear mapping ¥ : C*(y) — C*(z) such that V(y) = x
and T(VU(f)) = 7(f) for any f € C*(y), where T is the tracial state of M,(C), and
where C*(y), C*(z) are the C*-subalgebras in M, (C) generated by {1ar, (c),y} and

{11, (), 7} respectively.

Proof. (1) = (2): First, we consider that in the case x = diag(A1, -+, \n),y =
(hag(ula"'vun)'If(A17"'7An) = (#lv"'aun)vthen there is D = (dU) € ILLSUCh
that (A1,--- ,A\)T = D(u1,- -+, un)T. By Birkhoff’s Theorem [4],

D= Z toVo,

oEX,

where ¥, is the permutation group of {1,...,n}, t, € [0,1] with > __ t, =1, and v,
is the permutation on C™. One may check that

diag(A1, -+, ) = Z touy (diag(pr, -, fn)) o, (3.3)
oEY,

where u, is the unitary of M, (C) induced by v,. That is, viewing element u, as a
linear operator on C", for any (A1, - ,An) € C™, us (A1, -, n)) = (Aoys ooy Aoy, ). In
general case, let e; be the element in C™ with 1 in j-th coordinate and zero elsewhere,
j =1,2,...,n. There are u,v € U(M,(C)) such that u*p;u = e; and v*qjv = e;, i,j =
1,2,...,n. Then, u*zu = diag(A1, -+ , A\n), v*yv = diag(p1, -+ - , fn). Then by (e3.3),

x = Z to(vupu® ) y(vusu™),

oEX,

or x € conv(U(y)).



S. Hu, H. Lin / Journal of Functional Analysis 278 (2020) 108306 7

(2) = 3): If z = Zi\il t;ufyu;, where t; € [0,1] with Zi\il t; = 1 and u; €
U(M,(C)),i = 1,2,...,N. Define ®(z) = vazl tiuf(z)u; for any z € M,(C). Then
® is a trace preserving completely positive contractive linear map with ®(y) = x.

(3) = (1): Let u,w be unitaries in M, (C) such that uw*yu = diag(pi, - -, n)
and w*zw = diag(A1,---,\,). By replacing ® by Adw o ® o Adu*, we assume that
O(diag(pa, -+, tn)) = (A1,- -+, An). Let 7 € T(M,,(C)) be the unique tracial state. Let
e; be as above. Then for any 4,7 = 1,2, ..., n, let define

fij = ei(p(ej)e’i and d’L] = Tr(fl]) = nT(fij)? Za] = 1,2,...,”.

Then fij S (ez’Mn(C)ei>+ with HfZ]H <1l,and 0 < dij < 1. One checks

n n

D diy =y nr(eid(eg)) = n7(®(e;)) = nr(eg) = 1;

n n

Zdij = ZnT(ez@(ej)) =nr(e;®(14)) = nr(e;) = 1.

Moreover, for any 1,

Zﬂjdij = ZM”T(%‘I’(%D = m(eifp(z 1€;))

= nT(ei(Z Ajej)) =nT(Nie;) = \int(e;) = \i.

Jj=1

In other words, with D = (d;;) € Dy,

(/\17"' 7)"fl>T = D(:uh 7:un>T‘

(4) = (3): Write y = Zle ;Q;, where {7, a9, ...,ax} is distinct eigenvalues and
Q1,Q2, ..., Qk are mutually orthogonal non-zero projections such that Zle @; = 1. Let
U, : M, (C) — C*(y), be the conditional expectation,

k
Uy(a) =) T(f(ig?)qg for all a € M, (C).
i=1 v

Then V¥, is a unital positive linear map preserving the trace such that ¥;(y) = y. Then
® o Uy (y) = z. Moreover ¥ = ® o ¥y is a unital trace preserving positive linear map.

(3) = (4): Let Uy M,(C) — C*(x), be the condition expectation, and let & =
Uy 0 Wlcn(y), then ®(y) =z, and @ is a unital trace preserving positive linear map from
C*(y) to C*(z). O
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Corollary 3.5. Suppose A is a unital C*-algebra with T(A) # 0. {X\j,p; 11 =1,2,....,n}
are complex numbers.

(1) If {p; i =1,....,n} and {q; : i = 1,...,n} are projections in A with [p;] =, [q;] for
any Z.7j7 2?21 pi = 2?21 qi = 1A- If

n n
=Y Npi, Y=Y pidi,
i=1 i=1

then x € conv(U(y)) if and only if (A1, , An) < (1, 5 fn)-

(2) If {p; : 1 = 1,2,...,n} are mutually orthogonal projections in A with [p;| =, [p1] for
alliandp=>""_pi- Let B={> 1 mipi :m; € C,i =1,...,n}. If there is D € D,
such that (A1, -+ ,An)T = D(u1, -+ ,un), then there is a unital trace preserving
completely positive linear map ¢p on pAp which maps B into B such that

oD Nipi) = D wips-
=1 =1

Proof. (1) There exists u € U(A) such that u*p;u = ¢;,i = 1,...,n. Without loss of
generality, we may assume p; = ¢;,7 = 1,2, ...,n. Furthermore, since [p;] = [p;] for all i,
and >_"" | p; = 1a, A is isomorphic to M, (By), where By = p1 Ap;.

Therefore it suffices to show

diag(A1, A2, ..., Ap) € conv(U(diag (1, pi2y ey fin))) (e3.4)

if and only if (A1, -+, Ap) < (g1, , ). By 3.4, we only need to show that (e3.4)

implies (A1, -+, An) < (1, , o). Let {e;5}1<i j<n be a system of matrix unit. Suppose
that
n
diag(Ai, A2, s Ap) = Z)\ieii
i=1
m n m
= Z tsw:(z pi€ii)ws = Z tswy (diag(p1, p2, ... fn) ) Ws,
s=1 =1 s=1

where wy € U(M,(B)),s = 1,...,m, and t5 € (0,1) with >.7" | ¢, = 1. Suppose w; =
(wz(;)), where wz(;) € B. For s =1,2,...,m, we have

m
_ (s)
Ai€i; = E tseii(Ch; Inxn€ii,
s=1

where cé‘? =3, ul(wl(z))*wl(;), k,j=1,2,...n,s=1,2,..,m. In other words,
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)\ieu Z t C(S) X €y = Zt Z i wlz wl(zS)) ® €ii
s=1

Z,uth wl(f) wll ® €45. (e3.5)

Let t € T(A) and let 7 € T(By) such that 7 = n-t|g,. Set fi; = > 1v ts (wl(f)) wl(f) nd
di; = 7(f1i)- Then f; € B4, d;; € [0,1], 1,7 =1, ...,n. We have, since w; is a unitary,

S = (30 S ) = (3 gy = 1
=1 s=1

s=1 =1

and

Z dlz
=1

nMs

tar (ot ui?)
i (Zw(s) wl(f) ) ZtTlB =1

Thus (d;;) is a stochastic matrix. Then, by (e 3.5), (¢3.2) holds. We obtain (A1,---,A,) <

(/1/17 o 7,“71)'

(2) Since pAp is isomorphic to M, (p1Ap1), U(M,(C)) can be viewed as an subset
U(pAp). For any D € D,,, by the proof of (1) = (4) in 3.4, pp = > tsAd(u,), defined
on M, (C), can be extended to pAp. O

Lemma 3.6. Suppose A is a unital C*-algebra and suppose that e,p € A are two mutually
orthogonal projections.

(1) If K > 1 is an integer, ey, es,...,e; are mutually orthogonal projections in eAe,
and p1,p2,...,p1 are mutually orthogonal projections in pAp with Kle;] =, [pil,i =
2,...,1, such that Zﬁ.zl e; = e and 2221 pi = p, and, if

! l
T = Z)‘ipi € pAp, 2/ = Z)‘iei € eAe,

i=1 i=1

then

42’ €, conv(Upie()),

where €1 = @
(2) If, in addition, ¢ € A is another projection with ¢+ e +p = 14 and Kle] <, [q].
Then, for any y' € eAe and any y € N (pAp), one has that
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Y €, conv(U(y +y)),

where €5 = l‘{yﬂl.
(3) In (1), with Kle;] =4 [pi] replaced by Kle;] <, [pil,i = 1,2,..,1, and e + p = 14,

then for any y' € eAe,

z+12' €., conv(U(z +1')),

/
3
where e = 11431l

Proof. (1) We write z = 2221 i, T = 2221 xf, where z; = \ip;, ©), = Niej,i = 1,2, ..., L

By the definition of (10) in section 2, there exist projections p1;,j = 1,..., K such
that p; = ZJK:1 p1; and [p1;] = [e1]. Then there are v; € (p1 + e1)A(p1 + e1) such
that vjv; = pij,v;0) = e1,j = 1,2,..., K. Let u; = v; + v} + >, pu;, then u; €
U((@l +p1)A(€1 —|—p1)) with

uipijuj =e1 and wipiyu; =piy, §j # 5 j=1,2,.., K.

Let t; =1/K,j=1,2,..., K. Then

(K—1)

K
A1 (61 + Tpl) = thu;‘ (Alpl)uj S COHV(Z/{61+p1 (371))

=1
Since x1 + 2} = M\ (p1 + e1), we have

K -1
1+ :Ell R /K )\1(61 + T)pl) € COIlV(Z/[pl_i_e1 (ml))
Similarly, z; + 2} =z, |/ conv(Up, e, (2:)),7 = 2,...,1. Note {p; +¢; : i = 1,2...,1} is a

set of mutually orthogonal projections, applying (2) of 3.1,

! l
r+12 = z:(:nz + ) €, conv(up+e(z x;)) = conv(Upte(T)),
i=1 1=1
where ¢, = max{|\;| : i =1,2,..,1}/K = ||z||/K.
(2) There are unitaries u; € A and mutually orthogonal projections ¢; € gAgq such
that ujeu; =¢q;, j=1,2,..., K. Let t; = ﬁ, j=0,1,2,..., K, define

K

Yo = toy/ —+ Z tju;y’uj.
j=1

Then yo € conv(Uy+.(y')). Moreover |lyo|| < }H<yj|1' It follows that
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0 €ey conv(Uyre(y))-

Since y € conv(Uy(y)), by (2) of 3.1, we have

Y Ec, conv(U(y +9')).

(3) First, we consider the case K[e;] =, [pi]-

If 0 € sp,a,(7), without lost generality, we may assume A\; = 0. Applying (2) to
2222 p; (in place of p), e (in place of e), p; (in place of ¢),  (in place of y) and as well
as y' (in place of y'), we get

l

xr = Z \ipi €y, conv(U(z +y')), where n; =
i=2

/||
K+1

Apply (1) to x and 2’, which are viewed as elements in pAp and eAe, respectively,

z+ 2’ €,, conv(U(x)), where 1y = @
By (1) of 3.1,
/
z+a' €,, conv(U(z+y")), where n3 = M—;HIH

In case 0 ¢ sp,,4,(7), let A1 € sp,4,,(z), we consider z — A\1p, 2’ — Are, and y' — Aje. Then
0 € sp,a,(7 — A1p). Replacing x,2',y" by x — Aip, 2’ — Aie,y’ — Aje respectively, by the
proof above, we have

r—XMp+a — e €, conv(U(z — Mp+y — \e)),

/7
where ns = ¥ ’\IE@HJ" Mel That is

z+ a2 —M\la €, convlU(xz+y' — Aila)).
Therefore,

9"l + 3[|]

r+12' €, conv(U(x+1y')), where e3 = 7

In general, K[e;] <, [p;] implies that there is a projection p; < p; such that K[e;] =,
[pi],i=1,2...,1. Define z; = 22:1 Aip; and p’ = Zizl p;. It follows that

1 + ZIII (S Hylu.;}?nwln COHV(up/+e($1 + y’)).
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Note that [|z1|| < ||z||. Note also that x + 2’ = (x1 + 2') + (x — z1) and x — 1 €
conv(Up—p (x — x1)). Since x1 + 2" € (p +e)A(p' +e), z —x1 € (p —p')A(p — p') and
(p'+e)(p—p') =0, by (2) of 3.1, we conclude that

z+12' €, convU((x1 +y') + (x — 1)) =conv(U(z +3')). O

Proposition 3.7. Let A be a unital C*-algebra with T(A) # 0, © and y be two normal
elements. Suppose that x € conv(U(y)). Then there exists a sequence of trace preserving
completely positive contractive linear maps ®,, : A — A such that lim, o | P, (y) — x| =

0.
Proof. There are 0 < )\; ,, <1 with Z:inl) Ain = 1 and unitaries u; , € A such that

r(n)

= 3 Aun i) =0
2

Define ¢, : A — A by ®,(a) = Z:g) Ain Ui pau; , for all a € A. Then 1, is a unital
completely positive contractive linear map and

r(n) r(n)
7(Pn(a)) = Z )\i,nT(UZnan,n) = Z XinT(a) =T7(a)
i=1 i=1

foralla € A, and all 7 € T(A). O
The following is known. We state here for reader’s convenience.

Lemma 3.8. Let A be a unital simple C*-algebra with T(A) # (. Let a,b € A, with
llall, ||b]] <1 such that T(a) < 7(b) for all T € T(A). Then there is 0 < by < b such that
T(bo) = 7(a) for all T € T(A). Moreover, there are y,, € A such that

oo oo
Zy;:yn =a and Zyny:; =by < b,
n=1 n=1

where the sums converge in norm.

Proof. Let f € Aff(T(A))4+ be such that f(7) = 7(b—a) for all 7 € T(A). Let 1 > € > 0.
It follows from 9.3 of [24] that there exists 0 < b < 1+ ¢ in A such that 7(0') = f(1)
for all 7 € T(A). Put b; = diag(a,b’) in Ms(A) and put B = My(A). We view A as the
upper left corner of Ms(A). Then 7(by) = 7(b) for all 7 € T'(B). By Theorem 2.9 of [6],
by — b € Ap (notation in [6]). In other words, there are z1, z2, ..., in B such that

(o e) oo
E x, Ty = by and g Tnx, =b.
n=1 n=1
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Let e; = diag(14,0). Then e;a = ae; = a. Put y,, = x,e1. Then
oo oo
Z YnYn = 61(2 x,xn)er = a and
n=1 n=1

Zyny;; = Z Tpe1t, < anxz =b.
n=1 n=1 n=1
Choose by = >0, ynyj;- Then 0 <by < b and 7(by) = 7(a) for all T € T(A). O

4. Simple C*-algebras with tracial rank zero

Definition 4.1 (/21]). A unital simple C*-algebra has tracial rank zero if for any € > 0,
any non-zero r € A, any F C A, there exists a finite dimensional C*-algebra B C A
with unit p € A, and such that

x =~ 2 +2", where 2’ € B,
2" € (1—-p)A(l —p), forall z € F,

1—-p<r

If A has tracial rank zero, we write TR(A) = 0.

The above definition is equivalent to the following: For any ¢ > 0 and any finite
subset F C A and any r € Ay \ {0}, there exists a projection p € A, a finite dimensional
C*-subalgebra F' of A with 1p = p, and a unital F-e-multiplicative completely positive
contractive linear map L : A — F such that

|lpx — xp|| < € for all z € F,
dist(pxp, F) < € for all z € F,
|l — ((1 —p)x(l —p)+ L(z))|| < € for all x € F,

1—-p<Sr

If TR(A) = 0, then A has stable rank one and real rank zero. Moreover, A has the
comparison property: if p,q € M, (A) are two projections for some integer n > 1 and
7(p) < 7(q) for all 7 € T(A), one has [p] < [q] (see [21]).

Suppose that A is an infinite dimensional unital simple C*-algebra. Fix a non-zero
r € A, and an integer K > 1. Note that rAr contains a positive element with infinite
spectrum. It follows that there are K + 1 many non-zero mutually orthogonal elements
ai,ag,...,ax 41 in rAr. It follows (Lemma 2.3 of [15], for example) that there is a non-zero
r" € rAr such that v’ < a;, i =1,2,..., K + 1. In the above definition, using ' instead of
r, one may have 1 — p < /. Therefore K[1 — p| < [r].
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Recall the following known fact:

Lemma 4.2. Let x be a normal element and \ € C. Suppose that dist(\,sp(z)) = dy > 0
and, for some y € A with ||z —y| < do. Then X ¢ sp(y).

Proof. Since z is normal element and \ ¢ sp(z), ||(x — \) 71| = m. Then

=27 =) =1 < =)= X~ =N = ey

~ dist(\, sp(x))
Consequently, (z — \)~1(y — \) is invertible, and A ¢ sp(y). O

Lemma 4.3. Suppose A is a unital simple C*-algebra with tracial rank zero. If x,y €
N(A), then for any € > 0, any integer K > 1, and any non-zero projection r € A, there
exists a finite dimensional C*-algebra B of A with unit p such that

rr.r+2" y=cy +y”, where 2’y € N(B), 2",y € N((1 —p)A(1 —p)),

l m
' = Z \ip; Y = Z,uiqi, (e4.1)
i=1 i=1

where {1, Ao, ..., N} and {u1, po, .., i } are distinct and e-dense in sp(x) and in sp(y)
respectively, and {p1,p2,...01}, {q1,q2,...,qm} are projections in A with Zi’:l pi =
Z;.n:l q; =p, and

K[l-pl<[r], KQl—p]<[p] and K[1—-p]<[g], 1 <i<1, 1<j<m.(ed?2)

Moreover, we may also assume that sp(z”) (in (1 —p)A(1 — p)) is e-dense in sp(z) and
sp(y”) (in (1 — p)A(1 —p)) is e-dense in sp(y).

Proof. Without loss of generality, we may assume that |z|,|y|| < 1. Fix € > 0, let
0 < eg < €/4. Let {\1, e, ..., \i} C sp(z) and let {p1, po, ..., b} C sp(y) be such that
both sets are distinct and €/2-dense in sp(x) and sp(y), respectively, and

¢= min{€0/27 ’)\z - /\i/|7 |:u] - ,Uj/’ ti 7é ilaj 7é .7/} > 0.

Since ||z|], [|y]| < 1, there are f; € C(D) and g; € C'(D), where D is the closed unit disc
of C, such that f;(t) =1 for [t — \;| < /4, fi(t) =0 for |t — X\;| > (/2,1 <i <1l and
0 < fi(t) <1; g;(t) =1 for |t — p;| < ¢/4, and g;(t) =0 for |t — pj| > (/2,1 < j <m.
Note that for any i, 5, fi(z) # 0 and g;(y) # 0.

Since A is simple, there are a;x, b;i € A such that

n(i) n'(j)
Za;‘kfi(m)aik =14 and Z bik9; (Y)bjr = 1a. (e4.3)
k=1 k=1
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Let
No = max{n(i),n'(j) : 1 <i <1;1 < j,<m} and M = max{||al], |0}, : 4,7, k}.

Choose 6; > 0 such that, in any unital C*-algebra W, if h € W, and || 1w — h|| < 01,
then h is invertible in W and |1y — h~Y2|| < €o/2°No(M + 1)2. For convenience, we
may assume that §; < €.

Note that f;, g; are continuous on D, ¢ = 1,2,...,l and j = 1,2, ...,m. There is d2 > 0
such that, for any S, 7 € N (A4) with ||S|| < 1,||T|| <1, ||S — T|| < 02 implies

I1£:(S) = fi(D)|| < 61/2°No(M +1)%,i=1,2,...,1 (c4.4)
19;(S) = g;(T)|| < 61/2°No(M +1),5 =1,2,...,m. (e4.5)

Without loss of generality, we may assume that do < €/4.

Note that every unital hereditary C*-subalgebra of A has stable rank one [22]. In
particular, they have (IR) (see [7]). By 4.4 of [7], there exists d3 > 0 such that for any z
in a C*-algebra with (IR) with ||z]| < 1 and with the property that

2"z — 22| < da,
then there exists a normal element 2’ in that C*-algebra such that
|z — 2'|| < d2/2.
Choose
n= min{él, s, 63}/29N0(M + 1)2
Put G = {1A7 T, Y, Qik, bﬂ% fl(x)a g](l‘) 21 s k}

Since TR(A) = 0, for any integer K > 1, there is a finite dimensional C*-subalgebra
B’ ¢ A with p’ = 1p/ such that

B' = M,,(C)EP M,,(C)EP- - M., (C), (e4.6)
|z — (2" +2")|]| <n forall z€g, (e4.7)
[p'zp" = 2'|| <m, [|(1=p)z(1—p)—=2"|| <n forall z€g, (e4.8)
|z — (z1 +22)|| <7, |ly— (y1+y2)|| <7 and (e4.9)
K[1—p']<|[r], (e4.10)

where x1,y1,2" € B, x9,y2,2" € (1 —p')A(1 —p').
Moreover, we may assume, without loss of generality, that ||z;|| < 1 and ||y;|| < 1,
1 = 1, 2. Note that, since x and y are normal,
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iz, — x| < 2n < d3 and
* * .
iy = viyi |l < 2n < 63, i =1,2.

It follows from 4.4 of [7] that there are z1,y0,1 € N(B’) and 292,902 € N((1—p")A(1—
p’)) such that

||$1 — JIQJH < (52/2 and ||ZE2 — $Q72|| < (52/2
Then
HZIZ — (.%‘0,1 + 517()72)” < 0 and ||y — (yo’l + y072)|| < 09. (64.11)

Therefore, by the choice of dy (see (e4.4) and (e4.5)),

| fi(@) = (fi(zo1) + filwo2))|| < 61/2°No(M +1)%, i =1,2,...,1
195 () — (95 (o,1) + 95 (Yo,2))|| < 61/2°No(M +1)%, j=1,2,....m

Moreover,

19/ fi(a)p' = fi(won)|| < 61/2°No(M +1)%,i=1,2,...,1
19/ 9; ()" — 9 (yo,1)|| < 01/2°No(M +1)%, j=1,2,..,m

For any i and j, by (e4.8), (e4.3) (recall 14,aix,bjk,z,y, fi(2),9;(y) € G), there are
@iy, Uy, € B' and agy, b, € (1 —p)A(1 —p’) 4+ such that

n(z)

||p/ — Z(a;k)*fz($071)a;k’| < 27N0(M + 1)27’] + 61/29N0(M + 1)2 < 51 and
k=1
n'(j)

P =Y (®5r) "9 (o)Wl < 2" No(M + 1)%n + 61/2° No(M +1)* < 61,

k=1
n(s) n’(5)
(1= ') = (afh)" filzo2)af| < 61, and (1 —p') = > ()" g (yo2)bfxll < 6.
k=1 k=1

Then, by the choose of ¢y, for any 4, there is h; € B! such that

= Zhi(a;k)*fi(xo,l)agkhi,

Let ¢, = al, h;, then
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2

i)
p'= ) ()" filzo)ci- (e4.12)
1

B
Il

Similarly, for any i, j, we have d}; € B',cjj,d7, € (1 —p')A(1 — p) such that

n(i)

1—p' = Z(Cglk)*fi(xOQ)Cg/kv (e4.13)
k=1

n'(5)

P =) (dj)"9;(yo,1)d}y, and (e4.14)
k=1
n'(j)

1—p'= Z (k)" 95 (yo,2)dj- (e4.15)
k=1

<.

/

Choose projections pj, ¢; in B’, and A}, i € C such that Zi;l p, = p’ and Z;nzll q =7,
and zo,, = 3.0_, Npf, and yo,1 = 2?2/1 g

Since H:L’ - (330,1 + .7303)” < 6o, by 4.2, Sp(:l?o,l + 2130,2) C {)\ eC: diSt()\,Sp(J})) < 52}.
It follows that sp(xp1) (in p’Ap’) and sp(zo2) (in (1 — p')A(1 — p’)) are subsets of
{\ € C : dist(\,sp(x)) < d2}.

Recall that {A1, A2, ..., A1} is €o/2-dense in sp(x). Choose S1 = { i/ : |[Av — A\1| < €p}.
Suppose that S1,S5s,...,5; (kK < 1) are chosen, let Sky1 = {\i : [Air — Agr1] < €0} \
(Uk_,S;). Note, by the choice of ¢, Sgr1 D {\, 1 |\ — Xi| < ¢}. By the induction, we
obtain mutually disjoint subsets Si,.Ss, ..., S; such that sp(zg,1) C UézlSi,

Put p; =) 5 eg, Pir- Then fi(wo1) < piyi=1,2,..,1. By (e4.12), fi(wo,1) # 0, whence
Pi # 0. Set x5, = 22:1 \ip;. Then Zézlp} =p and

26,1 — zo|l < €o- (e4.16)

Similarly, there is y ; € N(B') such that yo; = >0, p;45, ¢; # 0, _5-, ¢; = p’ and

90,1 — o1l < €o- (e4.17)
By (e4.13), for any 4, fi(xo2) # 0. It follows that {z : |z — Xi| < {} N'sp(zo,2) # 0. So
sp(zo,2) is d2-dense in sp(z). Similarly, sp(yo,2) is d2-dense in sp(y).

Since A is a simple C*-algebra of real rank zero, it is easy to find a non-zero projection
eo Spiandey Sgjfor 1 <i<land1l<j<m.

Since TR((1 — p')A(1 —p’)) = 0, by repeating the above process, one obtains a finite
dimensional C* subalgebra B” with unit p”(< 1 — p’) such that
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(i) wo2 ~s, 956/,1 + x872,yo,2 5, 116/,1 + y6/,2a where xo 1ay01 € N(B//)al"g,mygg €
N({((1=p" —p")AQL —p' —p"))),
(ii)

Z)\'Lpl | < €0, HyO 1 Zlu]q] ’ < €0, (6418)

(iii) (in (1 —p"—p")A(1 —p' —p")), sp(2(2), sP(Yo 2) are da-dense in sp(zo,2),sp(¥o,2)
respectively. Then it follows they are e-dense in sp(x),sp(y) respectively.

(iv) K[1—p" —p"] < [eo]-

Consequently (as d2 <€), sp(z ) (in (1 —p" —p”)A(1 —p' —p")) is e-dense in sp(z)
and sp(yg o) (in (1 —p" —p”)A(1 —p" —p”)) is e-dense in sp(y), respectively.

Let B:= B'®@B"andp:=1p =p' +p’. Set 2/ = :1:671—#22:1 Aipl = Z§=1 Xi(pi+p),
o =200, Y = Yo T2 md) = 2 (g +qf) and ¥’ = yi 5. Then 2’,y" € B. By
(e4.11), (e4.16), ( ) above and (e4.18),

T Ry T0,1 T 0,2 Regtsy To1 + (301 +202) Fep @' + 20 =" + 2",
In other words (02 + €9 + d2 + €9 < €),
|z — (2" + 2")|| <e.
Similarly,

ly— ' +y")| <e

Define p; = p; +p;, i = 1,2,...,1, and ¢; = §; + ¢, j = 1,2,...,m. Then eg < p; < pi
and eg SG; S¢qj, 1 <i<land 1<j<m. It follows, fori=1,2,...,0,j=1,2,..,m

K[l —p] <[r], K[ = p] < [pi], and K[l —p] <[g]. O

Lemma 4.4. Let A be a unital C*-algebra with a unique tracial state T and let €1 and €5 be
two positive numbers. Suppose {p1,p2,....o1} and {q1,q2,...,q} are two sets of mutually
orthogonal and mutually unitarly equivalent projections with 2221 p; =14 = Zi:l i,
such that there is a unitary u € A with w*p;u=¢q;, 1 =1,2,...,1.

Let x = ZZ L Aipi and y = 22:1 Wiq; be normal in A, where \;, u; € C. Suppose that
Sy, 89, ..., SN are mutually disjoint subsets of {1,2,...,1} such that US, = {1,2,...,1}
and, p; = p; for alli,j € Sy, and, y = 25:1 1. Qr where py, = pj for some j € Sy and
Qr = ZiGSk qi- Suppose that ¢ : A — A is a unital completely positive linear map such
that p(y) ~e, x and

17(p(Qk)) — 7(Qr)| < se2, k=1,...,N, (e4.19)

where
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s=inf{r(Qr): k=1,2,...,N;7 € T(A)},
then there is a trace preserving unital completely positive map ¢ : A — A such that

[¥(y) — 2| < 26|yl + 261 and @ Eaeyjjy)|42e, cOnVU(Y)).
Proof. We first consider the case that p; = ¢;, 1 <i < [. Let ¢’ : A — A be defined by
!
¢'(a) = Zpigp(a)pi for all a € A.
i=1

Then ¢’ is a unital completely positive linear map from A to A. Moreover, one checks
that 7(¢’(a)) = 7(¢(a)) for any a € A.
Define, for j € Sy,

dij = T(pie(Qr)pi)/T(Qr), 1 =1,2,..,1,k=1,2,...,N.

Note that

> dij =1r(pip(Qr)), i=1,2,...LLk=1,..,N.

JESk
Since ¢ is unital, for any i € {1,2,...,1},

l

de IS Y @)/ (@) = L (e4.20)

k=1j€S5k

Since ||p(y) — z|| < €1 (note that we have assumed that ¢; = p;, i = 1,2,...,1), for any
ie{1,2,...,1},

!
IXips = mipiei)pill = llpi(z — o (y))pil| < €. (e4.21)
j=1
This also implies that

|z — ' (W) < e

It follows that for any i = 1,2, ...,1,

ZM;%I—UT iPi — Zugpz e(p;)p))l < €. (e4.22)

We also have, for any j € Sy,
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l l
D dij = 3 (pie(Q))/T(@Qx) = T((Q0)/T(Qu). (e4.23)

1=1

By (e4.19), for any k € {1,2,..., N},
7((Qr))/T(Qr) = 1] < se2/7(Qk) < €2
Then there are €; € R with [€;| < ez such that

l
Y odig=1+¢€,j=1,..1 (e4.24)

i=1
Let AL ={j:¢; >0} and A_ = {j : ¢; < 0}. Note that

l

l l l
DA+ + D A+ =D "dij=>_ > dij=1L. (€4.25)
j=11i= i=1 j=1

JEAL JEA_ 1
Therefore
Z €; + Z €; = 0. (e4.26)
JEAL JEA_
Let
dijﬁ/-
61]_1+g;7]€A+7Z_17 7l7
then
Ogeij Sdij,jGA_i_; 1=1,...,1, (e4.27)
l
Zeij = 6;-, je A, (e4.28)
i=1
and, by (e4.20), for all 4
dijél» €/~
_ J J ..
D=3 ik < mato (3 ds) (¢4.20)
JEAL JEAL J Jojeny
6/
< < 4.30
S TR < (o430

Let aj = —€}, j € A_ and b; = Zj€A+ €ij, 1 € {1,2,...,1}. Then, by (e4.26) and (e 4.28),



S. Hu, H. Lin / Journal of Functional Analysis 278 (2020) 108306 21

l
LR IR S I

JEA_ JEA_ - i=

By the Reisz interpolation, (see page 85 of [1]), there are
{eij:jeA_;i=1,2,..,1} with ¢; > 0 such that

l

Zeii = —¢;=aj,j€ A and (e4.31)

7

> e =bi, ie{1,2,..,1}. (€4.32)
JEA_

Note that

€ij = 6;» < €, JE A+. (6433)
=1

Put

d;j = dz‘j — €ij, ] € A+; = 1,2,...,[, d;] = dij +€ij7j € Af; 1 = 1,27”'7l.

By (e4.27), di; > 0. Then by (¢4.20) and (e4.24),

!
ngj =1- Z €j + Z €;j =1, forall i =1,2,...,1 (using (e4.32))
j=1

jeAy JEA_
! !
ngj =1+ 6;' - ZQJ‘ =1+ e; — e;- =1, forall j €Ay (using (e 4.28))
i=1 i=1
l l
ngj =1+ 6;‘ + Zfij =1+ 69 — e;- =1, forall jeA_ (using (e4.31))
i=1 i=1

In other words, for any ¢, j,

l l
Yodi=) di=1.
i—1 =1

Let D" = (d};)ixi and let opr = > 5
pletely positive linear mapping in part (2) in 3.5. View each u, as a unitary matrix in
Ml(C : 1A) C MI(A), and define

toAdu, be induced trace preserving com-

Y ((Cz‘j)) = > toug(ci)ue

oEY)

for all (¢;;) € M;(A). Note that,
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I l
¢ (Z Nz’pi> => \ipi,
i=1 i=1
where (A}, A, ..., \]) is given by

( /17 /27 a/\;)T = D/(/Llnu% "'ap’l)T

It follows from (e 4.22), (e¢4.33) that for any ¢ = 1,2, ..., 1,

l l l
X=Xl et | Dy = D | < e max (g3 (3 )
j=1 j=1 - i=1

=€+ maX{|,uj|}( IRTEY |eijy) < e1 + 2e]|yl.

1<l . .
ZEA+ lEA,
Consequently,
lepr () — || < |l (y) — 2|l + |’ () — e (W) < 261 + 2€2]|y].

In general case, there is a unitary u € A such that uv*qu = p;, i = 1,2,...,1. Put
¢ = Aduoy and 2’ = u*zu. Then we can apply the above to obtain a trace preserving
completely positive contractive linear map ¢, : A — A such that

lepr (y) — [ < 2e1 + 2e2yl-

Let ¢ = Adu* o ¢/,,. Then ¢ is trace preserving completely positive contractive linear
map and

lv(y) —z|| < 2e1 +2elyl|. O

Corollary 4.5. Let F' be a finite dimensional C*-algebra. Let x,y € F be two normal
elements such that y = 2521 WieqQx, where q1,qo,...,qx € F are projections such that
Zgzl qr = 1p, and pr € C, k = 1,2,..., N. Suppose that there is a unital completely
positive linear map ¢ : F' — F such that p(y) ~., © and

IT(o(qr)) — 7(qr)| < sea, k=1,..,N, for all T € T(F), (e4.34)

where
s=inf{r(qx) : k=1,2,....,N;7 € T(F)}, (e4.35)
then there is a trace preserving unital completely positive map ¢ : F' — F such that

lv(y) — z|| < 2e|ly|| + 261 and z E2¢s ||yl +2¢1 conv(U(y)). (e4.36)
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Proof. Suppose F' = M, (C)P M,,(C)P--- P M,, (C). It is clear that the general
case can be reduced to the case that F = M, (C). Then we may write x = >, \;p;,
where p1,po,...,p, are mutually orthogonal rank one projections and \; € C, i =
1,2, ...,n. The corollary then follows immediately from 4.4. O

Lemma 4.6. Let A be a unital infinite dimensional simple C*-algebra with real rank zero
and stable rank one and let py,pa,...,p; and e be mutually orthogonal projections in A
with 22:1 pi+e=14. Let x = 1 +x9, where v1 = 23:1 A\jpj, and xo € eAe be normal
elements. Suppose that K > 1 is an integer such that (2K + 1)[e] < [p;] (1 <j <) and

{1, A2, ...y i} is m-dense in sp(x). Then, for any € > 0,

dist(x, conv(U(z1))) < % +e+n.

Proof. Choose a projection pg < p; such that [pg] = [e]. Note that, by 3.4 of [7], since
A has stable rank one, there exists a normal element 2/, € eAe such that sp(x}) C T,
where I' is an one-dimensional finite CW complex in the plane (sp(z}) is the spectrum
of zf, in eAe) and |z — x2|| < €/8. Then, sp(zh) = Xo U X3, where Xy C C is a
compact subset with covering dimension no more than 1 such that K;(C(Xy)) = {0}
and where X; is an one-dimensional finite CW complex in the plane. Note, by 4.2,
sp(zh) C {\ € C : dist(A, sp(x)) < ¢/8}. It follows from Lemma 3 of [19] that there exists
xo € N(poApo) with sp(zg) = X1 (spectrum in pgApg), such that, for any A ¢ sp(z5),

[Apo — o] = —[Ae — xb] in K;i(A).
Choose any mutually orthogonal projections {e; : i = 1,...,1} C eAe such that

2221 e; = e. Choose p; < p; such that [p}] = [e;], i =1,2,...,L.
Define zf = Zl Ajp; and @3 = Zézl Aj(pj — p}). We may write

j=1
T =I5+ T3 + To.
Note that, since A has stable rank one, one computes that
by~ 7 =[] — [}] = @K + De] - [e] = 2K[e] > 2K[p}l,  (e4.37)
j=1,2,.., 1. It follows from (3) of 3.6 and 3.1 that
T 4|z 2k cOnV(U(zo + 23 + T2)). (e4.38)

Since A(po + €) — (zo + 25) € Invo((po + €)A(po + €)) for all A ¢ sp(a5), by [19],

(o + %) — 24| < €/16, (e4.39)
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for some z/, € (po + e)A(po + €) with finite spectrum sp(z}) C sp(ah) € {A € C :
dist(A,sp(z)) < €/8} (as normal elements in (pg + €)A(po + €)). Therefore, there is a
normal element x4, = 23:1 Ajg;j (recall that {A1, A2, ..., A} is -dense in sp(x)) such that

|(xo +x2) — 24| < (/16 +€/8) 4+ (¢/8+ 1) < €/2+n, (e4.40)

where {q1,q2, ..., ¢} is a set of mutually orthogonal projections in (pg + €)A(po + €).
By (e4.37),

Klqi] < Klpo + €] = 2K[e] < [p; — pi],i = 1,...,1.
Thus, by part (3) of 3.6 (note z1 = % + z3),

Tg + T3 €z conv(U(zy)). (e4.41)

K

By (e4.38), (¢4.40) and (e4.41), we conclude that

x Es conv(U(z1)). O

I

Theorem 4.7. Let A be a unital separable simple C*-algebra with tracial rank zero. Then
for any normal elements z,y € A, x € conv(U(y)) if and only if there exists a sequence
of unital completely positive linear maps ¥, : A — A such that

h_)m |Yn(y) —z|| =0 and (e4.42)
n11—>II<;lo sup{|7(¢Yn(a)) —7(a)| : T € T(A)} =0 for all a € A. (e4.43)

Proof. Let z,y € N(A) and let {¢,,} : A — A be a sequence of unital completely positive
contractive linear maps which satisfies (¢ 4.42) and (e4.43).

Without loss of generality, we may assume that ||z, ||y| < 1. By replacing y by
y— Al for some A € sp(y) and = by  — Al 4, without loss of generality, we may assume
that 0 € sp(y).

Fix € > 0. Put €g = ¢/2!* and an integer K such that 0 < 28/K < €.

It follows from 4.3 that there exists a finite dimensional C*-subalgebra B of A with
po = 1p and there are xg,y0 € N (B), z{,y, € N((1 — po)A(1 — pp)) such

T R, To + 3767 Y ey Yo+ y(/)7 (e 4.44)

where

h N
To =Y Aibios Yo=Y trdro;
i=1 k=1
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where {A1,...,\n} and {p1,...,un} are distinct and eg-dense in sp(z) and sp(y) respec-
tively. Moreover, we may assume p; = 0, and p;o,qro € B are projections satisfying

condition:
h N
> pio=Y_ ko =po and (e4.45)
i=1 k=1
(2K +1)[1 — po] < [pio], i=1,2,...,h and (e4.46)
2K + 1)[1 —po] < [gro],k=1,2,...,N. (e4.47)
Put gogo =1 — pg and
so = inf{7(gro) : T € T(A), k=0,1,...,N} > 0. (€4.48)

It follows from (2) of 3.6 and the fact 1/((2K + 1) + 1) < ¢ that
Yo €, conv(U (yo + i), and yo Ez¢, conv(U(y)). (e4.49)

Then there is a trace preserving unital completely positive contractive linear map 1 :
A — A such that

lo1(y) — yoll < 2eo. (e4.50)

It follows from 4.6 that there is a second trace preserving unital completely positive
contractive linear map o : A — A such that

8
le2(yo) —yll < % + €0 + €0 < 3eo. (e4.51)

Put By = C(1 — po) & B. Let Pp, be the set of all non-zero projections in By. There
are only finitely many unitary equivalence classes of projections in Pp,. Put

soo = inf{7(e) : 7 € T(A) and e € Pp,} > 0.
Put
€1 = (800/64NK)60.

Note that the unit ball of By is compact.
Choose large ng so that

[thny © p2(y0) — z|| < 4€o and (e4.52)

and for all b € By,
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sup{|7(¢n, © @2(b)) — T(p2())| : 7 € T(A)} < (e1/4)[|b]l. (€4.53)
Put p3 = ¢, © p2. Since sy is trace preserving, by (e4.53),
sup{|7(¢3(b)) = 7(b)| : T € T(A)} < (e1/4)||b]| for all b € By. (e4.54)
We also have

le3(y0) — || < 4eo (e 4.55)

There are x;, yir, € A such that (see 2.9 of [6] and Lemma 3.8 above)

m(k) m(k)
st(%o) =) ahaa ‘ < €1, H > winzl, — QkoH < €1, (e4.56)
i=1 i=1
m(k)’ m(k)’
H > ynvik — QkOH <e and D Yyl > s la, (e4.57)
i=1 i=1

k=0,1,2,....N.

Note that we may assume, without loss of generality, (by splitting x;x, y;x into more
terms), that ||z, [|yx]| <1 for all i and k.

Put

F1 = {14,%0,P0, P10, --s Ph0; 900, 410 ---» AN0 } U Fo U {93(y0)},
where

Fo=Azir,xj : 1 <i<m(k),0 <k < N}U{yij,ys : 1 <i<m(k),0<k <N}
Then put My = max{m(k),m(k) : k=0,1,..., N}.

Let €2 = €1/(2'%(Moo + 1)NK). Choose a finite subset Fp, of the unit ball of By
which is e5/4-dense. Since By is projective, choose dy > 0 and a finite subset Gp, such
that, for any unital Gp,-dp-multiplicative completely positive contractive linear map L'
from By to a unital C*-algebra A’, there exists a unital homomorphism h' : By — A’
such that

|h(b) — L' (b)|| < e2/4 for all b € Fpg,.
Consequently,

1B/ (6) — L'(D)]| < (e2/2)||b]| for all b € Bo.

We may assume that Gp, contains a generating set of By.
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Put

Fo=F1UGp, U{z,yo}.

Choose a large finite subset F3 of A such that for any non-zero element z € F5, there
are a,;, b,; € F3 such that

r(z)
Zazizbzi =14. (e4.58)
i=1

Put M7 = 2max{r(z) max{|la| + [|bzi] : 1 < i < r(2)} : z € Fo \ {0}}. Let e5 =
min{GQ/Ml,éo/Ml}.

By the virtue of 4.3, there is a finite dimensional C*-subalgebra B; with 15, = p such
that

lpz — zp|| < €3 for all z € Fs, (e4.59)
dist(pzp, B1) < €3 for all z € F3 and (e4.60)
sup{7(1 —p): 7 € T(A)} < es, (e4.61)

as well as Z1,y1 € N(B1) Z2,y2 € N((1 — p)A(1 — p)), projections ¢;,p; € By and
q; € (1 —p)A(1 — p) such that

pTP Rey T1, (1 —p)a(l — p) e,y To, (e4.62)
PYoP ey Y1, (1 —Dp)yo(l —p) ~ey v, (e4.63)
N’ N N
Ty = Z)\;pja = ZM% Y2 = qug (e4.64)
j=1 i=1 i=1
Gio Res G+ @y 1=0,1,.., N (e4.65)
N N’ N
o+ = pi=p Y di=1-p, (e 4.66)
i=1 i=1 i=1
(2K +1)[1 —p] <[¢] and (2K +1)[1 —p] < [pj] (e4.67)
forall 0 <i< N, 1<j <N, (e4.68)

where {\], A5, ..., Ny, } is e3-dense in sp(x). We may write

By = Mp1)(C) P Mr)(C)EP - - D Mr,)(C)

and let 7, : By — Mgy (C) be the quotient map, r = 1,2, ..., ko.
Moreover, by the choice of d§y, we may assume that there exists a homomorphism
h() : BO — Bl such that
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|ho(b) — pbp|| < (e2/2)]|b]| < e2]b]| for all b€ By \ {0}. (e4.69)

Moreover, we may assume ho(lp,) = p = 1p,. Also, by (e4.58), the choice of Gp, and
€3, we have

r(z

)
ho(azi)ho(z)ho(bzi) %4M153 131. (8470)
i=1

Since 4Mie3 < 1/2, ho(2) # 0 for all z € G. Thus hg is unital and injective.
Furthermore, we may assume that y1 = ho(yo), g = ho(qko), k =1,2,...,N.
Define L = hg o 3 0 (ho|py(B,)) - Note that

L(qx) = ho © ps3(hg * (qr)) = ho © 3(qro), (e4.71)
L(y1) = ho o @3(hg ' (y1)) = ho o @3(yo), and (e4.72)
L(p) = hows(hg ' (p)) = ho o s(1p,) = p. (e4.73)

Since both B; and ho(By) are finite dimensional, there is a conditional expectation
E : By — ho(By). By replacing L by L o E, then L is extended to a unital completely
positive linear map By — Bj.

We have, by (¢4.69), (e4.55) and (e4.62),

IL(y1) — 21| < [|ho(w3(v0)) — pes(yo)pll + lpes(yo)p — pap|| (e4.74)
+|pxp — Z1|| < €2 + 4ep + €3< €/16. (e4.75)

Put & = z1 + Z2. By (e4.67), and applying 4.6,

T € sja conv(U(z1)). (e4.76)

& Testes

Therefore (by (e4.59) and (e4.62)), with ny = 8%“ + 2e3 + de3 < €/4,
x €y, conv(U(z1)). (e4.77)
For each z € F3, by (e4.60), there is L(z) € By such that
lpzp — L(z)]| < €3 and ||pz*p — L(2)*|| < es. (e4.78)

By (e4.71), (¢4.69), (¢4.56), (¢4.57) and (¢4.78),

m(k)

L(gk) = ho © 93(qk0) Res PP3(qk0)P Fe, Y, PTjTikD (e4.79)
=1

N (k)es Z PTDTikD Ram(k)es Z L(wik)" L(zik)- (e4.80)

=1 i=1
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Similarly
m(k) m(k)
I Res DI0P Rey Y PTikTD Rsm(iyes, » L(win) L{zar)*, (e4.81)
=1 =1
m(k)’ m(k)’
PAk0P e, Y DYRYikD Rsm(kyes », L(yik)"L(yir) and (€4.82)
=1 i=1
m(k)’ m(k)’
> L) LWir)* Rsmyes D PYIKYIRD = SoD- (e4.83)
=1 =1
Note that

10m(l€)€3 -+ 10m(l€)/€3 + e+ 361 < 80/8.
By (e4.80), (¢4.81), (¢4.82) and (e¢4.83), we have

t(L(qx)) > so/2 forall t € T(B1),k=0,1,....,N, (e4.84)
[t(L(qr)) — t(qx)| < (so/4)€o, forall t € T(By),k=0,1,....,N. (e4.85)

Let Q1 =q1 +q0,Qi = q;,t =2,3,..., N. Then, for k =1,2,..., N,

t(L(Qr)) > so/2 for all t € T(By), (€4.86)

[t(L(Qk)) — t(Qr)| < (s0/2)e0 < (s0/2)(e/16) for all t € T(By).  (e4.87)
Note (¢4.75), (¢4.86) and (e4.87), by the choice sg, applying 4.5 to L, Z1,y1,€/16,€/16
(in place of ¢, x,y, €1, €2, respectively), we obtain a trace preserving completely positive
contractive linear map ® : By — Bj such that

|P(y1) — z1|| < 2(€/16) + 2(e/16) and zq €e/a conv(U(y1))- (e4.88)
By (e4.67),

K[1—-p < 2K+1)[1—-p] <[g] <[Qk],k=1,2,...,N.

Since puq = 0, applying part (2) of 3.6,

Y1 En, conv(U(y1 +y2)), where 7y = Iﬂyj—nl < €. (€4.89)

By (€4.59), (¢4.63), (¢4.64), (Yo Raes Y1 + Y2), and (e4.49)

Y1 Enytdes conv(U(yo)). (€4.90)
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It follows (by also (e4.50)) that

Y1 Enatdes+2¢0 COHV(U(y)). (e 4'91)

Since 12 + 4e3 + 2¢¢ < €/2, it follows from (e4.91), (e4.88) and (e4.77), that
x € conv(U(y)). O

Corollary 4.8. Let A be a unital separable simple C*-algebra with tracial rank zero and
let x, y € A be two normal elements. Then the following are equivalent:

(1) = € conv(U(y));

(2) there exists a sequence of unital completely positive maps 1, : A — A such that
Jim (|4 (y) — || =0 and
T(Yn(a)) = 1(a) for all a € A and for all T € T(A); and

(3) there exists a sequence of unital completely positive maps 1, : A — A such that

ILm |tYn(y) — || =0 and (e4.92)

nli_)ng0 sup{|7(¢Yn(a)) —7(a)| : T € T(A)} =0 for all a € A. (e4.93)

Proof. We have established that (1) and (3) are equivalent. It is also clear that (2)
implies (3), and (1) implies (2) follows from 3.7. O

5. Normal elements with small boundaries

The following follows from [18].

Lemma 5.1 (/18]). Let X be a compact subset of the plane, € > 0 and let F C C(X) be
a finite subset. There is § > 0 and a finite subset G C C(X) satisfying the following: If
¢ : C(X) — F is a G-0-multiplicative completely positive contractive linear map, where F
is a finite dimensional C*-algebra, then there exists unital homomorphism h : C(X) — F
such that

le(f) = h(F)|l <€ forall feF.

Definition 5.2. Let X be a compact metric space, let A be a C*-algebra with QT'(A) # 0,
and let T C QT'(A) be a subset. Suppose that ¢ : C(X) — A is a unital homomorphism.
We shall say ¢ has the (SB) property with respect to T, if, for any 6 > 0, there is a
finite open cover {O1, O, ..., Oy, } of X with max{diam(O;) :i =1,...,m} < ¢ such that
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1-(8(0;5)) = ur(0;\ Oj) =0, for all 7 € T, i = 1,2,...,m, where u, is the probability
Borel measure induced by the state 7o .
If T = QT(A), we shall simplify say that ¢ has the (SB) property.

Note that every quasi-trace on a commutative C*-algebra is a trace.
The following is easily proved (see the proof of Lemma 3 of [16]).

Proposition 5.3. Let A be a unital simple C*-algebra with T(A) # 0, and let X be a
compact metric space. Suppose that ¢ : C(X) — A is a unital homomorphism with the
(SB) property. Then the following holds: For any 61 > 0 and n > 0, there exists d3 > 0
with 6o < 61 and there exists a compact subset K of X such that

(i) X \ K is a finite disjoint union of open subsets {O; : 1 < j < m} with
max{diam(O ):1<j<m}<d,

(i) Y/ nY/ =0, if i # j, where Y] = {t € X : dist(t, O;)

(iil) UL, Y; D X, Y ={te X: dlst(t0)<62} j=12,.

(iv) pr(K) < min{n,inf{p,(0;) : 7 € T(A), 1 < j <

< 6,/16}, j=1,2,.

}

m}}/16(m+ 1) for all T €
T(A).

Proposition 5.4. In 5.3, if we replace Y; by open subsets Y; \Uﬁgl ,i=1,2,...,m, then,
we have

(iil)" UL, Y; D X, Y CYic{t € X : dist(t,0;) < d2},i = 1,2,...,m, and

(v) YinY] =0, when i # j.

Proof. Set Y; = Y; \UjziY], i = 1,2,...,m. Then Y; is open and Y/ C Y; (recall that
Y/nY/ =10,i#j), and Y; NY,; = (), whenever i # j. To see um,Y; = X, let t € X.
If t € Y] for some j, then t € Y; C U, Y;. Otherwise, ¢ ¢ UJL, Y. However, t € Y; for
some i. Therefore t € V; \ UL, Y] C Y; \ Uj Y] = Y;. Replacing Y; by Y; in 5.3, we
obtain (iii)’, (v). O

Lemma 5.5 (see the proof of Lemma 2 of [16] and that of Lemma 4.8 of [17]). Let A be a
unital simple C*-algebra T(A) # 0 such that its extremal points O.(T(A)) has countably
many points. Suppose that X is a compact metric space and ¢ : C(X) — A is a unital
homomorphism. Then ¢ has the (SB) property.

Proof. Let § > 0. For each £ € X, consider S¢, = {t € X : dist(¢,£) = r}, where
0 <r < d/2. Since 0.(T(A)) is countable, there is 0 < r¢ < §/2 such that

pir(Sere) = 0 for all 7 € 9.(T(A)).
It follows that

pr(Sere) = 0 for all 7€ T(A).
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Let O¢ = {t € X : dist(§,t) < r¢}. Then UgexO¢ = X. There are &1, o, ..., & € X such
that

Note that (-(0(O¢,)) =0,i=1,2,...,m. O

Let A be a unital C*-algebra and let x, y € A be two normal elements with X =
sp(z) and Y = sp(y). For the rest of this paper, we will denote by j, : C(X) — A
(jy : C(Y) = A) the embedding defined by j.(f) = f(z) (5,(9) = g(y)) for all f € C(X)
(for all g € C(Y')). Moreover z, € C(X) and z, € C(Y) is the function defined by the
identity map on X (andY ). In particular, j,(2,) = = and j,(2,) = y.

Lemma 5.6. Let A be a unital simple C*-algebra with tracial rank zero, and let x € A
be a normal element with sp(x) = X. Suppose that the induced monomorphism j, :
C(X) — A has the (SB) property. Then, for any € > 0, any o > 0, and any finite subset
F C C(X), there exists a finite subset G C C(X) and n > 0 satisfying the following
condition: If ¢ : C(X) — F is a unital homomorphism, where F is a finite dimensional
C*-subalgebra of A such that

sup{[7(¢(9)) = 7(J=(9))| : T € T(A)} <n for all g €, (e5.1)

then there exists a unital homomorphism ¢, : C(X) — F and a unital completely positive
linear map L : F — A such that L o p1(C(X)) C j.(C(X))

le(f) = pu(NIl <€ for all feF,
|ILowi(f)—ju(f)|| <€ for all f€F and
sup{|T o L(a) — 7(a)| : 7 € T(A)} < ol|a|| for all a € F.

Proof. Choose §; > 0 such that
|f(t) — f(t")| < min{e/64,0/4} for all f € F, (e5.2)

if dist(¢,t') < 20;. Choose 19 = min{e/64,0/4}. Suppose that j, : C(X) — A is a unital
homomorphism with the (SB) property. Without loss of generality, we may assume that
F is in the unit ball of C(X).

There is 02 > 0 with d2 < d§1/4 and there are a compact subset K C X, open subsets
01,03, ...,0nN, Y, Y], ... Y}, and Y7,Ys, ..., Yy of X satisfy the condition (i), (ii), (iv)
in 5.3 and (iii)’, (v) in 5.4. Let K = X \UY;0; be as in 5.3 associated with 7o (in place
of ) and j, (in place of ).

Let fi, fa, ..., fn be a partition of unity with compact support supp(f;) C Yj, j =
1,2,..,N. Let gk € C(X) be a function such that gx () = 0 if dist(t,uj-vlej) < 69/64



S. Hu, H. Lin / Journal of Functional Analysis 278 (2020) 108306 33

and gk (t) = 1 if dist(t,U;2,0;) > 62/16 and 0 < gk () < 1. Then supp(g9x) C K. By

(iv),
T(J2 (9K )) < min{no,inf{u,(0;) : 7€ T(A), 1 <j < N}}/16(N + 1) (e5.3)

for all 7 € T'(A).
Put & € 04, 7 =1,2,..., N. Without loss of generality, we may assume that

N
| Zf(é’])fj — f|l < min{e/16,0/4} for all f € F. (e5.4)
i=1

Define h; € C(X)4 such that 0 < h; < 1, hjlo, = 1 and hj(redt) = 0 if t ¢ Y],
j: 1,2,...,N. Let g ZFU{fj,hj 1 Sj < N}U{g[{}

so = inf{7(jz(h;)) : 7€ T(A),1 <j< N} >0. (e5.5)

Let ¢ : C(X) — F be a unital homomorphism for some finite dimensional C*-subalgebra
F of A which satisfies (e5.1) for n = min{n/8(N + 1), so/2}.

Write o(f) = > i_, f(te)py for all f € C(X), where p1,po,...,p, are mutually or-
thogonal projections and t1, to, ..., t, are distinct points. By the choice of s¢ and 79, and
we have that {t1,t,....t,} NY] # 0, j = 1,2,..., N. To see this, we note that for all
T€T(A)and j=1,2,....N,

7(p(hy)) = 7(ja(hs)) =1 = s0/2

But p(hj) = >, ey hi(ti)pr. Therefore {t1,ta,...t,} NY] # 0 for all j € {1,2,..., N}.
Note that ’
N N
e FE ) =) F&)elf). (e5.6)

i=1 =1

Note also that, by (e5.1) and (iv) of 5.3,

(¢(g9r)) <1 +n0/16(N +1) < no/8(N +1) for all 7€ T(A). (e5.7)

Put K; = {t € X : dist(z,0,)>d2/16}NK C K, j =1,2,...,N. It follows that

Z T(pi) < 1(p(9K)) < no/8(N 4+ 1) for all 7€ T(A). (e5.8)

tiEKj

N-1
Let g1 =324 ey, Pjr 2 = (Lr—a1) 2oy ey, Pises aN = (1=22301 46) (224 ey, Pi)- For any

i,let S; ={k:pr < ¢}, then Sy USs U--- LSy ={1,2,...,n}. Note that, if j € S;, then
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t; € Y;, and, by (v) of 5.4, if t; € Y/, then j € S;. Moreover, ¢; # 0 for alli € {1,2,..., N}
and ¢;q; = 0 if i # j and Zfil ¢ =1p.

We may also write ¢; = ;g Pk-

Since 320, f;(t) = Lfor all t € X, by (v) of 5.4, f;(t;) = L if t; € Y/. We also have

o(fj) = Z fiti)pi = ( Z fiti)pi) + ( Z fi(ti)pi)

t; €Y t; €Y/ t;€Y;NK;
It follows from (e 5.7) that

17(q5) = T(e(fi))| < 7(p(gx)) < no/8(N +1) for all 7€ T(A). (€5.9)

By the assumption of (e5.1) for f;,
I7(q5) = 7(=(f5))] (€5.10)
< |7(g5) — (eS| + 7(0(f5)) = 7(a(f5))] < no/4(N +1). (e5.11)

Let C' be the C*-subalgebra of F' generated by q1,q2, ..., gn. Write

F =M.y D Moo D+ D M)

and 7; : F' — M, ;) is the quotient map. Define C; = 7;(C), j =1,2,...,m.

Put ¢;; = m;(¢;) and pi ; = 7;(pr) which we also view them as projections in F' as
well as projections in A. Put g; = f; + (no/4N) -1, i = 1,2, ..., N. Then, for fixed i, by
(e5.10), for all T € T'(A),

7(j2(9:)) = m0/2N <Y (i) = 7(q:) < 7 (G (9:))-

Jj=1

Thus, by 3.8 we obtain a;; € Ay such that (again, viewing ¢;; as projection in A),

aij < Ju(9i), Zaij = Ju(9:) and 7(ai;) =7(gij), 1<j<m—1, (e5.12)

T(aim) = 7(J2(gi)) — Z 7(aij) and (€5.13)
IT(aim) = 7(¢im)|= |7(¢:) — 7(Jz(9:))| < mo/2N, 1<i< N (e5.14)

for all 7 € T'(A).
Define ¢1 : C(X) — C C F by p1(f) = Zivzl f(&)q; for all f € C(X). Then, by
(e5.2),
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lo1(f) — @o(f)|| < min{e/16,0/4} for all f € F.

N N m
L) O i) = ( ZAU% for \;; € C.

i=1 j=1 i=1 j=1

Then, by (¢5.12) and (e5.14), for all ¢ € C,

[T o Li(c) —7(c)| = !ZZ)\U(T(%) = 7(qs5))|
= yZAimT(aim — gim)| < (no/2)max{|Xim| : i =1,2,..., N}

< (0/2)||c| forall 7€ T(A).

We also note that
N N
O M) = 3 Mdalg) € Go(C(X)).
i=1 i=1

In other words, L; maps C into j,(C(X)). Moreover, by (¢5.4),

L1 o @1(f) — d(F)ll = HLl(Z f&)ai) — 3= ()l
N N )
< Zf(ﬁi)jx(gi) - Zf(éz)]x(fz)”

N

=1

N
<D £ (o/AN) + €/16 < €/4 for all f € F.

i=1

35

(e5.15)

(€5.16)

(e5.17)

(5.18)

(5.19)

(€5.20)

(e5.21)

(e5.22)

(5.23)

Since M, ;) and C; are von-Neumann algebras, there exists a conditional expectation

E; : M, — C; such that

t(Ej(a)) = t(a) for all a € M,(;), where t € T(M,;y), j=1,2,...m

Consequently,

7(Ej(a)) = 7(a) for all a € M, ;) and 7 € T'(A).

(e5.24)
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Define E : F — @~ , C; by E = ®"E; o m;. Note E? = E. Hence we also have, by
(e5.15),

[1Eo@(f) =Nl = [Eoe(f) —Eopi(f)l <e/4 for all feF. (e5.25)

Put L =Li0E : F — A. Then L(p1(C(X))) C j=((C(X)). Moreover, for any f € C(X),
by (e5.25) and (e 5.23),

1L oo(f) = ja ()]l (e5.26)
S[LaeoEop(f) = LicEopi(f)l+[LicEowi(f) —i=(l  (5.27)
<e/d+||Liopi(f) — ju(f)| <€/4+¢/4 forall feF. (5.28)

Furthermore, by (e5.24) and (e5.17),

7o L(a) = 7(a)| = |7 o L(a) = 7(E(a))| = [7(L1(E(a)) — 7(E(a))]
<(0/2)||E(a)| < (0/2)|a] forall a € F.

The lemma follows from the above inequality, (e5.15) and (e5.28). O

Lemma 5.7. Let A be a unital simple C*-algebra with tracial rank zero and with a unique
tracial state. Suppose that x € A is a normal element with sp(x) = X. Then, for any
e >0, any o > 0, and any finite subset F C C(X), there exists a finite subset G C C(X)
and n > 0 satisfying the following condition: If ¢ : C(X) — F is a unital homomorphism,
where F' is a finite dimensional C*-subalgebra of A such that

IT(0(9)) — 7(J=(9))| <n for all g € G, (e5.29)

then there exists a unital completely positive contractive linear map L : F — j,.(C(X))
such that

ILow(f)—ju(f)|| <€ for all f €F and
|70 L(a) — 7(a)| < o||a]| for all a € F,

Proof. By the assumption and 5.5, j, has the (SB) property. The proof is a simplification
of that of 5.6. We keep all lines of the proof of 5.6 until C is defined. Let 7 be the only
tracial state of A. Then since both F and C' are von Neumann algebras, there is a
conditional expectation E : F' — C such that

T7(E(a)) = 7(a) for all a € F. (5.30)

Define Ly : C' — j,(C(X)) by L1(¢;) = j=(fi), ¢ =1,2,...,N. This implies, by (e5.17),
that
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|7(L1(c)) — 7(c)| < (0/4)||c|| for all ¢ € C. (e5.31)

Let ¢1 be as the same as defined in the proof of 5.6. Note that ¢;(C(X)) = C since
¢ <€C,i=1,2,....,N. Define L = L1 o E. Then

N

IL(e1(f)) = Je (NI = ||L(_Z f(&)ai = () (€5.32)
) =

= Zf(&)jx(fi) — jo(f)| < min{e/16,0/4} for all f € F. (e5.33)

It follows that, as [l¢1(f) — ¢(f)|| < min{e/16,0/4} for all f € F (by (¢5.15)),

IL(e(f)) = 3= (O < NIL(e(f)) = L{er ()]l (€5.34)
+ |L(p1(f) — 7(f))|| < min{e/8,0/2} for all f € F. (5.35)

We also have, by (e5.31),

|70 L(a) — 7(a)| = |t o Ly o E(a) — 7(a)|
< [7(L1(E(a))) — 7(E(a)| + |7(E(a)) — 7(a)]
< (¢/2)||E(a)|]| < (c/2)|a] forall a € F. O

Theorem 5.8. Let A be a unital separable simple C*-algebra with tracial rank zero. Sup-
pose that x,y € A are two normal elements with sp(x) = X and sp(y) = Y. Suppose
that j, has the (SB) property and suppose that there exists a sequence of unital positive
linear maps ®,, : C(X) — C(Y) such that

lim ||®,(2;) — 2y|| =0 and (€5.36)
n— o0

Tim_ sup{[r(®,(F)(u)) ~ 7(f(@))] : 7 € T(A)} =0 for all f € C(X). (e5.37)
Then
y € conv(U(x)).

Proof. Without loss of generality, we may assume that |z, ||y| < 1. To show y €
conv(U(x)), without loss of generality, we may assume that 0 € sp(z), as in the beginning
of the proof of 4.7.

Let € > 0 and 0 > 0. Let F = {1,2,} C C(X) be a finite subset.

Choose dy > 0 such that

lf(t) — f(t")| <e/64 forall feF, if |t—t|< do. (e5.38)
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Choose dpp = min{dy,€/2'°}. One may write
X - Uz:1017

where O; is an open subset of X with diameter no more than dgo/3 and O; N O; = 0 if
it # j. Choose &; € O; and d; > 0 with

O(fz,dz) = {t e X: diSt(gi,t) < dl} CO;,i=1,2,...,m.

Since 0 € X, as we assumed, without loss of generality, we may also assume that £&; = 0.
Since A is a unital simple C*-algebra, for each £ € X,

inf{u,(0(&,d;/2)) : 7€ T(A)} >0, (€5.39)
where p.- is the Borel probability measure induced by 7 o j,. Then
so = inf{inf{u,(0(&;,d;/2)) : 7€ T(A)}: 1 <i < N} > 0. (e5.40)

For each i € {1,2,..., N}, choose g; € C(X) with 0 < g; < 1 such that ¢;(t) = 1 if
t € O(&,d;/2) and g;(t) = 0if t ¢ O;, i = 1,2,...,N. Note that g;g; = 0 if i # j. Put
Fi1=FU{g :1<i< N} Note {&,&, ..., N} 1S dgo-dense in X.

Choose an integer K > 0 such that 12-28/K < e. Let

€1 = min{e/2'%(N +1),0/8(K + 1)(N + 1), s0¢/2'°(K + 1)(N + 1)}.  (e5.41)

Let n > 0 and finite subset set G C C(X) be given by 5.6 for €1 /4 (in place of €), for
€1/2 (in place of o), and for F; (in place of F). Without loss of generality, we may also
assume that ||g|| < 1,if g € G.

Choose a finite subset Gx C C(X) (in place of G), 6; > 0 (in place of §), F; (in place
of G) be given by 5.1 and e2 = min{n/2,¢;/4} (in place of €) as well as X.

Put €3 = min{eq, §;/2}.

Fix a finite subset F4 C A. Let us assume that [ja|| < 1 if a € F4 and

Fa D jz(G) U (Gx) U {y}.

Since A has tracial rank zero, there is a finite dimensional C*-subalgebra F} C A
with 1p, = p and an F4-ez-multiplicative completely positive contractive linear map
1 : A — Fi such that

llap — pa|| < €3 for all a € Fa, (5.42)
la—((1 —p)a(l —p)®Y(a))| < e for all a € Fyu, (5.43)
7(1 —p) < €3/16 for all 7 € T(A). (e5.44)
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By applying 5.1, there is a unital homomorphism ¢’ : C'(X) — F; such that
¢ (9) — ¥ (jz(9))|| < min{n/2,e1/4} forall g €g. (e5.45)
Moreover, by (e5.43) and (e5.45),

sup{|T o ¢’ (9) — 7(j=(9))| : T € T(A)} < n for all g € G and (e5.46)
7(©'(g:)) > 63s0/64 for all 7€ T(A), i =1,2,...,N. (€5.47)

It follows from 5.6 that there exists a unital completely positive contractive linear map
Ly : F; — A and a unital homomorphism ¢; : C(X) — F} such that

Li(p1(C(X))) C 5(C(X)), (€5.48)
ler(f) = ' (H)l < er/4 and (€5.49)
L1 o @' (f) — Ju(f)|| < €1/4 forall feG, and (5.50)
|70 Li(c) —7(c)| < (e1/2)]¢c| forall 7€ T(A) and c € Fy. (e5.51)
By (e5.47) and (e5.49), we have
T(¢1(g:)) > 15s0/16 for all 7 € T(A). (€5.52)

Write p1(f) = Zzl f(ti)p; for all f € C(X), where t; € X and pi1,pa,...,pms are
mutually orthogonal projections in F;. We may also write

N
e1(f) = Z( Z f(t)pi) + ( Z f(ti)p:) (e5.53)

for all f € C(X). Note that

Z pi > o1(gx), k=1,2,...,N. (e5.54)
t; €0

N-1
Define ¢; = Ztieél Pi, @2 = (1 - ql)(Zti€62 pi)v"'aQN = (1 - Zi:1 qi)(ZtigéN pi)'
Then Zfil ¢; = p, and

%> Y pi=eilgr), k=1,2,..,N. (5.55)
t; €0

Define the homomorphism @9 : C(X) — F; by

N

p2(f) =Y f(&)ai for all feC(X). (¢5.56)

=1



40 S. Hu, H. Lin / Journal of Functional Analysis 278 (2020) 108306

We have (using (e 5.38))
l2(f) = @1 (f)Il < /64 for all f e F, (€5.57)
and (using (e5.55) and (e5.52))
7(qi) > 1550/16 for all 7 € T(A), i =1,2,...,N. (5.58)
Note that w2 (C(X)) C ¢1(C(X)). Therefore Li(p2(C(X))) C j.(C(X)), in particular,
qr € v2(C(X)) and L1(gk) € j.(C(X)), k=1,2,...,N. (e5.59)

By (e5.43), (¢5.45), (¢5.49), and (e5.57),

T R, (1= p)z(l—p) +9(z) ~e ja (1= p)z(l = p) + ¢'(2)

Reyja (1= p)z(l —p) + ¢1(22) Resoa (1= p)a(l —p) + p2(za).
Note €3 + €1/4 + €1/4 + €/64 < €/2. By (e5.55), (e5.52), and (e5.44), for any 7 €
T(A),7(q;) > 1550/16 > K7(1 — p). Applying the comparison property, we have K[1 —

p] < [qi] for all i.
Since @o(z;) = vazl &iq; with & = 0, applying (2) of 3.6,

©2(22) €1/(K+1)+e/2 cOnV(U(T)). (e5.60)

Suppose that ®(= ®,,,) : C(X) — C(Y) (for some large ng) is a unital positive linear
map such that

|®(22) — 2y]| < €1/4 and (e5.61)
sup{|7(®(9)(y)) — 7(J=(9))| : T € T(A)} < e1/4 (€5.62)

forall g € GU ;1 (L1(02(GUGX)) U {4, 1 (L1(g;)) : 1 <i < N}, where j, ! is the inverse

P2
of jo : C(X) = j2(C(X)).
Note that, by (e5.62) and (e5.51), for all 7 € T(A),

(@35 (L1(a)))(v) — 7(a)] (5.63)
< |T(<I’(j;1(L1(Qi)))(y)) = 7(L1(gi)| + [7(L1(q:)) — 7(qi)] (e5.64)
<€1/4—|—61/2<61. (6565)

Then, by (¢5.58),

T(2(j; "

T

o L1(q:))(y)) > 3sp/4 forall 1€ T(A),i=1,2,...,N. (€5.66)
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Put Fy = (571 (L1(9))) U{®(j; ' (L1(@:))) : 1 < i < N}U{1,2,}. Then Fy C C(Y).

Let Gy € C(Y) and dy > 0 be given by 5.1 for Fy (in place of F) and €3 (in place
of €) as well as Y (in place of X). Let ¢4 = min{es, dy /2} and Fy = C(1 —p) & F;.

Choose a large finite subset F/, C A such that j,(Fy)U {p2(2:)} C F). We may
also assume that F’, contains an es-dense subset of the unit ball of Fj. By choosing
even smaller €4 and larger ', since Fy is semiprojective, we may assume that there is
a homomorphism A’ from Fj such that

1M (@) — L' ()| < es]lal| for all a € Fy\{0} and (€5.67)

for any F’j-e4-multiplicative completely positive contractive linear map L’ from Fy to
any C'*-algebra.

Since A has tracial rank zero, by applying 4.3, there are finite dimensional
C*-subalgebra Fy with e = 1p, and a F)-e¢4-multiplicative completely positive con-
tractive linear map v : A — F5 such that

lae — ea|| < €4 for all a € F), (€5.68)
la—((1—e)a(l —e) @ i(a))]| < &4 for all a € F), (€5.69)
!
YRy Yo+ Y1, Yo = Z Aie; and y1 € N((1—e)A(1 — e)), (e5.70)
i=1
T(1—e€) <eq/16 ( and 7(e) > (1 —€4/16)) for all 7 € T'(A) (e5.71)
and 2K +1)[1 —e] <[e], i=1,2,...,L (€5.72)

We also assume that {1, Ao, ..., \;} is €4-dense in Y. By (e5.65) and (e5.66), as in the
proof of 4.7, by choosing sufficiently large F’;, we may assume that

[t(1(® oyt o Li(qr))) — t(¥1(qr))| < 2¢1 for all t € T(Fy) and  (e5.73)
t(Y1(qr)) > so/2 forall t € T(Fy), 1 <k <N. (e5.74)

Moreover
t(1(1 —e)) < e for all t € T(Fy). (5.75)
We may further assume that ;(b) # 0 for any b in the e3-dense subset of the unit ball
of Fo.
By 5.1, there is a unital homomorphism hy : C(Y) — F5 such that

by (b) — 1 (3, (0)]| < es for all be Fy. (e5.76)

Note, that hy (zy) Re, ¥1(2y) e, €ye Re, Yo,
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|hy (2y) — yoll < €1+ €3+ €4 < 3e3/2. (e5.77)

Moreover, there is a homomorphism hg : Fy — F5 such that

lhr(a) —1(a)||<es||al| for all a € Fy\{0}. (e5.78)
In particular,

17 (p2(z2)) — P1(@2(22))]| < €5, (€5.79)

hr(1R,) = ¥1(1R) = 1R, =, (e5.80)

pa(22) ae; (1= p)p2(22)(1 = p) + hr(p2(22)). (e5.81)

Since 11 (b) # 0 for those b in an e3-dense subset of the unit ball of Fy, hp is injective
and unital. Define Lp : hp(p2(C(X))) = Fo by Lp = hy o®ojz ' o Ly o (hp|p,(m)) '
L is a unital completely positive contractive linear map. We note that

LF(I’LF(qk)) = hy @) (I)Oj;l ¢) Ll(gk) and (e 582)
LF(hF((‘02(Zm)) = hyO(I)ij_IOLl((,OQ(Zx)). (6583)

It follows from (e5.76), (¢5.73) and (e 5.78) that, for all t € T'(Fy),

(t(Lr(hr(ar))) — t(he(ar))] (e5.84)
< [t(hy (®oj; " © Li(qr))) — t(sh1(®ojz o Li(qx)))l (e5.85)
+ [t (1 (Pogy o Ligr))) — t(¢r(qr))| + [t(¥1(qr)) — t(hr(gr))]  (e5.86)
< €3+ 26 +e3 < 3e1 < (s0/4)(e/16), k=1,2,...,N. (e5.87)

As in the proof of 4.7, since both hp(p2(C(X)))(C F») and Fy are finite dimensional,
there is a conditional expectation E : F5 — hp(p2(C(X))). By replacing Lr by Lpo E,
we can extend Lp to a unital completely positive linear map Fy — F5. Put ¢ = e —
Zfil hp(q) +hr(qr) =€ — Zf\;2 hr(q;). Then, by (e5.75) and by (e5.78),

N
t(Lr(q1) — @) < Z t(Lr(hr(gi) — t(hr(gi))] (€5.88)
< 3Ney < (s0/4)(e/16) for all t € T'(Fs). (€5.89)

By (¢5.78) and (e5.74), for all k = 2,3,..., N
t(hr(qr)) > s0/2 — €3 > so/4 for all t € T(F3). (e5.90)
Also

t((jl) > t(ql) > 80/4 for all t € T(FQ) (e 591)
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By (e5.82), (¢5.49), (5.50), (¢5.57), (5.76), and (e5.61)

Lp(hpopa(zg)) =hy o®oj, ! o Li(pa(zy)) (
Ry jater/a hy 0@ ot o Li(¢'(22)) (€5.93
Reyja hy 0 ®oj  ((Jx(22))) (

(

= hy 0 ®(2,) R, /a4 hy (2y) R3ey/4 Yo-

Let e5=¢€1/2 4 €1 /4 + 3e3/4. Then €5 < €/16.

Note that hp o p3(2;) = 21112 &hp(qi) +0-q and Lr now is defined on Fs.

By the choice of sg, applying 4.5 to Lg, yo, hrowa(2:), €5, €/16 (in place of ¢, z,y, €1, €2
respectively), we obtain

Yo E2(6/16)+2€5 COHV(U(hF o QDQ(Zx))). (e 596)

By (e5.72) and 4.6,

Y €8/ K+eqtes CONV(U(y0)). (€5.97)

For any 7 € T(A), let t, := 7(e)~17|p, € T(Fy). By (e5.71), (e5.41), (¢5.90) and
(€5.91),

K(t(l—e)) < Kes/16 < 7(e)so/4 < T(e)t-(hp(qr)) = T(hr(qk)),k =2,...,N.
Applying the comparison property, K[1—e] < [hp(qx)], k = 2, ..., N. Similarly, K[1—e] <
1]

By the fact & = 0 and (e5.81), applying (2) of 3.6,
hi(P2(20)) €4/ o1y 2e0 cOMVU(pa(22) (¢5.98)
By (e5.60), (¢5.98), (¢5.96) and (e5.97), we obtain
y €. conv(U(x)). O

Corollary 5.9. Let A be a unital separable simple C*-algebra with tracial rank zero and
with countably many extremal tracial states. Suppose that x,y € A are two normal el-
ements with sp(x) = X and sp(y) = Y. Suppose that there exists a sequence of unital
positive linear maps ®,, : C(X) — C(Y) such that

li_>m |®n(22) — 2yl =0 and (€5.99)

nli_)néo sup{|7(®,(f)(y)) —7(f(z))| : 7€ T(A)} =0 for all f € C(X). (e5.100)

Then y € conv(U(z)).
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Theorem 5.10. Let A be a unital separable simple C*-algebra with real rank zero, stable
rank one and weakly unperforated Ky(A), and let x,y € A be two normal elements with
sp(x) = X and sp(y) =Y. Suppose either the embedding j, has the (SB) property (or
QT(A) has countably many extremal points), and suppose that exists a sequence of unital
positive linear maps ®,, : C(X) — C(Y) such that

ILm |®n(z) —y|l =0 and (e5.101)

nli_>rréosup{|7'(<1>n(f)(y)) —7(f(x))|:7€T(A)} =0 for all f € C(X). (e5.102)
Then y € conv(U(z)).

Proof. It follows from Theorem 4.5 of [20] that there exists a unital simple AH-algebra B
with real rank zero and no dimension growth such that there is a unital monomorphism
H : B — A which induces the following identification:

(Ko(B), Ko(B)+, [18], K1(B)) = (Ko(A), Ko(A) +, [1a], K1(A4)).

Since both A and B have real rank zero, by [5], pa(Ko(A)) is dense in Aff(QT'(A)) and
pB(Ko(B)) is dense in Aff(T'(B)). It follows that H induces an affine isomorphism Hy
from Aff(T(B)) onto Aff(QT(A)).

Fix 2,y € N(A). Let v : C(X)s.a. — AF(QT(A)) be given by v(f)(7) = 7(j.(f)) for
all 7 € QT(A). Note that [j,] and v are compatible. Note also that 7 o j, is a tracial
state on C(X). It follows from 5.3 of [25] that there is a normal element x; € H(B) with
sp(z1) = X and [f,] = [jo] and 7(je, () = Hy " o y(f)(7) for all T € QT(A), where
Jz, : C(X) — H(B) C A is induced by z;. Then, by Theorem 5.6 of [12] (T'(A) there
should be QT(A)), x1 and x are approximately unitarily equivalent.

Exactly the same argument shows that there is y; € N(B) such that y; and y are
approximately unitarily equivalent, and there exists a unital injective homomorphism
Jy, 1 C(Y) = H(B) C A induced by y;. Note that, by [21], B has tracial rank zero.
Let {u,} be a sequence of unitaries of A such that z; = lim, o u} xu,. Then, for any
T € QT(A), 7(x1) = ToH(x1) = 7(z). Since Hy is an affine isomorphism, the embedding
Jz, ¢ C(X) — H(B) has the (SB) property under the hypothesis.

By 5.8 or 5.9, 1 € conv(U(y1)). It follows that =1 € conv(U(y)), whence = €
conv(U(y)). O

Theorem 5.11. Let A be a unital separable simple C*-algebra with tracial rank zero and
with a unique tracial state. Suppose that x,y € A are two normal elements with sp(z) =
X and sp(y) =Y. Suppose that there exists a sequence of unital completely positive linear
maps ®,, : A — A such that

lim | (z) —y|l =0 and (5.103)
lim |7(®,(a)) —7(a)] =0 for all a € A. (e5.104)

n—oo
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Then there exists a sequence of unital positive linear maps ¥,, : C(X) — C(Y') such that

nangO | Wy (22) — 2zy]| =0 and
Jim (U (F)) ~ 7@ =0 for all f € C(X)

Proof. Recall (see (7) of Section 2) that every quasi-trace of A is a trace. Let € > 0,
o >0 and let Fx C C(X) be a finite subset in the unit ball. Put Fy = {1,2,} C C(Y).
Let n > 0 and Gy C C(Y) be finite subset given in 5.6 by for €¢/2 (in place of )
and 0/2 (in place of ¢), and Y in place of X. We may assume that Fy C Gy. Put
€1 = min{e/16,0/16,7/16}. Let 7 be the unique tracial state of A.

Let & : A — A be a unital completely positive linear map such that

[®(z) —y| < e and (€5.105)
(@ (j= (/) = T(Ja ()] < e forall fe Fx. (€5.106)

Let Fa = Fx UGy U®(Fx). Without loss of generality, we may assume that F4 is in the
unit ball of A. Since A has tracial rank zero, there is a finite dimensional C*-subalgebra
F C A with 1z = p and a completely positive contractive linear map v : A — F such
that

|lpa — ap|| < €1 for all a € Fa, (e5.107)
la—((1 —p)a(l —p)+(a))] < € forall a € Fyq and (5.108)
7(1—p) < €. (€5.109)

Without loss of generality, by 5.1, we may assume that there exists a unital homomor-
phism ¢ : C(Y') — F such that

lp(dy(9) = ¥(g)l| < e forall g € Gy. (e5.110)

We also have
|T((a)) — 7(a)| < 3€; for all a € Fa and (e5.111)
I7(0(9)) — T(Jy(9))| < 4e1 for all g € Gy. (5.112)

Let C = ¢(C(Y)) be the C*-subalgebra of F. By applying Lemma 5.7, we obtain a
unital completely positive contractive linear map L : F — C(Y') such that

|Low(f)—7y(f)l <e/2 forall fe Gy and (e5.113)
|70 L(b) — 7(b)| < (c/2)]b]| for all b€ F. (e5.114)
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Let S C F be a finite subset which is e¢;-dense in the unit ball of F'. Define ¥ :
C(X) = C(Y) by U(f) =Lopo®(j,(f)) for f € C(X). Then, by (¢5.105), (e5.110)
and (e5.113),

[V (22) =yl < [|[Lopo®(z) = Low(y)l (e5.115)
Fl[Lop(y) = Lop(zy)ll +[|Lop(zy) —yll (e5.116)
< ||®(z) —y|| + €1 +€/2 <2€e +€/2 <e. (5.117)

Moreover, by (e5.114), (e5.111) and (e 5.106)

[T W (f) = 7(J(f)| < |T(Loypo@(ju(f))) — 7(¥ 0 2(jz(f)))]
H1 (W o ©(ju(f))) — T(@( (/)] + [7(2(42(f))) — 7(G=(f))]
<0/243c1+€ <o forall feFx. O

Let X be a compact metric space. Denote by M (X)?! the set of all probability Borel
measures.

Let A be a unital simple C*-algebra with T'(A) # (), and let x € A be normal element.
For each 7 € T(A), denote by pr x (or just u,) the probability Borel measure induced
by 7 0 j,. Define Tx = {p, x : 7 € T(A)}.

Theorem 5.12. Let A be a unital separable simple C*-algebra with tracial rank zero and
with unique tracial state 7. Suppose that x and y are two normal elements with X = sp(x)
and Y = sp(y). Then the following are equivalent:

(1) y € conv(U(x));
(2) There exists a sequence of unital trace preserving completely positive linear maps
®,, : A — A such that

Jim ||y, (2) —y[ = 0;

(3) There exists a sequence of unital completely positive linear maps ®,, : A — A such
that

1i_>m |y (z) —y|| =0 and li_>m |T(®n(a)) —7T(a)| =0 for all a € A;

(4) There exists a sequence of unital completely positive linear maps ¥,, : C(X) — C(Y)
such that

nler;o |V, (22) — 2zy]| =0 and (e5.118)
lim \7(Wn(f)(y))) = 7(f(x))| =0 for all f € C(X); (e5.119)

n— oo
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(5) There exists a sequence of affine continuous maps v, : M(Y)1 — M(X)! such that

nli_)r&) sup{| /:rd('yn(u)) — /yd,u| cp €M)} =0 and (e5.120)
Y

X
li Fdprx — | fdym(pry)| =0 (e5.121)
lm’X/ [ir,x / ’yuy‘ e

n— 00
X

for all f € C(X).

Proof. That (1), (2) and (3) are equivalent follows from 4.8. That (3) implies (4) follows
from 5.11.

Suppose that (4) holds. Define ~,, : M(Y)' — M(X)' by [, fd(ym(p)) = [y ¥n(f)dp
for all p € M(Y)L. Clearly ~, is a continuous affine map. Denote by S(C(Y)) the state
space of C(Y). Then, by (e5.118),

Jim sup{|s(Wa(z2) — 5(z,)] : s € S(C(¥))} =0

Since one may identify S(C(Y)) with M (Y)Y, (e5.120) follows. It is also clear that
(e5.121) follows from (e5.119). Thus (5) holds.

We now show that (5) implies (4). If (5) holds, for any s € Y, and any f € C(X),
define W,,(f)(s) = vn(0s)(f), where 65 € S(C(Y)) = M(Y)?! is the Dirac measure at s.
Then (e5.120) implies that

1i_>m sup{|¥,, (z5)(s) — zy(s)| : s € Y} = 0.
However,

sup{[Wn(22)(s) = zy(s)| 1 s € Y} = [[Wn(22) — 2.

It follows that (e 5.118) holds. Also (e5.119) follows from (e 5.121).
It remains to show that (4) implies (1) which follows from 5.9. O

Corollary 5.13. Let A be a unital separable simple C*-algebra with real rank zero, stable
rank one, weakly unperforated Ko(A) and with unique quasi-trace T such that 7(14) = 1.
Suppose that x and y are two normal elements with X = sp(z) andY = sp(y). Then (1),
(4) and (5) in 5.12 are also equivalent, by replacing the tracial state by the quasi-trace.

Proof. Let 7 be the quasi-trace. Then, by I1.4.3 of [5], 7 is 2-quasi-trace. Note that any
quasi-trace restricted on a commutative C*-algebra is a trace. We also note that (4)
and () are equivalent. It remains to show (1) and (4) are equivalent. We deploy the
argument of the proof of 5.10. We keep all notation there.



48 S. Hu, H. Lin / Journal of Functional Analysis 278 (2020) 108306

If (1) holds, then z; € conv(U(y1)). Thus 5.12 can apply to =1 (in place z) and y;
(in place of y) (in B). Since sp(x) = sp(x1) and sp(y) = sp(y1), as functions in C'(X)
and C(Y), z; = 2z, and z, = z,,, respectively. Therefore (¢5.118) holds. Since x; and
x are approximately unitarily equivalent, 7(f(z1)) = 7(f(z)) for all f € C(X), and
7(9(y)) = 7(g9(y1)) for all g € C(Y'). Hence (¢5.119) also holds.

Suppose (4) holds. Then there exists a sequence of unital completely positive linear
maps ¥, : C(X) — C(Y) such that

nh_)nolo | W, (22) — 2y]| = 0 and (e5.122)
nl;rgo T(Un(f)(y)) — 7(f(x))| =0 for all fe C(X). (5.123)

The same reason given above shows (4) holds for z; (in place of z) and y; (in place
of y) in B. Therefore y; € conv(U(x1)). It follows that y € conv(U(x)). So (1) holds. O

6. Approximate unitary equivalence

by j. : C(sp(x)) — A the injective homomorphism defined by

Let A be a unital simple C*-algebra with tracial rank zero and z,y € A be two
normal elements. By [23],  and y are approximately unitarily equivalent, i.e., there
exists a sequence of unitaries {u,} of A such that

lim [z zu, —y =0,

if and only if (jz)«i = (Jy)wis ¢ = 0,1, and, 70 j, = 70 j, for all 7 € T(A) (see also 5.6
of [12] for a slightly more general setting of this statement).

Theorem 6.1. Let A be a unital separable simple C*-algebra with real rank zero, stable
rank one, weakly unperforated Ko(A) and with a unique quasi-trace T with 7(14) = 1 and
QT(A) =T(A). Let z,y € A be two normal elements. Then the following are equivalent:

(1) x € conv(U(y)) and y € conv(U(x));
(2) sp(x) =sp(y) and py = pyy, where i and p, are Borel probability measures induced
by T o j, and T o j,, respectively,

Proof. Suppose that (2) holds. Let ¢ : C(sp(z)) — C(sp(y)) be defined by ¢(f) = f(y)
for all f € C(sp(x)). Then (1) follows by 5.13.

Suppose that (1) holds. Let 7, : A — B(H;) be the representation of A given by
the tracial state 7. Let M = m.(A)”. Then M is a type II; factor. Note that since A is
simple, 7, is faithful. Note (1) implies that

7 (z) € conv(U(m,(y))) and 7, (y) € conv(U(m,(x))).



S. Hu, H. Lin / Journal of Functional Analysis 278 (2020) 108306 49

By (vi) of Theorem 2.2 of [9], 7(g(z)) = 7(g(y)) for all continuous convex function on R2.
It follows from Proposition I.1.1 of [1] that

T(f(2)) = 7(f(mr(2))) = 7(f (7 () = 7(f(y))

for all f € C(sp(x)). Consequently sp(x) = sp(m,(x)) = sp(m,(y)) = sp(y). Thus (2)
holds. O

Let A be a C*-algebra. Denote by pa : Ko(A) — Aff(T'(A)) the usual order preserving
homomorphism.

Corollary 6.2. Let A be a unital separable simple C*-algebra with real rank zero, stable
rank one, weakly unperforated Ko(A) and with a unique quasi-trace T such that 7(14) =1
and QT(A) =T(A), and let x,y € A be two normal elements. Suppose that K;(A) = {0}
and kerpa = {0}. Then the following are equivalent:

(1) z € conv(U(y)) and y € conv(U(x));
(2) sp(z) = sp(y) and 7(f(x)) = 7(f(y)) for all f € C(sp(x)).

(3) = and y are approzimately unitarily equivalent in A.

Proof. It is clear that (3) implies (1). Thus, by 6.1, it remains to show that (2) im-
plies (3). Assume that (2) holds. By the assumption, pa : Ko(A4) — Aff(T(A)) is an
order preserving injective homomorphism. Therefore, (2), together with the assumption
that K;(A) = {0}, implies that (j;)« = (Jy)«i, ¢ = 0,1, where j, and j, are embedding
from C(sp(z)) to A induced by x and y, respectively. Since Ko(C(sp(z))) = C(sp(z),Z)
is a free abelian group (see [30]), it follows from the Universal Coefficient Theorem that
[jz) = [jy) in KL(C(sp(z)), A). Then, by 5.6 of [12], j, and j, are approximately unitarily
equivalent, whence (3) holds. O

Let A be a unital simple C*-algebra of tracial rank zero such that K;(A) # {0}. It
follows from Theorem 6.11 of [27] that there are two normal elements z, y such that (2) of
6.2 holds but (jz)«1 # (Jjy)«1. Then x and y are not approximately unitarily equivalent.
However, by 6.2, x € conv(U(y)) and y € conv(U(x)). Suppose that K;(A) = {0} but
kerpa # {0}. Suppose X C C is a compact subset which is not connected. Then, by 6.11
of [27] again, there are normal elements =,y € A with sp(z) = sp(y) = X such that (2) of
6.2 holds but (jz)«0 # (Jy)«0- Then x and y are not approximately unitarily equivalent.
However, by 6.2 again, x € conv(U(y)) and y € conv(U(x)). Nevertheless, we have the
following:

Corollary 6.3. Let A be a unital separable simple AF-algebra with a unique tracial state
and let x, y € A be two normal elements with connected spectrum.
Then the following are equivalent:
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(1) = € conv(U(y)) and y € conv(U(x));
(2) sp(z) =sp(y) and 7(f(z)) = 7(f(y)) for all f € C(sp()).

(3) = and y are approzimately unitarily equivalent in A.

Proof. Again, it remains to show (2) implies (3). Since both sp(x) and sp(y) are con-
nected, (2) implies that (jz)«i = (Jy)«i, @ = 0, 1. Then, by 3.4 of [23], as in the proof of
6.2, (3) holds. O
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