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Let A be a unital separable simple C∗-algebra with tracial 
rank zero and let x, y ∈ A be two normal elements. We 
show that x is in the closure of the convex hull of the 
unitary orbit of y if and only if there exists a sequence of 
unital completely positive linear maps ϕn from A to A such 
that the sequence ϕn(y) converges to x in norm and also 
approximately preserves the trace values. A purely measure 
theoretical description for normal elements in the closure of 
the convex hull of unitary orbit of y is also given. In the 
case that A has a unique tracial state some classical results 
about the closure of the convex hull of the unitary orbits in 
von Neumann algebras are proved to hold in the C∗-algebraic 
setting.
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1. Introduction

In the algebra of n by n matrices over the complex field, two normal elements are 
unitarily equivalent inly if they have the same eigenvalues counting multiplicities. One 
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can also describe the convex hull of unitary orbit of a given self-adjoint matrix using 
eigenvalue distribution. Indeed, by the classical Horn’s theorem ([11], see also [2] and 
[14]), if x and y are two self-adjoint matrices, then x is in the convex hull of unitary orbit 
of y if the eigenvalues are majorized by those of x.

In infinite dimensional spaces, one studies the closure of the convex hull of unitary 
orbit of an operator. These results were extended to von Neumann algebras (see, for 
example, [10] and [13]). Moreover, in [9] (and [3]), the closure of the convex hull of 
unitary orbits of normal elements in II1 factors were also studied. Since these descriptions 
are closely related to the measure theory, via spectral theory, one may expect that the 
original description in finite matrix algebras carries out to von Neumman algebras or at 
least II1 factors.

The situation is rather different in C∗-algebras since spectral theory no longer holds. 
However, more recently, in [31], [28] and [29], the closure of the convex hull of self-adjoint 
elements in unital simple C∗-algebras with tracial rank zero (or real rank zero and stable 
rank one, as well as other regularities) has been studied. The current research was inspired 
by these papers with [12].

One of the conveniences of studying self-adjoint elements is that the C∗-subalgebra 
generated by a self-adjoint element has a certain weak semi-projective property. More-
over, the assumption that C∗-algebras have real rank zero means that self-adjoint ele-
ments can be approximated by those with finite spectrum. These advantages disappear 
when x and y are only assumed to be normal.

In the current paper, we study the normal elements in the closure of the convex hull 
of unitary orbit of normal elements in unital simple C∗-algebras with tracial rank zero. 
The weak semi-projectivity property can be partially recovered by the theorem of [7]. 
However, normal elements in general simple C∗-algebras with tracial rank zero may not 
be approximated by normal elements with finite spectrum. Nevertheless, a theorem in 
[19] shows that the normal elements in general simple C∗-algebras with tracial rank zero 
can actually be approximated by those with finite spectrum if a K1-related index vanish. 
Moreover, unitary orbits of normal elements in general simple C∗-algebras with tracial 
rank zero were characterized in [23]. Using these results, in this paper, we characterize 
the normal elements in the closure of the convex hull of unitary orbits of normal elements 
in a general simple C∗-algebra with tracial rank zero (see 4.8 below). This is in the same 
spirit as results in II1-factors as in [9] and [3] even though the simple C∗-algebra A may 
have rich tracial simplex. On the other hand, say, if we assume that A also has a unique 
tracial state, then a purely measure theoretical description of normal elements in the 
closure of convex hull of normal elements can be presented (see 5.12 below). We also 
extend the result slightly beyond the case that A has tracial rank zero (see 5.10).

Suppose that x is a normal element in the closure of the convex hull of the unitary orbit 
of a normal element y, and y is in the closure of the convex hull of the unitary orbit of 
x. Then, in a II1-factor M , x and y are approximately unitarily equivalent (see Theorem 
5.1 of [3]). In a general unital simple C∗-algebra A with tracial rank zero, this no longer 
holds simply because the presence of non-trivial K1 as well as infinitesimal elements in 
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K0(A). However, when these K-theoretical obstacles disappear, we show that these two 
notions still coincide in simple C∗-algebra of tracial rank zero. In particular, we show 
that, in a unital simple AF-algebra A with a unique trace if both sp(x) and sp(y) are 
connected, and x is in the closure of convex hull of the unitary orbit of a normal element 
y, and y is in the closure of convex hull of the unitary orbit of x, then x and y are 
approximately unitarily equivalent.
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2. Notations

Let A be a unital C∗-algebra. We will use the following convention:
(1) U(A) is the unitary group of A.
(2) N (A) is the set of all normal elements of A, As.a is the set of all self-adjoint 

elements of A and A+ is the set of positive elements of A.
(3) N0(A) = {x ∈ N (A) : ∀λ /∈ sp(x), [λ − x] = 0 in K1(A)}.
(4) For any a ∈ A, U(a) = {u∗au : u ∈ U(A)} is the unitary orbit of a.
(5) For any a ∈ A, conv(U(a)) is the convex hull of the unitary orbit U(a).
(6) If p is a projection of A, a ∈ pAp, conv(Up(a)) is the convex hull of the unitary 

orbit in pAp.
(7) T (A) is the set of all tracial states. If τ ∈ T (A), then τ ⊗ tr is a tracial state of 

Mn(A), where tr is the tracial state of Mn(C). We shall continue to use τ for τ ⊗ tr.
Denote by QT (A) the set of all normalized 2-quasi-traces (II.1.1 of [5]). By II.4.3 of 

[5], if A is a simple C∗-algebra which has only one quasi-trace, then it is a 2-quasi-trace. 
If A is a unital C∗-algebra, then QT (A) is a simplex (see II. 4.4 of [5]). By a result of 
Haagrup [8], every 2-quasi-trace on an exact C∗-algebra is a trace. We will also use the 
fact that every quasi-trace of a unital simple separable C∗-algebra of tracial rank zero is 
a trace (see, for example, Corollary 6.3 of [26]).

(8) Let a, b ∈ A and let ϵ > 0. Let us write a ≈ϵ b if ∥a − b∥ < ϵ. Suppose that S ⊂ A

is a subset. Let us write a ∈ϵ S if inf{∥a − s∥ : s ∈ S} < ϵ. We may write a ∈ϵ′ S

including the case ϵ′ = 0 which we mean that a ∈ S.
(9) Denote by GL(A) the set of invertible elements. Recall that A has stable rank 

one, if GL(A) is dense in A.
(10) Let p, q ∈ A be two projections. We write [p] = [q] if there exists a v ∈ A such 

that v∗v = p and vv∗ = q. We write [p] ≤ [q], if [p] = [q′] for some projection q′ ≤ q.
We write [p] ≤u [q], if there exists a unitary u ∈ A such that u∗pu ≤ q, and [p] =u [q], 

if u∗pu = q. For any integer K > 0, we write K[p] =u [q] if there are mutually orthogonal 
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projections q1, q2, ..., qK ∈ A such that qi ≤ q, [qi] =u [p], i = 1, 2..., K, and 
∑K

i=1 qi = q, 
and write K[p] ≤u [q] if there exists a projection q′ ≤ q such that K[p] =u [q′].

If A has stable rank one, then [p] ≤ [q] is the same as [p] ≤u [q] and [p] = [q] is the 
same as [p] =u [q]. Note, almost all the cases in this paper, A has stable rank one.

(11) Let x, y ∈ A+ be positive elements. We write x ! y, if there exists rn ∈ A such 
that limn→∞ ∥r∗

nyrn −x∥ = 0. In case x and y are projections, then there exists a partial 
isometry v ∈ A such that v∗v = x and vv∗ ≤ y. If A has stable rank one and x ! y, then 
there exists z ∈ A such that z∗z = x and zz∗ ∈ yAy.

Let K ≥ 1 be an integer. We write K⟨x⟩ ≤ ⟨y⟩, if there are K mutually orthogonal 
positive elements x1, x2, ..., xK ∈ Mm(A) for some m ≥ 1,

x1 + x2 + · · ·+ xK ! diag(y,
m−1︷ ︸︸ ︷
0, ..., 0),

and xi ! x and x ! xi, i = 1, 2, ..., K.
If p ∈ A is a projection and p ! x, then there exists partial isometry v ∈ A such that 

v∗v = p and vv∗ ∈ xAx.
(12) A linear map ϕ : A → A is said to trace preserving if τ ◦ ϕ = τ for all τ ∈ T (A).
(13) Let F ⊂ A be a finite subset and ϵ > 0. Suppose that B is another C∗-algebra. 

A positive linear map L : A → B is said to be F-ϵ-multiplicative if ∥L(xy) −L(x)L(y)∥ <
ϵ for all x, y ∈ F .

3. Preliminaries

The following lemma is well-known.

Lemma 3.1. Suppose that A is a unital C∗-algebra.

(1) Let ϵ1, ϵ2 > 0, and let a, b, c ∈ A such that a ∈ϵ1 conv(U(b)) and b ∈ϵ2 conv(U(c)). 
Then

a ∈ϵ1+ϵ2 conv(U(c)).

(2) Let {pi, i = 1, 2, ..., n} be projections in A with 
∑n

i=1 pi = 1A and let ai, bi ∈
piApi, i = 1, 2, ..., n. Suppose that for some ϵi > 0, ai ∈ϵi conv(Upi(bi)), i =
1, 2, ..., n. Then

n∑

i=1
ai ∈ϵ conv(U(

n∑

i=1
bi)),

where ϵ = max{ϵi : i = 1, 2, ..., n}.
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Proof. (1) There are {ui, vj : i = 1, ..., m; j = 1, ..., n} ⊂ U(A) and {ti, sj : i =
1, ..., m; j = 1, ..., n} ⊂ (0, 1) with 

∑m
i=1 ti = 1 and

∑n
j=1 sj = 1 satisfying

a ≈ϵ1

m∑

i=1
tiu

∗
i bui, and b ≈ϵ2

n∑

j=1
sjv

∗
j cvj .

Let

a′ =
m∑

i=1

n∑

j=1
tisju

∗
i v

∗
j cvjui,

then a′ ∈ conv(U(c)) and

a′ ≈ϵ2

m∑

i=1
tiu

∗
i bui ≈ϵ1 a.

(2) It is enough to prove the case n = 2. Note that p1p2 = 0. Suppose that

a1 ≈ϵ1

n∑

i=1
siu

∗
i b1ui, and a2 ≈ϵ2

m∑

j=1
tjv

∗
j b2vj , (e 3.1)

where si, tj ∈ [0, 1] with 
∑n

i=1 si = 1 and 
∑m

j=1 tj = 1, and ui ∈ U(p1Ap1), vj ∈
U(p2Ap2). For any i, j, let wij = ui + vj ∈ U(A), and let hij = sitj ∈ [0, 1]. Then one 
can check 

∑
i,j hij = 1, and

∑

i,j

hijw
∗
ij(b1 + b2)wij =

m∑

i=1
(

n∑

j=1
sitj(u∗

i b1ui)) +
m∑

i=1

n∑

j=1
sitj(v∗

j b2vj)

=
m∑

i=1
si(u∗

i b1ui) +
n∑

j=1

m∑

i=1
sitj(v∗

j b2vj) =
m∑

i=1
siu

∗
i b1ui +

n∑

j=1
tjv

∗
j b2vj .

Combining this with (e 3.1), one obtains that a1 + a2 ≈ϵ conv(U(b1 + b2)). ✷

Definition 3.2. Recall that D ∈ Mn(C) is called a doubly stochastic matrix if D = (dij)
with dij ∈ [0, 1] with 

∑n
i=1 dij =

∑n
j=1 dij = 1 for all i, j. Denote by Dn the set of all 

doubly stochastic matrices in Mn(C).

Definition 3.3. For any x = (λ1, · · · , λn), y = (µ1, · · · , µn) ∈ Cn, we write x ≺ y if there 
is D = (di,j) ∈ Dn such that

⎛

⎝
λ1
...

λn

⎞

⎠ =

⎛

⎜⎝
d11 · · · d1n
...

...
dn1 · · · dnn

⎞

⎟⎠

⎛

⎝
µ1
...
µn

⎞

⎠ . (e 3.2)
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We may also write

(λ1, · · · ,λn)T = D(µ1, · · · , µn)T

instead of (e 3.2).
The following is a variation of Horn’s theorem (see also [2]).

Lemma 3.4. Suppose x =
∑n

i=1 λipi, y =
∑n

i=1 µiqi are normal elements in Mn(C), 
where {λi, µi : i = 1, 2..., n} ⊂ C, and {pi, qi : 1 = 1, 2, ..., n} are rank one projections 
such that 

∑n
i=1 pi =

∑n
i=1 qi = 1Mn(C). Then the following conditions are equivalent:

(1) (λ1, · · · , λn) ≺ (µ1, · · · , µn).
(2) x ∈ conv(U(y)).
(3) There is a unital trace preserving completely positive linear mapping Φ on Mn(C)

such that Φ(y) = x.
(4) There is a unital positive linear mapping Ψ : C∗(y) → C∗(x) such that Ψ(y) = x

and τ(Ψ(f)) = τ(f) for any f ∈ C∗(y), where τ is the tracial state of Mn(C), and 
where C∗(y), C∗(x) are the C∗-subalgebras in Mn(C) generated by {1Mn(C), y} and 
{1Mn(C), x} respectively.

Proof. (1) ⇒ (2): First, we consider that in the case x = diag(λ1, · · · , λn), y =
diag(µ1, · · · , µn). If (λ1, · · · , λn) ≺ (µ1, · · · , µn), then there is D = (dij) ∈ Dn such 
that (λ1, · · · , λn)T = D(µ1, · · · , µn)T . By Birkhoff’s Theorem [4],

D =
∑

σ∈Σn

tσvσ,

where Σn is the permutation group of {1, ..., n}, tσ ∈ [0, 1] with 
∑

σ∈Σn
tσ = 1, and vσ

is the permutation on Cn. One may check that

diag(λ1, · · · ,λn) =
∑

σ∈Σn

tσu
∗
σ(diag(µ1, · · · , µn))uσ, (e 3.3)

where uσ is the unitary of Mn(C) induced by vσ. That is, viewing element uσ as a 
linear operator on Cn, for any (λ1, · · · , λn) ∈ Cn, uσ((λ1, · · · , λn)) = (λσ1 , ..., λσn). In 
general case, let ej be the element in Cn with 1 in j-th coordinate and zero elsewhere, 
j = 1, 2, ..., n. There are u, v ∈ U(Mn(C)) such that u∗piu = ei and v∗qjv = ej , i, j =
1, 2, ..., n. Then, u∗xu = diag(λ1, · · · , λn), v∗yv = diag(µ1, · · · , µn). Then by (e 3.3),

x =
∑

σ∈Σn

tσ(vu∗
σu

∗)∗y(vuσu
∗),

or x ∈ conv(U(y)).
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(2) ⇒ (3): If x =
∑N

i=1 tiu
∗
i yui, where ti ∈ [0, 1] with 

∑N
i=1 ti = 1 and ui ∈

U(Mn(C)), i = 1, 2, ..., N . Define Φ(z) =
∑N

i=1 tiu
∗
i (z)ui for any z ∈ Mn(C). Then 

Φ is a trace preserving completely positive contractive linear map with Φ(y) = x.
(3) ⇒ (1): Let u, w be unitaries in Mn(C) such that u∗yu = diag(µ1, · · · , µn)

and w∗xw = diag(λ1, · · · , λn). By replacing Φ by Adw ◦ Φ ◦ Adu∗, we assume that 
Φ(diag(µ1, · · · , µn)) = (λ1, · · · , λn). Let τ ∈ T (Mn(C)) be the unique tracial state. Let 
ei be as above. Then for any i, j = 1, 2, ..., n, let define

fij = eiΦ(ej)ei and dij = Tr(fij) = nτ(fij), i, j = 1, 2, ..., n.

Then fij ∈ (eiMn(C)ei)+ with ∥fij∥ ≤ 1, and 0 ≤ dij ≤ 1. One checks

n∑

i=1
dij =

n∑

i=1
nτ(eiΦ(ej)) = nτ(Φ(ej)) = nτ(ej) = 1;

n∑

j=1
dij =

n∑

j=1
nτ(eiΦ(ej)) = nτ(eiΦ(1A)) = nτ(ei) = 1.

Moreover, for any i,

n∑

j=1
µjdij =

n∑

j=1
µjnτ(eiΦ(ej)) = nτ(eiΦ(

n∑

j=1
µjej))

= nτ(ei(
m∑

j=1
λjej)) = nτ(λiei) = λinτ(ei) = λi.

In other words, with D = (dij) ∈ Dn,

(λ1, · · · ,λn)T = D(µ1, · · · , µn)T .

(4) ⇒ (3): Write y =
∑k

i=1 αiQi, where {α1, α2, ..., αk} is distinct eigenvalues and 
Q1, Q2, ..., Qk are mutually orthogonal non-zero projections such that 

∑k
i=1 Qi = 1. Let 

Ψ1 : Mn(C) → C∗(y), be the conditional expectation,

Ψ1(a) =
k∑

i=1

τ(QiaQi)
τ(Qi)

Qi for all a ∈ Mn(C).

Then Ψ1 is a unital positive linear map preserving the trace such that Ψ1(y) = y. Then 
Φ ◦ Ψ1(y) = x. Moreover Ψ = Φ ◦ Ψ1 is a unital trace preserving positive linear map.

(3) ⇒ (4): Let Ψ2: Mn(C) → C∗(x), be the condition expectation, and let Φ =
Ψ2 ◦ Ψ|C∗(y), then Φ(y) = x, and Φ is a unital trace preserving positive linear map from 
C∗(y) to C∗(x). ✷
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Corollary 3.5. Suppose A is a unital C∗-algebra with T (A) ̸= ∅. {λi, µi : i = 1, 2, ..., n}
are complex numbers.

(1) If {pi : i = 1, ..., n} and {qi : i = 1, ..., n} are projections in A with [pi] =u [qj ] for 
any i, j, 

∑n
i=1 pi =

∑n
i=1 qi = 1A. If

x =
n∑

i=1
λipi, y =

n∑

i=1
µiqi,

then x ∈ conv(U(y)) if and only if (λ1, · · · , λn) ≺ (µ1, · · · , µn).
(2) If {pi : i = 1, 2, ..., n} are mutually orthogonal projections in A with [pi] =u [p1] for 

all i and p =
∑n

i=1 pi. Let B = {
∑n

i=1 ηipi : ηi ∈ C, i = 1, ..., n}. If there is D ∈ Dn

such that (λ1, · · · , λn)T = D(µ1, · · · , µn), then there is a unital trace preserving 
completely positive linear map ϕD on pAp which maps B into B such that

ϕD(
n∑

i=1
λipi) =

n∑

i=1
µipi.

Proof. (1) There exists u ∈ U(A) such that u∗piu = qi, i = 1, ..., n. Without loss of 
generality, we may assume pi = qi, i = 1, 2, ..., n. Furthermore, since [pi] = [p1] for all i, 
and 

∑n
i=1 pi = 1A, A is isomorphic to Mn(B1), where B1 = p1Ap1.

Therefore it suffices to show

diag(λ1,λ2, ...,λn) ∈ conv(U(diag(µ1, µ2, ..., µn))) (e 3.4)

if and only if (λ1, · · · , λn) ≺ (µ1, · · · , µn). By 3.4, we only need to show that (e 3.4)
implies (λ1, · · · , λn) ≺ (µ1, · · · , µn). Let {eij}1≤i,j≤n be a system of matrix unit. Suppose 
that

diag(λ1,λ2, ...,λn) =
n∑

i=1
λieii

=
m∑

s=1
tsw

∗
s(

n∑

i=1
µieii)ws =

m∑

s=1
tsw

∗
s(diag(µ1, µ2, ..., µn))ws,

where ws ∈ U(Mn(B1)), s = 1, ..., m, and ts ∈ (0, 1) with 
∑m

s=1 ts = 1. Suppose ws =
(w(s)

ij ), where w(s)
ij ∈ B. For s = 1, 2, ..., m, we have

λieii =
m∑

s=1
tseii(c(s)kj )n×neii,

where c(s)kj =
∑n

l=1 µl(w(s)
lk )∗w(s)

lj , k, j = 1, 2, ..., n, s = 1, 2, ..., m. In other words,
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λieii =
m∑

s=1
tsc

(s)
ii ⊗ eii =

m∑

s=1
ts(

n∑

l=1
µl(w(s)

li )∗w(s)
li ) ⊗ eii

= (
n∑

l=1
µl

m∑

s=1
ts(w(s)

li )∗w(s)
li ) ⊗ eii. (e 3.5)

Let t ∈ T (A) and let τ ∈ T (B1) such that τ = n · t|B1 . Set fli =
∑m

s=1 ts(w
(s)
li )∗w(s)

li and 
dli = τ(fli). Then fli ∈ B+, dli ∈ [0, 1], l, i = 1, ..., n. We have, since ws is a unitary,

n∑

l=1
dli = τ(

m∑

s=1
ts

n∑

l=1
(w(s)

li )∗w(s)
li ) = τ(

m∑

s=1
ts1B1) = 1,

and

n∑

i=1
dli =

m∑

s=1
tsτ

( n∑

i=1
(w(s)∗)

li w(s)
li

)

=
m∑

s=1
tsτ

( n∑

i=1
w(s)

li (w(s)
li )∗

)
=

m∑

s=1
tsτ(1B) = 1.

Thus (dij) is a stochastic matrix. Then, by (e 3.5), (e 3.2) holds. We obtain (λ1, · · · , λn) ≺
(µ1, · · · , µn).

(2) Since pAp is isomorphic to Mn(p1Ap1), U(Mn(C)) can be viewed as an subset 
U(pAp). For any D ∈ Dn, by the proof of (1) ⇒ (4) in 3.4, ϕD =

∑
σ tσAd(uσ), defined 

on Mn(C), can be extended to pAp. ✷

Lemma 3.6. Suppose A is a unital C∗-algebra and suppose that e, p ∈ A are two mutually 
orthogonal projections.

(1) If K > 1 is an integer, e1, e2, ..., el are mutually orthogonal projections in eAe, 
and p1, p2, ..., pl are mutually orthogonal projections in pAp with K[ei] =u [pi], i =
1, 2, ..., l, such that 

∑l
i=1 ei = e and 

∑l
i=1 pi = p, and, if

x =
l∑

i=1
λipi ∈ pAp, x′ =

l∑

i=1
λiei ∈ eAe,

then

x+ x′ ∈ϵ1 conv(Up+e(x)),

where ϵ1 = ∥x∥
K .

(2) If, in addition, q ∈ A is another projection with q + e + p = 1A and K[e] ≤u [q]. 
Then, for any y′ ∈ eAe and any y ∈ N (pAp), one has that
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y ∈ϵ2 conv(U(y′ + y)),

where ϵ2 = ∥y′∥
K+1 .

(3) In (1), with K[ei] =u [pi] replaced by K[ei] ≤u [pi], i = 1, 2, ..., l, and e + p = 1A, 
then for any y′ ∈ eAe,

x+ x′ ∈ϵ3 conv(U(x+ y′)),

where ϵ3 = ∥y′∥+3∥x∥
K .

Proof. (1) We write x =
∑l

i=1 xi, x′ =
∑l

i=1 x
′
i, where xi = λipi, x′

i = λiei, i = 1, 2, ..., l.
By the definition of (10) in section 2, there exist projections p1j , j = 1, ..., K such 

that p1 =
∑K

j=1 p1j and [p1j ] = [e1]. Then there are vj ∈ (p1 + e1)A(p1 + e1) such 
that v∗

j vj = p1j , vjv∗
j = e1, j = 1, 2, ..., K. Let uj = vj + v∗

j +
∑

i̸=j p1i, then uj ∈
U((e1 + p1)A(e1 + p1)) with

u∗
jp1juj = e1 and u∗

jp1j′uj = p1j′ , j′ ̸= j; j = 1, 2, ...,K.

Let tj = 1/K, j = 1, 2, ..., K. Then

λ1(e1 +
(K − 1)

K
p1) =

K∑

j=1
tju

∗
j (λ1p1)uj ∈ conv(Ue1+p1(x1)).

Since x1 + x′
1 = λ1(p1 + e1), we have

x1 + x′
1 ≈|λ1|/K λ1(e1 +

(K − 1)
K

p1) ∈ conv(Up1+e1(x1)).

Similarly, xi + x′
i ≈|λi|/K conv(Upi+ei(xi)), i = 2, ..., l. Note {pi + ei : i = 1, 2..., l} is a 

set of mutually orthogonal projections, applying (2) of 3.1,

x+ x′ =
l∑

i=1
(xi + x′

i) ∈ϵ1 conv(Up+e(
l∑

i=1
xi)) = conv(Up+e(x)),

where ϵ1 = max{|λi| : i = 1, 2, ..., l}/K = ∥x∥/K.
(2) There are unitaries uj ∈ A and mutually orthogonal projections qj ∈ qAq such 

that u∗
jeuj = qj , j = 1, 2, ..., K. Let tj = 1

K+1 , j = 0, 1, 2, ..., K, define

y0 = t0y
′ +

K∑

j=1
tju

∗
jy

′uj .

Then y0 ∈ conv(Uq+e(y′)). Moreover ∥y0∥ ≤ ∥y′∥
K+1 . It follows that



S. Hu, H. Lin / Journal of Functional Analysis 278 (2020) 108306 11

0 ∈ϵ2 conv(Uq+e(y′)).

Since y ∈ conv(Up(y)), by (2) of 3.1, we have

y ∈ϵ2 conv(U(y + y′)).

(3) First, we consider the case K[ei] =u [pi].
If 0 ∈ sppAp(x), without lost generality, we may assume λ1 = 0. Applying (2) to 

∑l
i=2 pi (in place of p), e (in place of e), p1 (in place of q), x (in place of y) and as well 

as y′ (in place of y′), we get

x =
l∑

i=2
λipi ∈η1 conv(U(x+ y′)), where η1 = ∥y′∥

K + 1 .

Apply (1) to x and x′, which are viewed as elements in pAp and eAe, respectively,

x+ x′ ∈η2 conv(U(x)), where η2 = ∥x∥
K

.

By (1) of 3.1,

x+ x′ ∈η3 conv(U(x+ y′)), where η3 = ∥y′∥ + ∥x∥
K

.

In case 0 /∈ sppAp(x), let λ1 ∈ sppAp(x), we consider x −λ1p, x′ − λ1e, and y′ −λ1e. Then 
0 ∈ sppAp(x − λ1p). Replacing x, x′, y′ by x − λ1p, x′ − λ1e, y′ − λ1e respectively, by the 
proof above, we have

x − λ1p+ x′ − λ1e ∈η3 conv(U(x − λ1p+ y′ − λ1e)),

where η3 = ∥y′−λ1e∥+∥x−λ1p∥
K . That is

x+ x′ − λ11A ∈η3 conv(U(x+ y′ − λ11A)).

Therefore,

x+ x′ ∈ϵ3 conv(U(x+ y′)), where ϵ3 = ∥y′∥ + 3∥x∥
K

.

In general, K[ei] ≤u [pi] implies that there is a projection p′
i ≤ pi such that K[ei] =u

[p′
i], i = 1, 2..., l. Define x1 =

∑l
i=1 λip′

i and p′ =
∑l

i=1 p
′
i. It follows that

x1 + x′ ∈ ∥y′∥+3∥x1∥
K

conv(Up′+e(x1 + y′)).
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Note that ∥x1∥ ≤ ∥x∥. Note also that x + x′ = (x1 + x′) + (x − x1) and x − x1 ∈
conv(Up−p′(x − x1)). Since x1 + x′ ∈ (p′ + e)A(p′ + e), x − x1 ∈ (p − p′)A(p − p′) and 
(p′ + e)(p − p′) = 0, by (2) of 3.1, we conclude that

x+ x′ ∈ϵ3 conv(U((x1 + y′) + (x − x1))) = conv(U(x+ y′)). ✷

Proposition 3.7. Let A be a unital C∗-algebra with T (A) ̸= ∅, x and y be two normal 
elements. Suppose that x ∈ conv(U(y)). Then there exists a sequence of trace preserving 
completely positive contractive linear maps Φn : A → A such that limn→∞ ∥Φn(y) −x∥ =
0.

Proof. There are 0 ≤ λi,n ≤ 1 with 
∑r(n)

i=1 λi,n = 1 and unitaries ui,n ∈ A such that

lim
n→∞

∥x −
r(n)∑

i=1
λi,n(u∗

i,nyui,n)∥ = 0.

Define Φn : A → A by Φn(a) =
∑r(n)

i=1 λi,nu∗
i,naui,n for all a ∈ A. Then ψn is a unital 

completely positive contractive linear map and

τ(Φn(a)) =
r(n)∑

i=1
λi,nτ(u∗

i,naui,n) =
r(n)∑

i=1
λi,nτ(a) = τ(a)

for all a ∈ A, and all τ ∈ T (A). ✷

The following is known. We state here for reader’s convenience.

Lemma 3.8. Let A be a unital simple C∗-algebra with T (A) ̸= ∅. Let a, b ∈ A+ with 
∥a∥, ∥b∥ ≤ 1 such that τ(a) < τ(b) for all τ ∈ T (A). Then there is 0 ≤ b0 ≤ b such that 
τ(b0) = τ(a) for all τ ∈ T (A). Moreover, there are yn ∈ A such that

∞∑

n=1
y∗
nyn = a and

∞∑

n=1
yny

∗
n = b0 ≤ b,

where the sums converge in norm.

Proof. Let f ∈ Aff(T (A))+ be such that f(τ) = τ(b −a) for all τ ∈ T (A). Let 1 > ϵ > 0. 
It follows from 9.3 of [24] that there exists 0 ≤ b′ ≤ 1 + ϵ in A such that τ(b′) = f(τ)
for all τ ∈ T (A). Put b1 = diag(a, b′) in M2(A) and put B = M2(A). We view A as the 
upper left corner of M2(A). Then τ(b1) = τ(b) for all τ ∈ T (B). By Theorem 2.9 of [6], 
b1 − b ∈ A0 (notation in [6]). In other words, there are x1, x2, ..., in B such that

∞∑

n=1
x∗
nxn = b1 and

∞∑

n=1
xnx

∗
n = b.
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Let e1 = diag(1A, 0). Then e1a = ae1 = a. Put yn = xne1. Then

∞∑

n=1
y∗
nyn = e1(

∞∑

n=1
x∗
nxn)e1 = a and

∞∑

n=1
yny

∗
n =

∞∑

n=1
xne1x

∗
n ≤

∞∑

n=1
xnx

∗
n = b.

Choose b0 =
∑∞

n=1 yny
∗
n. Then 0 ≤b0 ≤ b and τ(b0) = τ(a) for all τ ∈ T (A). ✷

4. Simple C∗-algebras with tracial rank zero

Definition 4.1 ([21]). A unital simple C∗-algebra has tracial rank zero if for any ϵ > 0, 
any non-zero r ∈ A+, any F ⊂ A, there exists a finite dimensional C∗-algebra B ⊂ A

with unit p ∈ A, and such that

x ≈ϵ x
′ + x′′, where x′ ∈ B,

x′′ ∈ (1 − p)A(1 − p), for all x ∈ F ,

1 − p ! r.

If A has tracial rank zero, we write TR(A) = 0.
The above definition is equivalent to the following: For any ϵ > 0 and any finite 

subset F ⊂ A and any r ∈ A+ \ {0}, there exists a projection p ∈ A, a finite dimensional 
C∗-subalgebra F of A with 1F = p, and a unital F-ϵ-multiplicative completely positive 
contractive linear map L : A → F such that

∥px − xp∥ < ϵ for all x ∈ F ,

dist(pxp, F ) < ϵ for all x ∈ F ,

∥x − ((1 − p)x(1 − p) + L(x))∥ < ϵ for all x ∈ F ,

1 − p ! r.

If TR(A) = 0, then A has stable rank one and real rank zero. Moreover, A has the 
comparison property: if p, q ∈ Mn(A) are two projections for some integer n ≥ 1 and 
τ(p) < τ(q) for all τ ∈ T (A), one has [p] ≤ [q] (see [21]).

Suppose that A is an infinite dimensional unital simple C∗-algebra. Fix a non-zero 
r ∈ A+ and an integer K ≥ 1. Note that rAr contains a positive element with infinite 
spectrum. It follows that there are K + 1 many non-zero mutually orthogonal elements 
a1, a2, ..., aK+1 in rAr. It follows (Lemma 2.3 of [15], for example) that there is a non-zero 
r′ ∈ rAr such that r′ ! ai, i = 1, 2, ..., K +1. In the above definition, using r′ instead of 
r, one may have 1 − p ! r′. Therefore K[1 − p] ≤ [r].
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Recall the following known fact:

Lemma 4.2. Let x be a normal element and λ ∈ C. Suppose that dist(λ, sp(x)) = d0 > 0
and, for some y ∈ A with ∥x − y∥ < d0. Then λ /∈ sp(y).

Proof. Since x is normal element and λ /∈ sp(x), ∥(x − λ)−1∥ = 1
dist(λ,sp(x)) . Then

∥(x − λ)−1(y − λ) − 1∥ ≤ ∥(x − λ)−1∥∥(y − λ) − (x − λ)∥ = ∥x − y∥
dist(λ, sp(x)) < 1.

Consequently, (x − λ)−1(y − λ) is invertible, and λ /∈ sp(y). ✷

Lemma 4.3. Suppose A is a unital simple C∗-algebra with tracial rank zero. If x, y ∈
N (A), then for any ϵ > 0, any integer K ≥ 1, and any non-zero projection r ∈ A, there 
exists a finite dimensional C∗-algebra B of A with unit p such that

x ≈ϵ x′ + x′′, y ≈ϵ y′ + y′′, where x′, y′ ∈ N (B), x′′, y′′ ∈ N ((1 − p)A(1 − p)),

x′ =
l∑

i=1
λipj y′ =

m∑

i=1
µiqi, (e 4.1)

where {λ1, λ2, ..., λl} and {µ1, µ2, ..., µm} are distinct and ϵ-dense in sp(x) and in sp(y)
respectively, and {p1, p2, ..., pl}, {q1, q2, ..., qm} are projections in A with 

∑l
i=1 pi =∑m

j=1 qj = p, and

K[1 − p] ≤ [r], K[1 − p] ≤ [pi] and K[1 − p] ≤ [qj ], 1 ≤ i ≤ l, 1 ≤ j ≤ m. (e 4.2)

Moreover, we may also assume that sp(x′′) (in (1 − p)A(1 − p)) is ϵ-dense in sp(x) and 
sp(y′′) (in (1 − p)A(1 − p)) is ϵ-dense in sp(y).

Proof. Without loss of generality, we may assume that ∥x∥, ∥y∥ ≤ 1. Fix ϵ > 0, let 
0 < ϵ0 < ϵ/4. Let {λ1, λ2, ..., λl} ⊂ sp(x) and let {µ1, µ2, ..., µm} ⊂ sp(y) be such that 
both sets are distinct and ϵ/2-dense in sp(x) and sp(y), respectively, and

ζ = min{ϵ0/2, |λi − λi′ |, |µj − µj′ | : i ̸= i′, j ̸= j′} > 0.

Since ∥x∥, ∥y∥ ≤ 1, there are fi ∈ C(D) and gj ∈ C(D), where D is the closed unit disc 
of C, such that fi(t) = 1 for |t − λi| < ζ/4, fi(t) = 0 for |t − λi| > ζ/2, 1 ≤ i ≤ l and 
0 ≤ fi(t) ≤ 1; gj(t) = 1 for |t − µj | < ζ/4, and gj(t) = 0 for |t − µj | > ζ/2, 1 ≤ j ≤ m. 
Note that for any i, j, fi(x) ̸= 0 and gj(y) ̸= 0.

Since A is simple, there are aik, bjk ∈ A such that

n(i)∑

k=1
a∗
ikfi(x)aik = 1A and

n′(j)∑

k=1
b∗
jkgj(y)bjk = 1A. (e 4.3)
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Let

N0 = max{n(i), n′(j) : 1 ≤ i ≤ l; 1 ≤ j,≤ m} and M = max{∥aik∥, ∥b′
jk∥ : i, j, k}.

Choose δ1 > 0 such that, in any unital C∗-algebra W , if h ∈ W+ and ∥1W − h∥ < δ1, 
then h is invertible in W and ∥1W − h−1/2∥ < ϵ0/29N0(M + 1)2. For convenience, we 
may assume that δ1 < ϵ0.

Note that fi, gj are continuous on D, i = 1, 2, ..., l and j = 1, 2, ..., m. There is δ2 > 0
such that, for any S, T ∈ N (A) with ∥S∥ ≤ 1, ∥T∥ ≤ 1, ∥S − T∥ < δ2 implies

∥fi(S) − fi(T )∥ < δ1/29N0(M + 1)2, i = 1, 2, ..., l (e 4.4)
∥gj(S) − gj(T )∥ < δ1/29N0(M + 1)2, j = 1, 2, ...,m. (e 4.5)

Without loss of generality, we may assume that δ2 < ϵ/4.
Note that every unital hereditary C∗-subalgebra of A has stable rank one [22]. In 

particular, they have (IR) (see [7]). By 4.4 of [7], there exists δ3 > 0 such that for any z
in a C∗-algebra with (IR) with ∥z∥ ≤ 1 and with the property that

∥z∗z − zz∗∥ < δ3,

then there exists a normal element z′ in that C∗-algebra such that

∥z − z′∥ < δ2/2.

Choose

η = min{δ1, δ2, δ3}/29N0(M + 1)2.

Put G = {1A, x, y, aik, bjk, fi(x), gj(x) : i, j, k}.
Since TR(A) = 0, for any integer K ≥ 1, there is a finite dimensional C∗-subalgebra 

B′ ⊂ A with p′ = 1B′ such that

B′ = Mr1(C)
⊕

Mr2(C)
⊕

· · ·
⊕

MrN (C), (e 4.6)
∥z − (z′ + z′′)∥ < η for all z ∈ G, (e 4.7)
∥p′zp′ − z′∥ < η, ∥(1 − p′)z(1 − p′) − z′′∥ < η for all z ∈ G, (e 4.8)
∥x − (x1 + x2)∥ < η, ∥y − (y1 + y2)∥ < η and (e 4.9)
K[1 − p′] ≤ [r], (e 4.10)

where x1, y1, z′ ∈ B′, x2, y2, z′′ ∈ (1 − p′)A(1 − p′).
Moreover, we may assume, without loss of generality, that ∥xi∥ ≤ 1 and ∥yi∥ ≤ 1, 

i = 1, 2. Note that, since x and y are normal,
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∥x∗
i xi − xix

∗
i ∥ < 2η < δ3 and

∥y∗
i yi − yiy

∗
i ∥ < 2η < δ3, i = 1, 2.

It follows from 4.4 of [7] that there are x0,1, y0,1 ∈ N (B′) and x0,2, y0,2 ∈ N ((1 −p′)A(1 −
p′)) such that

∥x1 − x0,1∥ < δ2/2 and ∥x2 − x0,2∥ < δ2/2.

Then

∥x − (x0,1 + x0,2)∥ < δ2 and ∥y − (y0,1 + y0,2)∥ < δ2. (e 4.11)

Therefore, by the choice of δ2 (see (e 4.4) and (e 4.5)),

∥fi(x) − (fi(x0,1) + fi(x0,2))∥ < δ1/29N0(M + 1)2, i = 1, 2, ..., l

∥gj(y) − (gj(y0,1) + gj(y0,2))∥ < δ1/29N0(M + 1)2, j = 1, 2, ...,m.

Moreover,

∥p′fi(x)p′ − fi(x0,1)∥ < δ1/29N0(M + 1)2, i = 1, 2, ..., l

∥p′gj(y)p′ − gj(y0,1)∥ < δ1/29N0(M + 1)2, j = 1, 2, ...,m.

For any i and j, by (e 4.8), (e 4.3) (recall 1A, aik, bjk, x, y, fi(x), gj(y) ∈ G), there are 
a′
ik, b

′
jk ∈ B′ and a′′

ik, b
′′
j,k ∈ (1 − p′)A(1 − p′)+ such that

∥p′ −
n(i)∑

k=1
(a′

ik)∗fi(x0,1)a′
ik∥ < 27N0(M + 1)2η + δ1/29N0(M + 1)2 < δ1 and

∥p′ −
n′(j)∑

k=1
(b′

jk)∗gj(y0,1)b′
jk∥ < 27N0(M + 1)2η + δ1/29N0(M + 1)2 < δ1,

∥(1 − p′) −
n(i)∑

k=1
(a′′

ik)∗fi(x0,2)a′′
ik∥ < δ1, and ∥(1 − p′) −

n′(j)∑

k=1
(b′′

jk)∗gj(y0,2)b′′
jk∥ < δ1.

Then, by the choose of δ1, for any i, there is hi ∈ B′
+ such that

p′ =
n(i)∑

k=1
hi(a′

ik)∗fi(x0,1)a′
ikhi.

Let c′
ik = a′

ikhi, then
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p′ =
n(i)∑

k=1
(c′

ik)∗fi(x0,1)c′
ik. (e 4.12)

Similarly, for any i, j, we have d′
jk ∈ B′, c′′

ik, d
′′
jk ∈ (1 − p′)A(1 − p′) such that

1 − p′ =
n(i)∑

k=1
(c′′

ik)∗fi(x0,2)c′′
ik, (e 4.13)

p′ =
n′(j)∑

k=1
(d′

jk)∗gj(y0,1)d′
jk, and (e 4.14)

1 − p′ =
n′(j)∑

k=1
(d′′

jk)∗gj(y0,2)d′′
jk. (e 4.15)

Choose projections p′
i, q

′
j in B′, and λ′

i, µ
′
j ∈ C such that 

∑l′

i=1 p
′
i = p′ and 

∑m′

j=1 q
′
j = p′, 

and x0,1 =
∑l′

i=1 λ′
ip

′
i, and y0,1 =

∑m′

j=1 µ
′
jq

′
j .

Since ∥x − (x0,1 + x0,2)∥ < δ2, by 4.2, sp(x0,1 + x0,2) ⊂ {λ ∈ C : dist(λ, sp(x)) < δ2}. 
It follows that sp(x0,1) (in p′Ap′) and sp(x0,2) (in (1 − p′)A(1 − p′)) are subsets of 
{λ ∈ C : dist(λ, sp(x)) < δ2}.

Recall that {λ1, λ2, ..., λl} is ϵ0/2-dense in sp(x). Choose S1 = {λi′ : |λi′ − λ1| < ϵ0}. 
Suppose that S1, S2, ..., Sk (k < l) are chosen, let Sk+1 = {λi′ : |λi′ − λk+1| < ϵ0} \
(∪k

i=1Si). Note, by the choice of ζ, Sk+1 ⊃ {λ′
i′ : |λ′

i′ − λi| ≤ ζ}. By the induction, we 
obtain mutually disjoint subsets S1, S2, ..., Sl such that sp(x0,1) ⊂ ∪l

i=1Si,

{λ′
i′ : |λ′

i′ − λi| ≤ ζ} ⊂ Si ⊂ {|λ′
i′ − λi| < ϵ0}, i = 1, 2, ..., l.

Put p̂i =
∑

λi′ ∈Si
p′
i′ . Then fi(x0,1) ≤ p̂i, i = 1, 2, ..., l. By (e 4.12), fi(x0,1) ̸= 0, whence 

p̂i ̸= 0. Set x′
0,1 =

∑l
i=1 λip̂i. Then 

∑l
i=1 p̂i = p′ and

∥x′
0,1 − x0,1∥ < ϵ0. (e 4.16)

Similarly, there is y′
0,1 ∈ N (B′) such that y′

0,1 =
∑m

i=1 µj q̂j , q̂j ̸= 0, 
∑m

j=1 q̂j = p′ and

∥y′
0,1 − y0,1∥ < ϵ0. (e 4.17)

By (e 4.13), for any i, fi(x0,2) ̸= 0. It follows that {z : |z − λi| < ζ} ∩ sp(x0,2) ̸= ∅. So 
sp(x0,2) is δ2-dense in sp(x). Similarly, sp(y0,2) is δ2-dense in sp(y).

Since A is a simple C∗-algebra of real rank zero, it is easy to find a non-zero projection 
e0 ! p̂i and e0 ! q̂j for 1 ≤ i ≤ l and 1 ≤ j ≤ m.

Since TR((1 − p′)A(1 − p′)) = 0, by repeating the above process, one obtains a finite 
dimensional C∗ subalgebra B′′ with unit p′′(≤ 1 − p′) such that
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(i) x0,2 ≈δ2 x′′
0,1 + x′′

0,2, y0,2 ≈δ2 y′′
0,1 + y′′

0,2, where x′′
0,1, y

′′
0,1 ∈ N (B′′), x′′

0,2, y
′′
0,2 ∈

N (((1 − p′ − p′′)A(1 − p′ − p′′))),
(ii)

∥x′′
0,1 −

l∑

i=1
λip

′′
i ∥ < ϵ0, ∥y′′

0,1 −
m∑

j=1
µjq

′′
j ∥ < ϵ0, (e 4.18)

(iii) (in (1 − p′ − p′′)A(1 − p′ − p′′)), sp(x′′
0,2), sp(y′′

0,2) are δ2-dense in sp(x0,2), sp(y0,2)
respectively. Then it follows they are ϵ-dense in sp(x), sp(y) respectively.

(iv) K[1 − p′ − p′′] ≤ [e0].
Consequently (as δ2 < ϵ), sp(x′′

0,2) (in (1 − p′ − p′′)A(1 − p′ − p′′)) is ϵ-dense in sp(x)
and sp(y′′

0,2) (in (1 − p′ − p′′)A(1 − p′ − p′′)) is ϵ-dense in sp(y), respectively.
Let B := B′⊕B′′ and p := 1B = p′ + p′′. Set x′ = x′

0,1+
∑l

i=1 λip′′
i =

∑l
i=1 λi(p̂i+p′′

i ), 
x′′ = x′′

0,2, y′ = y′
0,1 +

∑m
j=1 µjq′′

j =
∑m

j=1 µj(q̂j + q′′
j ) and y′′ = y′′

0,2. Then x′, y′ ∈ B. By 
(e 4.11), (e 4.16), (i) above and (e 4.18),

x ≈δ2 x0,1 + x0,2 ≈ϵ0+δ2 x′
0,1 + (x′′

0,1 + x′′
0,2) ≈ϵ0 x′ + x′′

0,2 = x′ + x′′.

In other words (δ2 + ϵ0 + δ2 + ϵ0 < ϵ),

∥x − (x′ + x′′)∥ < ϵ.

Similarly,

∥y − (y′ + y′′)∥ < ϵ.

Define pi = p̂i + p′′
i , i = 1, 2, ..., l, and qj = q̂j + q′′

j , j = 1, 2, ..., m. Then e0 ! p̂i ! pi
and e0 ! q̂j ! qj , 1 ≤ i ≤ l and 1 ≤ j ≤ m. It follows, for i = 1, 2, ..., l, j = 1, 2, ..., m

K[1 − p] ≤ [r],K[1 − p] ≤ [pi], and K[1 − p] ≤ [qj ]. ✷

Lemma 4.4. Let A be a unital C∗-algebra with a unique tracial state τ and let ϵ1 and ϵ2 be 
two positive numbers. Suppose {p1, p2, ..., pl} and {q1, q2, ..., ql} are two sets of mutually 
orthogonal and mutually unitarly equivalent projections with 

∑l
i=1 pi = 1A =

∑l
i=1 qi, 

such that there is a unitary u ∈ A with u∗piu = qi, i = 1, 2, ..., l.
Let x =

∑l
i=1 λipi and y =

∑l
i=1 µiqi be normal in A, where λi, µi ∈ C. Suppose that 

S1, S2, ..., SN are mutually disjoint subsets of {1, 2, ..., l} such that 7Sk = {1, 2, ..., l}
and, µi = µj for all i, j ∈ Sk, and, y =

∑N
k=1 µ

′
kQk where µ′

k = µj for some j ∈ Sk and 
Qk =

∑
i∈Sk

qi. Suppose that ϕ : A → A is a unital completely positive linear map such 
that ϕ(y) ≈ϵ1 x and

|τ(ϕ(Qk)) − τ(Qk)| ≤ sϵ2, k = 1, ..., N, (e 4.19)

where
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s = inf{τ(Qk) : k = 1, 2, ..., N ; τ ∈ T (A)},

then there is a trace preserving unital completely positive map ψ : A → A such that

∥ψ(y) − x∥ ≤ 2ϵ2∥y∥ + 2ϵ1 and x ∈2ϵ2∥y∥+2ϵ1 conv(U(y)).

Proof. We first consider the case that pi = qi, 1 ≤ i ≤ l. Let ϕ′ : A → A be defined by

ϕ′(a) =
l∑

i=1
piϕ(a)pi for all a ∈ A.

Then ϕ′ is a unital completely positive linear map from A to A. Moreover, one checks 
that τ(ϕ′(a)) = τ(ϕ(a)) for any a ∈ A.

Define, for j ∈ Sk,

dij = τ(piϕ(Qk)pi)/τ(Qk), i = 1, 2, ..., l, k = 1, 2, ..., N.

Note that
∑

j∈Sk

dij = lτ(piϕ(Qk)), i = 1, 2, ..., l, k = 1, ..., N.

Since ϕ is unital, for any i ∈ {1, 2, ..., l},

l∑

j=1
dij = l

N∑

k=1

∑

j∈Sk

τ(piϕ(Qk))/τ(Qk) = 1. (e 4.20)

Since ∥ϕ(y) − x∥ < ϵ1 (note that we have assumed that qi = pi, i = 1, 2, ..., l), for any 
i ∈ {1, 2, ..., l},

∥λipi −
l∑

j=1
µjpiϕ(pj)pi∥ = ∥pi(x − ϕ(y))pi∥ < ϵ1. (e 4.21)

This also implies that

∥x − ϕ′(y)∥ < ϵ1.

It follows that for any i = 1, 2, ..., l,

|λi −
l∑

j=1
µjdij | = l|τ(λipi −

l∑

j=1
µjpi(ϕ(pj)pi))| < ϵ1. (e 4.22)

We also have, for any j ∈ Sk,
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l∑

i=1
dij =

l∑

i=1
τ(piϕ(Qk))/τ(Qk) = τ(ϕ(Qk))/τ(Qk). (e 4.23)

By (e 4.19), for any k ∈ {1, 2, ..., N},

|τ(ϕ(Qk))/τ(Qk) − 1| < sϵ2/τ(Qk) ≤ ϵ2.

Then there are ϵ′
j ∈ R with |ϵ′

j | ≤ ϵ2 such that

l∑

i=1
dij = 1 + ϵ′

j , j = 1, ..., l. (e 4.24)

Let Λ+ = {j : ϵj ≥ 0} and Λ− = {j : ϵj < 0}. Note that

∑

j∈Λ+

(1 + ϵ′
j) +

∑

j∈Λ−

(1 + ϵ′
j) =

l∑

j=1

l∑

i=1
dij =

l∑

i=1

l∑

j=1
dij = l. (e 4.25)

Therefore
∑

j∈Λ+

ϵ′
j +

∑

j∈Λ−

ϵ′
j = 0. (e 4.26)

Let

ϵij =
dijϵ′

j

1 + ϵ′
j

, j ∈ Λ+, i = 1, ..., l,

then

0 ≤ ϵij ≤ dij , j ∈ Λ+; i = 1, ..., l, (e 4.27)
l∑

i=1
ϵij = ϵ′

j , j ∈ Λ+, (e 4.28)

and, by (e 4.20), for all i,

∑

j∈Λ+

ϵij =
∑

j∈Λ+

dijϵ′
j

1 + ϵ′
j

≤ max
j∈Λ+

ϵ′
j

1 + ϵ′
j

( ∑

j∈Λ+

dij
)

(e 4.29)

≤ max
j∈Λ+

ϵ′
j

1 + ϵ′
j

< ϵ2. (e 4.30)

Let aj = −ϵ′
j , j ∈ Λ− and bi =

∑
j∈Λ+

ϵij , i ∈ {1, 2, ..., l}. Then, by (e 4.26) and (e 4.28),
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∑

j∈Λ−

aj =
∑

j∈Λ−

(−ϵ′
j) =

∑

j∈Λ+

ϵ′
j =

l∑

i=1
bi.

By the Reisz interpolation, (see page 85 of [1]), there are
{ϵij : j ∈ Λ−; i = 1, 2, ..., l} with ϵij ≥ 0 such that

l∑

i

ϵij = −ϵ′
j = aj , j ∈ Λ− and (e 4.31)

∑

j∈Λ−

ϵij = bi, i ∈ {1, 2, ..., l}. (e 4.32)

Note that
l∑

i=1
ϵij = ϵ′

j < ϵ2, j ∈ Λ+. (e 4.33)

Put

d′
ij = dij − ϵij , j ∈ Λ+; i = 1, 2, ..., l, d′

ij = dij + ϵij , j ∈ Λ−; i = 1, 2, ..., l.

By (e 4.27), d′
ij ≥ 0. Then by (e 4.20) and (e 4.24),

l∑

j=1
d′
ij = 1 −

∑

j∈Λ+

ϵij +
∑

j∈Λ−

ϵij = 1, for all i = 1, 2, ..., l (using (e 4.32))

l∑

i=1
d′
ij = 1 + ϵ′

j −
l∑

i=1
ϵij = 1 + ϵ′

j − ϵ′
j = 1, for all j ∈ Λ+ (using (e 4.28))

l∑

i=1
d′
ij = 1 + ϵ′

j +
l∑

i=1
ϵij = 1 + ϵ′

j − ϵ′
j = 1, for all j ∈ Λ− (using (e 4.31))

In other words, for any i, j,

l∑

i=1
d′
ij =

l∑

j=1
d′
ij = 1.

Let D′ = (d′
ij)l×l and let ϕD′ =

∑
σ∈Σl

tσAduσ be induced trace preserving com-
pletely positive linear mapping in part (2) in 3.5. View each uσ as a unitary matrix in 
Ml(C · 1A) ⊂ Ml(A), and define

ϕD′

(
(cij)

)
=

∑

σ∈Σl

tσu
∗
σ(cij)uσ

for all (cij) ∈ Ml(A). Note that,
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ϕD′

( l∑

i=1
µipi

)
=

l∑

i=1
λ′
ipi,

where (λ′
1, λ

′
2, ..., λ

′
l) is given by

(λ′
1,λ

′
2, ...,λ

′
l)T = D′(µ1, µ2, ..., µl)T

It follows from (e 4.22), (e 4.33) that for any i = 1, 2, ..., l,

|λi − λ′
i| ≤ ϵ1 +

∣∣∣
l∑

j=1
µjdij −

l∑

j=1
µjd

′
ij

∣∣∣ ≤ ϵ1 + max
1≤j≤l

{|µj |}
( l∑

i=1
|ϵij |

)

= ϵ1 + max
1≤j≤l

{|µj |}
( ∑

i∈Λ+

ϵij +
∑

i∈Λ−

|ϵij |
)

≤ ϵ1 + 2ϵ2∥y∥.

Consequently,

∥ϕD′(y) − x∥ ≤ ∥ϕ′(y) − x∥ + ∥ϕ′(y) − ϕD′(y)∥ < 2ϵ1 + 2ϵ2∥y∥.

In general case, there is a unitary u ∈ A such that u∗qiu = pi, i = 1, 2, ..., l. Put 
ϕ′ = Adu ◦ ϕ and x′ = u∗xu. Then we can apply the above to obtain a trace preserving 
completely positive contractive linear map ϕ′

D′ : A → A such that

∥ϕ′
D′(y) − x′∥ < 2ϵ1 + 2ϵ2∥y∥.

Let ψ = Adu∗ ◦ ϕ′
D′ . Then ψ is trace preserving completely positive contractive linear 

map and

∥ψ(y) − x∥ < 2ϵ1 + 2ϵ2∥y∥. ✷

Corollary 4.5. Let F be a finite dimensional C∗-algebra. Let x, y ∈ F be two normal 
elements such that y =

∑N
k=1 µkqk, where q1, q2, ..., qk ∈ F are projections such that ∑N

k=1 qk = 1F , and µk ∈ C, k = 1, 2, ..., N . Suppose that there is a unital completely 
positive linear map ϕ : F → F such that ϕ(y) ≈ϵ1 x and

|τ(ϕ(qk)) − τ(qk)| ≤ sϵ2, k = 1, ..., N, for all τ ∈ T (F ), (e 4.34)

where

s = inf{τ(qk) : k = 1, 2, ..., N ; τ ∈ T (F )}, (e 4.35)

then there is a trace preserving unital completely positive map ψ : F → F such that

∥ψ(y) − x∥ ≤ 2ϵ2∥y∥ + 2ϵ1 and x ∈2ϵ2∥y∥+2ϵ1 conv(U(y)). (e 4.36)
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Proof. Suppose F = Mr1(C) 
⊕

Mr2(C) 
⊕

· · ·
⊕

MrK (C). It is clear that the general 
case can be reduced to the case that F = Mn(C). Then we may write x =

∑n
i=1 λipi, 

where p1, p2, ..., pn are mutually orthogonal rank one projections and λi ∈ C, i =
1, 2, ..., n. The corollary then follows immediately from 4.4. ✷

Lemma 4.6. Let A be a unital infinite dimensional simple C∗-algebra with real rank zero 
and stable rank one and let p1, p2, ..., pl and e be mutually orthogonal projections in A
with 

∑l
i=1 pi+ e = 1A. Let x = x1+x2, where x1 =

∑l
j=1 λjpj, and x2 ∈ eAe be normal 

elements. Suppose that K > 1 is an integer such that (2K + 1)[e] ≤ [pj ] (1 ≤ j ≤ l) and 
{λ1, λ2, ..., λl} is η-dense in sp(x). Then, for any ϵ > 0,

dist(x, conv(U(x1))) ≤ 8∥x∥
K

+ ϵ + η.

Proof. Choose a projection p0 ≤ p1 such that [p0] = [e]. Note that, by 3.4 of [7], since 
A has stable rank one, there exists a normal element x′

2 ∈ eAe such that sp(x′
2) ⊂ Γ, 

where Γ is an one-dimensional finite CW complex in the plane (sp(x′
2) is the spectrum 

of x′
2 in eAe) and ∥x′

2 − x2∥ < ϵ/8. Then, sp(x′
2) = X0 ∪ X1, where X0 ⊂ C is a 

compact subset with covering dimension no more than 1 such that K1(C(X0)) = {0}
and where X1 is an one-dimensional finite CW complex in the plane. Note, by 4.2, 
sp(x′

2) ⊂ {λ ∈ C : dist(λ, sp(x)) < ϵ/8}. It follows from Lemma 3 of [19] that there exists 
x0 ∈ N (p0Ap0) with sp(x0) = X1 (spectrum in p0Ap0), such that, for any λ /∈ sp(x′

2),

[λp0 − x0] = −[λe − x′
2] in K1(A).

Choose any mutually orthogonal projections {ei : i = 1, ..., l} ⊂ eAe such that ∑l
i=1 ei = e. Choose p′

i ≤ pi such that [p′
i] = [ei], i = 1, 2, ..., l.

Define x′
3 =

∑l
j=1 λjp′

j and x3 =
∑l

j=1 λj(pj − p′
j). We may write

x = x′
3 + x3 + x2.

Note that, since A has stable rank one, one computes that

[pj − p′
j ] = [pj ] − [p′

j ] ≥ (2K + 1)[e] − [e] = 2K[e] ≥ 2K[p′
j ], (e 4.37)

j = 1, 2, ..., l. It follows from (3) of 3.6 and 3.1 that

x ∈4∥x∥/2K conv(U(x0 + x3 + x2)). (e 4.38)

Since λ(p0 + e) − (x0 + x′
2) ∈ Inv0((p0 + e)A(p0 + e)) for all λ /∈ sp(x′

2), by [19],

∥(x0 + x′
2) − x4∥ < ϵ/16, (e 4.39)



24 S. Hu, H. Lin / Journal of Functional Analysis 278 (2020) 108306

for some x′
4 ∈ (p0 + e)A(p0 + e) with finite spectrum sp(x′

4) ⊂ sp(x′
2) ⊂ {λ ∈ C :

dist(λ, sp(x)) < ϵ/8} (as normal elements in (p0 + e)A(p0 + e)). Therefore, there is a 
normal element x4 =

∑l
j=1 λjqj (recall that {λ1, λ2, ..., λl} is η-dense in sp(x)) such that

∥(x0 + x2) − x4∥ < (ϵ/16 + ϵ/8) + (ϵ/8 + η) < ϵ/2 + η, (e 4.40)

where {q1, q2, ..., ql} is a set of mutually orthogonal projections in (p0 + e)A(p0 + e).
By (e 4.37),

K[qi] ≤ K[p0 + e] = 2K[e] ≤ [pi − p′
i], i = 1, ..., l.

Thus, by part (3) of 3.6 (note x1 = x′
3 + x3),

x4 + x3 ∈ 4∥x∥
K

conv(U(x1)). (e 4.41)

By (e 4.38), (e 4.40) and (e 4.41), we conclude that

x ∈ 8∥x∥
K +ϵ+η

conv(U(x1)). ✷

Theorem 4.7. Let A be a unital separable simple C∗-algebra with tracial rank zero. Then 
for any normal elements x, y ∈ A, x ∈ conv(U(y)) if and only if there exists a sequence 
of unital completely positive linear maps ψn : A → A such that

lim
n→∞

∥ψn(y) − x∥ = 0 and (e 4.42)

lim
n→∞

sup{|τ(ψn(a)) − τ(a)| : τ ∈ T (A)} = 0 for all a ∈ A. (e 4.43)

Proof. Let x, y ∈ N (A) and let {ψn} : A → A be a sequence of unital completely positive 
contractive linear maps which satisfies (e 4.42) and (e 4.43).

Without loss of generality, we may assume that ∥x∥, ∥y∥ ≤ 1. By replacing y by 
y − λ1A for some λ ∈ sp(y) and x by x − λ1A, without loss of generality, we may assume 
that 0 ∈ sp(y).

Fix ϵ > 0. Put ϵ0 = ϵ/214 and an integer K such that 0 < 28/K < ϵ0.
It follows from 4.3 that there exists a finite dimensional C∗-subalgebra B of A with 

p0 = 1B and there are x0, y0 ∈ N (B), x′
0, y

′
0 ∈ N ((1 − p0)A(1 − p0)) such

x ≈ϵ0 x0 + x′
0, y ≈ϵ0 y0 + y′

0, (e 4.44)

where

x0 =
h∑

i=1
λipi0, y0 =

N∑

k=1
µkqk0,
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where {λ1, ..., λh} and {µ1, ..., µN} are distinct and ϵ0-dense in sp(x) and sp(y) respec-
tively. Moreover, we may assume µ1 = 0, and pi0, qk0 ∈ B are projections satisfying 
condition:

h∑

i=1
pi0 =

N∑

k=1
qk0 = p0 and (e 4.45)

(2K + 1)[1 − p0] ≤ [pi0], i = 1, 2, ..., h and (e 4.46)
(2K + 1)[1 − p0] ≤ [qk0], k = 1, 2, ..., N. (e 4.47)

Put q00 = 1 − p0 and

s0 = inf{τ(qk0) : τ ∈ T (A), k = 0, 1, ..., N} > 0. (e 4.48)

It follows from (2) of 3.6 and the fact 1/((2K + 1) + 1) < ϵ0 that

y0 ∈ϵ0 conv(U(y0 + y′
0)), and y0 ∈2ϵ0 conv(U(y)). (e 4.49)

Then there is a trace preserving unital completely positive contractive linear map ϕ1 :
A → A such that

∥ϕ1(y) − y0∥ < 2ϵ0. (e 4.50)

It follows from 4.6 that there is a second trace preserving unital completely positive 
contractive linear map ϕ2 : A → A such that

∥ϕ2(y0) − y∥ <
8∥y∥
K

+ ϵ0 + ϵ0 < 3ϵ0. (e 4.51)

Put B0 = C(1 − p0) ⊕ B. Let PB0 be the set of all non-zero projections in B0. There 
are only finitely many unitary equivalence classes of projections in PB0 . Put

s00 = inf{τ(e) : τ ∈ T (A) and e ∈ PB0} > 0.

Put

ϵ1 = (s00/64NK)ϵ0.

Note that the unit ball of B0 is compact.
Choose large n0 so that

∥ψn0 ◦ ϕ2(y0) − x∥ < 4ϵ0 and (e 4.52)

and for all b ∈ B0,
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sup{|τ(ψn0 ◦ ϕ2(b)) − τ(ϕ2(b))| : τ ∈ T (A)} ≤ (ϵ1/4)∥b∥. (e 4.53)

Put ϕ3 = ψn0 ◦ ϕ2. Since ϕ2 is trace preserving, by (e 4.53),

sup{|τ(ϕ3(b)) − τ(b)| : τ ∈ T (A)} ≤ (ϵ1/4)∥b∥ for all b ∈ B0. (e 4.54)

We also have

∥ϕ3(y0) − x∥ < 4ϵ0 (e 4.55)

There are xik, yik ∈ A such that (see 2.9 of [6] and Lemma 3.8 above)

∥∥∥ϕ3(qk0) −
m(k)∑

i=1
x∗
ikxik

∥∥∥ < ϵ1,
∥∥∥

m(k)∑

i=1
xikx

∗
ik − qk0

∥∥∥ < ϵ1, (e 4.56)

∥∥∥
m(k)′
∑

i=1
y∗
ikyik − qk0

∥∥∥ < ϵ1 and
m(k)′
∑

i=1
yiky

∗
ik ≥ s0 · 1A, (e 4.57)

k = 0, 1, 2, ..., N .
Note that we may assume, without loss of generality, (by splitting xik, yik into more 

terms), that ∥xik∥, ∥yik∥ ≤ 1 for all i and k.
Put

F1 = {1A, y0, p0, p10, ..., ph0; q00, q10, ..., qN0} ∪ F0 ∪ {ϕ3(y0)},

where

F0 = {xik, x
∗
ik : 1 ≤ i ≤ m(k), 0 ≤ k ≤ N} ∪ {yij , y∗

ik : 1 ≤ i ≤ m(k)′, 0 ≤ k ≤ N}.

Then put M00 = max{m(k), m(k)′ : k = 0, 1, ..., N}.
Let ϵ2 = ϵ1/(210(M00 + 1)NK). Choose a finite subset FB0 of the unit ball of B0

which is ϵ2/4-dense. Since B0 is projective, choose δ0 > 0 and a finite subset GB0 such 
that, for any unital GB0-δ0-multiplicative completely positive contractive linear map L′

from B0 to a unital C∗-algebra A′, there exists a unital homomorphism h′ : B0 → A′

such that

∥h′(b) − L′(b)∥ < ϵ2/4 for all b ∈ FB0 .

Consequently,

∥h′(b) − L′(b)∥ ≤ (ϵ2/2)∥b∥ for all b ∈ B0.

We may assume that GB0 contains a generating set of B0.
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Put

F2 = F1 ∪ GB0 ∪ {x, y0}.

Choose a large finite subset F3 of A such that for any non-zero element z ∈ F2, there 
are azi, bzi ∈ F3 such that

r(z)∑

i=1
azizbzi = 1A. (e 4.58)

Put M1 = 2 max{r(z) max{∥azi∥ + ∥bzi∥ : 1 ≤ i ≤ r(z)} : z ∈ F2 \ {0}}. Let ϵ3 =
min{ϵ2/M1, δ0/M1}.

By the virtue of 4.3, there is a finite dimensional C∗-subalgebra B1 with 1B1 = p such 
that

∥pz − zp∥ < ϵ3 for all z ∈ F3, (e 4.59)
dist(pzp,B1) < ϵ3 for all z ∈ F3 and (e 4.60)
sup{τ(1 − p) : τ ∈ T (A)} < ϵ3, (e 4.61)

as well as x̄1, y1 ∈ N (B1) x̄2, y2 ∈ N ((1 − p)A(1 − p)), projections qi, pi ∈ B1 and 
q′
i ∈ (1 − p)A(1 − p) such that

pxp ≈ϵ3 x̄1, (1 − p)x(1 − p) ≈ϵ3 x̄2, (e 4.62)
py0p ≈ϵ3 y1, (1 − p)y0(1 − p) ≈ϵ3 y2, (e 4.63)

x̄1 =
N ′∑

j=1
λ′
jpj , y1 =

N∑

i=1
µiqi, y2 =

N∑

i=1
µiq

′
i (e 4.64)

qi0 ≈ϵ3 qi + q′
i, i = 0, 1, ..., N (e 4.65)

q0 +
N∑

i=1
qi =

N ′∑

i=1
pi = p,

N∑

i=1
q′
i = 1 − p, (e 4.66)

(2K + 1)[1 − p] ≤ [qi] and (2K + 1)[1 − p] ≤ [pj ] (e 4.67)
for all 0 ≤ i ≤ N, 1 ≤ j ≤ N ′, (e 4.68)

where {λ′
1, λ

′
2, ..., λ

′
N ′} is ϵ3-dense in sp(x). We may write

B1 = MR(1)(C)
⊕

MR(2)(C)
⊕

· · ·
⊕

MR(k0)(C)

and let πr : B1 → MR(r)(C) be the quotient map, r = 1, 2, ..., k0.
Moreover, by the choice of δ0, we may assume that there exists a homomorphism 

h0 : B0 → B1 such that
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∥h0(b) − pbp∥ ≤ (ϵ2/2)∥b∥ < ϵ2∥b∥ for all b ∈ B0 \ {0}. (e 4.69)

Moreover, we may assume h0(1B0) = p = 1B1 . Also, by (e 4.58), the choice of GB0 and 
ϵ3, we have

r(z)∑

i=1
h0(azi)h0(z)h0(bzi) ≈4M1ϵ3 1B1 . (e 4.70)

Since 4M1ϵ3 < 1/2, h0(z) ̸= 0 for all z ∈ G. Thus h0 is unital and injective.
Furthermore, we may assume that y1 = h0(y0), qk = h0(qk0), k = 1, 2, ..., N .
Define L = h0 ◦ ϕ3 ◦ (h0|h0(B0))−1. Note that

L(qk) = h0 ◦ ϕ3(h−1
0 (qk)) = h0 ◦ ϕ3(qk0), (e 4.71)

L(y1) = h0 ◦ ϕ3(h−1
0 (y1)) = h0 ◦ ϕ3(y0), and (e 4.72)

L(p) = h0ϕ3(h−1
0 (p)) = h0 ◦ ϕ3(1B0) = p. (e 4.73)

Since both B1 and h0(B0) are finite dimensional, there is a conditional expectation 
E : B1 → h0(B0). By replacing L by L ◦ E, then L is extended to a unital completely 
positive linear map B1 → B1.

We have, by (e 4.69), (e 4.55) and (e 4.62),

∥L(y1) − x̄1∥ ≤ ∥h0(ϕ3(y0)) − pϕ3(y0)p∥ + ∥pϕ3(y0)p − pxp∥ (e 4.74)
+∥pxp − x̄1∥ < ϵ2 + 4ϵ0 + ϵ3< ϵ/16. (e 4.75)

Put x̄ = x̄1 + x̄2. By (e 4.67), and applying 4.6,

x̄ ∈ 8∥x∥
K +ϵ3+ϵ3

conv(U(x̄1)). (e 4.76)

Therefore (by (e 4.59) and (e 4.62)), with η0 = 8∥x∥
K + 2ϵ3 + 4ϵ3 < ϵ/4,

x ∈η0 conv(U(x̄1)). (e 4.77)

For each z ∈ F3, by (e 4.60), there is L(z) ∈ B1 such that

∥pzp − L(z)∥ < ϵ3 and ∥pz∗p − L(z)∗∥ < ϵ3. (e 4.78)

By (e 4.71), (e 4.69), (e 4.56), (e 4.57) and (e 4.78),

L(qk) = h0 ◦ ϕ3(qk0) ≈ϵ2 pϕ3(qk,0)p ≈ϵ1

m(k)∑

i=1
px∗

ikxikp (e 4.79)

≈m(k)ϵ3

m(k)∑

i=1
px∗

ikpxikp ≈4m(k)ϵ3

m(k)∑

i=1
L(xik)∗L(xik). (e 4.80)
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Similarly

qk ≈ϵ3 pqk,0p ≈ϵ1

m(k)∑

i=1
pxikx

∗
ikp ≈5m(k)ϵ3

m(k)∑

i=1
L(xik)L(xik)∗, (e 4.81)

pqk,0p ≈ϵ1

m(k)′
∑

i=1
py∗

ikyikp ≈5m(k)′ϵ3

m(k)′
∑

i=1
L(yik)∗L(yik) and (e 4.82)

m(k)′
∑

i=1
L(yik)L(yik)∗ ≈5m(k)′ϵ3

m(k)′
∑

i=1
pyj,ky

∗
ikp ≥ s0p. (e 4.83)

Note that

10m(k)ϵ3 + 10m(k)′ϵ3 + ϵ2 + 3ϵ1 < s0/8.

By (e 4.80), (e 4.81), (e 4.82) and (e 4.83), we have

t(L(qk)) ≥ s0/2 for all t ∈ T (B1), k = 0, 1, ...., N, (e 4.84)
|t(L(qk)) − t(qk)| < (s0/4)ϵ0, for all t ∈ T (B1), k = 0, 1, ...., N. (e 4.85)

Let Q1 = q1 + q0, Qi = qi, i = 2, 3, ..., N . Then, for k = 1, 2, ..., N ,

t(L(Qk)) ≥ s0/2 for all t ∈ T (B0), (e 4.86)
|t(L(Qk)) − t(Qk)| < (s0/2)ϵ0 < (s0/2)(ϵ/16) for all t ∈ T (B0). (e 4.87)

Note (e 4.75), (e 4.86) and (e 4.87), by the choice s0, applying 4.5 to L, ̄x1, y1, ϵ/16, ϵ/16
(in place of ϕ, x, y, ϵ1, ϵ2, respectively), we obtain a trace preserving completely positive 
contractive linear map Φ : B1 → B1 such that

∥Φ(y1) − x̄1∥ < 2(ϵ/16) + 2(ϵ/16) and x̄1 ∈ϵ/4 conv(U(y1)). (e 4.88)

By (e 4.67),

K[1 − p] ≤ (2K + 1)[1 − p] ≤ [qk] ≤ [Qk], k = 1, 2, ..., N.

Since µ1 = 0, applying part (2) of 3.6,

y1 ∈η2 conv(U(y1 + y2)), where η2 = ∥y2∥
K + 1 < ϵ0. (e 4.89)

By (e 4.59), (e 4.63), (e 4.64), (y0 ≈4ϵ3 y1 + y2), and (e 4.49)

y1 ∈η2+4ϵ3 conv(U(y0)). (e 4.90)
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It follows (by also (e 4.50)) that

y1 ∈η2+4ϵ3+2ϵ0 conv(U(y)). (e 4.91)

Since η2 + 4ϵ3 + 2ϵ0 < ϵ/2, it follows from (e 4.91), (e 4.88) and (e 4.77), that

x ∈ϵ conv(U(y)). ✷

Corollary 4.8. Let A be a unital separable simple C∗-algebra with tracial rank zero and 
let x, y ∈ A be two normal elements. Then the following are equivalent:

(1) x ∈ conv(U(y));
(2) there exists a sequence of unital completely positive maps ψn : A → A such that

lim
n→∞

∥ψn(y) − x∥ = 0 and

τ(ψn(a)) = τ(a) for all a ∈ A and for all τ ∈ T (A); and

(3) there exists a sequence of unital completely positive maps ψn : A → A such that

lim
n→∞

∥ψn(y) − x∥ = 0 and (e 4.92)

lim
n→∞

sup{|τ(ψn(a)) − τ(a)| : τ ∈ T (A)} = 0 for all a ∈ A. (e 4.93)

Proof. We have established that (1) and (3) are equivalent. It is also clear that (2) 
implies (3), and (1) implies (2) follows from 3.7. ✷

5. Normal elements with small boundaries

The following follows from [18].

Lemma 5.1 ([18]). Let X be a compact subset of the plane, ϵ > 0 and let F ⊂ C(X) be 
a finite subset. There is δ > 0 and a finite subset G ⊂ C(X) satisfying the following: If 
ϕ : C(X) → F is a G-δ-multiplicative completely positive contractive linear map, where F
is a finite dimensional C∗-algebra, then there exists unital homomorphism h : C(X) → F

such that

∥ϕ(f) − h(f)∥ < ϵ for all f ∈ F .

Definition 5.2. Let X be a compact metric space, let A be a C∗-algebra with QT (A) ̸= ∅, 
and let T ⊂ QT (A) be a subset. Suppose that ϕ : C(X) → A is a unital homomorphism. 
We shall say ϕ has the (SB) property with respect to T , if, for any δ > 0, there is a 
finite open cover {O1, O2, ..., Om} of X with max{diam(Oi) : i = 1, ..., m} < δ such that 
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µτ (∂(Oj)) = µτ (Oj \ Oj) = 0, for all τ ∈ T , i = 1, 2, ..., m, where µτ is the probability 
Borel measure induced by the state τ ◦ ϕ.

If T = QT (A), we shall simplify say that ϕ has the (SB) property.

Note that every quasi-trace on a commutative C∗-algebra is a trace.
The following is easily proved (see the proof of Lemma 3 of [16]).

Proposition 5.3. Let A be a unital simple C∗-algebra with T (A) ̸= ∅, and let X be a 
compact metric space. Suppose that ϕ : C(X) → A is a unital homomorphism with the 
(SB) property. Then the following holds: For any δ1 > 0 and η > 0, there exists δ2 > 0
with δ2 < δ1 and there exists a compact subset K of X such that

(i) X \ K is a finite disjoint union of open subsets {Oj : 1 ≤ j ≤ m} with 
max{diam(Oj) : 1 ≤ j ≤ m} < δ1,

(ii) Y ′
i ∩ Y ′

j = ∅, if i ̸= j, where Y ′
j = {t ∈ X : dist(t, Oj) ≤ δ2/16}, j = 1, 2, ..., m,

(iii) ∪m
j=1Yj ⊃ X, Yj = {t ∈ X : dist(t, Oj) < δ2}, j = 1, 2, ..., m,

(iv) µτ (K) < min{η, inf{µτ (Oj) : τ ∈ T (A), 1 ≤ j ≤ m}}/16(m+ 1) for all τ ∈
T (A).

Proposition 5.4. In 5.3, if we replace Yi by open subsets Yi \∪j ̸=iY ′
j , i = 1, 2, ..., m, then, 

we have
(iii)′ ∪m

j=1Yj ⊃ X, Y ′
i ⊂ Yi⊂{t ∈ X : dist(t, Oi) < δ2}, i = 1, 2, ...,m, and

(v) Yi ∩ Y ′
j = ∅, when i ̸= j.

Proof. Set Ỹi = Yi \ ∪j ̸=iY ′
j , i = 1, 2, ..., m. Then Ỹi is open and Y ′

i ⊂ Ỹi (recall that 
Y ′
i ∩ Y ′

j = ∅, i ̸= j), and Ỹi ∩ Y ′
j = ∅, whenever i ̸= j. To see ∪m

i=1Ỹi = X, let t ∈ X. 
If t ∈ Y ′

j for some j, then t ∈ Ỹj ⊂ ∪m
i=1Ỹi. Otherwise, t /∈ ∪m

j=1Y
′
j . However, t ∈ Yi for 

some i. Therefore t ∈ Yi \ ∪m
j=1Y

′
j ⊂ Yi \ ∪j ̸=iY ′

j = Ỹi. Replacing Yi by Ỹj in 5.3, we 
obtain (iii)′, (v). ✷

Lemma 5.5 (see the proof of Lemma 2 of [16] and that of Lemma 4.8 of [17]). Let A be a 
unital simple C∗-algebra T (A) ̸= ∅ such that its extremal points ∂e(T (A)) has countably 
many points. Suppose that X is a compact metric space and ϕ : C(X) → A is a unital 
homomorphism. Then ϕ has the (SB) property.

Proof. Let δ > 0. For each ξ ∈ X, consider Sξ,r = {t ∈ X : dist(t, ξ) = r}, where 
0 < r < δ/2. Since ∂e(T (A)) is countable, there is 0 < rξ < δ/2 such that

µτ (Sξ,rξ) = 0 for all τ ∈ ∂e(T (A)).

It follows that

µτ (Sξ,rξ) = 0 for all τ ∈ T (A).
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Let Oξ = {t ∈ X : dist(ξ, t) < rξ}. Then ∪ξ∈XOξ = X. There are ξ1, ξ2, ..., ξm ∈ X such 
that

∪m
i=1Oξi ⊃ X.

Note that µτ (∂(Oξi)) = 0, i = 1, 2, ..., m. ✷

Let A be a unital C∗-algebra and let x, y ∈ A be two normal elements with X =
sp(x) and Y = sp(y). For the rest of this paper, we will denote by jx : C(X) → A

(jy : C(Y ) → A) the embedding defined by jx(f) = f(x) (jy(g) = g(y)) for all f ∈ C(X)
(for all g ∈ C(Y )). Moreover zx ∈ C(X) and zy ∈ C(Y ) is the function defined by the 
identity map on X (and Y ). In particular, jx(zx) = x and jy(zy) = y.

Lemma 5.6. Let A be a unital simple C∗-algebra with tracial rank zero, and let x ∈ A

be a normal element with sp(x) = X. Suppose that the induced monomorphism jx :
C(X) → A has the (SB) property. Then, for any ϵ > 0, any σ > 0, and any finite subset 
F ⊂ C(X), there exists a finite subset G ⊂ C(X) and η > 0 satisfying the following 
condition: If ϕ : C(X) → F is a unital homomorphism, where F is a finite dimensional 
C∗-subalgebra of A such that

sup{|τ(ϕ(g)) − τ(jx(g))| : τ ∈ T (A)} < η for all g ∈ G, (e 5.1)

then there exists a unital homomorphism ϕ1 : C(X) → F and a unital completely positive 
linear map L : F → A such that L ◦ ϕ1(C(X)) ⊂ jx(C(X))

∥ϕ(f) − ϕ1(f)∥ < ϵ for all f ∈ F ,

∥L ◦ ϕ1(f) − jx(f)∥ < ϵ for all f ∈ F and
sup{|τ ◦ L(a) − τ(a)| : τ ∈ T (A)} ≤ σ∥a∥ for all a ∈ F.

Proof. Choose δ1 > 0 such that

|f(t) − f(t′)| < min{ϵ/64,σ/4} for all f ∈ F , (e 5.2)

if dist(t, t′) < 2δ1. Choose η0 = min{ϵ/64, σ/4}. Suppose that jx : C(X) → A is a unital 
homomorphism with the (SB) property. Without loss of generality, we may assume that 
F is in the unit ball of C(X).

There is δ2 > 0 with δ2 < δ1/4 and there are a compact subset K ⊂ X, open subsets 
O1, O2, ..., ON , Y ′

1 , Y
′
2 , ..., Y

′
N , and Y1, Y2, ..., YN of X satisfy the condition (i), (ii), (iv) 

in 5.3 and (iii)’, (v) in 5.4. Let K = X \∪N
i=1Oj be as in 5.3 associated with η0 (in place 

of η) and jx (in place of ϕ).
Let f1, f2, ..., fN be a partition of unity with compact support supp(fj) ⊂ Yj , j =

1, 2, ..., N . Let gK ∈ C(X) be a function such that gK(t) = 0 if dist(t, ∪N
j=1Oj) ≤ δ2/64
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and gK(t) = 1 if dist(t, ∪N
j=1Oj) ≥ δ2/16 and 0 ≤ gK(t) ≤ 1. Then supp(gK) ⊂ K. By 

(iv),

τ(jx(gK)) < min{η0, inf{µτ (Oj) : τ ∈ T (A), 1 ≤ j ≤ N}}/16(N + 1) (e 5.3)

for all τ ∈ T (A).
Put ξj ∈ Oj , j = 1, 2, ..., N . Without loss of generality, we may assume that

∥
N∑

i=1
f(ξj)fj − f∥ < min{ϵ/16,σ/4} for all f ∈ F . (e 5.4)

Define hj ∈ C(X)+ such that 0 ≤ hj ≤ 1, hj |Oj = 1 and hj(redt) = 0 if t /∈ Y ′
j , 

j = 1, 2, ..., N . Let G = F ∪ {fj , hj : 1 ≤ j ≤ N} ∪ {gK}.

s0 = inf{τ(jx(hj)) : τ ∈ T (A), 1 ≤ j ≤ N} > 0. (e 5.5)

Let ϕ : C(X) → F be a unital homomorphism for some finite dimensional C∗-subalgebra 
F of A which satisfies (e 5.1) for η = min{η0/8(N + 1), s0/2}.

Write ϕ(f) =
∑n

k=1 f(tk)pk for all f ∈ C(X), where p1, p2, ..., pn are mutually or-
thogonal projections and t1, t2, ..., tn are distinct points. By the choice of s0 and η0, and 
we have that {t1, t2, ..., tn} ∩ Y ′

j ̸= ∅, j = 1, 2, ..., N . To see this, we note that for all 
τ ∈ T (A) and j = 1, 2, ..., N ,

τ(ϕ(hj)) ≥ τ(jx(hj)) − η ≥ s0/2

But ϕ(hj) =
∑

tk∈Y ′
j
hj(tk)pk. Therefore {t1, t2, ..., tn} ∩ Y ′

j ̸= ∅ for all j ∈ {1, 2, ..., N}.
Note that

ϕ(
N∑

i=1
f(ξi)fi) =

N∑

i=1
f(ξi)ϕ(fi). (e 5.6)

Note also that, by (e 5.1) and (iv) of 5.3,

τ(ϕ(gK)) < η + η0/16(N + 1) < η0/8(N + 1) for all τ ∈ T (A). (e 5.7)

Put Kj = {t ∈ X : dist(x, Oj)≥δ2/16}∩K ⊂ K, j = 1, 2, ..., N . It follows that
∑

ti∈Kj

τ(pi) ≤ τ(ϕ(gK)) < η0/8(N + 1) for all τ ∈ T (A). (e 5.8)

Let q1 =
∑

tj∈Y1
pj , q2 = (1F −q1) 

∑
tj∈Y2

pi,..., qN = (1 −
∑N−1

i=1 qi)(
∑

tj∈YN
pi). For any 

i, let Si = {k : pk ≤ qi}, then S1 7S2 7 · · ·7SN = {1, 2, ..., n}. Note that, if j ∈ Si, then 
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tj ∈ Yi, and, by (v) of 5.4, if tj ∈ Y ′
i , then j ∈ Si. Moreover, qi ̸= 0 for all i ∈ {1, 2, ..., N}

and qiqj = 0 if i ̸= j and 
∑N

i=1 qi = 1F .
We may also write qi =

∑
k∈Si

pk.
Since 

∑N
j=1 fj(t) = 1 for all t ∈ X, by (v) of 5.4, fj(ti) = 1 if ti ∈ Y ′

j . We also have

ϕ(fj) =
∑

ti∈Yj

fj(ti)pi = (
∑

ti∈Y ′
j

fj(ti)pi) + (
∑

ti∈Yj∩Kj

fj(ti)pi)

It follows from (e 5.7) that

|τ(qj) − τ(ϕ(fj))| ≤ τ(ϕ(gK)) < η0/8(N + 1) for all τ ∈ T (A). (e 5.9)

By the assumption of (e 5.1) for fj ,

|τ(qj) − τ(jx(fj))| (e 5.10)
≤ |τ(qj) − τ(ϕ(fj))|+ |τ(ϕ(fj)) − τ(jx(fj))| < η0/4(N + 1). (e 5.11)

Let C be the C∗-subalgebra of F generated by q1, q2, ..., qN . Write

F = Mr(1)
⊕

Mr(2)
⊕

· · ·
⊕

Mr(m)

and πj : F → Mr(j) is the quotient map. Define Cj = πj(C), j = 1, 2, ..., m.
Put qij = πj(qi) and pk,j = πj(pk) which we also view them as projections in F as 

well as projections in A. Put gi = fi + (η0/4N) · 1, i = 1, 2, ..., N . Then, for fixed i, by 
(e 5.10), for all τ ∈ T (A),

τ(jx(gi)) − η0/2N <
m∑

j=1
τ(qij) = τ(qi) < τ(jx(gi)).

Thus, by 3.8 we obtain aij ∈ A+ such that (again, viewing qij as projection in A),

aij ≤ jx(gi),
m∑

j=1
aij = jx(gi) and τ(aij) = τ(qij), 1 ≤ j ≤ m − 1, (e 5.12)

τ(aim) = τ(jx(gi)) −
m−1∑

j=1
τ(aij) and (e 5.13)

|τ(aim) − τ(qim)|= |τ(qi) − τ(jx(gi))| ≤ η0/2N, 1 ≤ i ≤ N (e 5.14)

for all τ ∈ T (A).
Define ϕ1 : C(X) → C ⊂ F by ϕ1(f) =

∑N
i=1 f(ξi)qi for all f ∈ C(X). Then, by 

(e 5.2),



S. Hu, H. Lin / Journal of Functional Analysis 278 (2020) 108306 35

∥ϕ1(f) − ϕ(f)∥ < min{ϵ/16,σ/4} for all f ∈ F . (e 5.15)

Define L1 :
⊕m

j=1 Cj → A by

L1(
N∑

i=1
(

m∑

j=1
λijqij)) =

N∑

i=1
(

m∑

j=1
λijaij) for λij ∈ C.

Then, by (e 5.12) and (e 5.14), for all c ∈ C,

|τ ◦ L1(c) − τ(c)| = |
N∑

i=1

m∑

j=1
λij(τ(aij) − τ(qij))| (e 5.16)

= |
N∑

i=1
λimτ(aim − qim)| ≤ (η0/2)max{|λim| : i = 1, 2, ..., N} (e 5.17)

≤ (σ/2)∥c∥ for all τ ∈ T (A). (e 5.18)

We also note that

L1(
N∑

i=1
λiqi) =

N∑

i=1
λijx(gi) ∈ jx(C(X)). (e 5.19)

In other words, L1 maps C into jx(C(X)). Moreover, by (e 5.4),

∥L1 ◦ ϕ1(f) − jx(f)∥ = ∥L1(
N∑

i=1
f(ξi)qi) − jx(f)∥ (e 5.20)

≤ ∥
N∑

i=1
f(ξi)jx(gi) −

N∑

i=1
f(ξi)jx(fi)∥ (e 5.21)

+∥
N∑

i=1
f(ξi)jx(fi) − jx(f)∥ (e 5.22)

<
N∑

i=1
|f(ξi)|(η0/4N) + ϵ/16 < ϵ/4 for all f ∈ F . (e 5.23)

Since Mr(j) and Cj are von-Neumann algebras, there exists a conditional expectation 
Ej : Mr(j) → Cj such that

t(Ej(a)) = t(a) for all a ∈ Mr(j), where t ∈ T (Mr(j)), j = 1, 2, ...,m.

Consequently,

τ(Ej(a)) = τ(a) for all a ∈ Mr(j) and τ ∈ T (A). (e 5.24)
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Define E : F →
⊕m

i=1 Ci by E = ⊕m
i=1Ei ◦ πi. Note E2 = E. Hence we also have, by 

(e 5.15),

∥E ◦ ϕ(f) − ϕ1(f)∥ = ∥E ◦ ϕ(f) − E ◦ ϕ1(f)∥ < ϵ/4 for all f ∈ F . (e 5.25)

Put L = L1◦E : F → A. Then L(ϕ1(C(X))) ⊂ jx((C(X)). Moreover, for any f ∈ C(X), 
by (e 5.25) and (e 5.23),

∥L ◦ ϕ(f) − jx(f)∥ (e 5.26)
≤ ∥L1 ◦ E ◦ ϕ(f) − L1 ◦ E ◦ ϕ1(f)∥ + ∥L1 ◦ E ◦ ϕ1(f) − jx(f)∥ (e 5.27)
≤ ϵ/4 + ∥L1 ◦ ϕ1(f) − jx(f)∥ < ϵ/4 + ϵ/4 for all f ∈ F . (e 5.28)

Furthermore, by (e 5.24) and (e 5.17),

|τ ◦ L(a) − τ(a)| = |τ ◦ L(a) − τ(E(a))| = |τ(L1(E(a)) − τ(E(a))|
≤ (σ/2)∥E(a)∥ ≤ (σ/2)∥a∥ for all a ∈ F.

The lemma follows from the above inequality, (e 5.15) and (e 5.28). ✷

Lemma 5.7. Let A be a unital simple C∗-algebra with tracial rank zero and with a unique 
tracial state. Suppose that x ∈ A is a normal element with sp(x) = X. Then, for any 
ϵ > 0, any σ > 0, and any finite subset F ⊂ C(X), there exists a finite subset G ⊂ C(X)
and η > 0 satisfying the following condition: If ϕ : C(X) → F is a unital homomorphism, 
where F is a finite dimensional C∗-subalgebra of A such that

|τ(ϕ(g)) − τ(jx(g))| < η for all g ∈ G, (e 5.29)

then there exists a unital completely positive contractive linear map L : F → jx(C(X))
such that

∥L ◦ ϕ(f) − jx(f)∥ < ϵ for all f ∈ F and
|τ ◦ L(a) − τ(a)| ≤ σ∥a∥ for all a ∈ F,

Proof. By the assumption and 5.5, jx has the (SB) property. The proof is a simplification 
of that of 5.6. We keep all lines of the proof of 5.6 until C is defined. Let τ be the only 
tracial state of A. Then since both F and C are von Neumann algebras, there is a 
conditional expectation E : F → C such that

τ(E(a)) = τ(a) for all a ∈ F. (e 5.30)

Define L1 : C → jx(C(X)) by L1(qi) = jx(fi), i = 1, 2, ..., N . This implies, by (e 5.17), 
that
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|τ(L1(c)) − τ(c)| ≤ (σ/4)∥c∥ for all c ∈ C. (e 5.31)

Let ϕ1 be as the same as defined in the proof of 5.6. Note that ϕ1(C(X)) = C since 
qi ∈ C, i = 1, 2, ..., N . Define L = L1 ◦ E. Then

∥L(ϕ1(f)) − jx(f)∥ = ∥L(
N∑

i=1
f(ξi)qi − jx(f))∥ (e 5.32)

= ∥
N∑

i=1
f(ξi)jx(fi) − jx(f)∥ < min{ϵ/16,σ/4} for all f ∈ F . (e 5.33)

It follows that, as ∥ϕ1(f) − ϕ(f)∥ < min{ϵ/16, σ/4} for all f ∈ F (by (e 5.15)),

∥L(ϕ(f)) − jx(f)∥ ≤ ∥L(ϕ(f)) − L(ϕ1(f))∥ (e 5.34)
+ ∥L(ϕ1(f) − jx(f))∥ < min{ϵ/8,σ/2} for all f ∈ F . (e 5.35)

We also have, by (e 5.31),

|τ ◦ L(a) − τ(a)| = |τ ◦ L1 ◦ E(a) − τ(a)|
≤ |τ(L1(E(a))) − τ(E(a))| + |τ(E(a)) − τ(a)|
≤ (σ/2)∥E(a)∥ ≤ (σ/2)∥a∥ for all a ∈ F. ✷

Theorem 5.8. Let A be a unital separable simple C∗-algebra with tracial rank zero. Sup-
pose that x, y ∈ A are two normal elements with sp(x) = X and sp(y) = Y . Suppose 
that jx has the (SB) property and suppose that there exists a sequence of unital positive 
linear maps Φn : C(X) → C(Y ) such that

lim
n→∞

∥Φn(zx) − zy∥ = 0 and (e 5.36)

lim
n→∞

sup{|τ(Φn(f)(y)) − τ(f(x))| : τ ∈ T (A)} = 0 for all f ∈ C(X). (e 5.37)

Then

y ∈ conv(U(x)).

Proof. Without loss of generality, we may assume that ∥x∥, ∥y∥ ≤ 1. To show y ∈
conv(U(x)), without loss of generality, we may assume that 0 ∈ sp(x), as in the beginning 
of the proof of 4.7.

Let ϵ > 0 and σ > 0. Let F = {1, zx} ⊂ C(X) be a finite subset.
Choose δ0 > 0 such that

|f(t) − f(t′)| < ϵ/64 for all f ∈ F , if |t − t′| < δ0. (e 5.38)
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Choose δ00 = min{δ0, ϵ/210}. One may write

X = ∪N
i=1Ōi,

where Oi is an open subset of X with diameter no more than δ00/3 and Oi ∩ Oj = ∅ if 
i ̸= j. Choose ξi ∈ Oi and di > 0 with

O(ξi, di) = {t ∈ X : dist(ξi, t) < di} ⊂ Oi, i = 1, 2, ...,m.

Since 0 ∈ X, as we assumed, without loss of generality, we may also assume that ξ1 = 0. 
Since A is a unital simple C∗-algebra, for each ξ ∈ X,

inf{µτ (O(ξ, di/2)) : τ ∈ T (A)} > 0, (e 5.39)

where µτ is the Borel probability measure induced by τ ◦ jx. Then

s0 = inf{inf{µτ (O(ξi, di/2)) : τ ∈ T (A)} : 1 ≤ i ≤ N} > 0. (e 5.40)

For each i ∈ {1, 2, ..., N}, choose gi ∈ C(X) with 0 ≤ gi ≤ 1 such that gi(t) = 1 if 
t ∈ O(ξi, di/2) and gi(t) = 0 if t /∈ Oi, i = 1, 2, ..., N . Note that gigj = 0 if i ̸= j. Put 
F1 = F ∪ {gi : 1 ≤ i ≤ N}. Note {ξ1, ξ2, ..., ξN} is δ00-dense in X.

Choose an integer K > 0 such that 12 · 28/K < ϵ. Let

ϵ1 = min{ϵ/210(N + 1),σ/8(K + 1)(N + 1), s0ϵ/210(K + 1)(N + 1)}. (e 5.41)

Let η > 0 and finite subset set G ⊂ C(X) be given by 5.6 for ϵ1/4 (in place of ϵ), for 
ϵ1/2 (in place of σ), and for F1 (in place of F). Without loss of generality, we may also 
assume that ∥g∥ ≤ 1, if g ∈ G.

Choose a finite subset GX ⊂ C(X) (in place of G), δ1 > 0 (in place of δ), F1 (in place 
of G) be given by 5.1 and ϵ2 = min{η/2, ϵ1/4} (in place of ϵ) as well as X.

Put ϵ3 = min{ϵ2, δ1/2}.
Fix a finite subset FA ⊂ A. Let us assume that ∥a∥ ≤ 1 if a ∈ FA and

FA ⊃ jx(G) ∪ jx(GX) ∪ {y}.

Since A has tracial rank zero, there is a finite dimensional C∗-subalgebra F1 ⊂ A

with 1F1 = p and an FA-ϵ3-multiplicative completely positive contractive linear map 
ψ : A → F1 such that

∥ap − pa∥ < ϵ3 for all a ∈ FA, (e 5.42)
∥a − ((1 − p)a(1 − p) ⊕ ψ(a))∥ < ϵ3 for all a ∈ FA, (e 5.43)

τ(1 − p) < ϵ3/16 for all τ ∈ T (A). (e 5.44)
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By applying 5.1, there is a unital homomorphism ϕ′ : C(X) → F1 such that

∥ϕ′(g) − ψ(jx(g))∥ < min{η/2, ϵ1/4} for all g ∈ G. (e 5.45)

Moreover, by (e 5.43) and (e 5.45),

sup{|τ ◦ ϕ′(g) − τ(jx(g))| : τ ∈ T (A)} < η for all g ∈ G and (e 5.46)
τ(ϕ′(gi)) > 63s0/64 for all τ ∈ T (A), i = 1, 2, ..., N. (e 5.47)

It follows from 5.6 that there exists a unital completely positive contractive linear map 
L1 : F1 → A and a unital homomorphism ϕ1 : C(X) → F1 such that

L1(ϕ1(C(X))) ⊂ jx(C(X)), (e 5.48)
∥ϕ1(f) − ϕ′(f)∥ < ϵ1/4 and (e 5.49)
∥L1 ◦ ϕ′(f) − jx(f)∥ < ϵ1/4 for all f ∈ G, and (e 5.50)
|τ ◦ L1(c) − τ(c)| ≤ (ϵ1/2)∥c∥ for all τ ∈ T (A) and c ∈ F1. (e 5.51)

By (e 5.47) and (e 5.49), we have

τ(ϕ1(gi)) ≥ 15s0/16 for all τ ∈ T (A). (e 5.52)

Write ϕ1(f) =
∑m′

i=1 f(ti)pi for all f ∈ C(X), where ti ∈ X and p1, p2, ..., pm′ are 
mutually orthogonal projections in F1. We may also write

ϕ1(f) =
N∑

k=1
(

∑

ti∈Ok

f(ti)pi) + (
∑

ti∈X\∪N
k=1Ok

f(ti)pi) (e 5.53)

for all f ∈ C(X). Note that
∑

ti∈Ok

pi ≥ ϕ1(gk), k = 1, 2, ..., N. (e 5.54)

Define q1 =
∑

ti∈Ō1
pi, q2 = (1 − q1)(

∑
ti∈Ō2

pi), ..., qN = (1 −
∑N−1

i=1 qi)(
∑

ti∈ŌN
pi). 

Then 
∑N

i=1 qi = p, and

qk ≥
∑

ti∈Ok

pi ≥ ϕ1(gk), k = 1, 2, ..., N. (e 5.55)

Define the homomorphism ϕ2 : C(X) → F1 by

ϕ2(f) =
N∑

i=1
f(ξi)qi for all f ∈ C(X). (e 5.56)
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We have (using (e 5.38))

∥ϕ2(f) − ϕ1(f)∥ < ϵ/64 for all f ∈ F , (e 5.57)

and (using (e 5.55) and (e 5.52))

τ(qi) > 15s0/16 for all τ ∈ T (A), i = 1, 2, ..., N. (e 5.58)

Note that ϕ2(C(X)) ⊂ ϕ1(C(X)). Therefore L1(ϕ2(C(X))) ⊂ jx(C(X)), in particular,

qk ∈ ϕ2(C(X)) and L1(qk) ∈ jx(C(X)), k = 1, 2, ..., N. (e 5.59)

By (e 5.43), (e 5.45), (e 5.49), and (e 5.57),

x ≈ϵ3 (1 − p)x(1 − p) + ψ(x) ≈ϵ1/4 (1 − p)x(1 − p) + ϕ′(zx)
≈ϵ1/4 (1 − p)x(1 − p) + ϕ1(zx) ≈ϵ/64 (1 − p)x(1 − p) + ϕ2(zx).

Note ϵ3 + ϵ1/4 + ϵ1/4 + ϵ/64 < ϵ/2. By (e 5.55), (e 5.52), and (e 5.44), for any τ ∈
T (A), τ(qi) > 15s0/16 > Kτ(1 − p). Applying the comparison property, we have K[1 −
p] ≤ [qi] for all i.

Since ϕ2(zx) =
∑N

i=1 ξiqi with ξ1 = 0, applying (2) of 3.6,

ϕ2(zx) ∈1/(K+1)+ϵ/2 conv(U(x)). (e 5.60)

Suppose that Φ(= Φn0) : C(X) → C(Y ) (for some large n0) is a unital positive linear 
map such that

∥Φ(zx) − zy∥ < ϵ1/4 and (e 5.61)
sup{|τ(Φ(g)(y)) − τ(jx(g))| : τ ∈ T (A)} < ϵ1/4 (e 5.62)

for all g ∈ G ∪ j−1
x (L1(ϕ2(G ∪GX)) ∪ {j−1

x (L1(qi)) : 1 ≤ i ≤ N}, where j−1
x is the inverse 

of jx : C(X) → jx(C(X)).
Note that, by (e 5.62) and (e 5.51), for all τ ∈ T (A),

|τ(Φ(j−1
x (L1(qi)))(y)) − τ(qi)| (e 5.63)

≤ |τ(Φ(j−1
x (L1(qi)))(y)) − τ(L1(qi))|+ |τ(L1(qi)) − τ(qi)| (e 5.64)

< ϵ1/4 + ϵ1/2 < ϵ1. (e 5.65)

Then, by (e 5.58),

τ(Φ(j−1
x ◦ L1(qi))(y)) > 3s0/4 for all τ ∈ T (A), i = 1, 2, ..., N. (e 5.66)
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Put FY = Φ(j−1(L1(G))) ∪ {Φ(j−1
x (L1(qi))) : 1 ≤ i ≤ N} ∪{1, zy}. Then FY ⊂ C(Y ).

Let GY ⊂ C(Y ) and δY > 0 be given by 5.1 for FY (in place of F) and ϵ3 (in place 
of ϵ) as well as Y (in place of X). Let ϵ4 = min{ϵ3, δY /2} and F0 = C(1 − p) ⊕ F1.

Choose a large finite subset F ′
A ⊂ A such that jy(FY ) ∪ {ϕ2(zx)} ⊂ F ′

A. We may 
also assume that F ′

A contains an ϵ3-dense subset of the unit ball of F0. By choosing 
even smaller ϵ4 and larger F ′

A, since F0 is semiprojective, we may assume that there is 
a homomorphism h′ from F0 such that

∥h′(a) − L′(a)∥ < ϵ3∥a∥ for all a ∈ F0\{0} and (e 5.67)

for any F ′
A-ϵ4-multiplicative completely positive contractive linear map L′ from F0 to 

any C∗-algebra.
Since A has tracial rank zero, by applying 4.3, there are finite dimensional 

C∗-subalgebra F2 with e = 1F2 and a F ′
A-ϵ4-multiplicative completely positive con-

tractive linear map ψ1 : A → F2 such that

∥ae − ea∥ < ϵ4 for all a ∈ F ′
A, (e 5.68)

∥a − ((1 − e)a(1 − e) ⊕ ψ1(a))∥ < ϵ4 for all a ∈ F ′
A, (e 5.69)

y ≈ϵ4 y0 + y1, y0 =
l∑

i=1
λiei and y1 ∈ N ((1 − e)A(1 − e)), (e 5.70)

τ(1 − e) < ϵ4/16 ( and τ(e) ≥ (1 − ϵ4/16)) for all τ ∈ T (A) (e 5.71)
and (2K + 1)[1 − e] ≤ [ei], i = 1, 2, ..., l. (e 5.72)

We also assume that {λ1, λ2, ..., λl} is ϵ4-dense in Y . By (e 5.65) and (e 5.66), as in the 
proof of 4.7, by choosing sufficiently large F ′

A, we may assume that

|t(ψ1(Φ ◦ j−1
x ◦ L1(qk))) − t(ψ1(qk))| < 2ϵ1 for all t ∈ T (F2) and (e 5.73)

t(ψ1(qk)) ≥ s0/2 for all t ∈ T (F2), 1 ≤ k ≤ N. (e 5.74)

Moreover

t(ψ1(1 − e)) < ϵ3 for all t ∈ T (F2). (e 5.75)

We may further assume that ψ1(b) ̸= 0 for any b in the ϵ3-dense subset of the unit ball 
of F0.

By 5.1, there is a unital homomorphism hY : C(Y ) → F2 such that

∥hY (b) − ψ1(jy(b))∥ < ϵ3 for all b ∈ FY . (e 5.76)

Note, that hY (zy) ≈ϵ3 ψ1(zy) ≈ϵ4 eye ≈ϵ4 y0,
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∥hY (zy) − y0∥ < ϵ4 + ϵ3 + ϵ4 < 3ϵ3/2. (e 5.77)

Moreover, there is a homomorphism hF : F0 → F2 such that

∥hF (a) − ψ1(a)∥<ϵ3∥a∥ for all a ∈ F0\{0}. (e 5.78)

In particular,

∥hF (ϕ2(zx)) − ψ1(ϕ2(zx))∥ ≤ ϵ3, (e 5.79)
hF (1F0) = ψ1(1F0) = 1F2 = e, (e 5.80)
ϕ2(zx) ≈2ϵ3 (1 − p)ϕ2(zx)(1 − p) + hF (ϕ2(zx)). (e 5.81)

Since ψ1(b) ̸= 0 for those b in an ϵ3-dense subset of the unit ball of F0, hF is injective 
and unital. Define LF : hF (ϕ2(C(X))) → F2 by LF = hY ◦ Φ ◦ j−1

x ◦L1 ◦ (hF |hF (F0)))−1. 
LF is a unital completely positive contractive linear map. We note that

LF (hF (qk)) = hY ◦ Φ◦j−1
x ◦ L1(qk) and (e 5.82)

LF (hF (ϕ2(zx)) = hY ◦ Φ◦j−1
x ◦ L1(ϕ2(zx)). (e 5.83)

It follows from (e 5.76), (e 5.73) and (e 5.78) that, for all t ∈ T (F2),

|t(LF (hF (qk))) − t(hF (qk))| (e 5.84)
≤ |t(hY (Φ◦j−1

x ◦ L1(qk))) − t(ψ1(Φ◦j−1
x ◦ L1(qk)))| (e 5.85)

+ |t(ψ1(Φ◦j−1
x ◦ L1(qk))) − t(ψ1(qk))|+ |t(ψ1(qk)) − t(hF (qk))| (e 5.86)

< ϵ3 + 2ϵ1 + ϵ3 < 3ϵ1 < (s0/4)(ϵ/16), k = 1, 2, ..., N. (e 5.87)

As in the proof of 4.7, since both hF (ϕ2(C(X)))(⊂ F2) and F2 are finite dimensional, 
there is a conditional expectation E : F2 → hF (ϕ2(C(X))). By replacing LF by LF ◦E, 
we can extend LF to a unital completely positive linear map F2 → F2. Put q̄1 = e −∑N

i=1 hF (qi) + hF (q1) = e −
∑N

i=2 hF (qi). Then, by (e 5.75) and by (e 5.78),

|t(LF (q̄1)) − t(q̄1)| ≤
N∑

i=2
|t(LF (hF (qi)) − t(hF (qi))| (e 5.88)

< 3Nϵ1 < (s0/4)(ϵ/16) for all t ∈ T (F2). (e 5.89)

By (e 5.78) and (e 5.74), for all k = 2, 3, ..., N

t(hF (qk)) ≥ s0/2 − ϵ3 ≥ s0/4 for all t ∈ T (F2). (e 5.90)

Also

t(q̄1) ≥ t(q1) ≥ s0/4 for all t ∈ T (F2). (e 5.91)
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By (e 5.82), (e 5.49), (e 5.50), (e 5.57), (e 5.76), and (e 5.61)

LF (hF ◦ ϕ2(zx)) = hY ◦ Φ ◦ j−1
x ◦ L1(ϕ2(zx)) (e 5.92)

≈ϵ1/4+ϵ1/4 hY ◦ Φ ◦ j−1
x ◦ L1(ϕ′(zx)) (e 5.93)

≈ϵ1/4 hY ◦ Φ◦j−1
x ((jx(zx))) (e 5.94)

= hY ◦ Φ(zx) ≈ϵ1/4 hY (zy) ≈3ϵ3/4 y0. (e 5.95)

Let ϵ5= ϵ1/2 + ϵ1/4 + 3ϵ3/4. Then ϵ5 < ϵ/16.
Note that hF ◦ ϕ2(zx) =

∑N
i=2 ξihF (qi) + 0 · q̄1 and LF now is defined on F2.

By the choice of s0, applying 4.5 to LF , y0, hF ◦ϕ2(zx), ϵ5, ϵ/16 (in place of ϕ, x, y, ϵ1, ϵ2
respectively), we obtain

y0 ∈2(ϵ/16)+2ϵ5 conv(U(hF ◦ ϕ2(zx))). (e 5.96)

By (e 5.72) and 4.6,

y ∈8/K+ϵ4+ϵ4 conv(U(y0)). (e 5.97)

For any τ ∈ T (A), let tτ := τ(e)−1τ |F2 ∈ T (F2). By (e 5.71), (e 5.41), (e 5.90) and 
(e 5.91),

K(τ(1 − e)) < Kϵ4/16 < τ(e)s0/4 ≤ τ(e)tτ (hF (qk)) = τ(hF (qk)), k = 2, ..., N.

Applying the comparison property, K[1 −e] ≤ [hF (qk)], k = 2, ..., N . Similarly, K[1 −e] ≤
[q̄1].

By the fact ξ1 = 0 and (e 5.81), applying (2) of 3.6,

hF (ϕ2(zx)) ∈4/(K+1)+2ϵ3 conv(U(ϕ2(zx)) (e 5.98)

By (e 5.60), (e 5.98), (e 5.96) and (e 5.97), we obtain

y ∈ϵ conv(U(x)). ✷

Corollary 5.9. Let A be a unital separable simple C∗-algebra with tracial rank zero and 
with countably many extremal tracial states. Suppose that x, y ∈ A are two normal el-
ements with sp(x) = X and sp(y) = Y . Suppose that there exists a sequence of unital 
positive linear maps Φn : C(X) → C(Y ) such that

lim
n→∞

∥Φn(zx) − zy∥ = 0 and (e 5.99)

lim
n→∞

sup{|τ(Φn(f)(y)) − τ(f(x))| : τ ∈ T (A)} = 0 for all f ∈ C(X). (e 5.100)

Then y ∈ conv(U(x)).
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Theorem 5.10. Let A be a unital separable simple C∗-algebra with real rank zero, stable 
rank one and weakly unperforated K0(A), and let x, y ∈ A be two normal elements with 
sp(x) = X and sp(y) = Y . Suppose either the embedding jx has the (SB) property (or 
QT (A) has countably many extremal points), and suppose that exists a sequence of unital 
positive linear maps Φn : C(X) → C(Y ) such that

lim
n→∞

∥Φn(x) − y∥ = 0 and (e 5.101)

lim
n→∞

sup{|τ(Φn(f)(y)) − τ(f(x))| : τ ∈ T (A)} = 0 for all f ∈ C(X). (e 5.102)

Then y ∈ conv(U(x)).

Proof. It follows from Theorem 4.5 of [20] that there exists a unital simple AH-algebra B
with real rank zero and no dimension growth such that there is a unital monomorphism 
H : B → A which induces the following identification:

(K0(B),K0(B)+, [1B ],K1(B)) = (K0(A),K0(A)+, [1A],K1(A)).

Since both A and B have real rank zero, by [5], ρA(K0(A)) is dense in Aff(QT (A)) and 
ρB(K0(B)) is dense in Aff(T (B)). It follows that H induces an affine isomorphism H♯

from Aff(T (B)) onto Aff(QT (A)).
Fix x, y ∈ N (A). Let γ : C(X)s.a. → Aff(QT (A)) be given by γ(f)(τ) = τ(jx(f)) for 

all τ ∈ QT (A). Note that [jx] and γ are compatible. Note also that τ ◦ jx is a tracial 
state on C(X). It follows from 5.3 of [25] that there is a normal element x1 ∈ H(B) with 
sp(x1) = X and [jx1 ] = [jx] and τ(jx1(f)) = H−1

♯ ◦ γ(f)(τ) for all τ ∈ QT (A), where 
jx1 : C(X) → H(B) ⊂ A is induced by x1. Then, by Theorem 5.6 of [12] (T (A) there 
should be QT (A)), x1 and x are approximately unitarily equivalent.

Exactly the same argument shows that there is y1 ∈ N (B) such that y1 and y are 
approximately unitarily equivalent, and there exists a unital injective homomorphism 
jy1 : C(Y ) → H(B) ⊂ A induced by y1. Note that, by [21], B has tracial rank zero. 
Let {un} be a sequence of unitaries of A such that x1 = limn→∞ u∗

nxun. Then, for any 
τ ∈ QT (A), τ(x1) = τ ◦H(x1) = τ(x). Since H♯ is an affine isomorphism, the embedding 
jx1 : C(X) → H(B) has the (SB) property under the hypothesis.

By 5.8 or 5.9, x1 ∈ conv(U(y1)). It follows that x1 ∈ conv(U(y)), whence x ∈
conv(U(y)). ✷

Theorem 5.11. Let A be a unital separable simple C∗-algebra with tracial rank zero and 
with a unique tracial state. Suppose that x, y ∈ A are two normal elements with sp(x) =
X and sp(y) = Y . Suppose that there exists a sequence of unital completely positive linear 
maps Φn : A → A such that

lim
n→∞

∥Φn(x) − y∥ = 0 and (e 5.103)

lim
n→∞

|τ(Φn(a)) − τ(a)| = 0 for all a ∈ A. (e 5.104)
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Then there exists a sequence of unital positive linear maps Ψn : C(X) → C(Y ) such that

lim
n→∞

∥Ψn(zx) − zy∥ = 0 and

lim
n→∞

|τ(Ψn(f)(y))) − τ(f(x))| = 0 for all f ∈ C(X).

Proof. Recall (see (7) of Section 2) that every quasi-trace of A is a trace. Let ϵ > 0, 
σ > 0 and let FX ⊂ C(X) be a finite subset in the unit ball. Put FY = {1, zy} ⊂ C(Y ). 
Let η > 0 and GY ⊂ C(Y ) be finite subset given in 5.6 by for ϵ/2 (in place of ϵ) 
and σ/2 (in place of σ), and Y in place of X. We may assume that FY ⊂ GY . Put 
ϵ1 = min{ϵ/16, σ/16, η/16}. Let τ be the unique tracial state of A.

Let Φ : A → A be a unital completely positive linear map such that

∥Φ(x) − y∥ < ϵ1 and (e 5.105)

|τ(Φ(jx(f))) − τ(jx(f))| < ϵ1 for all f ∈ FX . (e 5.106)

Let FA = FX ∪GY ∪Φ(FX). Without loss of generality, we may assume that FA is in the 
unit ball of A. Since A has tracial rank zero, there is a finite dimensional C∗-subalgebra 
F ⊂ A with 1F = p and a completely positive contractive linear map ψ : A → F such 
that

∥pa − ap∥ < ϵ1 for all a ∈ FA, (e 5.107)

∥a − ((1 − p)a(1 − p) + ψ(a))∥ < ϵ1 for all a ∈ FA and (e 5.108)

τ(1 − p) < ϵ1. (e 5.109)

Without loss of generality, by 5.1, we may assume that there exists a unital homomor-
phism ϕ : C(Y ) → F such that

∥ϕ(jy(g) − ψ(g)∥ < ϵ1 for all g ∈ GY . (e 5.110)

We also have

|τ(ψ(a)) − τ(a)| < 3ϵ1 for all a ∈ FA and (e 5.111)

|τ(ϕ(g)) − τ(jy(g))| < 4ϵ1 for all g ∈ GY . (e 5.112)

Let C = ϕ(C(Y )) be the C∗-subalgebra of F . By applying Lemma 5.7, we obtain a 
unital completely positive contractive linear map L : F → C(Y ) such that

∥L ◦ ϕ(f) − jy(f)∥ < ϵ/2 for all f ∈ GY and (e 5.113)

|τ ◦ L(b) − τ(b)| ≤ (σ/2)∥b∥ for all b ∈ F. (e 5.114)
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Let S ⊂ F be a finite subset which is ϵ1-dense in the unit ball of F . Define Ψ :
C(X) → C(Y ) by Ψ(f) = L ◦ ψ ◦ Φ(jx(f)) for f ∈ C(X). Then, by (e 5.105), (e 5.110)
and (e 5.113),

∥Ψ(zx) − y∥ ≤ ∥L ◦ ψ ◦ Φ(x) − L ◦ ψ(y)∥ (e 5.115)
+∥L ◦ ψ(y) − L ◦ ϕ(zy)∥ + ∥L ◦ ϕ(zy) − y∥ (e 5.116)

< ∥Φ(x) − y∥ + ϵ1 + ϵ/2 < 2ϵ1 + ϵ/2 < ϵ. (e 5.117)

Moreover, by (e 5.114), (e 5.111) and (e 5.106)

|τ ◦ Ψ(f) − τ(jx(f))| ≤ |τ(L ◦ ψ ◦ Φ(jx(f))) − τ(ψ ◦ Φ(jx(f)))|
+|τ(ψ ◦ Φ(jx(f))) − τ(Φ(jx(f))))|+ |τ(Φ(jx(f))) − τ(jx(f))|
≤ σ/2 + 3ϵ1 + ϵ1 < σ for all f ∈ FX . ✷

Let X be a compact metric space. Denote by M(X)1 the set of all probability Borel 
measures.

Let A be a unital simple C∗-algebra with T (A) ̸= ∅, and let x ∈ A be normal element. 
For each τ ∈ T (A), denote by µτ,X (or just µτ ) the probability Borel measure induced 
by τ ◦ jx. Define TX = {µτ,X : τ ∈ T (A)}.

Theorem 5.12. Let A be a unital separable simple C∗-algebra with tracial rank zero and 
with unique tracial state τ . Suppose that x and y are two normal elements with X = sp(x)
and Y = sp(y). Then the following are equivalent:

(1) y ∈ conv(U(x));
(2) There exists a sequence of unital trace preserving completely positive linear maps 

Φn : A → A such that

lim
n→∞

∥Φn(x) − y∥ = 0;

(3) There exists a sequence of unital completely positive linear maps Φn : A → A such 
that

lim
n→∞

∥Φn(x) − y∥ = 0 and lim
n→∞

|τ(Φn(a)) − τ(a)| = 0 for all a ∈ A;

(4) There exists a sequence of unital completely positive linear maps Ψn : C(X) → C(Y )
such that

lim
n→∞

∥Ψn(zx) − zy∥ = 0 and (e 5.118)

lim
n→∞

∣∣∣τ(Ψn(f)(y))) − τ(f(x))
∣∣∣ = 0 for all f ∈ C(X); (e 5.119)
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(5) There exists a sequence of affine continuous maps γn : M(Y )1 → M(X)1 such that

lim
n→∞

sup{|
∫

X

xd(γn(µ)) −
∫

Y

ydµ| : µ ∈ M(Y )1} = 0 and (e 5.120)

lim
n→∞

∣∣∣
∫

X

fdµτ,X −
∫

X

fdγn(µτ,Y )
∣∣∣ = 0 (e 5.121)

for all f ∈ C(X).

Proof. That (1), (2) and (3) are equivalent follows from 4.8. That (3) implies (4) follows 
from 5.11.

Suppose that (4) holds. Define γn : M(Y )1 → M(X)1 by 
∫
X fd(γn(µ)) =

∫
Y Ψn(f)dµ

for all µ ∈ M(Y )1. Clearly γn is a continuous affine map. Denote by S(C(Y )) the state 
space of C(Y ). Then, by (e 5.118),

lim
n→∞

sup{|s(Ψn(zx)) − s(zy)| : s ∈ S(C(Y ))} = 0.

Since one may identify S(C(Y )) with M(Y )1, (e 5.120) follows. It is also clear that 
(e 5.121) follows from (e 5.119). Thus (5) holds.

We now show that (5) implies (4). If (5) holds, for any s ∈ Y , and any f ∈ C(X), 
define Ψn(f)(s) = γn(δs)(f), where δs ∈ S(C(Y )) = M(Y )1 is the Dirac measure at s. 
Then (e 5.120) implies that

lim
n→∞

sup{|Ψn(zx)(s) − zy(s)| : s ∈ Y } = 0.

However,

sup{|Ψn(zx)(s) − zy(s)| : s ∈ Y } = ∥Ψn(zx) − zy∥.

It follows that (e 5.118) holds. Also (e 5.119) follows from (e 5.121).
It remains to show that (4) implies (1) which follows from 5.9. ✷

Corollary 5.13. Let A be a unital separable simple C∗-algebra with real rank zero, stable 
rank one, weakly unperforated K0(A) and with unique quasi-trace τ such that τ(1A) = 1. 
Suppose that x and y are two normal elements with X = sp(x) and Y = sp(y). Then (1), 
(4) and (5) in 5.12 are also equivalent, by replacing the tracial state by the quasi-trace.

Proof. Let τ be the quasi-trace. Then, by II.4.3 of [5], τ is 2-quasi-trace. Note that any 
quasi-trace restricted on a commutative C∗-algebra is a trace. We also note that (4) 
and (5) are equivalent. It remains to show (1) and (4) are equivalent. We deploy the 
argument of the proof of 5.10. We keep all notation there.
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If (1) holds, then x1 ∈ conv(U(y1)). Thus 5.12 can apply to x1 (in place x) and y1
(in place of y) (in B). Since sp(x) = sp(x1) and sp(y) = sp(y1), as functions in C(X)
and C(Y ), zx = zx1 and zy = zy1 , respectively. Therefore (e 5.118) holds. Since x1 and 
x are approximately unitarily equivalent, τ(f(x1)) = τ(f(x)) for all f ∈ C(X), and 
τ(g(y)) = τ(g(y1)) for all g ∈ C(Y ). Hence (e 5.119) also holds.

Suppose (4) holds. Then there exists a sequence of unital completely positive linear 
maps Ψn : C(X) → C(Y ) such that

lim
n→∞

∥Ψn(zx) − zy∥ = 0 and (e 5.122)

lim
n→∞

∣∣∣τ(Ψn(f)(y)) − τ(f(x))
∣∣∣ = 0 for all f ∈ C(X). (e 5.123)

The same reason given above shows (4) holds for x1 (in place of x) and y1 (in place 
of y) in B. Therefore y1 ∈ conv(U(x1)). It follows that y ∈ conv(U(x)). So (1) holds. ✷

6. Approximate unitary equivalence

by jx : C(sp(x)) → A the injective homomorphism defined by
Let A be a unital simple C∗-algebra with tracial rank zero and x, y ∈ A be two 

normal elements. By [23], x and y are approximately unitarily equivalent, i.e., there 
exists a sequence of unitaries {un} of A such that

lim
n→∞

∥u∗
nxun − y∥ = 0,

if and only if (jx)∗i = (jy)∗i, i = 0, 1, and, τ ◦ jx = τ ◦ jy for all τ ∈ T (A) (see also 5.6 
of [12] for a slightly more general setting of this statement).

Theorem 6.1. Let A be a unital separable simple C∗-algebra with real rank zero, stable 
rank one, weakly unperforated K0(A) and with a unique quasi-trace τ with τ(1A) = 1 and 
QT (A) = T (A). Let x, y ∈ A be two normal elements. Then the following are equivalent:

(1) x ∈ conv(U(y)) and y ∈ conv(U(x));
(2) sp(x) = sp(y) and µx = µy, where µx and µy are Borel probability measures induced 

by τ ◦ jx and τ ◦ jy, respectively,

Proof. Suppose that (2) holds. Let ϕ : C(sp(x)) → C(sp(y)) be defined by ϕ(f) = f(y)
for all f ∈ C(sp(x)). Then (1) follows by 5.13.

Suppose that (1) holds. Let πτ : A → B(Hτ ) be the representation of A given by 
the tracial state τ . Let M = πτ (A)′′. Then M is a type II1 factor. Note that since A is 
simple, πτ is faithful. Note (1) implies that

πτ (x) ∈ conv(U(πτ (y))) and πτ (y) ∈ conv(U(πτ (x))).
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By (vi) of Theorem 2.2 of [9], τ(g(x)) = τ(g(y)) for all continuous convex function on R2. 
It follows from Proposition I.1.1 of [1] that

τ(f(x)) = τ(f(πτ (x))) = τ(f(πτ (y))) = τ(f(y))

for all f ∈ C(sp(x)). Consequently sp(x) = sp(πτ (x)) = sp(πτ (y)) = sp(y). Thus (2) 
holds. ✷

Let A be a C∗-algebra. Denote by ρA : K0(A) → Aff(T (A)) the usual order preserving 
homomorphism.

Corollary 6.2. Let A be a unital separable simple C∗-algebra with real rank zero, stable 
rank one, weakly unperforated K0(A) and with a unique quasi-trace τ such that τ(1A) = 1
and QT (A) = T (A), and let x, y ∈ A be two normal elements. Suppose that K1(A) = {0}
and kerρA = {0}. Then the following are equivalent:

(1) x ∈ conv(U(y)) and y ∈ conv(U(x));
(2) sp(x) = sp(y) and τ(f(x)) = τ(f(y)) for all f ∈ C(sp(x)).
(3) x and y are approximately unitarily equivalent in A.

Proof. It is clear that (3) implies (1). Thus, by 6.1, it remains to show that (2) im-
plies (3). Assume that (2) holds. By the assumption, ρA : K0(A) → Aff(T (A)) is an 
order preserving injective homomorphism. Therefore, (2), together with the assumption 
that K1(A) = {0}, implies that (jx)∗i = (jy)∗i, i = 0, 1, where jx and jy are embedding 
from C(sp(x)) to A induced by x and y, respectively. Since K0(C(sp(x))) = C(sp(x), Z)
is a free abelian group (see [30]), it follows from the Universal Coefficient Theorem that 
[jx] = [jy] in KL(C(sp(x)), A). Then, by 5.6 of [12], jx and jy are approximately unitarily 
equivalent, whence (3) holds. ✷

Let A be a unital simple C∗-algebra of tracial rank zero such that K1(A) ̸= {0}. It 
follows from Theorem 6.11 of [27] that there are two normal elements x, y such that (2) of 
6.2 holds but (jx)∗1 ̸= (jy)∗1. Then x and y are not approximately unitarily equivalent. 
However, by 6.2, x ∈ conv(U(y)) and y ∈ conv(U(x)). Suppose that K1(A) = {0} but 
kerρA ̸= {0}. Suppose X ⊂ C is a compact subset which is not connected. Then, by 6.11 
of [27] again, there are normal elements x, y ∈ A with sp(x) = sp(y) = X such that (2) of 
6.2 holds but (jx)∗0 ̸= (jy)∗0. Then x and y are not approximately unitarily equivalent. 
However, by 6.2 again, x ∈ conv(U(y)) and y ∈ conv(U(x)). Nevertheless, we have the 
following:

Corollary 6.3. Let A be a unital separable simple AF-algebra with a unique tracial state 
and let x, y ∈ A be two normal elements with connected spectrum.

Then the following are equivalent:
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(1) x ∈ conv(U(y)) and y ∈ conv(U(x));
(2) sp(x) = sp(y) and τ(f(x)) = τ(f(y)) for all f ∈ C(sp(x)).
(3) x and y are approximately unitarily equivalent in A.

Proof. Again, it remains to show (2) implies (3). Since both sp(x) and sp(y) are con-
nected, (2) implies that (jx)∗i = (jy)∗i, i = 0, 1. Then, by 3.4 of [23], as in the proof of 
6.2, (3) holds. ✷

References

[1] E. Alfsen, Compact Convex Sets and Boundary Integrals, Springer, Berlin-Heidelberg, New York, 
1971.

[2] T. Ando, Majorization, doubly stochastic matrices, and comparison of eigenvalues, Linear Algebra 
Appl. 118 (1989) 163–248.

[3] M. Argerami, P. Massey, The local form of doubly stochastic maps and joint majorization in II1
factors, Integral Equations Operator Theory 61 (1) (2008) 1–19.

[4] G. Birkhoff, Tres observaciones sobre el algebra lineal, Univ. Nac. Tucumm Rev. Ser., vol. A5, 1946, 
pp. 147–151.

[5] B. Blackadar, D. Handelman, Dimension functions and traces on C∗-algebras, J. Funct. Anal. 45 
(1982) 297–340.

[6] J. Cuntz, P.K. Pedersen, Equivalence and traces on C∗-algebras, J. Funct. Anal. 33 (1979) 135–164.
[7] P. Friis, M. Rördam, Almost commuting self-adjoint matrices – a short proof of Huaxin Lin’s 

theorem, J. Reine Angew. Math. 479 (1996) 121–131.
[8] U. Haagerup, Quasitraces on exact C∗-algebras are traces, C. R. Math. Acad. Sci. Soc. R. Can. 36 

(2014) 67–92.
[9] F. Hiai, Majorization and stochastic maps in von Neumann algebras, J. Math. Anal. Appl. 127 

(1987) 18–48.
[10] F. Hiai, Y. Nakamura, Closed convex hulls of unitary orbits in von Neumann algebras, Trans. Amer. 

Math. Soc. 323 (1991) 1–38.
[11] A. Horn, Doubly stochastic matrices and the diagonal of a rotation matrix, Amer. J. Math. 76 

(1954) 620–630.
[12] S. Hu, H. Lin, Distance between unitary orbits of normal elements in simple C∗-algebras of real 

rank zero, J. Funct. Anal. 269 (2015) 903–907.
[13] E. Kamei, Majorization in finite factors, Math. Jpn. 28 (1983) 495–499.
[14] C. Li, N. Tsing, Distance to the convex hull of the unitary orbits with respect to unitary similarity 

invariant norms, Linear Multilinear Algebra 25 (1989) 93–103.
[15] H. Lin, Simple C-algebras with continuous scales and simple corona algebras, Proc. Amer. Math. 

Soc. 112 (1991) 871–880.
[16] H. Lin, Approximation by normal elements with finite spectra in simple AF-algebras, J. Operator 

Theory 31 (1994) 83–98.
[17] H. Lin, Approximation by normal elements with finite spectra in C∗-algebras of real rank zero, 

Pacific J. Math. 173 (1996) 443–489.
[18] H. Lin, Almost commuting selfadjoint matrices and applications, in: Operator Algebras and Their 

Applications, Waterloo, ON, 1994/1995, in: Fields Inst. Commun., vol. 13, Amer. Math. Soc., Prov-
idence, RI, 1997, pp. 193–233.

[19] H. Lin, C∗-algebras with weak (FN), J. Funct. Anal. 150 (1998) 65–74.
[20] H. Lin, Embedding an AH-algebra into a simple C∗-algebra with prescribed KK-data, K-Theory 24 

(2001) 135–156.
[21] H. Lin, The tracial topological rank of C∗-algebras, Proc. Lond. Math. Soc. 83 (2001) 199–234.
[22] H. Lin, An Introduction to the Classification of Amenable C∗-Algebra, World Scientific Publishing 

Co., Inc., Review Edge, NJ, 2001.
[23] H. Lin, Classification of homomorphisms and dynamical systems, Trans. Amer. Math. Soc. 359 

(2007) 859–895.
[24] H. Lin, Simple nuclear C∗-algebras of tracial topological rank one, J. Funct. Anal. 251 (2007) 

601–679.



S. Hu, H. Lin / Journal of Functional Analysis 278 (2020) 108306 51

[25] H. Lin, The range of approximate unitary equivalence classes of homomorphisms from AH-algebras, 
Math. Z. 263 (2009) 903–922.

[26] H. Lin, On Local AH Algebras, Memoirs of Amer. Math. Soc., vol. 235, 2015, no. 1107, ix+109 pp.
[27] H. Lin, Homomorphisms from AH-algebras, J. Topol. Anal. 9 (2017) 67–125.
[28] P. Ng, P. Skoufranis, Closed convex hulls of unitary orbits in certain simple real rank zero 

C∗-algebras, Canad. J. Math. 69 (2017) 1109–1142 (2016).
[29] P. Ng, L. Robert, P. Skoufranis, Majorization in C∗-algebras, Trans. Amer. Soc. 370 (4) (2018) 

926–966.
[30] G. Nöbeling, Verallgemeinerung eines Satzes von Herrn E. Specker, Invent. Math. 6 (1968) 41–55 

(in German).
[31] P. Skoufranis, Closed convex hulls of uintary orbits in C∗-algebras of real rank zero, J. Funct. Anal. 

270 (2016) 1319–1360.


