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ABSTRACT 

Hydrogen isotopes are useful for scientific research, energy generation and medical 

treatment. However, their industrial production is expensive because conventional processes for 

separation of hydrogen isotopologues are mostly based on energy-intensive macroscopic 

procedures with extremely low separation efficiency. Metal-organic frameworks (MOFs) provide 

a promising route to D2/H2 separation by leveraging their well-defined chemistry and nanoporous 

structures. In this work, we report high-throughput screening of 12,723 experimentally 

synthesizable MOF membranes for D2/H2 separation by predicting gas adsorption and transport 

properties underpinning the separation efficiency. A membrane performance score is introduced 

to identify top ranked MOFs with the best selectivity and capacity. The extensive data generated 

from the physics-based modeling enables application of machine learning methods to predict 

desirable features of novel nanoporous materials for more efficient separation of hydrogen isotopes. 

Keywords: Metal-organic frameworks, isotope separation, computational materials design, 
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1. Introduction 

Isotopologues are chemical species with the same molecular structure but a different 

number of neutrons in certain atom types. Because of their unique properties, hydrogen 

isotopologues have been extensively used in scientific research, energy production and medical 

treatment, ranging from neutron scattering[1, 2], isotopic tracing[3-5] and nuclear fusion 

reaction[6], to medical imaging and cancer therapy[7]. As the only difference is the number of 

neutrons, hydrogen isotopologues have virtually identical chemical properties, making their 

separation at industrial scale exceedingly difficult. Conventional processes like cryogenic 

distillation and thermal diffusion suffer from low separation efficiency (e.g., the selectivity of 

D2/H2 is only about 1.5 at 24 K) and intensive energy consumption[8]. Whereas newly proposed 

technologies (e.g., atomic vapor laser isotope separation[9] and magnetically activated and guided 

isotope separation[10]) can achieve higher separation selectivity and consume less energy, their 

capacity for D2/H2 separation is severely limited thus hampering industrial applications.  

Recently, metal-organic frameworks (MOFs) have been proposed for more efficient 

separation of hydrogen isotopes by utilizing quantum sieving effects. The mechanism was initially 

discovered by Beenakker and coworkers in 1995 and can be attributed to the disparity in the zero-

point energies of isotopologues [11]. For gas separation with porous materials, the quantum sieving 

effect is most pronounced when the difference between the pore size and the diameter of gas 

molecules becomes comparable with the molecular de Broglie length. When the number of 

neutrons increases, hydrogen isotopologue has a smaller effective size and a larger binding energy. 

As a result, a porous material often adsorbs a heavier isotopologue more favorably than a lighter 

isotopologue and a smaller size makes the latter diffuse faster. By tuning the difference in the zero-

point energies of hydrogen isotopologues, FitzGerald et al. demonstrated that quantum sieving 
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could lead to D2/H2 selectivity of 1.5 at a temperature as high as 150 K[12]. Because the good 

performance is mainly attributed to the difference between the binding energies of hydrogen 

isotopes, the procedure is also known as chemical-affinity quantum sieving (CAQS). A further 

improvement of the separation performance could be achieved by a combination different quantum 

sieving mechanisms[13]. 

MOFs have been recognized as one of the most promising nanoporous structures for gas 

storage and separation. Compared with alternative nanoporous materials like activated carbons or 

zeolites, MOFs have the advantages of tunable pore size, geometry, and local chemical 

composition[14-17]. Besides, MOFs are particularly promising for D2/H2 separation not only 

because of ultrahigh porosity and large specific surface area but also for the wide varieties of metal 

clusters and organic linkers that can be finely tuned to amplify the quantum sieving effects[18]. 

Previous experiments and molecular dynamics (MD) simulation have shown that MOF structures 

can be utilized to separate D2/H2 with a selectivity up to 41.4 at 20 K[13, 19-21]. In addition, a 

flexible MOF (MIL-53) has been investigated for separation of D2/H2 at 40 K; a selectivity of 13.6 

was achieved by controlling the “breathing effect”[22]. Impressive selectivity for D2/H2 separation 

was also predicted for other sub-nanometer structures such as carbon nanotubes (CNTs)[23, 24], 

albeit they are less promising for industrial applications due to difficulties in materials 

synthesis[18].  

Whereas quantum sieving effects are sensitive to the microscopic details of gas-pore 

interactions, such effects have not been systematically investigated and their influence on D2/H2 

separation remains largely unknown. Previously[25, 26], we studied separation of isotopic 

methanes by high-throughput screening of both hypothetical and experimentally attainable MOF 

databases based on classical density functional theory (cDFT) calculations. In this work, we 
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demonstrate that similar procedures can be generalized to account for the quantum sieving effects 

by using the Feynman-Hibbs (FH) method[27]. Through the theoretical prediction of Henry’s 

constants and self-diffusivity coefficients, the physics-based models allow us to evaluate 12,723 

experimentally synthesizable MOF structures for D2/H2 separation and rank these materials by 

using the membrane performance score. The extensive properties data generated from physic-

based modeling provide a sound basis for application of machine-leaning methods to identify 

important features of nanoporous materials that may achieve both high selectivity and separation 

capacity.  

2. Methods 

2.1 Molecular Model 

We consider D2/H2 separation with various MOFs at 77 K, a cryogenic temperature 

commonly used for characterization of porous materials by nitrogen adsorption. The latest 

computation-ready, experimentally synthesizable MOF database (CoRE MOF 2019) is used for 

high-throughput screening and data generation[28]. For computational efficiency, all MOF 

structures are assumed to be rigid. While MOFs typically have good mechanical strength and 

structural rigidity, the structure flexibility may have significant effect on gas diffusion coefficient 

and thus separation efficiency. The same as the CoRE MOF 2014 library, the CoRE MOF 2019 

structures do not contain solvent molecules or ionic species in the pore, which have been removed 

mimicking the experimental “activation” procedure. Different from those in hypothetical MOF 

databases, all MOF structures in the CoRE database have been experimentally synthesized, thus 

paving the way for experimental verification of theoretical predictions.  

 At the cryogenic condition, hydrogen molecules exhibit non-negligible quantum effects 

that cannot be captured with classical methods. In this work, we use the Lennard-Jones (LJ) model 
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to describe the classical component of intermolecular interactions. The quantum effects are 

accounted for by modifying the pair potential with the 4th-order approximation to the Feynman-

Hibbs (FH) equation[27] 
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where r denotes the center-to-center distance, LJU  represents the 12-6 LJ potential, 1/ BTk = , 

kB is the Boltzmann constant, T is the absolute temperature,  is the reduced Planck constant, 

/ ( )i j i jm mm m = +  is the reduced mass for the interacting particles i and j with mass im  and jm , 

respectively. In Eq.(1), the number of primes represents the order of derivatives of the LJ potential 

with respect to the distance. The LJ parameters, 0.296 nm =  and , are the same 

for H2 and D2[29]; the isotopologues are distinguished only by the quantum corrections related to 

their molecular weights. The universal force field (UFF) is used to represent all MOF atoms and a 

cutoff distance of 12.9 Å is applied to the LJ potential[30]. The Lorentz-Berthelot mixing rule is 

employed for describing interaction between different atoms. 

Figure S1 illustrates the pair potential between hydrogen isotopologues according to the 

quantum-corrected LJ models (Supporting Information). While the 4th order approximation of the 

FH equation is computationally more expensive than the quadratic approximation commonly used 

in molecular simulations, addition of the higher order terms is important to fully capture the 

quantum effect in particular for hydrogen gases in a confined space[27]. As temperature falls, we 

may see more discrepancy among the intermolecular potentials for different hydrogen 

isotopologues because the quantum effect becomes more pronounced. Consistent with a previous 

report by Beenakker et al[11], a heavier hydrogen isotopologue has a smaller size but a higher 

attractive energy than a lighter isotopologue. The size difference can be attributed to the fact that 



 

 

6 

a heavier isotope has a narrower translational wave function thus a smaller de Broglie wavelength. 

On the other hand, the energy difference arises from the disparity in the zero-point energies of H2 

and D2 molecules. 

2.2 Ideal Adsorption Selectivity 

We evaluate the separation efficiency for D2/H2 adsorption in MOF materials based on the 

ideal adsorption solution theory (IAST)[31]. For binary gas mixtures at low pressure with an 

equimolar composition in the bulk phase, IAST predicts a selectivity the same as that from Henry’s 

law. The adsorption selectivity is thus measured by the ratio of Henry’s constant for the heavier 

isotopologue relative to that for the lighter isotopologue 
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where superscript “IM” stands for ideal systems, i.e., gas adsorption at extremely low pressure 

such that interactions between gas molecules are negligible. For gas adsorption, Henry’s constant 

is calculated from 
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where r stands for the position of a gas molecule, V  is the system volume, and ( )ext r  represents 

the external potential for a gas molecule at r due to its interaction with the MOF atoms. With the 

quantum effects accounted for by the FH equation, we have different adsorbate-adsorbent 

interaction energies for H2 and D2 thereby different Henry’s constants. 

2.3 Ideal Membrane Selectivity 

MOFs can be used for D2/H2 separation either as an adsorbent or as a porous membrane. 

In Henry’s law region (viz., at low pressure), the membrane selectivity is determined by Henry’s 

constant and the self-diffusivity coefficient of gas molecules at infinite dilution[17, 32, 33]: 
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where permeability P is defined as the product of Henry’s constant, Kh, and the self-diffusivity 

coefficient at infinite dilution, D0[33]. Unlike adsorption selectivity, the membrane selectivity 

depends on both the thermodynamic and the transport properties of individual gas compounds.  

As reported in an earlier work[34], the diffusion coefficient at infinite dilution can be 

predicted by using the transition-state theory (TST): 

 2

0

1
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where a stands for the distance between the equilibrium positions of the gas molecule in two 

neighboring cages (the initial and final states of transmission), and v  is the gas hopping rate. The 

latter can be calculated from the potential energy along the diffusion path[35] 
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where m denotes the molecular mass, the integral is performed along the reaction coordinate of 

gas hopping, and superscript * represents the transition state of a gas molecule hoping between 

neighboring cages. Similar to our previous work[26], the minimum energy path can be calculated 

by using a simplified string method. Among the minimum paths of all three possible directions, 

the one with highest diffusion coefficient is used as the diffusion path of the gas molecules because 

it is the most likely where molecular hopping would take place inside the MOF. 

Although the above procedure is based on the classical theory, it has been shown that the 

quantum-corrected potential is able to capture not only the equilibrium quantum sieving effect but 

also the kinetic quantum sieving (KQS) consistent with experimental observations[36, 37]. In 

contrast to CAQS, KQS accounts for the quantum effects on gas transport arising from the 
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difference in the de Broglie wavelength. Because a lighter isotope has a smaller de Broglie 

wavelength, it experiences a higher energy barrier passing through the transition state than a 

heavier isotope thus a smaller diffusivity coefficient. The KQS is most significant for materials 

with ultra-small pores or at low temperature when the difference between the de Broglie 

wavelengths of isotopes is more pronounced.  

It should be noted that, in addition to quantum sieving, quantum tunneling may contribute 

to gas transport at the cryogenic temperature. In principle, the quantum tunneling effect can be 

incorporated by adding a tunneling correction factor Q to the right side of Eq. (5), 

 ( )e
e

Q e


  
 

− −

−
= −  (7) 

where a = E / k
B
T , ( )

1/222 2 /mE ha = , E is the energy barrier for gas diffusion, 2a stands for 

the hopping distance, and h represents the Planck constant[38]. It has been shown that quantum 

tunneling is significant for H2/D2 separation only when the energy barrier is much larger than the 

difference between the zero-point energies[38]. Because such condition is rarely satisfied for D2 

and H2 in MOF materials, we neglect the correction factor affiliated with the quantum tunneling 

effect for all calculations reported in this work. 

2.4 Machine Learning Models 

In addition to the physics-based models described above, we use data-based methods (a.k.a. 

machine learning methods) to identify the structural features of MOF membranes with good 

separation efficiency. Specifically, we have tested the performance of four types of machine 

learning models that may be able to reveal the desirable features of nanoporous materials for H2/D2 

separation: support-vector machine (SVM), random forest (RF), gradient-boosted trees (GBT) 

and deep neural network (DNN). SVM is one of the most prevailing machine learning models for 
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classification; it projects the original data into a higher-dimensional space with the help of 

hyperplane construction34, 35. In comparison with alternative models, SVM is expected to achieve 

a better distinction of different MOFs within the original data because the kernel method is able to 

well recognize data patterns. RF is a machine-learning model consisting of a large amount of 

decision trees (“if-then” logic consequence) to extract useful information from the input data[39, 

40]. The final result given by RF is the average vote of all decision trees in the model. In general, 

RF is able to avoid overfitting better than a single decision tree because the vote of biased decision 

trees would be averaged in the end. Similar to RF, GBT employs an ensemble of decision trees 

(weak learners) to achieve a strong learning power. Different from RF, decision trees in GBT are 

shallow trees with high bias and low variance instead of fully grown decision trees. Finally, DNN 

is well known for its excellent performance in predicting new features with a large number of input 

parameters. It is based on the idea of artificial neural network (ANN) that mimics the function of 

a human brain[41-43]. While ANN uses only a layer of neurons (transfer functions), DNN 

incorporates multiple layers of neurons thereby having a better interpretation power.  

For all machine learning methods considered in this work, we optimize the parameters with 

the k-fold cross-validation procedure. It has a single parameter (k) referring to the number of 

groups that a given data sample is to be split into. In this work, we take a k-fold value of 17, the 

first prime number that is divisible to the number of MOFs in the training dataset. 

3. Results and Discussion  

3.1 Adsorption versus Permeation 

Nanoporous materials can be used as an effective medium for gas separation based on 

either adsorption or permeation. The latter often achieves a higher selectivity because permeation 

in a membrane is related to both thermodynamic and transport properties. However, computational 
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studies of MOFs for gas separations are mostly focused on the adsorption behavior because 

calculation of transport properties renders additional challenges. In a previous work[34], we 

proposed an efficient theoretical procedure to calculate the diffusivity by using a simplified string 

method to calculate the minimum-energy path. The theoretical procedure allows us to calculate 

adsorption isotherms and diffusion coefficients with negligible computational cost in comparison 

with conventional simulation methods.  

Figure 1 shows the selectivity for a large library of MOF materials (CoRE MOF 2019) 

versus their capacity for D2/H2 separation both by adsorption and by membrane permeation at 77 

K. For separation of the hydrogen isotopologues by gas adsorption, the selectivity quickly declines 

as Henry’s constant increases, implying that MOFs with high D2/H2 selectivity are limited by a 

low separation capacity. Approximately, the ideal adsorption selectivity falls exponentially with 

Henry’s constant, and the latter provides a direct measure of adsorption capacity.  

Table S2 presents the top 5 MOFs with the highest adsorption selectivity. Compared with 

the MOFs recommended for membrane separation to be discussed in the following section, the 

MOFs with the highest adsorption selectivity are often affiliated with small gas diffusion 

coefficients. As a result, the separation efficiency may be further compromised by the adsorption-

desorption hysteresis as observed in recent experiments[18, 44]. Conversely, membrane separation 

exhibits no negative correlation between the selectivity and capacity.  

As shown in Figure 1B, most MOFs are able to achieve an ideal membrane selectivity 

significantly higher than that suggested by the Robeson boundary (details are provided in 

Supporting Information). The high selectivity values indicate that a MOF membrane would have 

a much better performance than a conventional polymer membrane for separating D2/H2. Figure 

1B also shows that most MOFs are able to achieve kIM much higher than the classical limit of the 
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Knudsen diffusion (~ 0.7), albeit a few MOFs have kIM around 0.7 because of the lack of 

sufficiently small pores for the KQS effect to take place.  

 

Figure 1. (A) Ideal selectivity for D2/H2 separation at 77 K by MOF adsorption versus Henry’s 

constant for H2. The points are calculated from Eq.(2) for 12,723 MOFs from the CoRE 2019 

library, and the solid line is empirically fitted with 3694000139.7 1.33IM Ke −= + . (B) Ideal 

membrane selectivity verse permeability of H2 at 77 K. The points are predicted from Eq.(4) for 

the same CoRE MOF materials, and the solid line represents the Robeson boundary. The color in 

(B) denotes the percentile of Membrane Performance Score (MPS): the red and blue colors 

represent the highest and lowest MPS, respectively, and the green color represents the intermediate 

MPS. 

Table 1 lists the properties of top 5 MOFs from the CoRE 2019 library with the highest 

membrane selectivity kIM. In Supporting Information (Table S3), the selectivity and the structural 

features of top 5 MOFs identified according to kIM are compared with other MOFs that have been 

reported in the literature for D2/H2 separation. The selectivity of MOFs identified in this work is 

higher than those previously reported nanoporous materials by almost one order of magnitude. As 
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discussed later, the top performing MOFs significantly enhance the KQS effect owing to their 

small pore limit diameters.  

Table 1. Properties of top MOFs for D2/H2 separation at 77 K identified according to their ideal 

membrane selectivity kIM ranking. 

MOF P(D2) (barrer) D0(D2) (m2•s-1) Kh(D2) (mol•m-3•Pa) kIM(D2/H2) 

ROQFUA07 1.689×107 5.47×10-18 1.03×109 421.5 

ROQNES05 4.506×107 6.75×10-18 2.23×109 413.6 

ROQFUA08 3.943×107 1.35×10-17 9.77×108 360.6 

ZOJWAY 9.232×105 2.54×10-15 1.22×105 110.7 

ECIVUH 1.057×1010 8.93×10-12 3.96×105 44.4 

 

3.2 Structural features of highly selective MOF membranes 

To understand molecular mechanisms underpinning the efficiency of D2/H2 selectivity, we 

have calculated the geometric features of the MOFs with top 5% ideal membrane selectivity, i.e., 

the largest cavity diameter (LCD), the pore limit diameter (PLD), and the void fraction. All 

geometry calculations are based on Zeo++ software with UFF[45]. As MOF membranes are able 

to achieve better performance than MOF adsorbents for D2/H2 separation in terms of both 

selectivity and capacity, the top ranked MOF adsorbents are not considered in our structural 

analysis.  

Figure 2 shows the distributions of the pore limit diameter (A), the largest cavity diameter 

along the diffusion path (B), and the void fraction (C) of the top ranked MOF membranes. 

Distributions of the void volume and surface area of these materials are presented in Figure S2. In 

Figure 2A, we see a significant enhancement on the PLD distribution between 2 to 3 Å, suggesting 

that small pores are a desirable feature for D2/H2 separation. Intuitively, MOFs with PLD about 2-

3 Å would better sieve D2/H2 at 77 K because the effective LJ diameter for hydrogen molecules is 

around 3 Å (see Table S1). As over 90% MOFs with top 5% ideal membrane selectivity have a 

PLD between 2 to 4 Å, it is important to replace the background distribution from the CoRE 
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database for MOFs with PLD of 2-4 Å to avoid misinterpretation of how the structural features 

correlate with the membrane performance. Figure S3 shows the distribution of unit cell volumes 

of the MOF membranes with top 5% ideal membrane selectivity compared with the same 

distribution but for all MOFs from the CoRE 2019 library and for MOFs with PLD in the range of 

2-4 Å. While modifying the unit cell volume could not improve the performance for D2/H2 

separation, one might erroneously conclude that the top MOF membranes would correlate with the 

unit cell volume if its distribution for the top 5% MOFs is directly compared with that for all MOFs 

in the CoRE 2019 library. Figure S3 shows an enhanced distribution of the unit cell volume at 0-

2000 Å3 simply because MOFs with PLD of 2-4 Å have a relatively small unit cell volume (0-

2000 Å3).  

Figure 2 shows that the PLD and LCD distributions for the top ranked MOF membranes 

are noticeably different from the background distributions. While PLD plays a major role in 

determining the diffusion barrier, LCD affects gas permeation along the rest of diffusion 

coordinate. The smaller the LCD, the less favorable would be the minimum energy path for 

molecular hopping, leading to a smaller diffusion coefficient and gas permeability. Over 70% of 

MOFs with high ideal membrane selectivity have LCD in the range of 3-5 Å.  

In addition to PLD and LCD, the void fraction is an important parameter to characterize 

the non-occupied space inside the MOF materials. It has been shown that a small change in the 

void fraction would affect the permeability of hydrogen molecules by orders of magnitude[46, 47]. 

However, permeability does not monotonically increase with the void fraction but depends also on 

the lattice type (e.g., fcc, bcc or simple cubic). Although a smaller void fraction would lead to a 

higher ratio of Henry’s constants, it may also result in a smaller adsorption capacity. On the other 

hand, a larger void fraction may lead to larger pores but with diminishing quantum sieving effects 
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for D2 and H2 separation. Figure 2C shows that nearly half of MOFs with top 5% ideal membrane 

selectivity have an intermediate void fraction around 0.45. 

 

Figure 2. Distributions of the pore limit diameter (A), the largest cavity diameter along the 

diffusion path (B), and the void fraction (C) for MOFs in the CoRE 2019 library with the top 5% 

ideal membrane selectivity for D2/H2 separation at 77 K. 
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Figure 3. (A) Distributions of metal elements in the top 5% MOFs in terms of the ideal membrane 

selectivity and those with PLD in the range of 2-4 Å. All these elements exhibit a probability 

difference by at least 0.5% between the two groups of MOF structures. Example structures of 

MOFs containing metal elements with high (B) and low (C) energy parameters. The red circles 

denote the pore limit diameters. 

In addition to the structural features, we have investigated the types of metal elements in 

the top ranked MOFs promising as a membrane for D2/H2 separation and their role in determining 

the separation efficiency. Because it would be computationally prohibitive to generate the force-
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field parameters of open metal sites for high-throughput purpose, we assume in this work all metal 

elements are coordinatively saturated. Figure 3 shows the percentages of a few major metal 

elements in MOFs with top 5% ideal membrane selectivity and in those MOFs with PLD in the 

range of 2-4 Å. The results for all other metal elements are listed in Table S4. Most metal elements 

have only minor percentage difference between MOFs with top 5% ideal membrane selectivity 

and MOFs with PLD in the range of 2-4 Å.  

Table 2. The LJ parameters for major metal elements in MOFs from the CoRE 2019 library 

with top 5% ideal membrane selectivity (elements with bolded fonts are considered as metal sites 

with high energy parameter) 

Element ε/kB (K) σ (Å) Element ε/kB (K) σ (Å) 

Mn 6.54 2.64 Ag 18.11 2.80 

Zn 62.40 2.46 Sr 118.26 3.24 

K 17.61 3.40 V 8.05 2.80 

Cr 7.55 2.69 Sc 9.56 2.94 

 

The metal elements shown in Figure 3A have a probability in MOFs with top 5% ideal 

membrane selectivity at least 0.5% higher than that in MOFs with PLD in the range of 2-4 Å. 

Table 2 presents the LJ parameters for all these elements. Surprisingly, only a few metal elements 

have the LJ energy parameters higher than those for hydrogen molecules. As the Lorentz-Berthelot 

mixing rule is used to predict attraction between different species, metal elements with higher 

energy parameters would be more favored for D2/H2 separation. In other words, a larger energy 

parameter for the adsorbent is preferred because the small difference between the chemical species 

to be separated would be magnified. As each MOF is consisted of organic linkers and metal nodes, 

a.k.a. secondary building units (SBUs), quantum sieving can still be achieved for metal sites with 

lower energy parameter by pairing it with linkers of appropriate choice. For metal sites with a 
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lower energy parameter, a smaller linker would then be needed to make confinement small enough 

to distinguish H2/D2 and enable effective quantum sieving. 

Figures 3B and 3C present representative structures of MOF membranes containing metal 

sites with high and low energy parameters, respectively. TEBCEK contains cobalt atoms 

( ) while KANDIO contains zinc atoms ( ). While these two 

structures have similar ideal membrane selectivity, KANDIO has larger pore characteristics (LCD 

= 6.0 Å and PLD = 4.1 Å) in comparison to TEBCEK (LCD = 3.3 Å and PLD = 2.6 Å). In order 

to have equivalent membrane selectivity (KANDIO vs. TEBCEK, 5.7 vs. 4.6), a smaller pore size 

is required for MOFs containing metal sites with a lower binding energy such that their impacts 

on gas diffusivity and adsorption amount can be compensated with each other. 

3.3 Membrane Performance Score 

The adsorbent performance score has been widely used to evaluate porous materials for 

gas separation because it takes into account both selectivity and separation capacity. However, a 

similar metric was missing for membrane separations. Here we define the Membrane Performance 

Score (MPS) according to the membrane selectivity and permeability: 

 MPS = S
fast/slow

´ P
fast

 (8) 

where 
/fast slowS  is the membrane selectivity of the fast diffusing species over the slow diffusing 

species, 
fastP  is the permeability of the fast specie. As shown in Figure 1B, a high MPS can be 

achieved by either a high selectivity or a high permeability. For separation of H2 and D2, most 

MOFs with high MPS can be attributed to high permeability but intermediate selectivity.  

Table 3. Top 5 MOFs for D2/H2 separation at 77 K according to the membrane performance score  

MOF P(D2) (barrer) D0(D2) (m2•s-1) kIM(D2/H2) MPS (barrer) 

RUBLEH 2.94×1029 3.97×10-10 8.3 2.44×1030 

ERANAO 9.96×1024 2.40×10-8 1.42 1.42×1025 
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YEGKIG 3.71×1022 1.78×10-9 0.77 6.30×1022 

XOPVOO 9.93×1018 2.11×10-8 1.09 1.08×1019 

FEKBED 3.94×1017 5.88×10-12 0.62 1.02×1018 

 

 

Figure 4. Distributions of the pore limit diameter (A), the largest cavity diameter along the 

diffusion path (B), and the void fraction (C) for MOFs with top 5% MPS for D2/H2 separation.  
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Table 3 lists the theoretical values of permeability, diffusivity coefficient at infinite dilution, 

and membrane selectivity for top 5 MOFs with the highest MPS values. Figure 4 and Figure S4 

provide an analysis of the structural features of the top 5% MOFs according to the MPS ranking. 

Compared with MOFs with top 5% ideal membrane selectivity, MOFs with top 5% MPS have 

enhanced distributions for both PLD and LCD at a larger pore diameter, and the void fraction 

distribution shifts to the direction of less confinement. For D2/H2 separation, it is much easier to 

have a high permeability rather than a high membrane selectivity. Therefore, MOFs with top 5% 

MPS have less confined structures in order to achieve high permeability. Indeed, all MOFs listed 

in Table 3 have an extremely high permeability but with only moderate membrane selectivity. 

 

Figure 5. The energy landscape along the diffusion coordinate and the structures of MOFs with 

the highest ideal membrane selectivity (left panel - ROQFUA07) and those with the highest 

membrane performance score (right panel - RUBLEH). 
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Figure 5 shows the energy landscapes and the structures of MOFs with the highest ideal 

membrane selectivity (ROQFUA07) and with the highest membrane performance score 

(RUBLEH). We may identify significant differences in the energy landscapes for ROQFUA07 and 

RUBLEH. As discussed above, the highest ideal membrane selectivity is affiliated with an energy 

barrier that distinguishes hydrogen isotopologues through quantum sieving. However, the highest 

membrane performance score is attributed to high permeability and intermediate membrane 

selectivity. Not only is the difference between the energy barriers for H2 and D2 diffusion in 

ROQFUA07 much higher than those in RUBLEH, but the energy landscape along the minimum 

energy path differs greatly between these two MOF materials as well. RUBLEH is strongly 

attractive to both hydrogen isotopologues along the minimum energy path, leading to a high 

permeability and a high membrane performance score. By contrast, ROQFUA07 imposes little 

attraction at the diffusion barrier, implying that the process is dominated by repulsive interactions. 

The difference in the energy landscape results in the permeability of hydrogen isotopologues in 

RUBLEH much higher than that in ROQFUA07.  

The structural features of MOF with the highest ideal membrane selectivity (ROQFUA07) 

are similar to those recommended by Nguyen et al.[36] In order to achieve good D2/H2 separation, 

PLD (2.587 Å) should be significantly smaller than s
H

2

 while LCD (4.936 Å) should be slightly 

larger than s
H

2

. Among the 10 MOFs with the highest kIM and MPS, ZOJWAY and FEKBED 

have relatively large PLDs compared to those for other top MOF candidates. Figure S5 shows the 

energy landscape along the diffusion path for these materials. ZOJWAY achieves an excellent 

selectivity through the extremely dense atomic coordination in its crystal structure, which leads to 

a large difference in the D2/H2 diffusion barriers. Conversely, H2 has a smaller energy barrier in 

FEKBED and thus diffuses faster than D2. For MOFs with such large pores, the KQS effect 
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becomes insignificant because H2 diffusion in large pores does not suffer from its larger molecular 

size while D2 is slowed down by stronger attraction energy and heavier molecular weight. 

3.4 Promising Features of MOF Membranes Predicted by Machine Learning  

While physics-based modelling allows us to analyze the materials behavior based on 

atomistic details, machine learning provides a complementary route to discovering new materials 

that satisfy predefined specific practical needs. A first step toward the so-called inverse design is 

to identify patterns or promising features from a large amount of data relating materials 

performance to the atomic constituents.  

As discussed above, structural features, such as PLD, LCD and void fraction, are 

intrinsically related to the performance of MOF membranes for D2/H2 separation. In principle, 

these properties may be directly used as input parameters (viz., descriptors) for machine learning. 

Although the general trend can be captured by regression analysis, we found that these structural 

features are oversimplified and insufficient to establish quantitative correlations between the MOF 

structures and the physical properties underlying their performance for D2/H2 separation (shown 

in Figure S6). Understandably, the chemical effects including the metal elements and the kinetic 

effects such as overlapping of neighboring pores would have a major influence on the separation 

selectivity. However, even with additional descriptors reflecting the metal elements, a quantitative 

correlation is still beyond the capacity of regression analysis. Therefore, in the following, we use 

classification instead of regression methods for data-based modelling. 
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Figure 6. Structural features predicted by machine learning models for MOFs with top 10% ideal 

membrane selectivity (red color). Here the void fraction is fixed at (A) 0.4, (B) 0.45 and (C) 0.5. 

The black lines show conditions where PLD equals to LCD. Because PLD must be larger than 

LCD, the area below the black line is physically impossible. 

We have analyzed the structural features of MOFs using support-vector machine (SVM), 

random forest (RF), gradient-boosted trees (GBT), and deep neural network (DNN). Table S5 

compares the accuracy of different machine learning models. All four classification models are 

able to recognize MOFs with top 10% ideal membrane selectivity. With additional information on 

metal elements, DNN shows most significant improvement in accuracy. On the other hand, RF, 

GBT and SVM methods provide satisfactory classification with only structural features, e.g., in 

terms of the PLD, LCD and void fraction of each MOF structure. With the kernel method 

projecting data to a higher dimensional space, SVM is able to distinguish small differences 

between MOFs better than RF and GBT, which employ many decision trees of the same dimension. 

Surprisingly, RF, GBT and SVM methods show no improvement of the classification accuracy 

with the extra information for metal elements as the input. Because high-quality classification can 

be readily achieved with SVM, RF or GBT using the structural features as the input, additional 
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information on metal elements might be considered merely as a noise. Such information is too 

discrete and scarce and becomes detrimental to recognize the data patterns with SVM, RF or 

GBT[48].  

Among the four classification methods, SVM has the highest accuracy and it is thus used 

to predict structural features for MOFs with the best membrane selectivity. The classification 

accuracy, which is defined as the percentage of MOFs correctly predicted by the four machine 

learning methods for the entire database, is presented in Supporting Information (Table S5). Figure 

6 shows the predicted results. Here the red color denotes PLD and LCD values predicted by SVM 

for MOFs with top 10% ideal membrane selectivity at three different void fractions. The optimum 

PLD is approximately the same as the LJ diameter of the hydrogen molecules. In other words, 

MOFs with PLD comparable to the molecular size would yield a large difference in the energy 

barriers in H2 or D2 diffusion thus promoting separation. According to SVM, LCD should be 

slightly larger than the molecular size of isotopic hydrogen in order to utilize the KQS effect for 

D2/H2 separation, and the range of LCD shifts to larger diameters when the void fraction increases. 

While MOFs with PLD comparable to the molecular size of hydrogen would impose a nearly 

repulsive interaction, those with LCD slightly larger than the molecular size would be able to 

provide more attraction along the minimum energy path thereby increasing the molecular hopping 

rate. Because a larger LCD would accommodate a larger void fraction, the specific range of LCD 

depends on the void fraction of the MOFs to be designed to achieve optimal membrane 

performance.  

4. Conclusions 

In this work, we used physics-based models to evaluate the performance of 12,723 MOFs 

from the CoRE 2019 database for D2/H2 separation. The selectivity and separation capacity were 
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calculated for each MOF when it is used either as adsorbent or membrane material. We find that 

excellent D2/H2 selectivity can be achieved through gas adsorption but the MOF performance is 

compromised by low separation capacity. By contrast, MOFs can also be used as a membrane 

material for D2/H2 separation with a good balance of selectivity and capacity. Even at relatively 

high temperature (77 K), the D2/H2 selectivity for best MOF membranes identified in this work 

(Table 1) is almost one order of magnitude higher than those previously reported in the literature. 

Because all MOF structures in the CoRE database have been experimentally synthesized, our 

theoretical results are directly testable with experimental measurements.  

An analysis of the structural features and the metal compositions of promising MOF 

membranes indicates that high D2/H2 selectivity can be achieved when the pore limit diameter 

(PLD) is comparable to the Lennard-Jones (LJ) diameter of hydrogen molecules. In particular, 

PLD plays an important role in determining the diffusion barrier, which is closely affiliated with 

the kinetic quantum sieving (KQS) effects. When the gas-MOF interaction is strongly affected by 

dense atom coordination in the crystal structure or unsaturated metal sites important in chemical 

affinity quantum sieving, the separation performance will also depend on other structural features 

such as the types of unsaturated metal sites, the largest cavity diameter (LCD) and the void fraction. 

For practical applications, we introduced the membrane performance score to evaluate the overall 

performance of the MOF membranes in terms of both selectivity and permeability. While MOFs 

with high membrane selectivity are characterized with extremely small pores, those with high 

membrane performance scores are less confined in order to achieve high permeability. In addition 

to PLD, gas permeation in MOFs depends on the LCD and the metal composition. The smaller the 

LCD, the less favorable would be the minimum energy path for molecular hopping, leading to a 

smaller diffusion coefficient and gas permeability. For MOFs with different metal compositions, 
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metal elements with a lower binding energy would require a smaller secondary building unit in 

order to achieve the same KQS effect. 

Combination of physics-based models for high-throughput screening and data-based 

modelling for identification of useful geometric features facilitates the inverse design of MOFs for 

better separation performance. With the extensive data generated from physics-based modelling, 

we have identified useful features of MOF materials by exploring four different machine learning 

models. Although none of these models gives a quantitative correlation of membrane selectivity 

or the membrane performance scores, satisfactory results can be obtained by using support-vector 

machine (SVM) to reproduce the structural features of promising MOF membranes. For effective 

D2/H2 separation, SVM predicts that the KQS effects are most significant when the PLD of MOFs 

is comparable to, while LCD is slightly larger than, the molecular dimeter of isotopic hydrogens. 

The specific range of LCD depends on the void fraction of the MOF materials. Those structural 

features predicted by integrating physics-based modeling with machine learning provide useful 

insights into the rational design of new MOF structures for more efficient D2/H2 separation.  
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