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Abstract— This paper presents a general framework to find
time-optimal trajectories for dynamic vehicles like drones and
autonomous cars. Hindered by its nonlinear objective and
complex constraints, this problem is hard even for state-of-
the-art nonlinear programming (NLP) solvers. The proposed
framework addresses the problem by bilevel optimization.
Specifically, the original problem is divided into an inner layer,
which computes a time-optimal velocity profile along a fixed
geometric path, and an outer layer, which refines the geometric
path by a Quasi-Newton method. The inner optimization is
convex and efficiently solved by interior-point methods. A
novel variable reordering method is introduced to accelerate
the optimization of the velocity profile. The gradients of the
outer layer can be derived from the Lagrange multipliers using
sensitivity analysis of parametric optimization problems. The
method is guaranteed to return a feasible solution at any time,
and numerical experiments on a ground vehicle with friction
circle dynamics model show that the proposed method performs
more robustly than general NLP solvers.

I. INTRODUCTION

Time-optimal trajectory generation is an important topic
in robotics to increase task efficiency. In this paper we
present a novel bilevel optimization approach to generate
time-optimal trajectories for dynamic vehicles. Existing tech-
niques for time-optimal path generation can be categorized
into direct collocation or two-stage approaches. The direct
collocation approach optimize a discretized representation
of the trajectory, both positions, velocities, and controls [1].
However, this approach has to handle nonlinear dynamics
and non-convex constraints, requiring solution of a Nonlinear
Programming (NLP) problem. There is no guarantee that an
optimal, or even feasible solution is obtained. The two-stage
approach is an approximation technique where a geometric
path is optimized separately from the speed along the path.
Each of these optimization steps is more numerically stable,
and Time Optimal Path Parameterization (TOPP) approaches
have been specialized to quickly and robustly optimize the
speed along the path [2], [3]. However, in the two-stage
approach the path is fixed after the first stage, and cannot be
optimized further to reduce trajectory time.

We introduce a new bilevel optimization approach that
solves the path optimization and speed optimization sub-

This work is partially supported by NSF grant #I1S-1816540. W. Sun is
partially supported by the China Scholarship Council (CSC). This research
was performed while the authors are affiliated with Duke University

G. Tang and K. Hauser are with the Department of Computer Science,
University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. e-
mail: {gaotang2, kkhauser} @illinois.edu.

W. Sun is with XYZ Robotics,
dong.sun@xyzrobotics.ai.

* Denotes equal contribution

Shanghai, China. e-mail: wei-

problems hierarchically: the inner subproblem solves a TOPP
problem along a geometric path by convex optimization; the
outer subproblem refines the geometric path to minimize
its optimal traversal time. The key challenge is to calculate
the gradient of the optimal traversal time with respect to
the path shape, which is needed for the outer subproblem.
This gradient is estimated analytically using the dual solution
(Lagrange multipliers) of the inner subproblem, which is a
by-product that can be obtained “for free” when using a
convex solver. The inner optimization must be fast, so we
employ a convex interior-point TOPP solver and introduce
an efficient KKT factorization with linear scalability to the
number of grid points.

The algorithm is applied to a racing ground vehicle whose
dynamics obey a friction circle model. A feasible solution
is obtained in every inner problem, so the optimizer can be
terminated at any time to produce a feasible solution as long
as the path is geometrically feasible. Our implementation
indeed enforces that the path is guaranteed to be feasible in
each outer iteration. Experiments demonstrate the robustness,
scalability and any-time feasibility of our approach against
state-of-the-art NLP solvers IPOPT [4] and SNOPT [5].

II. RELATED WORK
A. Bilevel Optimization

Bilevel optimization refers to a mathematical program
where one optimization problem has another optimization
problem as one of its constraints, that is, one optimization
task is embedded within another [6]. Bilevel and multi-level
optimization techniques have been employed for switching
time optimization for switched systems [7]-[10]. This lit-
erature has concentrated on calculating derivatives of an
objective function with respect to switching times. Other
applications include trajectory optimization for legged robots
[10], robust control and parameter estimation [11], and op-
timizing time allocation for minimum-jerk trajectories [12].

Various algorithms are proposed to solve bilevel optimiza-
tion, and we briefly introduce two that are closely related
to our approach and refer readers to [6], [13] for more
comprehensive treatments of the topic. The first approach
replace lower level optimization problem with its KKT
conditions. However, this approach introduce non-convex
constraints. The second approach, called descent method,
seeks to decrease the upper-level objective while keeping
the new point feasible. Our method might be categorized as
a descent method as we solve the upper-level optimization
problem by Quasi-Newton method using gradients provided
by the lower-level optimization problem.



B. TOPP Solvers

Time-Optimal Path Parameterization (TOPP) aims to find
admissible control inputs to a robot that minimizes the
traversal time of a pre-specified path subject to dynamic,
control and other system constraints. It is a well-studied
problem in Robotics and can be efficiently solved by: (1)
convex optimization (CO) [2], [14], [15], (2) numerical
integration (NI) [3], [16], and (3) reachability analysis (RA)
[17]. The best scalability is achieved by RA [17] which scales
linearly with problem size. Our TOPP solver is in the CO
class, but also achieves linear scalability by solving nonlinear
CO directly and customizing the KKT solver. The benefit of
CO methods is the ability to calculate Lagrange multipliers,
which lets us calculate the gradient of the minimum time
with respect to the path. To our knowledge, there are no other
methods besides CO that are able to calculate multipliers.

Unlike existing CO approaches that convert to SOCP [2] or
use Sequential Linear Programming [14], we directly solve
the nonlinear convex problem using a primal-dual interior-
point method. Our approach is different from [15] where a
primal barrier approach is used and a strictly feasible initial
point is required. Moreover, primal-dual methods are often
more efficient than the primal barrier method, especially
when high accuracy is required [18], and we also require
the dual variables for our bilevel approach. By using a cus-
tomized KKT solver, our CO approach scales linearly with
the number of collocation points, compared to superlinear
complexity in previous methods.

C. Time-Optimal Motion Planning for Vehicles

The topic of generating time-optimal trajectories for ve-
hicles has been extensively studied [15], [19]-[24], and
a general overview of motion planning for autonomous
vehicles can be found in [25]. TOPP with a half-car model is
addressed by Velenis and Tsiotras [24], and is employed as
a submodule in Kapania et al. [19]. The work by Kapania et
al., which bears close resemblance to ours, presents a two-
stage iterative method for generating time-optimal trajecto-
ries through a race course: their method first runs a forward-
backward integration to determine the time-optimal velocity
profile along a specified path and then updates the path by
minimizing its curvature while obeying constraints. However,
minimizing curvature is not the same as minimizing lap
time, so their method provides no guarantee of optimality.
By contrast, our approach updates the path using the true
path gradient with respect to lap time. A similar two-stage
iterative optimization technique is also employed by Xu et
al. [23] where it is applied in the post-optimization stage
to refine both the geometric path and speed profile, and
can converge to a higher-quality trajectory within a few
iterations. However, their technique is only demonstrated on
problems of small scale and short horizon.

III. PROBLEM FORMULATION
A. Time-Optimal Motion Planning Problem

We consider a system with generalized configuration g €
R™. The environment is represented by Xpee € R™, which

denotes all the collision-free configurations. We want to
find a trajectory in Afe. from a start configuration g5 to
a configuration in a goal set Xypy € Afee in @ minimum
amount of time while respecting the dynamics and control
constraints, e.g., bounds on velocity and acceleration. The
problem can be mathematically formulated as:

minimize T

q(t),u(t)

subject to  ¢(t) € Xee,
q(0) = gs,
Q(T) € Xgoal,
fla(t),d*(t),d(t), u(t)) <0, Vte [07T](1)

where wu(¢) is the control input, and f(-) includes constraints
including dynamics.

Our bilevel approach optimizes path and time parameteri-
zation hierarchically. In next sections, we elaborate how the
path is represented and time parameterization is optimized.

vt € [0,T]

B. Path Representation

A feasible geometric path is a continuous curve p :
[0,1] — X that connects the start configuration g5 to
goal configuration g, such that p(0) = g¢s,p(1) = gqq.
We represented paths by piecewise Bézier curves with C?
continuity for each DOF.

In order to achieve collision avoidance, we decompose
Xlree into several convex polyhedrons by convex decompo-
sition. After decomposition, a list of connected polyhedrons
from the start to the goal are found and the path is split into
pieces with each piece contained in a separate polyhedron.
This approach lets us easily achieve collision avoidance by
constraining each segment to be inside its polyhedron.

For a space decomposed into K convex polygons, the path
p of order m is represented by a vector of length nmK,
p=c§lc}] - |k |cBle3| - - - |cK]T where cF is the ith control
point for the kth segment.

If h; is the number of hyperplanes bounding the ith convex
polyhedron, we need a total of n(m + 1) Zf{zl h; linear
inequality constraints to guarantee collision avoidance. This
is represented by an inequality

Gp<yg. 2

By the property of Bézier curve, it is sufficient to guarantee
the curve is inside the polyhedron by only constraining the
control points [12].

To enforce smoothness, we impose C? continuity con-
straints on connecting segments by constraining the control
points. Also, the path should obey terminal constraints, i.e.
g = qs,cﬁ = q4. We can express these constraints with

(3K — 1)n linear equality constraints, denoted as:
Hp = h. 3)

C. Time-Optimal Path Parameterization

The goal of TOPP is to find a time parameterization to
a geometric path, so that the traversal time is minimized
while satisfying all constraints. As shown in [2], [14], it



can be formulated as a convex optimization problem under
appropriate assumptions. Here we give a brief review.

A time parameterization is a monotonously increasing
scalar function s(¢t) : [0,7] — [0,1], where T is the
traversal time of the path. The trajectory, which is the time-
parametrized geometric path, can be represented as ¢(t) =
p(s(t)) : [0, T] = Aee. By chain rule, we have

q(t) =p'()5(), () = p'(s)3(t) +p"(5)5(1) ()
where o denotes derivative with respect to time and of
denotes derivative with respect to s.

In TOPP, values of p’(s) and p”(s) are known when the
geometric path is given, the time allocation s(¢) has to be

optimized. We introduce two variables a(s) = 3, b(s) = §>
which satisfy the following relationship
. d(b(s
b(s) =V (s)s = (d(t ) = 245 = 2a(s)s
or more simply,
V' (s) = 2a(s). (5)

The traversal time 7' can be written in terms of b(s) as
T s(T) 1q 1
T:/ 1dt:/ de—/f ds
0 s(0) S 0o S Vb(s)
To get a convex optimization problem, following [14], [26],
we discretize s(t) into N segments: {b;}~ .. We assume
that a(s) is piece-wise constant between two consecutive
discretization points, then b(s) becomes a piece-wise linear

function. From (5) we have 2a;As; = b;11 — b; where As;
is the size of the ith grid. Now (6) can be manipulated into

N-1 Sit1 1
= Z / ds
i=0 v Si V b(s)

b
= / —ds
0o b(s)
Nzl 2As;
1=0 \/>+
The path constraints, i.e. f in (1) are imposed at the mid-
points between two consecutive collocation points. These
constraints can be all expressed as functions b;,b; 1, and
Ujy1 after algebraic manipulation.

It turns out for the dynamic vehicle problem in this paper,
all constraints are linear with respect to a, b, u. With objective
function (7) being convex, TOPP can be solved by convex
optimization. As a result, given a geometric path, we have
a reliable approach to solve the corresponding TOPP. In the
next section, we introduce several approaches to accelerate
TOPP, before introducing how to improve the geometric path.

(7

z+1

D. Bilevel Optimization
A bilevel optimization problem [6] is given by

BT, e
subject to x; € argmin{  fo(xy,x) :
T €XL
filwy,21) <0,i=1,...,m
hi(Xy, ;) =0,i=1,...,p}
Gi(xy,x;) <0, i=1,....M
Hi(l'u7l'l):0, 1 =1, 7P

where G and H denote upper-level constraints, fy is the
lower-level objective, while {f;(-)}7, and {h;(-)}}_, are
lower-level constraints.

In some literature, the upper and lower level problems are
called leader and follower. The leader makes decision x,,
and knows the follower’s reaction x; which is obtained by
optimizing its cost function after observing z,,. The goal for
the leader is to consider the follower’s action and find z,,
that optimize its own cost function. If we assume the lower
level problem has a unique solution, x; is a function of z,,.
As a result, we can directly optimize z,, by treating x; as an
implicit function of z,. The problem is the difficulty to find
a closed-form expression of z; as a function of z,,.

In our problem, the upper problem optimizes the geometric
path with an objective to minimize the optimal traversal
time, which is computed from inner optimization. The upper-
level constraints only depend on the path itself. If we treat
the inner optimization as a black-box objective function,
the outer optimization can be thought of as a nonlinear
program with a an expensive objective function. However,
optimization tends to be more efficient if the gradient of
the objective is available. Luckily, in our problem the inner
and outer problem have the same cost function, so the outer
gradient can be computed using sensitivity analysis.

For brevity, we give the results of first-order sensitivity
analysis and refer readers to [27] for details. Consider the
problem of finding the local solution x;(z,), i.e. the inner
optimization problem as a parametric NLP problem:

minimize  fo(zy,z;)
subject to  fi(zy, ) <0, i=1,...,m, (8)
hi(zy,21) =0, i=1,...,p,

where x; € X, is the vector of decision variables and z,, €
Xy is a parameter vector. Under mild assumptions, given
a local optimal solution z}(z,), and multipliers A and v
associated with f and h, respectively, then

m p
= VmufO"_Z )\z(xu)vmufz""Z Vz(xu)vxuhz

i=1 i=1

Ve, i (2u)

In time-optimal motion planning, x,, is the path parameteri-
zation and z; is time parameterization.

E. Solving Bilevel Optimization

An algorithm for solving bilevel optimization is presented
in Algorithm 1. The algorithm takes an initial guess of the ge-
ometric path pg and the linear constraints on the path. In each
iteration, the TOPP solver takes a path p and outputs a cost
J, Lagrange multipliers \ and time parameterization {b;}¥ .
The gradient of the path p is computed using Lagrange
multipliers, and later used to update the path. The upper-
level optimization is essentially a nonlinear optimization with
linear constraints and the optimality conditions are checked
by the optimizer.

We note that the Get-Gradient function is implemented by
sensitivity analysis using Lagrange multipliers. Any gradient-
based method can be used as the Take-A-Step function which
updates p based on gradient g and possibly its history (in



Quasi-Newton approaches). We use off-the-shelf NLP solver
SNOPT to perform Take-A-Step function. Even though we
are using a nonlinear solver, the constraints in upper-level
optimization are linear so feasibility is always guaranteed.

Algorithm 1 Bilevel-Solver (pg, G, g, H, h)

L: p < Dpo
2: for 7 < 0 to max-iterations do
3 I\ {0 Y, < TOPP(p)

4 V < Get-Gradient(\)

5 p < Take-A-Step(p, J,V,G,g,H,h)
6: if optimality-conditions-satisfied then
7 break

8 return P, {b;} N

F. Accelerating TOPP

It is important that the TOPP problem is solved efficiently
since it is the lower optimization problem. To this end, a
primal-dual interior point method with a customized KKT
solver is employed.

1) Nonlinear Objective: Verscheure et al. [2] formulated
TOPP as a second-order cone programming. However, as
noted in [15], this approach is inefficient because the size
of the original problem might even be doubled through the
introduction of slack variables. In this paper, the nonlinear
objective is directly solved.

2) Eliminating Variables: To reduce the number of vari-
ables, we replace {a;} ;' with a linear combination of
{bi}g\io’ i.e., a; = (bi+1 — bz)/QASL

3) Customized KKT solver: Since an interior point solver
spends most of its time in solving the KKT system, an effi-
cient linear solver that exploits the structure of the problem
allows significant acceleration. This observation dates back
to [28] and we extend the KKT solver described in [15] to
primal-dual interior point methods.

For a convex optimization problem:

minimize  fo(x)
x

subject to  fx(z) <0,
Gx < h,
Az = ﬂv

k=1,....,m

the computation time needed for a primal-dual interior point
method almost entirely depends upon how fast we can solve
the Karush-Kuhn-Tucker (KKT) system [26]:

H AT GT T T
A0 0 yl = [ry|, )
G 0 -Wr'w] |z T2

where

H =Y 2Vfi(x), G=[Vfi(x) - Vin(x)| G,
k=0

matrix W is a block-diagonal scaling matrix that depends

on the current iterates; y and z are the multiplier associated

with equality and inequality constraints; and 7,7, are

residuals of the KKT system. Matrix G is composed of two
parts where the upper parts collects Jacobian of nonlinear
inequality constraints, i.e. fi to f,, and lower parts collects
linear inequality constraints, i.e. G. In our problem W
is diagonal matrix since all the cone constraints are non-
negative orthants and Nesterov-Todd scaling [26] is used.

A detailed description of how (9) is solved is given in
section IV-B where the structure of matrices A and G are
described. However, we note that similar structures also
appear in TOPP problem of other systems.

IV. NUMERICAL EXPERIMENT

We present the dynamics model of the ground vehicle
and define how the TOPP problem is formulated. We also
illustrate how to exploit KKT system structure, and present
a comparison of our framework against off-the-shelf NLP
solvers. In all experiments, computation is performed on
a PC running Ubuntu 16.04 with 4.00 GHz CPU and 32
GB memory without any parallelization. Implementations
are mainly based on Python, but the interior-point solver
is written in C++. The NLP solvers are implemented in
compiled languages for efficiency, but they are called using
cost and constraint functions written in Python.

A. Dynamics Model

We use the front wheel drive friction circle vehicle model
[15] which is derived from the observation that the maximum
force that can be applied to the car is limited by the friction
between tires and the road, with a sufficient powerful engine
and braking system. The system dynamics is

cosf —sinf| |uy|  |Gx
cosf | |uy| |dy

sin 6
where ¢, q, is the vehicle’s position § = tan~'(q,/q.)
denotes the heading angle, u,, u,, are longitudinal and lateral
acceleration. An illustration of the dynamics model is in
Fig. 1. The acceleration has to stay in a friction circle, i.e.,

Uz +ul < pg ug < pspg (11)

where p is the friction coefficient, g is gravitational accelera-
tion, ps = 0.5 is the weight ratio. The admissible control lies
in a convex set. In this model, braking has larger acceleration
than speeding up because all four tires are engaged.

In TOPP formulation, the constraints in (10) and (11)
are imposed at mid-points between collocation points. For
segment ¢, the constraints are

(10)

cos HH_% —sin 91‘4—% Ugi|

sinf;, 1 cosb 1 | Uy 12
1z / bi+b;

|:p:c(sz+;) px(sz+é):| 2 =t
" / bit1—b;

Py(sip1) py(siys) SN

which are linear constraints w.r.t. both b and u. Here b = §2 is
the squared velocity parameter introduced in Sec. III-C. The
friction circle model introduces two inequality constraints for
each control, one linear and one nonlinear, i.e.

Upi < psptg, Uy + Uy < pPg? (13)
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(a) Friction circle model (b) Vehicle dynamics

Fig. 1. (a) Friction circle model. Shaded area is the feasible region. (b)
Vehicle dynamics model. u is parallel with velocity direction; 6 is heading
angle.

As shown in Fig. 1, the admissible control is in a convex set.
Additionally, we constrain bounds on b; The lower bound is
0 since b; appears in a square root, so it must be positive.
We impose an upper bound on b;, arbitrarily set to 200, for
better numerical stability.

B. Customized KKT Solver

In the following analysis optimization
variable x is assembled in the form  of
[bo, ey bN,uzo,uyo, e ,uxN_l,uyN_ﬂ.

In order to solve (9), the first manipulation is to reduce it
to the so-called reduced KKT system by eliminating z:

{s AT] m _ [rx—l—éTW_lW_Trz

A 0]y ry 19

where . .
S=H+G"ww-1q,

and G in this problem includes both linear and nonlinear in-
equality constraints. The nonlinear constraints are linearized
at current value of x during iteration. After solving this
reduced KKT system, the solution z can be recovered from
T,y as:

Wz=W"T(Gx —r.),

which is cheap since W is diagonal. We note that the steps
of eliminating and recovering z are present in both CVXOPT
and IPOPT.

The reduced KKT system is sparse (item KKT in Fig. 2),
and is composed of the tridiagonal matrix .S and the banded
block matrix A. However, the default solver in CVXOPT
is inefficient at solving it, because it eliminates x and gets
an equation on y whose left hand side matrix is AS~1 AT,
Although computing S~ AT is relatively cheap since S is
tridiagonal, matrix AS~'AT is not generally sparse (CVX-
OPT in Fig. 2).

We customize our KKT solver by applying a reordering
technique which optimizes the sparsity pattern of the reduced
KKT system, an idea borrowed from [15]. Reordering the
KKT system is essentially applying a permutation matrix P
to (14):

T AT —1117—T
P[S’ A:|PTP|:J?:|:P|:TI+GW W—tr,
A 0 Y Ty

KKT Reorder KKT

CVXOPT

LU Natural LU COLAMD LU Reorder

Fig. 2. Top row: sparsity patterns of the KKT matrices of different solvers,
showing reduced KKT matrix (KKT); manually reordered KKT matrix,
with bandwidth of 6 (ours); and the method used in CVXOPT, which uses
ASTLA after removing entries with magnitude smaller than 10~6. This
is essentially dense. Bottom row: sparsity of lower and upper parts after
SuperLU factorization with different reordering methods. Natural reordering
gives 668 nonzeros; COLAMD column permutation gives 457 nonzeros; and
our custom reordering gives 383 nonzeros.

TABLE I
COMPARISON OF RUNNING TIME (IN SEC.) ON KKT SOLVERS

Solver N=25 N=50 N=100 N=200
CVXOPT 0.119 0.749 7.130 48.940
LU+Reorder (Ours) 0.010 0.017 0.032 0.069
LU+Natural 0.011 0.028 0.093 0.414
LU+COLAMD 0.009 0.018 0.035 0.072

Here y is a 2N vector associated with equality

constraints, of the order [Yz0,Yy0,---,YaN—1,YyN—1]-

After permutation, the new order of [zTyT]T

becomes [bg,wo,...,bN—1,WN_1,by] where w; =

[Wais Uyis Ywis Yys)- By doing so, the permuted matrix has a
small bandwidth (Reorder KKT in Fig. 2). We use an LU
solver to solve the permuted sparse matrix.

We further compare our customized KKT solver against
the SuperLU [29] solver with different orderings to reduce
fill-ins. The resulting sparsity patterns are shown in the
bottom row of Fig. 2. If SuperLU is used with natural
reordering (no reordering), many fill-ins are required. CO-
LAMD reordering performs better, but not as well as our
custom reordering.

Tab. I compares scalability of each method. In this environ-
ment, we use a fixed number of 9 convex regions and vary the
discretization of the grid over the speed variable. Specifically,
each polygon is assigned N grid points in the s dimension.
The CVXOPT solver forms dense matrices and scales cubi-
cally in N. SuperLU with natural ordering has approximately
quadratic scalability. SuperLU with COLAMD reordering
performs slightly worse than our reordering method, and this
is not unexpected since it has more fill-ins. The table also
shows that our solver scales linearly.
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Fig. 3. Layout of the two tracks.

C. Results on Race Tracks

We test the algorithm on models of two real-world race
tracks. Track 1, “Circuit Ricardo Tormo,” ! is a racing circuit
with length 3.090 km and width 1.029 km. Track 2, from the
Tamiya Asia Cup Finals 2011 2, is a RC car track with size
25 m by 11 m. Their layouts are shown in Fig. 3.

These two tracks are quite different in terms of both
track size and road width. To turn them into nondimensional
problems, we use the maximum of track length and width as
the length unit, the square root of it as time unit, and the mass
of the vehicle as mass unit. With this choice, the gravitational
acceleration stays at 9.8, track width and height are at most 1,
and other nondimensional quantities like friction coefficient
stays the same. In the following results, the cost (traversal
time) is reported in nondimensional units.

The tracks are decomposed manually into a sequence of
convex regions, where the maximum length of a quadrilateral
is limited to 0.15 units. The decomposed tracks are shown
in Fig. 5. For the vehicle model, the friction coefficient® is
chosen as = 0.9 between dry road and rubber and us =
0.5. The Bézier curve order is chosen as 6.

Bilevel optimization is compared with NLP solvers
SNOPT and IPOPT applied to the joint path and speed
optimization problem. The bilevel solver used a constraint
feasibility tolerance of 10~°, optimality tolerance of 1076,
and at most 100 major iterations. For SNOPT we used a fea-
sibility tolerance of 106 and optimality tolerance of 10™4, at
most 500 major iterations, and 50,000 minor iterations. For
IPOPT we used a feasibility tolerance of 10, optimality

'https://formula-e.fandom.com/wiki/Circuit_
Ricardo_Tormo, last accessed Feb. 27 2019

2http://quantumracing-rc.blogspot.com/2011/09/
tamiya-asia-cup-finals-2011-in.html, last accessed Feb. 27
2019

3http://hyperphysics.phy-astr.gsu.edu/hbase/
Mechanics/frictire.html, accessed Feb. 27 2019
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Fig. 4. Cost and constraint violation over time for bi-level optimization
and two NLP solvers. The top and bottom rows show results for Track
1 and Track 2, respectively. Function values are recorded whenever a the
objective and constraint function is evaluated, so the spikes are caused by
line search with inappropriate step length. The right side shows that neither
SNOPT nor IPOPT reach a feasible iterate after the initial guess.

tolerance of 10~2, and at most 500 iterations. SNOPT and
IPOPT are provided with analytic derivatives and problem
sparsity are exploited to the best of the authors’ ability. Fewer
major iterations are used in bilevel optimization because
each function evaluation requires a call to the interior-point
solver. All three solvers are initialized with the same feasible
geometric path, and the timing provided to SNOPT and
IPOPT is a feasible point obtained by solving TOPP.

The results for the two tracks are shown in Fig. 4. Bilevel
optimization reduces the cost in early stages, but it converges
slowly later. Throughout the optimization, the iterates re-
main feasible. In contrast, the NLP solvers fail to satisfy
constraints throughout the optimization process, and fail to
converge despite the looser optimality tolerances. The NLP
solvers, especially IPOPT, reduce the cost function quickly,
but as the right side of Fig. 4 shows, these solutions are
indeed infeasible. This suggests high numerical sensitivity
despite the existence of a feasible solution. The stability of
our method suggests that decoupling path optimization and
time allocation results in better numerical stability.

V. CONCLUSIONS AND FUTURE WORK

We present a bilevel optimization framework to solve NLP
with spatial and temporal constraints. It is particularly suited
for problems in which the time-domain dynamics are convex,
since the inner optimization can be solved reliably using
interior-point methods. Moreover, if the feasibility of the path
can be guaranteed, the bilevel optimization framework is any-
time and highly robust. A second contribution is a TOPP
solver based on an efficient KKT solver for interior-point
method, which scales linearly with the number of collocation
points. Experiments show that trajectory optimization on real
world racing tracks are solved reliably, while standard NLP
solvers fail to maintain feasibility of the solution.
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Fig. 5. Optimal geometric path from bi-level optimization. Convex

decomposition is shown by the quadrilaterals with dashed lines. The black
curve is the geometric path. The red star denotes the starting position. The
solution agrees with intuition that optimal paths should take wide turns,
crossing corners when possible.

Future work should address the observation that our
method reduces the cost significantly in the early stages

but

converges rather slowly. One possible reason is that

the function being optimized is non-smooth, which hinders
convergence. Using solvers with warm-start capacity in the
lower level optimization has the potential to dramatically
speed up this framework. We are also interested in extending
the friction circle model to other vehicle dynamical models
including aerodynamic drag, weight transfer and other fac-
tors, and applying our approach to other dynamic vehicles
like drones and fixed-wing aircraft.
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