Enhancing Bilevel Optimization for UAV Time-Optimal Trajectory
using a Duality Gap Approach

Gao Tang', Student Member, IEEE, Weidong Sun?, and Kris Hauser', Senior Member, IEEE

Abstract—Time-optimal trajectories for dynamic robotic vehi-
cles are difficult to compute even for state-of-the-art nonlinear
programming (NLP) solvers, due to nonlinearity and bang-bang
control structure. This paper presents a bilevel optimization
framework that addresses these problems by decomposing the
spatial and temporal variables into a hierarchical optimization.
Specifically, the original problem is divided into an inner layer,
which computes a time-optimal velocity profile along a given
geometric path, and an outer layer, which refines the geometric
path by a Quasi-Newton method. The inner optimization is
convex and efficiently solved by interior-point methods. The
gradients of the outer layer can be analytically obtained using
sensitivity analysis of parametric optimization problems. A novel
contribution is to introduce a duality gap in the inner optimiza-
tion rather than solving it to optimality; this lets the optimizer
realize warm-starting of the interior-point method, avoids non-
smoothness of the outer cost function caused by active inequality
constraint switching. Like prior bilevel frameworks, this method
is guaranteed to return a feasible solution at any time, but
converges faster than gap-free bilevel optimization. Numerical
experiments on a drone model with velocity and acceleration
limits show that the proposed method performs faster and more
robustly than gap-free bilevel optimization and general NLP
solvers.

I. INTRODUCTION

Time-optimal trajectory optimization is important for
drones, vehicles, and industrial manipulators to complete tasks
efficiently, but it is inherently difficult even for linear systems
due to its bang-bang control structure. Typical approaches
to trajectory optimization, such as Direct Collocation (DC),
can handle a wide variety of costs, state constraints, and
control constraints by converting the problem into a nonlinear
programming (NLP) optimization, which can be solved by
numerical techniques [1]. For time minimization, the state
and control are functions of time and solved simultaneously
with the optimal trajectory time. This approach introduces
significant nonlinearity in the dynamics and non-convexity
in constraints, so there is no guarantee that an optimal, or
even feasible solution is obtained. Alternatively, a two-stage
approach approximately solves the problem by optimizing the
geometric path separately from the velocity profile, which
exploits the speed and robustness of Time Optimal Path
Parameterization (TOPP) [2], [3]. The drawback of two-stage

*This work was supported by NSF grant #IIS-1816540
1Gao Tang and Kris Hauser are with Department of Computer

Science, University of Illinois at Urbana-Champaign, Urbana, USA
(gaotang2, kkhauser)@illinois.edu
2Weidong Sun is with XYZ Robotics, Shanghai, China

weidong.sun@xyzrobotics.ai

- Guess
Refined Gap-free
—— Refined Gap
® Start
*  Goal

Vel. (m/s)

e

N S

=~

N

Vel. (m/s)

Time (s)

(a) Spatial shape (b) Velocity profile

Fig. 1: (a) Initial and refined trajectory for a randomly generated
problem. The feasible space of the environment is split into convex
boxes in which the path must lie, and an initial minimum-jerk trajec-
tory is refined to decrease trajectory traversal time with velocity and
acceleration limits. With the proposed gap technique, the trajectory
converges more quickly toward an optimum. (b) It also achieves a
lower execution time compared with a gap-free approach.

optimization is that the path is fixed after the first stage,
while it is possible to further to refine it to reduce trajectory
time. The authors’ recent work has explored the use of bilevel
optimization to optimize both the path and the velocity in a
hierarchical fashion [4]. The gradients of the optimal traversal
time with respect to the path can be computed analytically,
allowing the outer optimization to be addressed as a standard
NLP while the convexity of the TOPP problem lends itself to
efficient and reliable Interior-Point Methods (IPMs).

This paper makes further improvements to the bilevel op-
timization framework. In [4], the efficiency is limited by the
slow convergence rate of the outer optimization, and warm-
starting of the inner IPM is not effective, because the prior
optimum reaches the boundary of inequality constraints and
is far from the central path for the new problem. Furthermore,
the cost function in outer optimization is continuous but non-
smooth due to changes of active inequalities in the inner
optimization. Function smoothness is important for the con-
vergence rate of gradient based methods such as the difference
between gradient and sub-gradient methods. To handle these
problems, we introduce a duality gap which keeps the solution
away from the boundary, and deliberately do not solve the
optimization to optimality. With a controlled duality gap,
inequality constraints are never active and thus there is no
switch of active constraint and the solution of IPM is never at
the boundary. This trick helps to achieve 1) warm-start of inner
optimization and 2) a smoother outer cost function landscape,
which significantly accelerates inner and outer optimization,
respectively. We prove that solving to a desired duality gap is
equivalent to the log-barrier method for penalizing inequality



constraints, and the gradient computation time is equivalent to
the method of [4].

Numerical experiments on an aerial vehicle with velocity
and acceleration limits demonstrate the robustness, efficiency,
and optimality of our approach over standard bilevel optimiza-
tion, direct collocation, and simultaneous optimization of the
path and velocity profile, using state-of-the-art NLP solvers
IPOPT [5] and SNOPT [6].

II. RELATED WORK

A general overview of motion planning for autonomous
vehicles can be found in [7]. The time-optimal problem for
vehicles has been extensively studied [8]-[14]. The brittleness
of spatio-temporal trajectory optimization using direct collo-
cation has been noted by other researchers, leading to a search
for alternative, more robust techniques.

A. TOPP Solvers

Time-Optimal Path Parameterization (TOPP) seeks admis-
sible control inputs that minimizes the traversal time of a pre-
specified path subject to constraints such as system dynamics,
control actuation, and velocity limit. Efficient approaches
to it include: (1) convex optimization (CO) [2], [13], [15],
(2) numerical integration (NI) [3], [16], and (3) reachability
analysis (RA) [17]. Our TOPP solver solves the nonlinear
optimization problem directly and exploiting sparsity in the
KKT solver [4] for efficiency. Since CO methods are used,
Lagrange multipliers are by-product and allow for calculation
of the gradient of the minimum time with respect to the
path. No other methods besides CO can provide such gradient
information. Similar to [4], we use primal-dual IPM to solve
the nonlinear CO directly, instead of converting to SOCP [2] or
using Sequential Linear Programming [15] or primal barrier
approach [13]. The sparsity of KKT solver is exploited to
achieve linear scalability.

B. Two-stage optimization

TOPP with a half-car model is studied by Velenis and
Tsiotras [14], and is used as a submodule in Kapania et al.
[8]. There is work trying to remove the limitation of the two-
stage approach by updating the geometric path too. Kapania et
al. presents a two-stage iterative method for generating time-
optimal trajectories through a race course. However, they are
minimizing path curvature to update the path which is different
from minimizing lap time. By contrast, our approach updates
the path with a goal of minimizing traversal time.

C. Bilevel Optimization

Bilevel optimization refers to an optimization problem with
another optimization problem embedded as its constraint [18].
Bilevel optimization techniques have been employed to op-
timize the switching times for switched systems [19]-[22].
This literature has concentrated on the calculation of the cost
function’s derivative with respect to switching times. It has
also been used for legged robots [22], robust control and
parameter estimation [23], and time allocation optimization
for minimum-jerk trajectories [24].

Various algorithms are proposed to solve bilevel optimiza-
tion and a comprehensive treatment is in [18], [25]. We briefly
introduce two that are closely related to our approach. The
first approach replace inner level optimization problem with
its KKT conditions as constraints which may be non-convex
such as the strict complimentary slackness condition. The
second approach, called descent method, seeks to decrease
the outer-level objective while keeping the new point feasible.
Our method can be categorized as a descent method, as we
optimize the outer-level objective by Quasi-Newton method
with analytic gradients provided by the inner-level optimiza-
tion problem. The descent method requires the sensitivity of
the optimization which has been studied in [26]-[28].

ITII. PROBLEM FORMULATION
A. Time-Optimal Motion Planning Problem

A system has generalized configuration ¢ € R™ and operates
in an environment represented by Agee € R™, which denotes
all the collision-free configurations. The problem is to find a
trajectory in Afee from a start configuration g5 to a configu-
ration in a goal set Xgpa € Afree in @ minimum amount of
time while respecting constraints such as dynamics, collision
avoidance, and state and control bounds. The problem can be
mathematically formulated as:

minimize T
a(t),u(t)

subject to  ¢(t) € Xpree, VE € [0, T
q(0) = gs,
( ) € Xgoala
d(q(t), ¢*(t),4(t), u(t)) <0, Vtel0,T]

(1)
where u(t) is the control input, T is the trajectory duration,
and d(-) collects various constraints mentioned before.

This problem is difficult to solve due to its non-convexity
since it has to optimize path z(t) and time T simultaneously.
Our bilevel approach optimizes path and time parameterization
hierarchically.

B. Path Representation

A feasible geometric path is a continuous curve p : [0,1] —
Xlree that connects the start configuration ¢; and goal config-
uration g, such that p(0) = g,,p(1) = g,. We represent paths
using piecewise Bézier curves with C? continuity for each
DOF.

In order to be collision-free, we decompose X into several
convex polyhedrons by convex decomposition. Decomposing
non-convex Afee into connected convex regions is typical
practice, such as [29]. The decomposition returns a list of
connected polyhedrons and the path is split into pieces ac-
cordingly with each piece contained in a separate polyhedron.
This approach lets us easily achieve collision avoidance by
constraining each segment to be inside its polyhedron.

For a space decomposed into K convex regions, the path p
of order m is represented by a vector of length n(m+ 1)K,
p=c§lct] -k |cB|c3| - - - |cX]T where cF is the ith control
point for the kth segment.



If h; is the number of hyperplanes bounding the i-th convex
polyhedron, a total of n(m + 1) Zfil h; linear inequality
constraints are sufficient to guarantee collision avoidance. This
is represented by an inequality like (with properly chosen A;
and v;):

Arp < ;. 2

By the property of Bézier curve, it is sufficient to guarantee
the curve is inside the polyhedron by only constraining the
control points [24].

We impose C? continuity constraints on neighboring seg-
ments to enforce path smoothness. This is achieved by con-
straining the control points. Also, the path should obey termi-
nal constraints, i.e. ¢§ = qs,cffL = ¢4. These linear equality
constraints are in the format of:

AEp = Ve- 3)
with properly chosen Ap and v..

C. Time-Optimal Path Parameterization

TOPP aims to find a time parameterization to a geometric
path, so that the traversal time is minimized while satisfying
all constraints. Pioneered by [2], [15], it is formulated as a
convex optimization problem under appropriate assumptions.
Here we give a brief review.

A time parameterization is a monotonously increasing
scalar function s(¢) : [0,7] — [0, 1], where T is the traversal
time of the path. The trajectory is the time-parametrized geo-
metric path and represented as ¢(t) = p(s(t)) : [0, T] = Xree-
By chain rule, we have

q(t) = p'()8(t),  (t) = p'()3(t) +p"(5)5° (1) (4

where [J and [’ denotes derivative with respect to time and
s, respectively.

In TOPP, values of p/(s) and p”’(s) are known and not
altered when the geometric path is given, the time alloca-
tion s(¢) has to be optimized. We introduce two variables

a(s) =3, b(s) = $% which satisfy the following relationship
. d(b
b(s) = b'(s)s = 20D oo oss
dt
or more simply,
b (s) = 2a(s). 3)

The traversal time 7" can be written in terms of b(s) as

T S(T) 1 1 1 1 1
Tz/ ldt:/ TdSZ/ Tds=/ ds. (6)
0 s(0) S o S 0o \/b(s)

To get a convex problem, we follow [15], [30] and discretize
s(t) into N segments: {b;}Y,. We assume that a(s) is piece-
wise constant between two consecutive discretization points,
then b(s) becomes a piece-wise linear function. From (5) we
have 2a;As; = b; 11 —b; where As; is the size of the ith grid.
Now (6) can be manipulated into

Lo T 24
T = ——ds = _ 7
/0 NZOM 2; NOERO @

A wide variety of constraints, i.e. d in (1) can be written as
a(s)$? + B(s)§ < v(s) after substituting Eq. (4) and have
to be imposed throughout the trajectory. Due to discretization
they are imposed at the mid-points between two consecutive
collocation points, i.e. a(s;11/2)bit1/2 + B(Sit1/2)Git1/2 <
7Y(si41/2). These constraints can be all expressed as linear
constraints of b;, b; 11, after algebraic manipulation.

It turns out all constraints under consideration are linear
in b. With objective function (7) being convex, TOPP can be
solved by convex optimization. As a result, given a geometric
path, we have a reliable approach to solve the corresponding
TOPP.

D. Bilevel Optimization
A bilevel optimization problem [18] is given by

minimize F(z,,x
T, €EXy,t €EXp, ( w l)
subject to x; € argmin{  fo(xy,x) :
T €XL
filru,21) <0i=1,...,m
hi(zy, @) =0, =1,...,p}
Gi(xuvxl) <0, 2=1,....M
Hi(zy,z;)=0, i=1,...,P

where G; and H; denote outer-level constraints, fj is the inner-
level objective, while {f;(-)}7™, and {h;(-)}?_, are inner-level
constraints.

In some literature, the outer and inner level problems are
called leader and follower. The follower makes action x;
by solving some parametric optimization problem based on
leader’s action z,,. The goal is for the leader to find x,, that
optimize its own cost function which also depends on z;. If
we assume the inner level problem has a unique solution, z;
is a function of z,. As a result, we can directly optimize
x, by treating x; as an implicit function of z,. The problem
is x; is the solution to an optimization problem and usually
has no closed-form solution. In our problem, the outer-level
constraints only depend on the path itself so it suffices to
find an analytic gradient of the cost function. Luckily, the
inner and outer problem have the same cost function, so the
outer gradient can be computed using sensitivity analysis of
the inner problem.

For brevity, we give the results of first-order sensitivity
analysis and refer readers to [26] for further details. Consider
the problem of finding the local solution z;(z,,), i.e. the inner
optimization problem as a parametric NLP problem:

minimize  fo(zy, ;)
x

i=1,...,m, ®)
1=1,...,p,

subject to  f;(xy,2;) <0,

hi(zu, 1) =0,

where x; € X is the vector of decision variables and

z, € Xy is a parameter vector. Under mild assumptions,

given a local optimal solution z}(z,), and multipliers A and
v associated with f and h, respectively, then

m p
Ve £3 (@) = Va, fo+ > Xi(@u)Va, fi+ > vi(wu)Va, hi.
=1 i=1
9



In time-optimal motion planning, z,, is the path parameteriza-
tion and z; is time parameterization.

E. Interior-Point Method to Certain Duality Gap

For a convex optimization problem with linear constraints
in the form of .
minimize f(x)
x
subjectto Gz <g (10)
Hx=h

where f(z) is convex. The Karush-Kuhn-Tucker (KKT) con-
ditions for optimality is
U+ GTAN+H v =0
Grx+s=g,Hr=nh
A>0,s>0,A0os5=0

(1)

where \ and v are Lagrangian multipliers, s is slack variable
and o denote element-wise product. The IPM solves Eq. (10)
using Newton’s method with special modification to account
for inequality constraints and strict complementary slackness.
To progressively move towards optimality, the duality gap \”'s
is used to control how far the next iteration is to the optimum.
In fact, usually a centering step is used in order to prevent Aos
from reaching 0 too quickly which slows down convergence.

Our modification of the IPM is to change the right side
of the strict complementary slackness condition. Instead of
solving to Aos = 0, we only require IPM to solve to Aos = p
for some value ;1 > 0. Here, p is a user-defined parameter for
our algorithm. This modification has three positive and one
negative effects. First, IPM solves toward A\ o s = 0 iteratively
from a positive initial value of Aos, the value of Aos gradually
converges to 0 from some positive value. As a result, early
termination at ;4 > 0 requires fewer iterations. Second, the
solution is not on the boundary of nonnegative orthant and we
avoid the difficulty preventing warm start. Third, no inequality
constraint is active at termination, so there is no need to worry
about the active set switch that causes non-smoothness of the
outer gradient.

However, the drawback is that the result of optimization is
suboptimal, since the KKT condition is not satisfied. The de-
gree of suboptimality can be tuned by reducing the value of p.
Nevertheless, our experiments suggest that even a small value
of p is beneficial, and the benefits overall are worth sacrificing
a small amount of optimality in the inner optimization.

Because the duality gap modifies the KKT condition, the
gradient (9) obtained by sensitivity analysis is no longer valid.
To obtain the new gradient, we use the equivalence between
modified KKT conditions and log barrier method [31, Ch. 11].
The optimum of the barrier-augmented problem

minimize f(z) —p ) logs

subject to Gz +s =g, (12)
Hx=h
satisfies the KKT condition
U+ GT™A+H v =0
—% +A=0 (13)

Gr+s=g,Hr=h

where the Lagrangian multipliers are A and v. Note that the
second equality is equivalent to the duality gap condition
(11), and non-negative constraints A\ > 0 and s > 0 are
implicitly imposed. Hence, we apply sensitivity analysis to the
log barrier problem to obtain analytic gradient. Specifically,
we may reuse (9) but augment the cost function with the log
barrier, and drop the inequality constraints.

The algorithm for solving the modified KKT system is
basically same with standard IPM algorithm as cvxopt [30]
and the only difference is Eq. (17) and Eq. (18b) of [30] are
modified to account for duality gap p. The algorithm returns
multipliers A, p and slack variables s which are used to com-
pute the cost with barrier as in Eq. (12) and analytic gradient
as in Eq. (9). Warm starting is implemented by keeping the
solution (z, s, A, v) from the last problem and using them as
the initial guess for the next problem. It is possible that some
inappropriate step is taken in outer optimization, and warm
start fails to solve the inner optimization problem. In this
circumstance, a regular initial guess is used.

FE. Duality Gap Bilevel Optimization Algorithm

Our overall bilevel optimization method is presented in
Algorithm 1. The algorithm takes an initial guess of the
geometric path pg, the linear constraints Ay, v;, Ag, v, on the
path, and the duality gap . It also maintains a set of inner-
optimization warm-start parameters, z,,s. In each iteration, the
TOPP solver (Gap-TOPP) takes a path p, desired duality gap
1, and optional warm-start guess z as input, and outputs an
optimized cost J, Lagrange multipliers A and time parame-
terization {b;}¥ ;. The gradient of the path p is computed in
the Get-Gradient subroutine using Lagrange multipliers, and
later used to update the path. The outer-level optimization is
essentially a nonlinear optimization with linear constraints and
the optimality conditions are checked by the optimizer. At the
end of the algorithm, we solve the gap-free TOPP problem to
get lower cost.

Any gradient-based method can be used as the Take-A-Step
function which updates p based on gradient V and possibly
its history (in Quasi-Newton approaches). We use off-the-
shelf NLP solver SNOPT to perform Take-A-Step function.
Even though we are using a nonlinear solver, the constraints
in outer-level optimization are linear so feasibility is always
guaranteed. In our implementation the gap parameter p is set
to a small value and fixed throughout the algorithm.

IV. NUMERICAL EXPERIMENT

We evaluate our method on random instances of “forests”
using the environment generator of Gao et al. [29]. We gener-
ated 101 tests, each with a random environment and randomly
sampled feasible start points and goal points. We refer to [24]
for a visualization of the environment and statistics on number
of segments. In all experiments, computation is performed on
a PC running Ubuntu 16.04 with 4.00 GHz CPU and 32 GB
memory without parallelization. Implementations are mainly
based on Python, but the IPM solver is written in C++ based
on open-source cvxopt [30]. The NLP solvers are implemented



Algorithm 1 Bilevel-Solver (pg, Az, v, A, Ve, 1t)
L p < Ppo

Zws — nil

for i < 0 to max-iterations do
J, {bi}g\LO’ A, v < Gap-TOPP(p, i, zus)
Zws ({bl}i\]:07 >\’ V)
V ¢ Get-Gradient(\, v/)
p < Take-A-Step(p, J, V, A7, v;, A, ve)
if optimality-conditions-satisfied then

break

10: J, {b;}}V., < TOPP(p)

. return J, p, {b;}}V,

12: function GAP-TOPP(p, i, 2)

D AN

—_

13: if z is not nil then > Warm start
14: TN 2

15: if  is dynamically infeasible for p then

16: Clear warm start

17: x, \, v « solve Eq. (13) with guess z, \,

18: return J(z) (Eq. (12)), z, A\, v

in compiled languages for efficiency, but they are called using
cost and constraint functions written in Python.

In this problem setting, a heuristic-based graph search finds
a tentative path from the start to goal. Box-type corridors are
generated around the path to obtain a list of safe corridors
from start to goal that overlap with neighbors. The trajectory
is thus divided into several pieces with each piece constrained
in one safe corridor. A demonstration of the box-type corridors
is shown in Fig. 1. We set the log barrier parameter ¢ = 0.001
in all examples, and keep it constant throughout optimization.
However, after optimization terminates we re-solve with . = 0
to obtain the actual minimum time. To initialize the opti-
mization, we use a minimum jerk trajectory computed using
methods in [24] with or without time allocation refinement.
The outer optimization has a iteration limit of 80 to limit
computation time.

A. Gap vs Gap-free

Here we show the effect of solving our modified KKT
system (Gap) by comparing with bilevel optimization where
the inner optimization is solved to optimality (Gap free).

Let Problem A be an example composed of 3 boxes shown
in Fig. 2. The gradient of the cost function with respect to
control points is also shown for both solvers. It can be seen
that two solvers may have large gradient difference on the
same geometric path. Since the gap solver is smoothing the
cost function, its gradient has smaller magnitude. An alternate
view of this comparison is shown in Fig. 3. We start from a
path that has already been refined by bilevel solver for a few
iterations, with the inner optimizations performed by gap-free
solver. Then we compute the gradient direction. We perturb
the path slightly by taking small steps along the gradient
direction, and plot the directional derivative along the gradient.
This figure shows that by introducing the duality gap, a much
smoother problem is obtained.

—— Gap-free

— Gap

® Start
Goal

///i\/‘

Fig. 2: Environment of problem A. The blue and orange arrow
denotes gradient of control points. The gap-free problem has larger
gradient.

40

Gap-free
Gap

Directional Derivative

—40

0.0000 0.0001 0.0002

Step Size

0.0003 0.0004

Fig. 3: Profile of directional derivatives (V f* - v/||v||) when a path
is moved along a direction v with different step sizes. The gap solver
achieves smoother derivatives compared with the gap-free solver.

To examine how the duality gap influences the performance
of outer optimization, we perform 80 outer iterations on
problem A. The summary of results are shown in Tab. L
The gap solver needs fewer number of calls to the inner
optimization. On average each inner optimization also re-
quires fewer iteration steps, which is directly proportional
to optimization times. As a result, the total computation
time is improved. The smoother cost landscape allows more
efficient cost improvement given the same amount of outer
optimization.

TABLE I: Gap vs Gap-free bilevel opt., on problem A

Method # TOPP  Avg Iter Comp time (s)  Final cost (s)
Gap 150 8.71 0.37 2.85
Gap-free 168 20.80 0.66 2.89

We also compare their difference on all the test cases using
the same amount of outer iterations. The results are shown in
Tab. II and are consistent with the results observed in problem
A. Since we are solving inner optimization more efficiently,
the Gap method achieves lower computation time. The Cost
Improvement column refers to the difference between initial
traversal time and optimized traversal time, and shows that the



TABLE II: Gap vs Gap-free bilevel opt., avg. over all test cases

Method Comp. Time (s)  Cost Improvement (s)
Gap 0.51 0.39
Gap-free  2.06 0.30

smoother cost function obtained by our method leads to faster
convergence.

B. Bilevel vs Nonlinear Optimization

We compare our algorithm with two alternative optimization
problem formulations, DC and Joint, both solved with SNOPT
and IPOPT. Analytical gradients are provided for solver ro-
bustness and sparsity is exploited to the best of the authors’
ability.

The Joint condition solves the spatial and temporal param-
eters jointly. The spatial trajectory is initialized directly using
the result from minimum-jerk trajectory since they have the
same parameterization. The temporal trajectory is initialized
by solving TOPP on the initial guess. With this initialization,
the initial guess is always feasible. Both SNOPT and IPOPT
are both configured to have optimality tolerance of 1075,
IPOPT has a maximum iteration limit of 200 while SNOPT
has total iteration (including both major and minor iterations)
limit of 10,000.

The DC condition formulates a nonlinear program using
direct collocation. Since DC uses a different trajectory parame-
terization, we use interpolation on the minimum-jerk trajectory
for the initial guess. The initial duration of the trajectory is
scaled to satisfy velocity and acceleration bound constraints.
When solved by IPOPT, the iteration limit is set as 1,000 and
optimality tolerance is 10~3. For SNOPT the total iteration
limit is set as 50,000 and the optimality tolerance of 10~ is
used.

1) Success Rate: Success rate comparisons are shown in
Tab. III. Rows SN and IP denotes the use of the NLP solver
SNOPT and IPOPT, respectively, and columns No Ref and Ref
denotes whether time allocation is used to refine the minimum
jerk trajectory using methods in [24].

The bilevel optimization framework maintains inner opti-
mization feasibility by construction and guarantees a feasible
solution at any time as long as the initial guess is feasible. As
a result, its success rate is 100% as long as IPM is robust. Both
Joint and DC rely on an NLP solver and cannot guarantee a
feasible solution. In practice, both Joint and DC may end up
at an infeasible solution even if the initial guess is feasible.
This indicates the strong nonlinearity of time-optimal problem
and NLP solver may fail unless a solution close to optimum
is provided. Also, it can be seen that SNOPT is better at Joint
optimization and IPOPT excels in DC, and providing a refined
minimum-jerk trajectory gives higher success rate.

2) Cost and Computation Time: Tab. IV compares our
method in terms of the optimized cost and computation time.
For DC and Joint, we restrict our comparison to the variants
that use the refined initial guess, IPOPT for DC, and SNOPT
for Joint. For DC and Joint, we average only the successful

TABLE III: Success rate of planning methods

DC Joint Bilevel
No Ref  Ref No Ref  Ref No Ref  Ref
SN 782% 88.1%  69.3% 93.1%  100% 100%
1P 85.1% 93.1%  20.8% 23.8%

TABLE IV: Optimized costs and computation times, by problem set
(“Set X” indicates those problems on which X succeeds)

Method DC Joint Bilevel
Avg Cost on All 10.03
Avg Cost on Set DC 10.2 9.98
Avg Cost on Set Joint 10.71  10.35
Avg Comp. Time (s) 642  0.62 0.51

results, since the cost of infeasible solution cannot be sensibly
measured. The problems that DC and Joint successfully solve
are compared with the cost of Bilevel which tends to achieve
lower cost. It turns out Bilevel outperforms DC and Joint
optimization in terms of both cost and computation time.

It is unclear why Joint has such a success rate but worse
cost function, since successful termination requires a feasible
solution that satisfies KKT conditions for optimality. Since
joint optimization and bilevel optimization are initialized using
the same guess, this might be caused by the NLP solver
converging to a local optimum.

V. CONCLUSION

We present a bilevel optimization framework to solve time-
optimal problems with spatial and temporal constraints. We ex-
ploit the convexity of TOPP and linearity of spatial constraints
to achieve an any-time and highly robust trajectory optimizer.
We establish the equivalence of modified KKT condition and
log barrier methods. This helps to achieve a highly efficient
IPM with warm start and smoother cost function. Numerical
experiments show that trajectory optimization on flying robots
are solved reliably, while standard NLP solvers fail to maintain
feasibility of the solution, take a longer time, and obtain higher
cost solutions.

Future work should address in the relation between opti-
mizing log barrier cost and the original cost. The problem of
choosing the duality gap and necessity of adjusting it during
optimization also requires further investigation. We are also
interested in replacing the Bézier curve representation due to
its potential conservativeness. Including other constraints such
as motor actuation is also a promising direction to extend
its area of applications. We are also interested in optimizing
types of cost function in the spatial-temporal decomposition
framework.

REFERENCES

[1] J. T. Betts, “Survey of numerical methods for trajectory optimization,”
J. Guidance, Control, and Dynamics, vol. 21, no. 2, pp. 193-207, 1998.

[2] D. Verscheure, B. Demeulenaere, J. Swevers, J. D. Schutter, and
M. Diehl, “Time-optimal path tracking for robots: A convex optimization
approach,” IEEE Transactions on Automatic Control, vol. 54, no. 10, pp.
2318-2327, Oct 2009.



[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

Q. Pham, “A general, fast, and robust implementation of the time-optimal
path parameterization algorithm,” IEEE Transactions on Robotics,
vol. 30, no. 6, pp. 1533-1540, Dec 2014.

G. Tang, W. Sun, and K. Hauser, “Time-optimal trajectory generation
for dynamic vehicles: A bileveloptimization approach,” in Intelligent
Robots and Systems (IROS), 2019 IEEE/RSJ International Conference
on. 1EEE, 2019, pp. 0-7.

A. Wichter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming,”
Mathematical Programming, vol. 106, no. 1, pp. 25-57, Mar 2006.
[Online]. Available: https://doi.org/10.1007/s10107-004-0559-y

P. E. Gill, W. Murray, and M. A. Saunders, “Snopt: An sqp algorithm
for large-scale constrained optimization,” SIAM J. on Optimization,
vol. 12, no. 4, pp. 979-1006, Apr. 2002. [Online]. Available:
http://dx.doi.org/10.1137/S1052623499350013

B. Paden, M. Cédp, S. Z. Yong, D. S. Yershov, and E. Frazzoli, “A
survey of motion planning and control techniques for self-driving urban
vehicles,” IEEE T. Intelligent Vehicles, vol. 1, no. 1, pp. 33-55, 2016.
[Online]. Available: https://doi.org/10.1109/TIV.2016.2578706

N. R. Kapania, J. Subosits, and J. Christian Gerdes, “A sequential
two-step algorithm for fast generation of vehicle racing trajectories,”
J. Dynamic Systems, Measurement, and Control, vol. 138, 04 2016.

J. h. Jeon, R. V. Cowlagi, S. C. Peters, S. Karaman, E. Frazzoli,
P. Tsiotras, and K. Iagnemma, “Optimal motion planning with the
half-car dynamical model for autonomous high-speed driving,” in 2013
American Control Conference, June 2013, pp. 188-193.

F. Bayer and J. Hauser, “Trajectory optimization for vehicles in a
constrained environment,” in /EEE Conf. Decision and Control (CDC),
Dec 2012, pp. 5625-5630.

J. A. Reeds and L. A. Shepp, “Optimal paths for a car that goes both
forwards and backwards,” PACIFIC J. MATHEMATICS, 1990.

W. Xu, J. Wei, J. M. Dolan, H. Zhao, and H. Zha, “A real-time motion
planner with trajectory optimization for autonomous vehicles,” in 2012
IEEE International Conference on Robotics and Automation. 1EEE,
2012, pp. 2061-2067.
T. Lipp and S. Boyd, “Minimum-time speed
over a fixed path,” International  Journal
vol. 87, mno. 6, pp. 1297-1311, 2014.
https://doi.org/10.1080/00207179.2013.875224
E. Velenis and P. Tsiotras, “Optimal velocity profile generation for
given acceleration limits; the half-car model case,” in IEEE Int. Symp.
Industrial Electronics, 2005. ISIE 2005., vol. 1, 2005, pp. 361-366.

K. Hauser, “Fast interpolation and time-optimization with contact,” Int.
J. Robotics Research, vol. 33, no. 9, pp. 1231-1250, 2014. [Online].
Available: https://doi.org/10.1177/0278364914527855

optimisation
of  Control,
[Online]. Awvailable:

J. Bobrow, S. Dubowsky, and J. Gibson, “Time-optimal control
of robotic manipulators along specified paths,” Int. J. Robotics
Research, vol. 4, no. 3, 3-17, 1985. [Online]. Available:

https://doi.org/10.1177/027836498500400301
H. Pham and Q. Pham, “A new approach to time-optimal path parameter-
ization based on reachability analysis,” IEEE Transactions on Robotics,
vol. 34, no. 3, pp. 645-659, June 2018.

A. Sinha, P. Malo, and K. Deb, “A review on bilevel optimization:
From classical to evolutionary approaches and applications,” /IEEE T.
Evolutionary Computation, vol. 22, pp. 276-295, 2018.

X. Xu and P. J. Antsaklis, “Optimal control of switched systems based
on parameterization of the switching instants,” IEEE Transactions on
Automatic Control, vol. 49, no. 1, pp. 2-16, Jan 2004.

M. Egerstedt, Y. Wardi, and F. Delmotte, “Optimal control of switching
times in switched dynamical systems,” in IEEE Int. Conf. Decision and
Control, vol. 3, Dec 2003, pp. 2138-2143 Vol.3.

E. R. Johnson and T. D. Murphey, “Second-order switching time
optimization for nonlinear time-varying dynamic systems,” IEEE T.
Automatic Control, vol. 56, no. 8, pp. 1953-1957, Aug 2011.

F. Farshidian, M. Neunert, A. W. Winkler, G. Rey, and J. Buchli,
“An efficient optimal planning and control framework for quadrupedal
locomotion,” in IEEE Int. Conf. Robotics and Automation, 2017, pp. 93
- 100.

B. Landry, Z. Manchester, and M. Pavone, “A differentiable augmented
lagrangian method for bilevel nonlinear optimization,” CoRR, 2019.
[Online]. Available: https://arxiv.org/abs/1902.03319

W. Sun, G. Tang, and K. Hauser, “Fast UAV trajectory optimization
using bilevel optimization with analytical gradients,” CoRR, 2018.
[Online]. Available: http://arxiv.org/abs/1811.10753

[25]

[26]

(27]

(28]

[29]

[30]

[31]

B. Colson, P. Marcotte, and G. Savard, “An overview of bilevel
optimization,” Annals of Operations Research, vol. 153, no. 1, pp.
235-256, Sep 2007. [Online]. Available: https://doi.org/10.1007/s10479-
007-0176-2

A. V. Fiacco and Y. Ishizuka, “Sensitivity and stability analysis
for nonlinear programming,” Annals of Operations Research,
vol. 27, no. 1, . 215-235, Dec 1990. [Online]. Available:
https://doi.org/10.1007/BF02055196
A. Shaban, C.-A. Cheng, N. Hatch, and B. Boots, “Truncated back-
propagation for bilevel optimization,” arXiv preprint arXiv:1810.10667,
2018.

B. Amos and J. Z. Kolter, “Optnet: Differentiable optimization as a layer
in neural networks,” in Proceedings of the 34th International Conference
on Machine Learning-Volume 70. JMLR. org, 2017, pp. 136-145.

F. Gao, W. Wu, Y. Lin, and S. Shen, “Online safe trajectory generation
for quadrotors using fast marching method and bernstein basis polyno-
mial,” in IEEE International Conference on Robotics and Automation,
2018, pp. 344-351.

L. Vandenberghe, “The cvxopt linear and quadratic cone program
solvers,” 2010. [Online]. Available: http://www.seas.ucla.edu/ van-
denbe/publications/coneprog.pdf

S. Boyd and L. Vandenberghe, Convex Optimization.
USA: Cambridge University Press, 2004.

New York, NY,



