
Fast UAV Trajectory Optimization using Bilevel
Optimization with Analytical Gradients

Weidong Sun1 , Gao Tang2, Student Member, IEEE and Kris Hauser2 Senior Member, IEEE

Abstract—We present an efficient optimization framework
that solves trajectory optimization problems by decoupling state
variables from timing variables, thereby decomposing a chal-
lenging nonlinear programming (NLP) problem into two easier
subproblems. With timing fixed, the state variables can be
optimized efficiently using convex optimization, and the timing
variables can be optimized in a separate NLP, which forms
a bilevel optimization problem. The challenge is to obtain the
gradient of the objective function which itself needs an opti-
mization to compute. Whereas finite differences must solve many
optimization problems to compute the gradient, our method is
based on sensitivity analysis of parametric programming: the
dual solution (Lagrange multipliers) of the lower-level optimiza-
tion is used to compute analytical gradients. Since the dual
solution is a by-product of the optimization, the exact gradients
can be obtained “for free”. The framework is demonstrated
on generating trajectories in safe corridors for an unmanned
aerial vehicle. Experiments demonstrate that bilevel optimization
converges significantly more reliably than a standard NLP solver,
and analytical gradients outperform finite differences in terms
of computation speed and accuracy. With a 25 ms cutoff time,
our approach achieves over 8 times better suboptimality than the
current state-of-the-art.

I. INTRODUCTION

Real-time optimal trajectory generation has long been a
challenging but essential component in robotics. Due to non-
linear dynamics, non-convex constraints and high dimension-
ality, it is difficult to optimize trajectories quickly and reliably.
To get around this issue, one would usually fix a subset
of optimization variables and optimize the rest by convex
optimization that can be reliably solved to global optimum.
One such example is to fix time and optimize state trajectories:
trajectories are represented using piecewise polynomial splines
and optimized by quadratic programming (QP) methods. This
has been applied to path planning for ground robots, au-
tonomous cars [1], [2], humanoid robots [3] and UAVs [4]–
[6]. However, the time allocated to each piece has to be fixed
to maintain convexity of the problem, because time enters
the optimization objective and constraints in highly nonlinear
fashion. In prior approaches, the allocated time is often chosen
heuristically [5], and how to optimize time allocation remains
an open question.

*This work was supported by NSF grant #IIS-1816540
1W. Sun is with XYZ Robotics, Shanghai, China

weidong.sun@xyzrobotics.ai
2G. Tang and K. Hauser are with Department of Computer

Science, University of Illinois at Urbana-Champaign, Urbana, USA
{gaotang2,kkhauser}@illinois.edu

Fig. 1. Before Refinement trajectory is computed by the implementation from
Gao et al. [5]. After Refinement trajectory uses our technique to optimize the
path and time allocation among segments. A 19-segment safe corridor is used.
Dots indicate equally distributed time steps sampled along the trajectories.

Mellinger et al. [4] applies gradient descent method to
refine time allocation. Specifically, the optimization problem
is divided into two levels: the lower level optimizes the
path while timing is fixed, and the upper level optimizes the
time allocation. One unresolved challenge is how to find the
gradient of the optimal cost with respect to time allocation.
Finite difference is used in [4], but this can be computationally
expensive because if n segments are used in the spline, then
finite differences requires n + 1 QPs to be solved for each
gradient evaluation. Besides, inappropriate choice of step size
may lead to large gradient estimation error.

We propose a bilevel optimization framework that computes
optimal time allocations, where the gradient of the objective
w.r.t. time allocation is computed from the dual solution
(Lagrange multipliers) of the QP problem. We are able to
compute the exact gradient “for free”, whereas the finite
difference method suffers from slow computation and low
accuracy. Numerical experiments are conducted on UAV tra-
jectory optimization problems in random environments which
shows an 8 times improvement in suboptimality when the
optimizer is given a 25 ms cutoff. One example in Fig. 1
shows that our technique is able to refine the trajectory to
get a smoother trajectory with lower jerk.

II. RELATED WORK

A. Improving Time Allocation

As described above, trajectory optimization with polynomial
splines in piecewise-convex corridors is a relatively solved



problem as long as the spline timing is fixed. However, it has
still proven challenging to find an optimal time allocation in
real-time. One strategy [5], [6] is to generate a time allocation
with heuristics and keep timing fixed during the optimization
stage. Heuristics in general can lead to inefficient trajectories
such as the one before refinement shown in Fig. 1. Iterative
methods such as gradient descent [4], [7] have been used
to optimize time allocation. However, gradient is computed
by finite difference and (n + 1) QPs have to be solved for
a problem with n segments for every gradient evaluation,
making it slow and inaccurate. We use sensitivity analysis to
obtain exact gradient efficiently. Another strategy to determine
time allocation is to use sampling [3] in cases where finding
a feasible QP is the major issue. Sampling is sufficient when
optimality is not emphasized, while in our work we focus on
finding an optimal time allocation.

B. Bilevel Optimization

Bilevel optimization [8] refers to a mathematical program
where one optimization problem (the upper-level problem)
has another optimization problem (the lower-level problem) as
one of its constraints, i.e., one optimization task is embedded
within another.

Bilevel and multi-level optimization techniques have been
employed for switching time optimization for switched sys-
tems [9]–[12]. This literature has concentrated on calculating
derivatives of an objective function with respect to switching
times. In particular, works by Xu et al. [9] and Egerstedt
et al. [10] compute the derivatives using Lagrange multiplier
methods, which bear some resemblance to sensitivity analysis
technique used in this paper. However, these works are based
on Pontryagin’s Maximum Principle [13] and are difficult to
include inequality path constraints, which is often unavoidable
in robotic applications.

Applications of bilevel optimization in robotics include tra-
jectory optimization for legged robots [12], and robust control
and parameter estimation [14]. Landry et al. [14] present a
bilevel optimization solver based on augmented Lagrangian
method, however their bilevel method is slower than directly
solving the NLP in their experiments.

Many algorithms are available to solve bilevel optimization,
and we refer readers to Sinha et al. [8] and Colson et al. [15]
for more comprehensive treatments of the topic. Most closely
related to our approach is the descent method, which seeks
to decrease the upper-level objective while keeping the new
point feasible. Our method might be categorized as a descent
method as we solve the upper-level optimization problem by
gradient descent using gradients provided by the lower-level
optimization problem.

III. METHODOLOGY

In this section, we describe our framework. We start by an
introduction of trajectory optimization, then give a mathemat-
ical formulation of the problem we are trying to solve and end
with a description of our algorithm.

A. Trajectory Optimization Preliminaries

In the case of UAV motion planning, differential flatness
allows us to plan a trajectory in the UAV’s four flat outputs
[x(t)T ψ(t)]T which consist of 3-D position x(t) ∈ R3

and yaw angle ψ(t) ∈ SO(2), without explicitly enforcing
dynamics [4]. In this work, we plan in R3 by assuming the yaw
stays constant, which is a common practice in UAV motion
planning.

Trajectory optimization asks to find a trajectory x : [0, T ]→
Rd that minimizes some measure of performance J while
satisfying all the necessary constraints, e.g. being collision-
free and dynamically feasible, and is formulated as

minimize
x,T

J(x, T ) =

∫ T

0

`(x, t)dt+ Φ(x(T ))

subject to x(0) = x0
x(T ) ∈ Xgoal
g(x(t)) ≤ 0, ∀t ∈ [0, T ]
h(x(t)) = 0, ∀t ∈ [0, T ],

where x encodes the trajectory, with the initial state x0 and
goal region Xgoal prescribed. Total traversal time is denoted
as T , which is sometimes fixed. The objective J(x, T ) is the
sum of running cost

∫ T
0
`(x, t)dt and terminal cost Φ(x(T )).

Constraints including dynamics, collision avoidance, and other
system constraints are encoded in g(·) and h(·).

B. Safe Corridors

To guarantee that the whole trajectory will stay collision-
free, we extract a safe corridor from the environment using
the implementation from Gao et al. [5]. The safe corridors are
generated such that all obstacles are outside. As a result, as
long as the trajectory is constrained inside the safe corridors,
collision avoidance can be achieved. One such corridor is
illustrated in Fig. 1. In general, this method could work for
corridors composed of any convex polytope, but axis-aligned
boxes are chosen for simplicity and compatibility with the grid
data structures commonly used by perception algorithms.

C. Trajectory Optimization with Piecewise Bézier Curves

In this section we define a trajectory optimization problem
in terms of spatial variables c (polynomial coefficients) and
temporal variables y (timing of the knot points).

We represent the trajectory as a piecewise Bézier curve of
order d with n segments and segment durations ∆t1, . . . ,∆tn.
The timing of each knot point (connection point between two
consecutive pieces) is given by ti = ti−1 + ∆ti with t0 = 0.
The i’th segment is defined over the domain [ti−1, ti] as

x(t) =
d∑
j=0

cijBd,j

(
t− ti−1

∆ti

)
, t ∈ [ti−1, ti]

for each i = 1, . . . , n, where cij ∈ R3 denotes the j’th control
point in the i’th segment and Bd,j denotes the j’th Bernstein
polynomial of order d defined as

Bd,j(u) =
d!

j!(d− j)!
uj(1− u)d−j .



The choice of Bézier curve makes it simple to constrain the
trajectory inside safe corridors. Since each corridor is convex,
and a Bézier curve is inside the convex hull of its control
points, it suffices to constrain all control points of each Bézier
curve to be inside its corresponding safe corridor.

We gather all the polynomial coefficients (control points) in
the flattened vector c ∈ R3n(d+1) and define the time allocation
as y = [∆t1, . . . ,∆tn]T ∈ Rn+ .

1) Objective Function: The objective function J is chosen
to be the integral of the squared norm of some high-order
derivative of the trajectory to penalize control effort:

J(x, T ) =

∫ T

0

‖x(q)(t)‖2dt (1)

where q is the derivative order and T is a chosen trajectory
time.

It has been shown [4], [5] that the first term in Eq. (1) can
be written as a quadratic function of the coefficients c, with
the quadratic matrix Pq(y) determined by time allocation y
and the order of derivative q. With a slight abuse of notation,
we can write Eq.(1) in terms of polynomial coefficients c and
time allocation y:

J(c, y) = cTPq(y)c, (2)

where Pq(y) is a symmetric positive semidefinite matrix that
is nonlinear in y. Note that we will drop q in Pq(y) since we
set q = 3 (we penalize jerk) throughout this work.

2) Constraints on Continuity: Constraints on the trajectory
should be enforced so that:

1) States at the start and end of the trajectory should match
the initial state and (optional) final state.

2) Continuities at knot points which ensure a smooth tran-
sition between each segment of the trajectory. We found
that in the UAV case, applying continuity constraints up
to acceleration yields good results.

The above constraints can be complied into a linear equality
constraint on the polynomial coefficients c:

H(y)c = m, (3)

where the matrix H is generally nonlinear in time allocation
y.

3) Constraints on Safety and Dynamic Feasibility: Safety
and dynamical feasibility are ensured by imposing inequality
constraints such that:

1) The whole trajectory stays in the safe corridor discussed
in Section. III-C.

2) The maximum velocity ‖x′(t)‖∞ and maximum accel-
eration ‖x′′(t)‖∞ along the trajectory is bounded, i.e.,

‖x′(t)‖∞ ≤ vmax, ‖x′′(t)‖∞ ≤ amax ∀t ∈ [0, T ]
(4)

with vmax and amax prescribed by the capabilities of the
vehicle, or user preference.

We encode the trajectory using a piecewise Bézier curve [5],
which has the properties:

1) The curve is totally contained in the convex hull of its
control points.

2) The derivative of a Bézier curve is again a Bézier curve,
with its coefficients being a linear combination of its
antiderivative’s coefficients.

Using these properties (see Ref [5] for details), safety and
dynamically feasible constraints can be imposed as a linear
inequality constraint on the flattened coefficients:

G(y)c ≤ h, (5)

where matrix G is generally nonlinear in time allocation y.
4) Constraints on Time: Constraints on time allocation y

include the sum equals T and the duration of each segment is
positive. We encode these constraints as

Ay ≤ b, Cy = d, (6)

with A, b, C, d properly chosen.

D. Final Formulation

In summary, we collect Eq.(2), (3), (5) and (6), into the
problem of Trajectory Optimization using Bézier spline in a
Corridor (TOBC):

minimize
c,y

J(c, y) = cTP (y)c

subject to Ay ≤ b
Cy = d
G(y)c ≤ h
H(y)c = m,

(TOBC)

which is nonlinear in time allocation y and convex (quadratic)
in spline coefficients c for fixed y. This formulation generalizes
the formulations of Refs [2], [3], [5], [6].

E. Formulation of the Bilevel Optimization Problem

To efficiently solve (TOBC), we rewrite it as the bilevel
optimization:

minimize
c,y

J(c, y) = cTP (y)c

subject to c ∈ argmin
c
{J(c, y) : G(y)c ≤ h, H(y)c = m}

Ay ≤ b
Cy = d.

(TOBC-BO)
Note that although the objective functions J(c, y) remain

the same in both the lower-level (as the first constraint) and
upper-level optimization problem, y is fixed in the lower-level
optimization problem but becomes the optimization variable in
the upper-level optimization problem. The lower-level problem
is also a quadratic program (QP) because J(c, y) is quadratic
in c when y is fixed.

Our solution strategy, is to use a constrained gradient de-
scent on the function J?(y) = J(c?(y), y) with c? minimizing
the QP for every time allocation y, i.e.,

c?(y) ∈ argmin
c
{J(c, y) : G(y)c ≤ h, H(y)c = m}. (7)

The descent method indeed has been used to solve bilevel
optimization problems [8], and our framework is a variant of



this method. Given an feasible y ∈ Rn, we find a direction
−∇yJ?(y) ∈ Rn and a step length α that can make a sufficient
decrease in J?(y) while maintaining the feasibility of the
new point ynew = y − α∇yJ?(y). The general issue is the
availability of gradients, which is addressed in the next section.

F. Gradient Computation

We use a key result from sensitivity analysis of parametric
nonlinear programming (NLP) [16] to derive the gradient
∇J?(y). In our problem, the lower-level objective is the same
as the upper-level one, which allows us to derive gradients of
the upper-level decision variables through sensitivity analysis.
For brevity, we give results of first-order sensitivity analysis
and refer readers to Fiacco [16, Theorem 3.4.1] for details.

Theorem 1: Consider the problem of finding the local
solution c(y) of a parametric NLP problem:

minimize
c

J(c, y)

subject to gi(c, y) ≤ 0, i = 1, . . . ,m
hj(c, y) = 0, j = 1, . . . , p

where c is the vector of decision variables and y ∈ Rn is a
parameter vector.

Given a locally optimal solution c?(y) with cost J?(y), and
Lagrange multipliers λ(y) and ν(y) associated with g(·) and
h(·), respectively, under mild assumptions, the gradient of the
objective is

∇yJ?(y) = ∇yJ +

m∑
i=1

λi(y)∇ygi +

p∑
j=1

νj(y)∇yhj . (8)

The conditions for this theorem to hold are assumed to be
true in this paper and we leave as future work how to deal with
corner cases such as switching of active inequality constraints.
Empirical results show that our method performs well in all
the test cases.

G. Solving Bilevel Optimization

Our algorithm, given in Alg 1, uses gradient descent to solve
(TOBC-BO). It takes an initial guess of the time allocation
y0 as input. It then iteratively descends J?(y) until some
optimality conditions are satisfied or the maximum number
of iterations is reached.

Line 5 projects the gradient to satisfy linear constraints of y.
For this problem, the linear constraints are 1T y = T and y ≥ δ
for some small δ. The projection is simply p = g−1T g/‖1‖1
to make sure the sum of p is zero so the total traversal time is
not changed. If inequality constraint y ≥ δ is violated at some
entries, their values are set as δ and the rest are projected. Line
6, which is further illustrated in Algorithm 2, finds a suitable
step length α that gives sufficient decrease in the objective
function. Since line search is used, this algorithm guarantees
that every major iteration improves the cost. The optimality
conditions used in our implementation are:

1) Norm of the projected gradient is less than 1× 10−3.
2) The change of the objective is less than 1× 10−3.

Algorithm 1 Refine-Time (y0)
1: y ← y0
2: for i← 0 to max-iterations do
3: J, λ, ν ← Solve-QP(P (y), G(y), h,H(y),m)
4: g ← Get-Gradient(λ, ν) . From Eq. (8)
5: p← Project-Gradient(g,A, b, C, d)
6: α, Jα, λα, να, yα ← Line-Search(y, p)
7: if α not found then
8: break
9: if optimality-conditions-satisfied then

10: break
11: J, λ, ν, y ← Jα, λα, να, yα
12: return y

Algorithm 2 Line-Search (ys, p)
1: static variable α0

2: constant variables τg, τ
3: α← α0

4: for i← 0 to max-iterations do
5: y = ys − αp
6: J, λ, ν,← Solve-QP(P (y), G(y), h,H(y),m)
7: if sufficient-decrease-achieved then
8: if i = 0 then
9: α0 ← τgα

10: else
11: α0 ← α

12: return α, J, λ, ν, y

13: α← τα
14: return α not found

Algorithm 2 shows our adaptive backtracking line search
routine starting from ys in the direction of p, step length α
is returned if found as in Line 12 along with other related
results, otherwise “α not found” will be returned as in Line
14 and Alg. 1 is terminated. In our implementation, the Armijo
condition [17] is used for checking sufficient decrease in the
objective. The initial step length α0 is updated in an adaptive
strategy similar to trust region method. The adaptive strategy
needs τg > 1 and shrinking parameter τ < 1. In this paper,
τg = 1.5, τ = 0.2.

IV. EXPERIMENTS

Our algorithm, which is released as an open-source pack-
age1, is implemented in a combination of Python and C++.
Python is used in constructing the QP problem, performing
line search, and gradient calculation, while all QP solvers
are implemented in C++. Pybind112 is used as the interface
between Python and C++.

1https://github.com/OxDuke/Bilevel-Planner
2https://github.com/pybind/pybind11



A. Problem Description
Experiments use the minimum-jerk as the objective (follow-

ing Mellinger and Kumar [4]):

minimize
c,y

J(c, y) = cTP (y)c

subject to 1T y = Tc
y ≥ δ
G(y)c ≤ h
L(y)c = m,

(9)

where Tc is a fixed traversal time, e.g., chosen by a higher-
level planner, and δ is a small value (we use 1× 10−6) which
ensures that durations are positive. We refer [5] for how
P,G,L, h,m is defined due to page limit.

B. Numerical Experiments
We evaluate our method on random instances of “forests”

using the environment generator of Gao et al. [5]. We gener-
ated 100 tests, each with a random environment and randomly
sampled feasible start points and goal points. Because we use
6’th order piecewise Bézier curves, the number of variables
in each optimization problem is (6 + 1) × 3n where n is the
number of segments. We note that higher order Bézier curve
can also be used. The initial guess of time allocation and fixed
total traversal time are computed from the heuristic as in [5].
All the experiments are carried out on a workstation with a 4.0
GHz Intel Core i7-6700K processor, using only one thread.

Table I compares results from different combinations of
formulation methods and numerical solvers:

1) LM/FD+Sqopt/Mosek: Solve (9) using bilevel formu-
lation with two gradient computation techniques: LM,
which uses Lagrange multiplier gradient computations;
FD, which uses finite differences with step length of
0.25 × 10−6. We tested the following QP solvers:
Sqopt [18], an active-set QP solver intended for large
and sparse systems; and Mosek [19], an interior-point
QP solver.

2) NLP+SNOPT: Directly solving (9) as an NLP using
SNOPT [20], a general nonlinear solver for sparse, large-
scale problems. We provide analytic gradients to SNOPT
for solver robustness and explore problem sparsity to
the best of our ability. We initialize SNOPT with the
unrefined time allocation and the spline coefficients
computed in the first QP solve. All the stopping criteria
are set to default except the optimality tolerance is set
to 1× 10−3.

3) DC+SNOPT: Direct Collocation (DC) [13] is also used
to solve problem (9) which directly formulates an NLP
solved by SNOPT. We note that DC cannot directly
optimize Bézier spline coefficients but discretized states
[p(t), ṗ(t), p̈(t)] where p(t) is position and control u ≡...
p (t) at each collocation grid. The system dynamics
is thus d

dt [p(t), ṗ(t), p̈(t)] = [ṗ(t), p̈(t), u(t)]. Due to
different representations of trajectory and approximation
of the cost integral by summation, its cost function is
not the same as the bilevel approach which directly opti-
mizes Bézier spline coefficients and minimizes analytic

cost integral. This is why we do not compare the final
objectives from DC and other approaches in Table I.
Due to page limit, we refer readers to Betts [13] for
detailed formulations of DC. The initial guess for DC is
the same as NLP+SNOPT. For SNOPT, the maximum
number of minor iterations is set to 500,000, and the
stopping criteria are set to default.

TABLE I
NUMERICAL EXPERIMENTS (MEAN/MEDIAN), INCLUDING COMPUTATION

TIME, SUBOPTIMALITY AND CONSTRAINT VIOLATION.

Method Comp. Time [ms] Suboptimality Cons. Vio.

LM+Sqopt (ours) 71.7 / 54.8 0.025 / 1.8e-7 0.0 / 0.0
LM+Mosek (ours) 127.2 / 117.1 0.016 / 0.0 0.0 / 0.0

FD+Sqopt 220.4 / 168.9 1.179 / 0.144 0.0 / 0.0
FD+Mosek 410.3 / 397.2 7.102 / 0.754 0.0 / 0.0

NLP+SNOPT 22.6 / 18.1 242.75 / 14.66 0.087 / 0.033

The Suboptimality column refers to the relative suboptimal-

ity
J − J?

J?
, where J denotes the objective value achieved

by an algorithm, and J? denotes the true optimum. In our
experiment, we approximate J? as the minimum of all the
objectives returned by different algorithms.

Overall, LM improves computation time by 2-3 times be-
yond FD, since the performance bottleneck is moved from
gradient computation to the line search step, which ultimately
takes about 90% of the total computation time. Sqopt is
generally faster than Mosek, and this could be a consequence
of active-set methods’ ability to perform warm start. Moreover,
LM terminates with a much lower suboptimality. We suspect
this is because of the improved accuracy of the LM gradient
computation.

The NLP+SNOPT formulation does poorly compared to our
bilevel optimization framework. SNOPT tends to terminate
prematurely without converging, and often moves to an in-
feasible point even though it starts from a feasible solution.
We believe this is because the joint spatial and temporal NLP
is ill-conditioned. The QP objective function exhibits high-
order dependence on timing, and some spatial constraints
are very sensitive to the high-order spline coefficients. On
the other hand, in the bilevel formulation, the ill-conditioned
problem is handled by convex solvers, which are known to
be more robust. We also note that SNOPT has no guarantee
on obtaining a feasible solution while our approach can be
terminated at any time and return a feasible solution.

The direct collocation formulation only succeeds on 78%
of tests, and is rather slow: the mean and median computation
time for the successful cases are 9.6s and 2.5s, respectively.
This indicates the DC method is not suitable for real-time
applications. The maximum number of iterations is reached
without converging on 22% of the tests. Since the formulation
of DC is not equivalent to ours, suboptimalities of DC are not
reported in Table I.

Fig. 2 examines convergence FD and LM in greater detail
on a single test case. The convergence of NLP+SNOPT was



(a) Objective vs iterations (b) Objective vs computation time

Fig. 2. Convergence plot of our Lagrange multiplier method (LM) compared
against finite differences (FD) on a representative test case. FD is almost as
accurate as LM, since both methods take about the same number of iterations
to converge to the same cost while LM achieves a slightly lower objective.
However, FD is about 4 times slower in terms of computation time. Although
Mosek takes fewer iterations to converge, Sqopt is faster overall because of
its warm-start capability.

(a) Mean suboptimality (b) Median suboptimality

Fig. 3. Mean / median cutoff time vs suboptimality over all random test
cases, using bilevel optimization.

highly irregular, and is therefore not shown. These plots show
that convergence rates are similar in the initial iterations,
but LM continues to improve as the descent approaches the
optimum. Moreover, each iteration of LM is faster. The results
shown in Fig. 3 show convergence as a function of time over
all examples. For each cutoff time, we abort the optimization
process at that time and record the suboptimality achieved at
this time. If no iteration has been finished at the cutoff time,
we use the unrefined objective instead.

Observe that due to the properties of the steepest descent
method, the first few iterations will give significant decrease
in the objective. When LM is run at 40Hz (25 ms cutoff time),
which is a reasonable frequency for real-time applications, it
achieves a mean and median suboptimality of 12.2 and 0.97
respectively, compared to 100.8 and 7.84 achieved by the FD
method of Mellinger and Kumar [4].

V. CONCLUSION

We present a novel bilevel optimization approach to UAV
trajectory optimization, which calculates the gradient of the
objective function w.r.t. temporal variables. Our results show
that this approach achieves real-time performance and higher
quality trajectories than state-of-the-art heuristics. Compared
with methods that require solving NLP directly, this approach
is any-time and has feasibility guarantee. Future work includes
applying this method on physical system and analyzing the
convergence rate of our approach.

REFERENCES

[1] M. Wang, Z. Wang, S. Paudel, and M. Schwager, “Safe distributed lane
change maneuvers for multiple autonomous vehicles using buffered input

cells,” in IEEE International Conference on Robotics and Automation,
2018, pp. 1–7.

[2] H. Fan, F. Zhu, C. Liu, L. Zhang, L. Zhuang, D. Li, W. Zhu, J. Hu, H. Li,
and Q. Kong, “Baidu apollo em motion planner,” arXiv:1807.08048,
2018.

[3] P. Fernbach, S. Tonneau, and M. Taı̈x, “Croc: Convex resolution of
centroidal dynamics trajectories to provide a feasibility criterion for the
multi contact planning problem,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2018, pp. 1–9.

[4] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and
control for quadrotors,” in IEEE Intl. Conf. on Robotics and Automation,
2011, pp. 2520–2525.

[5] F. Gao, W. Wu, Y. Lin, and S. Shen, “Online safe trajectory generation
for quadrotors using fast marching method and bernstein basis polyno-
mial,” in IEEE International Conference on Robotics and Automation,
2018, pp. 344–351.

[6] S. Liu, M. Watterson, K. Mohta, K. Sun, S. Bhattacharya, C. J. Taylor,
and V. Kumar, “Planning dynamically feasible trajectories for quadrotors
using safe flight corridors in 3-d complex environments,” IEEE Robotics
and Automation Letters, vol. 2, pp. 1688–1695, 2017.

[7] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning for
aggressive quadrotor flight in dense indoor environments,” in Robotics
Research. Springer, 2016, pp. 649–666.

[8] A. Sinha, P. Malo, and K. Deb, “A review on bilevel optimization: from
classical to evolutionary approaches and applications,” IEEE Transac-
tions on Evolutionary Computation, vol. 22, no. 2, pp. 276–295, 2018.

[9] X. Xu and P. J. Antsaklis, “Optimal control of switched systems based
on parameterization of the switching instants,” IEEE Transactions on
Automatic Control, vol. 49, no. 1, pp. 2–16, 2004.

[10] M. Egerstedt, Y. Wardi, and F. Delmotte, “Optimal control of switching
times in switched dynamical systems,” in 42nd IEEE International
Conference on Decision and Control, vol. 3, 2003, pp. 2138–2143.

[11] E. R. Johnson and T. D. Murphey, “Second-order switching time
optimization for nonlinear time-varying dynamic systems,” IEEE Trans-
actions on Automatic Control, vol. 56, no. 8, pp. 1953–1957, 2011.

[12] F. Farshidian, M. Neunert, A. W. Winkler, G. Rey, and J. Buchli, “An
efficient optimal planning and control framework for quadrupedal loco-
motion,” in IEEE International Conference on Robotics and Automation
(ICRA), 2017, pp. 93–100.

[13] J. T. Betts, “Survey of numerical methods for trajectory optimization,”
Journal of guidance, control, and dynamics, vol. 21, no. 2, pp. 193–207,
1998.

[14] B. Landry, Z. Manchester, and M. Pavone, “A differentiable
augmented lagrangian method for bilevel nonlinear optimization,”
arXiv:1902.03319, 2019.

[15] B. Colson, P. Marcotte, and G. Savard, “An overview of bilevel opti-
mization,” Annals of operations research, vol. 153, no. 1, pp. 235–256,
2007.

[16] A. V. Fiacco, Introduction to sensitivity and stability analysis in nonlin-
ear programming. Elsevier, 1983.

[17] J. Nocedal and S. Wright, Numerical optimization. Springer Science
& Business Media, 2006.

[18] P. E. Gill, W. Murray, M. A. Saunders, and E. Wong, “User’s guide for
SQOPT 7.7: Software for large-scale linear and quadratic programming,”
Department of Mathematics, University of California, San Diego, La
Jolla, CA, Center for Computational Mathematics Report CCoM 18-2,
2018.

[19] MOSEK ApS, MOSEK Optimizer API for C, 8.1., 2018. [Online].
Available: https://docs.mosek.com/8.1/capi/index.html

[20] P. E. Gill, W. Murray, M. A. Saunders, and E. Wong, “User’s guide
for SNOPT 7.7: Software for large-scale nonlinear programming,”
Department of Mathematics, University of California, San Diego, La
Jolla, CA, Center for Computational Mathematics Report CCoM 18-1,
2018.

https://docs.mosek.com/8.1/capi/index.html

	Introduction
	Related Work
	Improving Time Allocation
	Bilevel Optimization

	Methodology
	Trajectory Optimization Preliminaries
	Safe Corridors
	Trajectory Optimization with Piecewise Bézier Curves
	Objective Function
	Constraints on Continuity
	Constraints on Safety and Dynamic Feasibility
	Constraints on Time

	Final Formulation
	Formulation of the Bilevel Optimization Problem
	Gradient Computation
	Solving Bilevel Optimization

	Experiments
	Problem Description
	Numerical Experiments

	Conclusion
	References

