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Abstract—Most approaches to automatic facial action unit

(AU) detection consider only spatial information and ignore AU

dynamics. For humans, dynamics improves AU perception. Is

same true for algorithms? To make use of AU dynamics, recent

work in automated AU detection has proposed a sequential

spatiotemporal approach: Model spatial information using a 2D

CNN and then model temporal information using LSTM (Long-

Short-TermMemory). Inspired by the experience of human FACS

coders, we hypothesized that combining spatial and temporal

information simultaneously would yield more powerful AU detec-

tion. To achieve this, we propose FACS3D-Net that simultaneously

integrates 3D and 2D CNN. Evaluation was on the Expanded

BP4D+ database of 200 participants. FACS3D-Net outperformed

both 2D CNN and 2D CNN-LSTM approaches. Visualizations

of learnt representations suggest that FACS3D-Net is consistent

with the spatiotemporal dynamics attended to by human FACS

coders. To the best of our knowledge, this is the first work to

apply 3D CNN to the problem of AU detection.

Index Terms—CNN, CNN-LSTM, FACS3D-Net, spatiotempo-

ral information, multi-label AU detection

I. INTRODUCTION

Facial expression is a powerful channel of emotion, inten-
tion, and non-verbal communication more broadly. To annotate
facial expression, the Facial Action Coding System (FACS)
[1] decomposes facial actions into anatomically-based action
units (AU) that individually or in combinations can describe
nearly all possible facial expressions. Automatic AU detection
is increasingly deployed in a range of applications that include
psychiatry, advertising, and health. While there has been much
progress, there remains significant need for more accurate AU
detection.
The recent development of computer vision technology has

promoted the application of deep learning methods for AU
detection [2], [3]. Convolutional neural networks (CNN), the
most frequently used deep-learning approach, have shown
excellent performance in image-related tasks because of their
remarkable spatial representation ability. 2D CNN-based ap-
proaches often outperform traditional shallow approaches to
AU detection [4], [5]. Li et al. [4], for instance, developed a
deep, 2D CNN-based approach, referred to as EAC-Net, that
enhances and crops regions of interest for AU detection and
outperforms shallow and some deep approaches.
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Almost all recent work in AU detection, whether shallow
or deep, ignores motion information or dynamics. Each video
frame is considered independently and outside of its temporal
context. While temporal context may matter little for strong
AU, for subtle AU lack of attention to temporal features
impairs detection. Human observers have difficulty perceiving
subtle AU when motion information is unavailable [6]. The
same may be true for automatic AU detection. AU have an
onset, one or more peaks, and an offset. The correlation among
proximal frames may be a critical feature for automatic AU
detection.
To address the issue of temporal information, some inves-

tigators have proposed adding temporal information to spatial
information [7]–[10]. Spatial features are learned first, and
then temporal. The most common method of adding temporal
information is Long Short-Term Memory (LSTM) [9]. LSTM
when combined with 2D CNN is referred to as 2D CNN-
LSTM. 2D CNN-LSTM learns spatial information prior to
learning temporal information.
Simultaneous integration of spatiotemporal information, on

the other hand, has been proposed in the literature on action
recognition [11], [12]. Ji et al. [11] developed a novel 3D CNN
model for action recognition. This model extracts features
from both spatial and temporal dimensions by performing
3D convolutions on the video segment, thereby capturing the
motion information encoded in multiple adjacent frames. 3D
CNN approaches have outperformed both 2D CNN and 2D
CNN-LSTM approaches for action recognition [13] [14].
We propose a 3D CNN for the problem of AU detection. Our

apporach, referred to as FACS3D-Net integrates 3D and 2D
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Convolutional Neural Networks, as shown in Figure 2. A 3D
CNN learns spatiotemporal representations. Simultaneously,
a 2D CNN learns spatial representations for each frame. A
fully connected layer combines the spatiotemporal and spatial
representations to achieve multi-label AU detection for each
video frame. We hypothesize that 3D CNN will outperform
both 2D CNN and 2D CNN-LSTM.
Inspired by recent work in AU visualization [2], [4], [9], we

also explore the specificity of 3D CNN to hypothesized regions
of interest. We find that the 3D CNN has good interpretability.
With a multi-label training strategy, the network can perform

detection of multiple AUs at one time. We trained FACS3D-
Net on the 12 most frequent AU in our database. In addition
to analysis of the model’s performance, we visualize what is
learnt by our model and manipulate the learnt representations.
The contributions of this paper are two-fold:
1) A multi-label AU detection method based on both 3D

and 2D convolutions is proposed. This method outperforms
both 2D CNN and 2D CNN-LSTM.
2) Occlusion Sensitivity Maps visualize what is learnt by

our model. From the maps we can infer that for most AUs
the proposed architecture correctly learns the expected facial
regions on the input frames.

II. RELATED WORK

AU detection from spatial information. Convolutional
neural networks (CNN) generally outperform shallow ap-
proaches, especially for large training data [15]. Using 2D
CNN, Li and colleagues [4] combined enhancement and crop-
ping layers in a pre-trained model. Cropping layers were used
to obtain related facial areas corresponding to individual AU;
then independent convolutional layers were applied to these
facial areas to learn features. In the enhancing step, an atten-
tion map based on facial landmark features was designed and
applied to a pre-trained neural network to conduct enhanced
learning. Similar ideas have been used in [3] [16] [17]. Zhao
et al. [3] proposed Deep Region Learning, in which a novel
region layer was proposed. One crucial aspect of this network
is that it uses feed-forward functions to induce important
facial regions, forcing the learned weights to capture structural
information of the face. These methods all ignore temporal
information. Each video frame is analyzed independently.
AU detection from temporal information. To incorporate

temporal information, Valstar et al. [7] combined Support
Vector Machines and Hidden Markov Models. In subsequent
work, Gonzalez et al. [8] exploited efficient duration modeling
of the temporal behavior of AUs. They proposed a hidden
semi-Markov model (HSMM) and variable duration semi-
Markov model (VDHMM) to recognize AU dynamics.
For deep architectures, Long Short Term Memory (LSTM)

has been proposed to describe the temporal cues of AU by
virtue of its ability to model time series. In [9], Chu et
al. proposed a structure composed of a 2D Convolutional
Neural Network and a Long Short Term Memory Network, in
which 2D CNN was used to learn spatial representations, and
LSTM was used to model temporal dependencies among them.

This work suggested that AU detection from spatiotemporal
information was more accurate than traditional 2D CNN. A
similar idea is presented in [17] [18]. It can be seen that in
the algorithms involving AU detection from temporal cues,
some networks will adopt the combination structure of 2D
CNN and LSTM.
As noted above, both shallow and deep approaches (e.g.,

SVM and 2D CNN) alike combine spatial and temporal in-
formation sequentially. They fail to use temporal information.
Temporal representation is added only after the fact. In con-
trast, manual FACS coders as well as people more generally
perceive spatiotemporal information concurrently. Inspired by
human perception, we propose an integrated spatiotemporal
model for AU detection.
Integrated spatiotemporal approaches. While not pre-

viously proposed for AU detection, several investigators in
the fields of video summarization and action recognition
have proposed integrated spatiotemporal approaches. Ji et al.
[11] proposed a 3D convolutional kernel to the cube that is
formed by stacking multiple contiguous frames together. On
the strength of its performance for video summary, 3D CNN
has been explored for emotion recognition [19] [20].
When contiguous frames are highly correlated, there may

be little loss of temporal information from sequentially down-
sampling the video sequence. Down-sampling reduces compu-
tational cost. Jing [12] found that 3D CNN is relatively robust
to random down-sampling of fixed length.

III. MULTI-LABEL AU DETECTION USING FACS3D-NET

A. Dataset
Data were an expanded version of BP4D+ [21], referred to

as EB+ [22]. EB+ is a manually FACS-annotated database of
spontaneous behavior. Video is 2D with resolution of 1040
by 1392 pixels. Average video duration is about 44 seconds.
Average number of annotated frames is about 328 and standard
deviation is 91. Well-designed tasks (e.g. interviews, physical
activities) initiated by an experimenter are used to elicit varied
emotions. Face orientation is nearly frontal with relatively little
out-of-plane head rotation. EB+ contains videos from a total
of 200 subjects (140 subjects from BP4D+ and 60 additional
ones) associated with 5 to 8 tasks. Positive samples are defined
as ones with intensities equal to or greater than B-level; the
remaining ones are negative samples. [21] [22].
FACS3D-Net requires that each input video have the same

number of frames. To satisfy this requirement, one could
sample equal numbers of consecutive frames from each video,
but the resulting video segment would fail to be representative
of the longer video from which it is taken.
To address this problem, we randomly sampled each second

or third frame to obtain equal number of segments from
each video. Because adjacent frames are highly correlated,
randomly sampling every second or third frame resulted in
minimal loss of dynamic information. 126 frames from each
video were sampled in this way, which maximized the number
of video segments that could be included. The final data were
1215 of the 1261 possible videos with (153,090 frames).
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Fig. 2. Overview of the proposed FACS3D-Net for multi-label AU detection. The video clip is fed into 3D convolutional network to learn spatiotemporal
information, then concatenated with the spatial information of fth frame obtained from 2D convolutional network. After 2 dense layers, we will obtain the
detection results of 12 AUs in the fth frame.

B. Proposed AU Detection Architecture

We introduce a novel architecture for multi-label AU de-
tection tasks that integrates 2D and 3D convolution. A 2D
convolution network learns the spatial information of each
facial image while a 3D convolution network captures the
spatiotemporal information of AU from onset to offset. For
convenience, FACS3D-Net will be used to represent the pro-
posed model.
In 2D convolution, convolution kernels are applied to gen-

erate feature maps of the corresponding layer. Usually, the
outputs of the last convolution layer are connected through
several fully connected layers to the final output of the model.
Formally, we define the value at position (x, y) of jth feature
map in ith layer as V xy

ij
, which is given by:
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where m denotes the number of feature maps in the previous
layer that are directly connected to the current feature map,
and Wi and Hi are the height and width of the kernel of
ith layer, respectively. whw

ijm
indicates the weight value of the

convolutional kernel at position (h,w) which is connected the
mth feature map in the previous layer. �(·) is the activation
function and bij is the bias.
When applying convolution operation to video analysis

problems, we seek to capture the variation in temporal di-
mension, that is, the information between contiguous image
frames. Naturally, in [11], the 3D convolution is achieved
by convolving a 3D kernel to the cube formed by stacking
multiple contiguous frames together. Compared with 2D con-
volutional kernel K2(c, kw, kh), it extends the time dimension
in 3D convolutional kernel, that is, K3(c, kt, kw, kh). Corre-

spondingly, the value at position (x, y, z) of jth feature map
in ith layer is given by:
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where Ti is the size of the 3D kernel along the temporal
dimension.
Based on the Convolutional Neural Network described

above, we propose a hybrid FACS3D-Net architecture for AU
detection. As shown in Figure 2, the whole video segment is
first fed into 3D convolutional neural network. After a series of
3D convolutions, the network outputs a global representation,
which represents the spatiotemporal information of the cor-
responding segment. Meanwhile, the fth frame is input into
the 2D convolutional neural network for spatial information
learning. Finally, spatiotemporal representations obtained by
3D CNN and spatial representations obtained by 2D CNN are
concatenated in the fully connected layer which are followed
by 2 dense layers. Through the activation layer, we will get
the detection results of 12 AUs in the fth frame.
The whole structure is similar to the AU annotation process

by human coder. 3D CNN is first adopted for video summary,
thereby generating a basic impression. In turn, this basic
impression is concatenated with the spatial information of an
individual frame to perform frame-level AU detection.

C. Network Optimization

Since AU detection can be considered a multi-label binary
classification, the network is optimized by minimizing the
following loss function:

L =
NX

i=1

[yi · log �(x)i + (1� yi) · log(1� �(x)i)] (3)

Where N is the number of AUs, which is 12 in our case. yi
denotes the ground-truth of occurrence for the i

th AU. �(x)i



represents the output of FACS3D-Net for i
th AU when the

input is x, that is, the corresponding predicted occurrence
probability of the i

th AU. Since the distribution of AUs is
skewed, we assign each AU with unique error cost and obtain
the final weighted loss function:

L0 = WL (4)

Specifically, following [16], for AUi, we set:

Wi =
(1/ri)NP
N

i=1(1/ri)
(5)

where ri indicates the occurrence rate of i
th AU in the

training set. An end-to-end training manner is adopted for
FACS3D-Net. 2D and 3D convolution networks are updated
simultaneously according to the generated loss.

IV. EXPERIMENTS

A. Data Preprocessing and Experiments Setting
1) Face tracking and registration: Video was tracked and

normalized using ZFace [23], a real-time face alignment soft-
ware that accomplishes dense 3D registration from 2D videos
and images without requiring person-specific training. Face
images were normalized in terms of rotation and scale and
then centred, scaled, and normalized to the average interocular
distance (IOD) of the participants, which is about 80 pixels.
After this step we obtain 200 by 200 pixel images of faces with
80 pixels IOD. Since the presence of AU is independent of
facial color, and to increase training efficiency, the normalized
RGB images are converted to grayscale images.
2) Data split: Experiments were performed with a subject-

exclusive 5-fold protocol. Each fold contained 40 subjects. We
iteratively trained a model using four partitions and evaluated
on the remaining one until all subjects were tested. The
average performance of the five models was taken as the final
evaluation indicator.
3) Evaluation metrics: Evaluation metrics vary in what

aspects of performance they quantify. They differ as well
in how they behave when classes are imbalanced. Some are
robust to class imbalance, others are not [24]. For these
reasons, we report multiple metrics.
F1 score, which is the most commonly used metric in AU

detection, considers both precision (P) and recall (R) of the
model. It quantifies the performance on correct predictions on
positive samples. F1 is calculated by the harmonic average of
precision (P) and recall (R) as F1 =

2RP

R+ P
. When categories

are imbalanced, F1 is attenuated [24].
Negative agreement (NA) is the complement of F1. NA

evaluates the solution by the harmonic agreement of samples
not containing AUs. Contrary to F1 score, it reflects the
performance on correct prediction of negative samples and is
attenuated when categories are imbalanced.
Area under the Receiver Operating Characteristics

Curve (AUC) illustrates the diagnostic ability of a binary
classifier system. It quantifies the extent to which a model
is capable of distinguishing between different classes. In our

case, the higher the AUC, the better the model distinguishes
between AU present and absent. AUC is robust to imbalanced
data.
Accuracy quantifies how well a binary classification cor-

rectly identifies or excludes a condition. Accuracy is robust to
imbalanced data, but for infrequent categories (i.e., AU that
have low base rates) accuracy typically is inflated by high
chance agreement for negative occurrences.
S score or “free-marginal kappa coefficient”. To control

for chance agreement, free-marginal kappa estimates chance
agreement by assuming that each category is equally likely
to be chosen at random [25]. Class imbalance has relatively
mild influence on the measure. When applied to two annotators
assigning facial actions to dichotomous categories, S score is
calculated by Equation (6), where N is the number of samples,
n is the number of annotators, k is the number of rating
categories, and nij indicates the number of annotators who
assigned the ith sample to the jth category:
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4) Network and training setting: Figure 3 illustrates the
3D convolutional structure in FACS3D-Net. Following [22],
we employ three convolutional layers with 64, 128 and 128
filters, respectively. For the 3D convolution kernel, we fol-
low [12] and set all kernel sizes as 3⇥ 3⇥ 3 (3⇥ 3 pixels in
the spatial dimension and 3 frames in the temporal dimension),
with a stride of 2, 1 and 1, respectively. Each 3D convolutional
layer is followed by a 3D BatchNorm, Rectified Linear Unit
(ReLU) and 3D MaxPooling layer. For the 3D MaxPooling,
the pooling kernel size is set as 3 ⇥ 3 ⇥ 3, with stride = 2.
Finally, a fully connected layer with 400 units is connected to
the last MaxPooling layer.
For the 2D convolutional part in FACS3D-Net, we adopt

the same structure as that of 3D. The only difference is the
convolution kernel size in 2D network is 5⇥ 5 pixels, and the
Maxpooling kernel size is 2⇥ 2. Similarly, a fully connected
layer with 400 units is also connected to the last MaxPooling
layer. Finally, the outputs of 3D and 2D networks are concate-
nated to form an 800 (400+400)-dimensional feature vector,
which is followed by 2 fully connected layers with 400 and
12 neurons respectively.
FACS3D-Net is trained using Pytorch with stochastic gra-

dient descent (SGD) optimization algorithm, a momentum of
0.9, a mini-batch size of 20. The whole framework is trained
from scratch and optimized with 30 epochs with a learning
rate of 1e-3.

B. Multi-label AU Detection Results
Following [22], we include the 12 AUs that occurred in

3% or more of video frames. These are AU1 (inner brow
raiser), AU2 (outer brow raiser), AU4 (brow lowerer), AU6
(cheek raiser), AU7 (lid tightener), AU10 (upper lip raiser),



TABLE I
MULTI-LABEL AU DETECTION RESULTS (%) OF THREE APPROACHES.

AU BR k F1 ACC NA AUC S

- - - 2D LSTM 3D 2D LSTM 3D 2D LSTM 3D 2D LSTM 3D 2D LSTM 3D

1 9.11 88.00 34.64 39.09 42.94 84.33 87.90 89.78 88.29 92.25 94.39 76.81 79.53 82.39 68.65 75.79 79.57

2 6.77 90.00 32.59 32.93 38.05 88.67 89.96 89.99 92.19 93.75 93.22 77.12 78.40 82.13 77.34 79.93 79.98

4 7.94 89.00 44.06 44.05 49.84 91.92 91.04 92.23 96.40 95.16 96.09 83.08 81.66 85.45 83.85 82.07 84.45

6 42.59 69.00 82.13 81.48 82.26 84.04 83.47 83.99 81.56 81.20 80.61 92.10 91.51 92.19 68.06 66.95 67.97
7 62.99 70.00 85.31 85.42 85.08 80.26 80.88 79.92 62.28 65.43 59.89 88.24 88.17 87.36 60.52 61.76 59.83
10 58.64 78.00 87.55 87.01 87.15 85.43 84.57 84.58 80.76 77.97 76.99 92.29 91.60 91.66 70.87 69.14 69.16
12 52.82 76.00 87.18 86.34 87.45 86.34 85.17 86.61 83.49 80.13 83.75 93.58 92.93 94.06 72.67 70.34 73.21

14 39.34 65.00 65.86 65.68 65.95 75.28 74.91 75.69 67.85 67.45 68.31 78.52 77.83 79.39 50.56 49.82 51.37

15 10.46 81.00 44.01 44.05 48.41 86.88 86.97 89.46 91.24 91.37 94.29 82.36 82.47 83.76 73.75 73.94 78.92

17 14.89 83.00 44.28 44.09 47.44 78.09 75.42 80.33 81.52 77.25 84.07 79.15 78.84 80.43 56.17 50.84 60.65

23 14.10 80.00 44.78 44.27 50.03 81.56 81.85 84.15 86.08 86.65 88.44 78.62 78.46 81.78 63.12 63.70 68.29

24 2.99 91.00 29.59 25.30 31.94 95.40 94.82 95.31 97.28 96.69 97.05 84.97 82.17 87.55 90.81 89.64 90.62
Ave 26.89 80.00 56.83 56.64 59.71 84.85 84.75 86.00 84.08 83.78 84.76 83.90 83.63 85.68 69.70 69.49 72.00

BR = base rate; k = free-margin kappa for inter-observer agreement; 2D = 2D CNN; LSTM = 2D CNN-LSTM; 3D = FACS3D-Net.
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Fig. 3. Structure of 3D CNN in FACS3D-Net.

AU12 (lip corner puller), AU14 (dimpler), AU15 (lip corner
depressor), AU17 (chin raiser), AU23 (lip tightener) and AU24
(lip pressor).
Table I lists the detection results for each AU and the av-

erage performance across all AUs. We compare 2D CNN, 2D
CNN-LSTM, and FACS3D-Net. For economy of presentation,
we use 2D, LSTM and 3D to represent 2D CNN, 2D CNN-
LSTM and FACS3D-Net, respectively. So that results may be
comparable, all three share the same CNN structure (i.e., that
of FACS3D-Net). The 2D CNN-LSTM consists of 2D CNN
and one layer of LSTM with 256 neurons.
Because model performance may be influenced by reliabil-

ity of the ground truth used in training (i.e., inter-observer
agreement of manual FACS annotators) and also AU base
rates, these data are reported in the table as well. Note that 7 of
12 AUs occur in fewer than 15 percent of frames. Consistent
with [24], model performance for F1 and AUC tends to be
lower for highly imbalanced frames. AU 24 is an exception.
AUs with less class imbalance (i.e., higher base rates) are
associated with higher F1 scores. Examples include AU 6,
AU 7, AU 10, and AU 14. For 10 of 12 AUs, FACS3D-
Net achieved the highest F1 score. For accuracy and S score,
FACS3D-Net achieved the highest score for 8 of 12 AUs.
For all metrics, FACS3D-Net achieved the highest average
performance.
For F1 score, FACS3D-Net achieved best performance for

TABLE II
SIGNIFICANCE OF DIFFERENCES BY T-TEST. * IS P < 0.05, ** IS P < 0.01,

*** IS P < 0.001.

AU FACS3D-Net v.s. 2D CNN FACS3D-Net v.s. 2D CNN-LSTM

- F1 ACC NA AUC S F1 ACC NA AUC S

1 *** *** *** *** *** *** * * ** *
2 *** n.s. n.s. ** * *** n.s. n.s. ** n.s.
4 *** n.s. n.s. n.s. n.s. *** n.s. n.s. * n.s.
6 ** n.s. n.s. ** n.s. ** n.s. n.s. ** n.s.
7 n.s. n.s. n.s. * n.s. n.s. n.s. n.s. ** n.s.
10 n.s. n.s. n.s. n.s. n.s. * n.s. n.s. n.s. n.s.
12 ** n.s. * n.s. n.s. *** ** *** n.s. **
14 ** n.s. * n.s. n.s. ** n.s. * n.s. n.s.
15 *** *** *** ** *** *** *** *** ** ***
17 *** ** * n.s. ** *** *** *** n.s. ***
23 *** ** * n.s. ** *** ** * n.s. **
24 *** n.s. n.s. n.s. n.s. *** n.s. n.s. n.s. n.s.

all but two AUs (Table I). For ACC, NA, AUC and S score,
FACS3D-Net has slight advantages over 2D CNN and 2D
CNN-LSTM. This shows that the FACS3D-Net is better than
the other two models in detecting positive samples, especially
for the AUs with lower base rates.

As noted above, LSTM is also used for modeling temporal
information. Results for 2D CNN-LSTM are reported in Table
I. 2D CNN-LSTM appears to have little or no significant
advantages over CNN for most AUs.

To evaluate statistical significance of the findings reported in
the previous table, we conducted paired t-tests. Table II reports
the results of statistical tests between FACS3D-Net and 2D
CNN and FACS3D-Net and 2D CNN-LSTM. F1 score reveals
that FACS3D-Net performs significantly better than 2D CNN
and 2D CNN-LSTM. Among the other four metrics, FACS3D-
Net results were less consistent but better overall, especially
in AUs with lower base rates.
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Fig. 4. Occlusion Sensitivity Maps overlaid on a mean face.

C. Occlusion Sensitivity Maps

To visualize our results and verify if the proposed FACS3D-
Net model has learned specific facial areas for different AUs,
we generate Occlusion Sensitivity Maps [26] for each AU. We
select 40 subjects as the test set. A patch with 15⇥15 pixels is
utilized to modify the original gray image value to 0.5 for all
testing frames. The modified images are fed into the trained
model to obtain an accuracy value for positive samples. Then,
we slide the patch over the image of size 200 ⇥ 200 with a
stride 3. Therefore, for different regions of patches, we obtain
different accuracies. The lower accuracy of region, the more
important this region is. Finally, after an interpolation step,
we obtain an accuracy map which can be further transformed
into occlusion sensitivity map shown in Fig. 4. In these maps,
darker red colors indicate the lower accuracy of correctly
estimating positive samples, while darker blue colors mean
the parts have little effect on accuracy of positive samples.
Therefore, the significant regions for each AU are the ones
with dark red.

From the maps we can infer that for most AUs, our
FACS3D-Net model correctly learns the corresponding facial
areas, i.e. AU1 focuses on inner brow region, AU2 focuses on
outer brow region, AU4 focuses on brow region, AU7 focuses
on lid region, AU10 focuses on upper lip region, AU17 focuses
on chin region and AU23 focuses on lip region.

Although the lip regions have been contained, one can see
from the sensitivity maps that some cheek regions are also
included for AU15 and AU24, the reason could be that while
classifying AU15 and AU24, our model also considers the
other AUs that co-occur with AU15 and AU24. Furthermore,
we visualize the co-occurrence matrix of AUs computed using
Jaccard index in Fig. 5. It can be observed that AU6, AU10
and AU12 have strong correlations with each other, meaning
that they co-occur frequently. Therefore, for AU6 and AU12,
we can see in Fig. 4 that our model also focuses on some
regions that are important for AU10.
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Fig. 5. Co-occurrence matrix of AUs computed with Jaccard index.

V. CONCLUSIONS

We propose a novel multi-label AU detection architecture
named FACS3D-Net, which provides a new perspective to
combine spatial and temporal information. FACS3D-Net learns
spatiotemporal information first, then combines it with spatial
information. Compared with 2D CNN and 2D CNN-LSTM,
the AU detection process of FACS3D-Net considers spatial
and temporal information simultaneously, and has a better
modelling ability for larger time interval than 2D CNN-LSTM.
FACS3D-Net has better performance for the AUs with lower
base rates. In order to further analyse the model performance
from different perspectives, we recommend ACC, NA, AUC
and S score as the evaluation metrics.
Finally, we adopt Occlusion Sensitivity Maps to visualize

the learnt representations by FACS3D-Net. One can see that
the maps are generally consistent with the expected facial
regions for most AUs. We can conclude that, employing
FACS3D-Net for AU detection both provides promising results
and brings more interpretability of model.
The future work will focus on combining attention mech-

anism to FACS3D-Net and considering AU intensity and AU
occurrence together.
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