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Abstract

This paper proposes and analyzes arbitrarily high-order discontinuous Galerkin (DG)

and finite volume methods which provably preserve the positivity of density and pres-

sure for the ideal magnetohydrodynamics (MHD) on general meshes. Unified auxiliary

theories are built for rigorously analyzing the positivity-preserving (PP) property of nu-

merical MHD schemes with a Harten–Lax–van Leer (HLL) type flux on polytopal meshes

in any space dimension. The main challenges overcome here include establishing certain

relation between the PP property and a discrete divergence of magnetic field on general

meshes, and estimating proper wave speeds in the HLL flux to ensure the PP property.

In the 1D case, we prove that the standard DG and finite volume methods with the

proposed HLL flux are PP, under a condition accessible by a PP limiter. For the mul-

tidimensional conservative MHD system, the standard DG methods with a PP limiter

are not PP in general, due to the effect of unavoidable divergence error in the magnetic

field. We construct provably PP high-order DG and finite volume schemes by proper

discretization of the symmetrizable MHD system, with two divergence-controlling tech-

niques: the locally divergence-free elements and suitably discretized Godunov–Powell

source term. The former technique leads to zero divergence within each cell, while the

latter controls the divergence error across cell interfaces. Our analysis reveals in theory

that a coupling of these two techniques is very important for positivity preservation, as

they exactly contribute the discrete divergence terms which are absent in standard mul-

tidimensional DG schemes but crucial for ensuring the PP property. Several numerical

tests further confirm the PP property and the effectiveness of the proposed PP schemes.

Unlike the conservative MHD system, the exact smooth solutions of the symmetrizable

MHD system are proved to retain the positivity even if the divergence-free condition

is not satisfied. Our analysis and findings further the understanding, at both discrete

and continuous levels, of the relation between the PP property and the divergence-free

constraint.
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1 Introduction

This paper is concerned with highly accurate and robust numerical methods for the ideal

compressible magnetohydrodynamics (MHD), which play an important role in many fields

including astrophysics, plasma physics and space physics. When viscous, resistive and rela-

tivistic effects can be neglected, the governing equations of ideal MHD, which combine the

equations of gas dynamics with the Maxwell equations, have been widely used to model the

dynamics of electrically conducting fluids in the presence of magnetic field. The ideal MHD

system can be written as

Ut +∇ · F(U) = 0, (1.1)

with an additional divergence-free constraint on the magnetic field

∇ ·B = 0. (1.2)

The conservative vector U = (ρ, ρv,B, E)>; in the d-dimensional case, the divergence operator

∇· =
∑d

i=1
∂
∂xi

, and the flux F = (F1, . . . ,Fd) with

Fi(U) =
(
ρvi, ρviv − BiB + ptotei, viB− Biv, vi(E + ptot)− Bi(v ·B)

)>
.

Here ρ is the density, v = (v1, v2, v3) is the fluid velocity, B = (B1, B2, B3) denotes the magnetic

field, ptot = p + |B|2
2

is the total pressure consisting of the gas pressure p and the magnetic

pressure, the vector ei denotes the ith row of the unit matrix of size 3, E = ρe+ 1
2

(ρ|v|2 + |B|2)

is the total energy consisting of thermal, kinetic and magnetic energies, and e denotes the

specific internal energy. The system (1.1) is closed with an equation of state (EOS). Although

the ideal EOS, p = (γ − 1)ρe, with a constant adiabatic index γ, is the most widely used

choice, there are situations where it is more suitable to use other EOSs. A general EOS can

be expressed as p = p(ρ, e), which is assumed to satisfy the following condition (cf. [67]):

if ρ > 0, then e > 0 ⇔ p(ρ, e) > 0. (1.3)

This condition is reasonable and holds for the ideal EOS with γ > 1.

Although the satisfaction of the divergence-free condition (1.2) is not explicitly included

in the system (1.1), the exact solution of (1.1) always preserves zero divergence in future time

if the initial divergence is zero. However, most of the numerical MHD schemes for d ≥ 2

lead to a nonzero divergence of numerical magnetic field due to truncation errors, even if the

initial data satisfy (1.2). As it is widely known, large divergence error can lead to numerical

instabilities or nonphysical features in the computed solutions, cf. [11, 26, 8, 48, 36]. In the

past several decades, many numerical techniques were proposed to control the divergence

error or enforce the divergence-free condition in the discrete sense, including but not limited

to: the projection method [11], the hyperbolic divergence cleaning method [20], the locally

divergence-free methods [36, 63], the constrained transport method [26] and its variants (e.g.,

[45, 8, 3, 29, 47, 1, 37, 17, 62, 27]), and the eight-wave methods (e.g., [42, 43, 12, 40]). The

eight-wave method was first proposed by Powell [42, 43], based on proper discretization of the

Godunov form [30] of ideal MHD equations

Ut +∇ · F(U) = −(∇ ·B) S(U), (1.4)
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where S(U) = (0, B, v, v · B)>. In the literature, (1.4) is sometimes also called Powell’s

system. The right-hand side term of (1.4), termed as the Godunov–Powell source term in

the following, is proportional to ∇ · B. This means, at the continuous level, the Godunov

form (1.4) and conservative form (1.1) are equivalent under the condition (1.2). However,

the Godunov–Powell source term modifies the character of the MHD equations, making the

system (1.4) Galilean invariant (cf. [21]), symmetrizable [30] and useful for designing entropy

stable schemes (see, e.g., [12, 40, 22]). These good properties do not hold anymore if the source

term is dropped. As first demonstrated by Powell [43], the inclusion of the source term also

helps advect the divergence away with the flow. This renders the eight-wave method stable to

control the divergence error, although some drawbacks [48] may be caused due to the loss of

conservativeness.

In physics, the density, pressure and internal energy are positive. An equivalent math-

ematical description is that, the conservative vector U should stay in the set of physically

admissible states defined by

G =

{
U = (ρ,m,B, E)> : ρ > 0, E(U) := E − 1

2

(
|m|2

ρ
+ |B|2

)
> 0

}
, (1.5)

where the condition (1.3) has been used, and E(U) = ρe denotes the internal energy. We

are interested in positivity-preserving (PP) numerical schemes whose solutions always stay in

G. The motivation comes from that, once the negative density or negative pressure (internal

energy) is obtained in the numerical simulations, the discrete problem becomes ill-posed due

to the loss of hyperbolicity, causing the breakdown of the simulation codes. However, most of

the existing MHD schemes are generally not PP, and thus may suffer from a large risk of failure

when simulating MHD problems with low density, low internal energy, low plasma-beta and/or

strong discontinuity. A few efforts were made to reduce such risk. Balsara and Spicer [7] tried

to maintain positive pressure by switching the Riemann solvers for different wave situations.

Janhunen [34] noticed the challenge of developing PP schemes for the conservative system

(1.1), so he proposed a modified MHD system, which is similar to the Godunov form (1.4)

but includes only the source term in the induction equation. Based on his modified system,

Janhunen [34] presented a new 1D Riemann solver and numerically demonstrated the PP

property. Bouchut, Klingenberg, and Waagan [9, 10] derived several approximate multiwave

Riemann solvers for the 1D ideal MHD, with sufficient conditions for the solvers to satisfy the

PP property and discrete entropy inequalities. Waagan [50] noticed the importance of proper

discretization on Janhunen’s modified system, and developed a positive second-order scheme

by the approximate Riemann solvers of [9, 10] and a new linear reconstruction. The robustness

of that scheme was further demonstrated in [51] by extensive tests and comparisons. Recent

years have witnessed significant advances in developing bound-preserving high-order schemes

for hyperbolic systems; see the pioneer works by Zhang and Shu [65, 66, 68], and more recent

works, e.g., [33, 59, 39, 15, 55, 52, 60, 64]. Balsara [5] proposed a self-adjusting PP limiter to

enforce the positivity of the reconstructed solutions in a finite volume method for (1.1). Cheng

et al. [13] extended the PP limiter of [66, 67] to enforce the positivity of DG solutions for (1.1).

The PP limiters in [5, 13] are based on a presumed proposition that the cell-averaged solutions

computed by those schemes always belong to G. Such a proposition has not yet been rigorously
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proved for those methods in [5, 13], although it could be deduced for the 1D schemes in [13]

under some assumptions. Using the presumed PP property of the Lax–Friedrichs (LF) scheme,

Christlieb et al. [16, 14] developed PP high-order finite difference methods for the ideal MHD

by extending the parametrized flux limiters [59, 58, 46]. It was numerically demonstrated that

all the above PP techniques could enhance the robustness of MHD codes, but few theoretical

evidences were provided, especially in the multidimensional cases, to completely prove the

PP property of fully discretized schemes. In fact, finite numerical tests could be insufficient

to genuinely demonstrate that a scheme is always PP under all circumstances. It is highly

significant to develop provably PP schemes and rigorous PP analysis for the ideal MHD.

Seeking provably PP schemes for the ideal MHD is quite difficult, largely due to the in-

trinsic complexity of the MHD equations as well as the lack of sufficient knowledge about the

underlying relation between the PP property and the divergence-free condition (1.2). One

can see from (1.5) that the difficulties mainly lie in maintaining the positivity of internal en-

ergy, whose computation nonlinearly involves all the conservative variables. In most numerical

methods, the conservative quantities are themselves evolved according to their own conserva-

tion laws, which are seemingly unrelated to and numerically do not necessarily guarantee the

positivity of the computed internal energy. In theory, it is indeed a challenge to make an a

priori judgment on whether a scheme is always PP under all circumstances or not.

Recently, two progresses [53, 54] were made to rigorously analyze, understand and design

provably PP methods for the ideal MHD. The first rigorous PP analysis was carried out in

[53] for conservative finite volume and DG schemes for (1.1). The analysis unveiled in theory

that a discrete divergence-free (DDF) condition is crucial for designing the PP conservative

schemes for (1.1). This finding is consistent with the relativistic MHD case [56]. It was

also proved in [53] that if the proposed DDF condition is slightly violated, even the first-

order multidimensional LF scheme for (1.1) is generally not PP, and using very small CFL

number or many times larger numerical viscosity does not help to prevent this effect. The

DDF condition relies on a combination of the information on adjacent cells, and thus is not

ensured by a locally divergence-free approach. As a result, in the multidimensional cases, a

usual PP limiter does not genuinely guarantee the PP property of the standard DG schemes

for (1.1), even if the locally divergence-free DG element [36] is employed. Interestingly, on

the other hand, at the PDE level the positivity preservation and the divergence-free condition

(1.1) are also inextricably linked for the ideal MHD system. For the conservative system (1.1),

Janhunen [34] pointed out that the exact solutions to 1D Riemann problems can have negative

pressure if the initial data has a jump in the normal magnetic field (a nonzero divergence).

Recently in [54], we first observed that the exact smooth solution of (1.1) may also fail to

be PP if the divergence-free condition (1.2) is (slightly) violated. Fortunately, in the present

paper we find that the smooth solutions of the modified system (1.4) always retain the desired

positivity even if the magnetic field is not divergence-free. All these findings motivate us to

seek the multidimensional PP schemes via proper discretization of the modified system (1.4)

rather than the conservative system (1.1). Although Janhunen’s modified MHD system [34]

may also preserve the positivity, some other physical considerations suggest that Godunov’s

form (1.4) is better than Janhunen’s as demonstrated in [23]. Using the analysis techniques
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proposed in [53], we first successfully developed in [54] the multidimensional provably PP high-

order DG methods for (1.4). Note that the study in [53, 54] was restricted to the schemes

with the global LF flux on uniform Cartesian meshes. It is desirable to construct provably PP

high-order schemes with lower dissipative numerical fluxes and on more general/unstructured

meshes.

The aim of this paper is to present the rigorous analysis and a general framework for

constructing provably PP high-order DG and finite volume methods with the HLL-type flux

for the ideal MHD on general meshes. As a nontrivial extension of [53, 54] in which the PP

analysis techniques only work for Cartesian meshes and global LF flux, this work improves the

analysis techniques of [53] and gives deeper understanding of positivity preservation at both

continuous and discrete levels. The new contributions and significant innovations of this work

are outlined as follows:

1. We present unified auxiliary theories for PP analysis of schemes with the HLL-type flux

on general meshes for the ideal MHD in any space dimension. These provide a novel

way to analytically extract the underlying relation between the PP property and the

discrete divergence of magnetic field on an arbitrary polytopal mesh. Explicit estimates

of the wave speeds in the HLL flux are technically derived to guarantee the provably PP

property.

2. For the 1D MHD system (1.1), we prove the PP property of the standard finite volume

and DG methods with the proposed HLL flux, under a condition accessible by a simple

PP limiter.

3. In the multidimensional cases, we construct provably PP high-order DG methods based

on the proposed HLL flux, a PP limiter [13], and a proper discretization of the modified

MHD system (1.4) with two divergence-controlling techniques: the locally divergence-

free elements and a novel discretization of the Godunov–Powell source term in an upwind

manner according to the associated local wave speeds in the HLL flux. The former tech-

nique leads to zero divergence within each cell, while the latter controls the divergence

error across cell interfaces. Our analysis clearly reveals in theory that a coupling of

these two techniques is very important for positivity preservation, as they exactly con-

tribute the discrete divergence terms which are absent in standard multidimensional DG

schemes but crucial for ensuring the PP property. We also generalize the DDF condition

of [53] to general meshes and derive sufficient conditions for achieving PP conservative

schemes in the multiple dimensions.

4. We prove that the strong solution to the initial-value problem of the modified MHD

system (1.4) preserves the positivity of density and pressure even if the divergence-free

condition (1.2) is not satisfied. This feature, not enjoyed by the conservative system

(1.1) (see [54]), can serve as a justification for designing provably PP multidimensional

schemes based on the modified system (1.4).

The efforts mentioned above are novel and highly nontrivial. A key difficulty is to analytically

quantify the relation of the PP property to the discrete divergence on general meshes. Es-
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pecially, in the analysis of the positivity of E(U), the discrete equations for the conservative

variables are nonlinearly coupled, and the limiting values of the numerical solution at the

interfaces of each cell are intrinsically connected by the discrete divergence. These make the

PP analysis in the MHD case very complicated especially in the multidimensional cases, and

some standard analysis techniques (cf. [66]) are inapplicable as demonstrated in [53]. We will

skillfully address these challenges by a novel equivalent form of the set G and highly technical

estimates. Note that a LF flux can be considered as a special HLL flux. Therefore, all the

analyses in the this paper directly apply to the local and global LF fluxes. It is also worth

mentioning that many multi-state or multi-wave HLL-type fluxes were developed or applied

to the ideal MHD in the literature (e.g., [34, 32, 38, 41, 9, 4, 28, 6]), but only a few of them

(cf. [32, 41, 9]) were shown to be PP for some 1D schemes. Moreover, their PP property for

higher order schemes, in the multidimensional cases, and its relation to the divergence-free

condition in the discrete sense have not yet been rigorously proved.

The paper is organized as follows. After establishing the auxiliary theories for our PP

analysis on general meshes in Section 2, we present the 1D and multidimensional provably PP

methods in Sections 3 and 4, respectively. We conduct numerical tests in Section 5 to verify

the PP property and the effectiveness of the proposed PP techniques, before concluding the

paper in Section 6. The positivity of strong solutions of the modified MHD system (1.4) is

shown in Appendix A.

2 Auxiliary theories

In this section, we present the auxiliary results for our PP analysis on general meshes.

2.1 Properties of admissible state set

The function E(U) in (1.5) is nonlinear with respect to U, complicating the analysis of the

PP property of a given scheme. The following equivalent form of G was proposed in [53].

Lemma 2.1. The admissible state set G is equivalent to

G∗ =

{
U = (ρ,m,B, E)> : ρ > 0, U · n∗ +

|B∗|2

2
> 0, ∀v∗,B∗ ∈ R3

}
, (2.1)

where

n∗ =

(
|v∗|2

2
, − v∗, −B∗, 1

)>
.

The proof of Lemma 2.1 can be found in [53]. As we can see, the equivalent set G∗ is

defined with two constraints linear with respect to U, which give it advantages over the natural

definition (1.5) in showing the PP property of numerical schemes. This novel equivalent form

is a cornerstone of our PP analysis.

The convexity of admissible state set is useful in bound-preserving analysis, as it helps

reduce the complexity of the analysis if the scheme can be rewritten into certain convex

combinations; see e.g., [66, 68, 57, 52]. The convexity holds for G∗, cf. [53].
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Lemma 2.2. The set G∗ is convex. Moreover, λU1 +(1−λ)U0 ∈ G∗ for any U1 ∈ G∗,U0 ∈ G∗
and λ ∈ (0, 1], where G∗ is the closure of G∗.

2.2 Technical estimates relative to flux

2.2.1 Main estimates

We summarize our main estimate result in this subsection with the proof of it given later.

For the sake of convenience, we introduce the following notations, which will be frequently

used in this paper. For any vector ξ = (ξ1, · · · , ξd) ∈ Rd, we define the inner products

〈ξ,v〉 :=
d∑

k=1

ξkvk, 〈ξ,B〉 :=
d∑

k=1

ξkBk, 〈ξ,F〉 :=
d∑

k=1

ξkFk.

For any unit vector ξ ∈ Rd, define

C (U; ξ) :=
1√
2

C 2
s +
|B|2

ρ
+

√(
C 2
s +
|B|2
ρ

)2

− 4
C 2
s 〈ξ,B〉2
ρ

 1
2

,

where Cs := p

ρ
√

2e
. Note that, for the ideal EOS, Cs =

√
(γ−1)p

2ρ
.

Recall that a technical inequality constructed in [53, Lemma 2.6] has played a pivotal

role in the PP analysis on Cartesian meshes in [53, 54]. That inequality involves two states,

which correspond to the numerical solutions at a couple of symmetric quadrature points on

cell interfaces. The cells of a general mesh are generally non-symmetric, so that the results

in [53] are inapplicable to the present analysis. To carry out PP analysis on a general mesh,

we need to construct a (general) “multi-state” inequality, which is derived in the following

theorem.

Theorem 2.1. For 1 ≤ j ≤ N , let sj > 0 and the unit vector ξ(j) ∈ Rd satisfy

N∑
j=1

sjξ
(j) = 0. (2.2)

Given N admissible states U(j), 1 ≤ j ≤ N , we define

α̂j := max


〈
ξ(j),v(j)

〉
,

1
N∑
i=1

si

N∑
i=1

si

〈
ξ(j) − ξ(i),

√
ρ(j)v(j) +

√
ρ(i)v(i)√

ρ(j) +
√
ρ(i)

〉
+ C (U(j); ξ(j)) +

2
N∑
i=1

si

N∑
i=1

si
|B(j) −B(i)|√
ρ(j) +

√
ρ(i)

.

(2.3)

Then for any αj ≥ α̂j, the state

U :=
1

N∑
j=1

sjαj

N∑
j=1

sj

(
αjU

(j) −
〈
ξ(j),F(U(j))

〉)
, (2.4)
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belongs to Gρ := {U = (ρ,m,B, E)> : ρ > 0}, and satisfies

U · n∗ +
|B∗|2

2
≥ − v∗ ·B∗

N∑
j=1

sjαj

N∑
j=1

sj
〈
ξ(j),B(j)

〉
, ∀v∗,B∗ ∈ R3. (2.5)

Furthermore, U ∈ G∗ if
N∑
j=1

sj
〈
ξ(j),B(j)

〉
= 0. (2.6)

The proof of Theorem 2.1 and the construction of the inequality (2.5) are highly nontrivial

and technical. For better legibility, we put the proof in Section 2.2.2. Here, we would like to

briefly explain the result in Theorem 2.1, whose meaning will become more clear in the PP

analysis in Sections 3 and 4. Let us consider a cell of the computational mesh, and assume

it is a non-self-intersecting d-polytope with N edges (d = 2) or faces (d = 3). The index

j on the variables in Theorem 2.1 represents the jth edge or face of the polytope, and sj

and ξ(j) respectively correspond to the (d − 1)-dimensional Hausdorff measure and the unit

outward normal vector of the jth edge or face. One can verify that the condition (2.2) holds

naturally. In addition, U(j) stands for the approximate values of U on the jth edge or face.

The condition (2.6) is actually a DDF condition over the polytope.

Remark 2.1. In Theorem 2.1,
∑N

j=1 sjαj is always positive, because

N∑
j=1

sjα̂j >
1

N∑
i=1

si

N∑
j=1

sj

N∑
i=1

si

〈
ξ(j) − ξ(i),

√
ρ(j)v(j) +

√
ρ(i)v(i)√

ρ(j) +
√
ρ(i)

〉
= 0.

Remark 2.2. Theorem 2.1, particularly the inequality (2.5), clearly establishes a connection

between the PP property and the discrete divergence of magnetic field, i.e.,
∑N

j=1 sj〈ξ(j),B(j)〉.
This will be a key point of our PP analysis. The right-hand side term of (2.5) is very important.

The construction of this term is highly technical. If it is dropped, the inequality (2.5) would

become invalid. As we will see, this term provides a way to take into account the discrete

divergence in the PP analysis.

The following results are immediate corollaries of Theorem 2.1, which are useful for deriving

PP numerical fluxes.

For any unit vector ξ ∈ Rd, and any pair of admissible states U and Ũ, we define

αr(U, Ũ; ξ) := max

{
〈ξ,v〉,

√
ρ〈ξ,v〉+

√
ρ̃〈ξ, ṽ〉

√
ρ+
√
ρ̃

}
+ C (U; ξ) +

|B− B̃|
√
ρ+
√
ρ̃
, (2.7)

αl(U, Ũ; ξ) := min

{
〈ξ,v〉,

√
ρ〈ξ,v〉+

√
ρ̃〈ξ, ṽ〉

√
ρ+
√
ρ̃

}
− C (U; ξ)− |B− B̃|

√
ρ+
√
ρ̃
, (2.8)

and

α?(U, Ũ; ξ) := max

{
|〈ξ,v〉|,

∣∣∣∣√ρ〈ξ,v〉+
√
ρ̃〈ξ, ṽ〉

√
ρ+
√
ρ̃

∣∣∣∣}+ C (U; ξ) +
|B− B̃|
√
ρ+
√
ρ̃
. (2.9)
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Corollary 2.1. For any U, Ũ ∈ G, any unit vector ξ ∈ Rd, and

∀α ≥ αr(U, Ũ; ξ), ∀α̃ ≤ αl(Ũ,U; ξ),

the state

U :=
1

α− α̃

(
αU− 〈ξ,F(U)〉 − α̃Ũ + 〈ξ,F(Ũ)〉

)
,

belongs to Gρ and satisfies

U · n∗ +
|B∗|2

2
+

v∗ ·B∗

α− α̃

(
〈ξ,B〉 − 〈ξ, B̃〉

)
≥ 0, ∀v∗,B∗ ∈ R3. (2.10)

Furthermore, if 〈ξ,B〉 − 〈ξ, B̃〉 = 0, then U ∈ G∗.

Proof. This directly follows from Theorem 2.1 with N = 2, by taking

s1 = s2 = 1, ξ(1) = −ξ(2) = ξ, U(1) = U, U(2) = Ũ, α1 = α, α2 = −α̃. �

Corollary 2.2. Let U, Ũ ∈ G, unit vector ξ ∈ Rd. For ∀α ≥ α?(U, Ũ; ξ), ∀α̃ ≥ α?(Ũ,U; ξ),

the state

U :=
1

α + α̃

(
αU− 〈ξ,F(U)〉+ α̃Ũ + 〈ξ,F(Ũ)〉

)
,

belongs to Gρ and satisfies

U · n∗ +
|B∗|2

2
+

v∗ ·B∗

α + α̃

(
〈ξ,B〉 − 〈ξ, B̃〉

)
≥ 0, ∀v∗,B∗ ∈ R3. (2.11)

Furthermore, if 〈ξ,B〉 − 〈ξ, B̃〉 = 0, then U ∈ G∗.

Proof. This is a direct consequence of Corollary 2.1. �

Remark 2.3. The inequalities (2.5), (2.10) and (2.11) extend the inequality constructed in

[53, Lemma 2.6]. Corollaries 2.1 and 2.2 are useful for estimating the wave speeds to ensure

the PP property of the HLL flux and local Lax-Friedrichs flux, respectively; see Theorem 2.2.

2.2.2 Proof of Theorem 2.1

We first establish several technical lemmas as the stepping stones on the path to prove Theorem

2.1.

For any U ∈ G and v∗,B∗ ∈ R3, we define the nonzero vector θ ∈ R7 by

θ(U,v∗,B∗) :=
1√
2

(
B−B∗,

√
ρ(v − v∗),

√
2ρe
)>
.

As a novel point, introducing such a vector will bring much convenience in the following

estimates and analyses. It is easy to verify that

U · n∗ +
|B∗|2

2
= |θ|2. (2.12)

Lemma 2.3. The set

Gρ :=
{
U = (ρ,m,B, E)> : ρ > 0

}
,

is a convex set. And for any U ∈ Gρ, ξ ∈ Rd and α > 〈ξ,v〉, it holds

αU− 〈ξ,F(U)〉 ∈ Gρ.
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Proof. The result can be easily verified. �

Lemma 2.4. For any U ∈ G, any v∗,B∗ ∈ R3 and all i ∈ {1, 2, 3}, we have

Fi(U) · n∗ − Bi(v
∗ ·B∗) ≤ vi

7∑
k=4

θ2
k + v∗i

(
1

2
|B|2 −B ·B∗

)
+ Ci|θ|2, (2.13)

where Ci := C (U; ei), and the vector ei is the i-th row of the unit matrix of size 3.

Proof. For any i ∈ {1, 2, 3}, we observe that

Fi(U) · n∗ − Bi(v
∗ ·B∗) = vi

7∑
k=4

θ2
k + v∗i

(
1

2
|B|2 −B ·B∗

)
+ Φi, (2.14)

where

Φi(U,v
∗,B∗) := p(vi − v∗i ) +

∑
1≤k≤3
k 6=i

(
Bk(vi − v∗i )− Bi(vk − v∗k)

)
(Bk − B∗k).

Let us show that Φi is bounded by Ci|θ|2 from above. We further observe that Φi is a quadratic

form in the variables θk, 1 ≤ k ≤ 7, and moreover, the coefficients of the quadratic form do

not depend on v∗ and B∗. Specifically, for the fixed i, we have

p(vi − v∗i ) = 2Cs

√
ρ
√

2
(vi − v∗i )

√
ρe = 2Csθ3+iθ7,(

Bk(vi − v∗i )− Bi(vk − v∗k)
)

(Bk − B∗k) = 2
Bk√
ρ
θ3+iθk − 2

Bi√
ρ
θ3+kθk, ∀k 6= i.

Define i1 := i mod 3 + 1 and i2 := (i+ 1) mod 3 + 1, and

θ̃ :=
(
θ3+i, θ3+i1 , θ3+i2 , θi1 , θi2 , θ7

)>
,

then

Φi = 2Csθ3+iθ7 + 2
∑

k∈{i1,i2}

(
Bk√
ρ
θ3+iθk −

Bi√
ρ
θ3+kθk

)
= θ̃>Aθ̃,

where

A =



0 0 0 Bi1ρ
− 1

2 Bi2ρ
− 1

2 Cs

0 0 0 −Biρ
− 1

2 0 0

0 0 0 0 −Biρ
− 1

2 0

Bi1ρ
− 1

2 −Biρ
− 1

2 0 0 0 0

Bi2ρ
− 1

2 0 −Biρ
− 1

2 0 0 0

Cs 0 0 0 0 0


.

The spectral radius of A is Ci. Therefore,

|Φi| ≤ |θ̃>Aθ̃| ≤ Ci|θ̃|2 = Ci(|θ|2 − θ2
i ) ≤ Ci|θ|2,

which along with the identity (2.14) imply (2.13). �
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For any unit vector ξ ∈ Rd, we introduce a matrix Tξ := diag
{

1, T̂ξ, T̂ξ, 1
}

, with the

rotational matrix T̂ξ defined as follows:

(i). In d = 1, ξ = ξ is a scalar of value 1 or −1, and T̂ξ is defined as diag{ξ, 1, 1}.
(ii). In d = 2, let (cosϕ, sinϕ) be the polar coordinate representation of ξ, and

T̂ξ :=

 cosϕ sinϕ 0

− sinϕ cosϕ 0

0 0 1

 .

(iii). In d = 3, let (sinφ cosϕ, sinφ sinϕ, cosφ) be the spherical coordinate representation of

ξ, and

T̂ξ :=

 sinφ cosϕ sinφ sinϕ cosφ

− sinϕ cosϕ 0

− cosφ cosϕ − cosφ sinϕ sinφ

 .

The rotational invariance property of the d-dimensional MHD system (1.1) implies

〈ξ,F(U)〉 = T−1
ξ F1(TξU). (2.15)

This helps us extend Lemma 2.4 to the following general case.

Lemma 2.5. For any U ∈ G, any v∗,B∗ ∈ R3 and any unit vector ξ ∈ Rd, it holds

〈ξ,F(U)〉 · n∗ − 〈ξ,B〉(v∗ ·B∗) ≤ 〈ξ,v〉
7∑

k=4

θ2
k + 〈ξ,v∗〉

(1

2
|B|2 −B ·B∗

)
+ C (U; ξ)|θ|2.

Proof. Let Û := TξU, v̂∗ := T̂ξv
∗, B̂ := T̂ξB

∗, θ̂ := θ(Û, v̂∗, B̂∗), and

n̂∗ :=

(
|v̂∗|2

2
, − v̂∗, − B̂∗, 1

)>
= Tξn

∗.

By the definition (1.5), one can easily verify Û ∈ G, which, together with the orthogonality of

T−1
ξ and T̂−1

ξ , imply

〈ξ,F(U)〉 · n∗ − 〈ξ,B〉(v∗ ·B∗)
(2.15)
=
(
T−1

ξ F1(Û)
)
·
(
T−1

ξ n̂∗
)
− B̂1(T̂−1

ξ v̂∗) · (T̂−1
ξ B̂∗)

= F1(Û) · n̂∗ − B̂1(v̂∗ · B̂∗)
(2.13)

≤ v̂1

7∑
k=4

θ̂2
k + v̂∗1

(
1

2
|B̂|2 − B̂ · B̂∗

)
+ C1(Û)|θ̂|2

= 〈ξ,v〉
7∑

k=4

θ2
k + 〈ξ,v∗〉

(1

2
|B|2 −B ·B∗

)
+ C (U; ξ)|θ|2.

The proof is completed. �

Lemma 2.6. Assume that U = (ρ, ρv,B, E)> ∈ G, Ũ = (ρ̃, ρ̃ṽ, B̃, Ẽ)> ∈ G. For ∀v∗,B∗ ∈
R3, ∀ξ ∈ Rd and ∀δ ∈ R, it holds

〈ξ,v∗〉

[(∣∣B∣∣2
2
−B ·B∗

)
−
(∣∣B̃∣∣2

2
− B̃ ·B∗

)]

≤ 〈ξ, δv + (1− δ)ṽ〉
3∑

k=1

(
θ2
k − θ̃2

k

)
+ |ξ|f(U, Ũ; δ)

(
|θ|2 + |θ̃|2

)
,

(2.16)
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where θ := θ(U,v∗,B∗) and θ̃ := θ(Ũ,v∗,B∗), and f(U, Ũ; δ) is defined by

f(U, Ũ; δ) :=
|B̃−B|√

2

√
δ2

ρ
+

(1− δ)2

ρ̃
. (2.17)

Proof. With the aid of the Cauchy-Schwarz inequality, we have

〈ξ,v∗〉

[(∣∣B∣∣2
2
−B ·B∗

)
−
(∣∣B̃∣∣2

2
− B̃ ·B∗

)]
− 〈ξ, δv + (1− δ)ṽ〉

3∑
k=1

(
θ2
k − θ̃2

k

)
=

(
δ

2
〈ξ,v − v∗〉+

1− δ
2
〈ξ, ṽ − v∗〉

)
(B̃−B) ·

(
B + B̃− 2B∗

)
≤ |ξ|

2

(
|δ|
√
ρ

√
ρ|v − v∗|+ |1− δ|√

ρ̃

√
ρ̃|ṽ − v∗|

)
|B̃−B|

(
|B−B∗|+ |B̃−B∗|

)
≤ |ξ|

2

√
δ2

ρ
+

(1− δ)2

ρ̃

√
ρ|v − v∗|2 + ρ̃|ṽ − v∗|2|B̃−B|

√
2(|B−B∗|2 + |B̃−B∗|2)

= 2|ξ|f(U, Ũ; δ)

√√√√ 6∑
k=4

(
θ2
k + θ̃2

k

)√√√√ 3∑
k=1

(
θ2
k + θ̃2

k

)
≤ |ξ|f(U, Ũ; δ)

6∑
k=1

(
θ2
k + θ̃2

k

)
≤ |ξ|f(U, Ũ; δ)

(
|θ|2 + |θ̃|2

)
.

The proof is completed. �

We are now ready to prove Theorem 2.1.

Proof. Note that αj ≥ α̂j > 〈ξ(j),v(j)〉. It follows from Lemma 2.3 that αjU
(j)−〈ξ(j),F(U(j))〉 ∈

Gρ, and furthermore U ∈ Gρ, by noting that
∑N

j=1 sjαj > 0 (see Remark 2.1).

We then focus on proving the inequality (2.5), or equivalently,

N∑
j=1

sjΠ
(j) ≤

N∑
j=1

αj|θ(j)|2, (2.18)

where θ(j) := θ(U(j),v∗,B∗), and

Π(j) := 〈ξ(j),F(U(j))〉 · n∗ − 〈ξ(j),B(j)〉(v∗ ·B∗).

Using Lemma 2.5 gives

N∑
j=1

sjΠ
(j) ≤

{
N∑
j=1

sj〈ξ(j),v(j)〉
7∑

k=4

∣∣θ(j)
k

∣∣2}+

{
N∑
j=1

sjC (U(j); ξ)|θ(j)|2
}

+

{
N∑
j=1

sj〈ξ(j),v∗〉
(1

2
|B(j)|2 −B(j) ·B∗

)}
=: Π1 + Π2 + Π3. (2.19)
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Noting that, for any 1 ≤ i ≤ N , the hypothesis (2.2) implies

N∑
j=1

sj〈ξ(j),v∗〉 =

〈
N∑
j=1

sjξ
(j),v∗

〉
= 0.

Thus we can reformulate Π3 as

Π3 =
N∑
j=1

sj〈ξ(j),v∗〉
(1

2
|B(j)|2 −B(j) ·B∗

)
−

N∑
j=1

sj〈ξ(j),v∗〉
(1

2
|B(i)|2 −B(i) ·B∗

)
=

N∑
j=1

sj〈ξ(j),v∗〉
[(1

2
|B(j)|2 −B(j) ·B∗

)
−
(1

2
|B(i)|2 −B(i) ·B∗

)]
=:

N∑
j=1

sjΠ
(ji)
3 ,

for any 1 ≤ i ≤ N . For any δ ∈ R, it follows from Lemma 2.6 that

Π
(ji)
3 ≤ 〈ξ(j), δv(j) + (1− δ)v(i)〉

3∑
k=1

(
|θ(j)
k |

2 − |θ(i)
k |

2
)

+ f(U(j),U(i); δ)
(
|θ(j)|2 + |θ(i)|2

)
.

(2.20)

In particular, we take the free variable δ as
√
ρ(j)/

(√
ρ(j) +

√
ρ(i)
)
, which gives the Roe-type

weighted average. Let

v̄(ji) :=

√
ρ(j)v(j) +

√
ρ(i)v(i)√

ρ(j) +
√
ρ(i)

,

then the inequality (2.20) becomes

Π
(ji)
3 ≤

〈
ξ(j), v̄(ji)

〉 3∑
k=1

(
|θ(j)
k |

2 − |θ(i)
k |

2
)

+
|B(j) −B(i)|√
ρ(j) +

√
ρ(i)

(
|θ(j)|2 + |θ(i)|2

)
. (2.21)

It follows that (
N∑
i=1

si

)
Π3 =

N∑
i=1

N∑
j=1

sisjΠ
(ji)
3

≤
N∑
i=1

N∑
j=1

sisj
〈
ξ(j), v̄(ji)

〉 3∑
k=1

(
|θ(j)
k |

2 − |θ(i)
k |

2
)

+
N∑
i=1

N∑
j=1

sisj
|B(j) −B(i)|√
ρ(j) +

√
ρ(i)

(
|θ(j)|2 + |θ(i)|2

)
.

(2.22)

By v̄(ji) = v̄(ij) and the technique of exchanging indexes i and j, we obtain

N∑
i=1

N∑
j=1

sisj
〈
ξ(j), v̄(ji)

〉 3∑
k=1

|θ(i)
k |

2 =
N∑
i=1

N∑
j=1

sisj
〈
ξ(i), v̄(ji)

〉 3∑
k=1

|θ(j)
k |

2,

N∑
i=1

N∑
j=1

sisj
|B(j) −B(i)|√
ρ(j) +

√
ρ(i)
|θ(i)|2 =

N∑
i=1

N∑
j=1

sisj
|B(j) −B(i)|√
ρ(j) +

√
ρ(i)
|θ(j)|2.

Therefore, the inequality (2.22) can be rewritten as(
N∑
i=1

si

)
Π3 ≤

N∑
i=1

N∑
j=1

sisj
〈
ξ(j) − ξ(i), v̄(ji)

〉 3∑
k=1

|θ(j)
k |

2 + 2
N∑
i=1

N∑
j=1

sisj
|B(j) −B(i)|√
ρ(j) +

√
ρ(i)
|θ(j)|2,

13



which further yields

Π3 ≤
N∑
j=1

sj

(
1∑N
i=1 si

N∑
i=1

si
〈
ξ(j) − ξ(i), v̄(ji)

〉) 3∑
k=1

|θ(j)
k |

2

+
N∑
j=1

sj

(
2∑N
i=1 si

N∑
i=1

si
|B(j) −B(i)|√
ρ(j) +

√
ρ(i)

)
|θ(j)|2.

(2.23)

Note that

Π1 +
N∑
j=1

sj

(
1∑N
i=1 si

N∑
i=1

si
〈
ξ(j) − ξ(i), v̄(ji)

〉) 3∑
k=1

|θ(j)
k |

2

≤
N∑
j=1

sj max

{〈
ξ(j),v(j)

〉
,

1∑N
i=1 si

N∑
i=1

si
〈
ξ(j) − ξ(i), v̄(ji)

〉} 7∑
k=1

|θ(j)
k |

2,

which along with (2.19) and (2.23) imply

N∑
j=1

sjΠ
(j) ≤

N∑
j=1

α̂j|θ(j)|2 ≤
N∑
j=1

αj|θ(j)|2.

Hence the inequality (2.18) holds.

Under the condition (2.6), the inequality (2.5) becomes U · n∗ + |B∗|2
2
≥ 0, ∀v∗,B∗ ∈ R3,

which together with U ∈ Gρ imply U ∈ G∗. The proof is completed. �

2.3 Estimates relative to source term

We also need the following lemma, which was proposed in [54].

Lemma 2.7. For any U ∈ G and any v∗,B∗ ∈ R3, we have

S(U) · n∗ = (v − v∗) · (B−B∗)− v∗ ·B∗, (2.24)

|√ρ(v − v∗) · (B−B∗)| < U · n∗ +
|B∗|2

2
. (2.25)

Furthermore, for any b ∈ R, it holds

−b(S(U) · n∗) ≥ b(v∗ ·B∗)− |b|√
ρ

(
U · n∗ +

|B∗|2

2

)
. (2.26)

2.4 Properties of the HLL flux

The Harten–Lax–van Leer (HLL) flux is derived from an approximate Riemann solver in the

direction normal to each cell interface. Let ξ ∈ Rd be the unit normal vector of the interface.

Then the HLL flux at the interface is given by

F̂(U−,U+; ξ) =


〈ξ,F(U−)〉, 0 ≤ σl < σr,

σr〈ξ,F(U−)〉 − σl〈ξ,F(U+)〉+ σlσr(U
+ −U−)

σr − σl
, σl < 0 < σr,

〈ξ,F(U+)〉, σl < σr ≤ 0.

(2.27)
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Here σl(U
−,U+; ξ) and σr(U

−,U+; ξ) are functions of U−, U+ and ξ, denoting the estimates

of the leftmost and rightmost wave speeds in the (rotated) Riemann problem in the direction

of ξ, where U− and U+ are the left and right initial states respectively. We require σr > σl,

and

σr(U
−,U+; ξ) = −σl(U+,U−;−ξ), (2.28)

which ensures that the numerical flux (2.27) is conservative, that is,

F̂(U−,U+; ξ) + F̂(U+,U−;−ξ) = 0.

Let

σ+ = max{σr, 0}, σ− = min{σl, 0},

then the flux (2.27) can be reformulated as

F̂(U−,U+; ξ) =
σ+〈ξ,F(U−)〉 − σ−〈ξ,F(U+)〉+ σ−σ+(U+ −U−)

σ+ − σ−
. (2.29)

Note that the LF flux can be considered as a special HLL flux with σr = −σl = σ, where σ is

the maximum wave speed. Therefore, all the analysis in the present paper also applies to the

local LF flux and global LF flux.

The following property is derived for the HLL flux (2.27) in the ideal MHD case.

Theorem 2.2. Assume U−,U+ ∈ G. If the parameters (approximate wave speeds) in the

HLL flux (2.27) satisfy

σr ≥ αr(U
+,U−; ξ), σl ≤ αl(U

−,U+; ξ), (2.30)

then

F̂(U−,U+; ξ) = σ−H(U−,U+; ξ) + 〈ξ,F(U−)〉 − σ−U−, (2.31)

F̂(U−,U+; ξ) = σ+H(U−,U+; ξ) + 〈ξ,F(U+)〉 − σ+U+, (2.32)

and the intermediate state

H(U−,U+; ξ) :=
1

σ+ − σ−
(
σ+U+ − 〈ξ,F(U+)〉 − σ−U− + 〈ξ,F(U−)〉

)
(2.33)

belongs to Gρ and satisfies

H · n∗ +
|B∗|2

2
+

v∗ ·B∗

σ+ − σ−
(
〈ξ,B+〉 − 〈ξ,B−〉

)
≥ 0, ∀v∗,B∗ ∈ R3. (2.34)

Furthermore, if 〈ξ,B+〉 = 〈ξ,B−〉, then H ∈ G∗.

Proof. The identities (2.31)–(2.32) can be verified by using (2.29). Under the condition (2.30),

we have

σ+ ≥ σr ≥ αr(U
+,U−; ξ), σ− ≤ σl ≤ αl(U

−,U+; ξ).

It follows from Corollary 2.1 that H(U−,U+; ξ) ∈ Gρ and satisfies (2.34). �
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Remark 2.4. It is observed from (2.34) that the admissibility of the intermediate state H is

closely related to the jump in the normal magnetic field across the cell interface. If the jump is

zero, then H ∈ G∗; otherwise, H does not always belong to G∗ even if many times larger wave

speeds are employed. However, in the multidimensional cases, a standard finite volume or DG

method cannot avoid jumps in normal magnetic field at cell interfaces although such jumps do

not exist in the exact solution. This causes some challenges essentially different from 1D case.

We will demonstrate that this issue can be overcome by coupling two divergence-controlling

techniques: the locally divergence-free element and properly discretized Godunov–Powell source

term. The former technique leads to zero divergence within each cell, while the latter controls

the divergence error across cell interfaces.

Remark 2.5. The proposed condition (2.30) for the wave speeds σl and σr is crucial for

the provably PP property of our schemes presented later. The condition (2.30) is acceptable,

because αl and αr are respectively close to the minimum and maximum signal speeds of the

system (1.4) in the direction of ξ. Let σstd
l and σstd

r denote a standard choice of wave speeds

in the HLL flux, for example, Davis [19] gave those speeds as

σstd
l = min{λ1(U−; ξ), λ1(U+; ξ)}, σstd

r = max{λ8(U−; ξ), λ8(U+; ξ)}, (2.35)

or Einfeldt et al. [25] suggested to use

σstd
l = min{λ1(U−; ξ), λ1(URoe; ξ)}, σstd

r = max{λ8(U+; ξ), λ8(URoe; ξ)},

where λ1(U; ξ) amd λ8(U; ξ) are the minimum and maximum eigenvalues of the Jacobi matrix

of the system (1.4) in the direction of ξ, and λi(U
Roe; ξ) is the estimate of eigenvalues based on

the Roe matrix (cf. [43]). These choices may not necessarily give a PP flux in the MHD case

and probably not satisfy (2.30). In practice, by considering the stability and the PP property,

we suggest to use

σl = min{αl(U−,U+; ξ), σstd
l }, σr = max{αr(U+,U−; ξ), σstd

r } (2.36)

in the HLL flux, and use

σr = −σl = max
{
α?(U

−,U+; ξ), α?(U
+,U−; ξ), σstd

}
,

in the local LF flux, where σstd denotes a standard numerical viscosity parameter for the local

LF flux.

3 Positivity-preserving schemes in one dimension

In this section, we propose provably PP finite volume and DG schemes with the proposed HLL

flux for 1D MHD equations (1.1). Let x denote the spatial variable. The condition (1.2) and

the fifth equation of (1.1) imply B1(x, t) ≡ constant (denoted by Bconst) for all x and t ≥ 0.

Let Ij = [xj− 1
2
, xj+ 1

2
], I = ∪jIj be a partition of the spatial domain. Denote ∆xj =

xj+ 1
2
− xj− 1

2
. Let {t0 = 0, tn+1 = tn + ∆tn, n ≥ 0} be a partition of the time interval [0, T ],

where the time step-size ∆tn is determined by some CFL condition. Let Ūn
j denote the

numerical approximation to the cell average of the exact solution U(x, t) over Ij at t = tn.

We would like to seek PP schemes with Ūn
j always preserved in the admissible state set G.
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3.1 First-order scheme

We consider the 1D first-order scheme

Ūn+1
j = Ūn

j −
∆tn
∆xj

(
F̂1(Ūn

j , Ū
n
j+1)− F̂1(Ūn

j−1, Ū
n
j )
)
, (3.1)

where F̂1(Ūn
j , Ū

n
j+1) := F̂(Ūn

j , Ū
n
j+1; 1) is taken as the HLL flux in (2.29). It is worth noting

that in the 1D case, since B1(x, t) ≡ constant, the Godunov-Powell source term does not exist.

Theorem 3.1. Assume that Ū0
j ∈ G and B̄0

1,j = Bconst for all j, and the wave speeds in the

HLL flux satisfy (2.30). Then the state Ūn
j , computed by the scheme (3.1) under the CFL

condition (
σn,+
j− 1

2

− σn,−
j+ 1

2

) ∆tn
∆xj

< 1, ∀j, (3.2)

belongs to G and satisfies B̄n
1,j = Bconst for all j and n ∈ N, where

σn,+
j− 1

2

:= σ+(Ūn
j−1, Ū

n
j ; 1), σn,−

j+ 1
2

:= σ−(Ūn
j , Ū

n
j+1; 1).

Proof. Here the induction argument is used for the time level number n. It is obvious that

the conclusion holds for n = 0 under the hypothesis on the initial data. We now assume that

Ūn
j ∈ G with B̄n

1,j = Bconst for all j, and we check whether the conclusion holds for n+ 1. Let

λ := ∆tn/∆xj, and Hn
j+ 1

2

:= H(Ūn
j , Ū

n
j+1; 1); see (2.33) for the definition of H. Under the

induction hypothesis, we have that Hn
j+ 1

2

∈ G∗, ∀j according to Theorem 2.2, and the fifth

component of Hn
j+ 1

2

is Bconst for all j by noting that the fifth component of F1 is zero. Using

the identities (2.31) and (2.32), one can rewrite the scheme (3.1) as

Ūn+1
j = Ūn

j − λ
[ (
σn,−
j+ 1

2

Hn
j+ 1

2
+ F1(Ūn

j )− σn,−
j+ 1

2

Ūn
j

)
−
(
σn,+
j− 1

2

Hn
j− 1

2
+ F1(Ūn

j )− σn,+
j− 1

2

Ūn
j

) ]
=
(

1 + λ(σn,−
j+ 1

2

− σn,+
j− 1

2

)
)
Ūn
j +

(
− λσn,−

j+ 1
2

)
Hn
j+ 1

2
+ λσn,+

j− 1
2

Hn
j− 1

2
.

(3.3)

Under the condition (3.2), Ūn+1
j is a convex combination of Ūn

j , Hn
j+ 1

2

and Hn
j− 1

2

. Hence we

have Ūn+1
j ∈ G by Lemma 2.2. The fifth equation of (3.3) also implies

B̄n+1
1,j =

(
1 + λ(σn,−

j+ 1
2

− σn,+
j− 1

2

)
)
Bconst − λσn,−j+ 1

2

Bconst + λσn,+
j− 1

2

Bconst = Bconst.

Therefore, the conclusion holds for n+ 1. The proof is completed. �

3.2 High-order schemes

For convenience, we first focus on the forward Euler method for time discretization and will

discuss the high-order time discretization later. We consider the high-order finite volume

schemes as well as the scheme satisfied by the cell averages of a standard DG method for

(1.1), which have the following form

Ūn+1
j = Ūn

j −
∆tn
∆xj

(
F̂1(U−

j+ 1
2

,U+
j+ 1

2

)− F̂1(U−
j− 1

2

,U+
j− 1

2

)
)
, (3.4)
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where F̂1(U−
j+ 1

2

,U+
j+ 1

2

) := F̂(U−
j+ 1

2

,U+
j+ 1

2

; 1) is taken as the HLL flux in (2.29). The quantities

U−
j+ 1

2

and U+
j+ 1

2

are the high-order approximations of the point values U(xj+ 1
2
, tn) within the

cells Ij and Ij+1, respectively, computed by

U−
j+ 1

2

= Un
j

(
xj+ 1

2
− 0
)
, U+

j+ 1
2

= Un
j+1

(
xj+ 1

2
+ 0
)
. (3.5)

Here the function Un
j (x) is a polynomial vector of degree k with the cell-averaged value of Ūn

j .

It approximates U(x, tn) within the cell Ij, and is either reconstructed in the finite volume

methods from {Ūn
j } or directly evolved in the DG methods. The evolution equations for the

high-order “moments” of Un
j (x) in the DG methods are omitted because here we are only

concerned with the PP property of the schemes.

If the polynomial degree k = 0, i.e., Un
j (x) = Ūn

j , ∀x ∈ Ij, then the scheme (3.4) reduces

to the first-order scheme (3.1), which has been proved to be PP under the CFL condition

(3.2).

When the polynomial degree k ≥ 1, the solution Ūn+1
j of the high-order scheme (3.4) does

not always belong to G even if Ūn
j ∈ G for all j. In the following theorem, we give a satisfiable

condition for achieving the provably PP property of the scheme (3.4) when k ≥ 1.

Let {x̂(µ)
j }Lµ=1 be the L-point Gauss–Lobatto quadrature nodes in the interval Ij, and the

associated weights denoted by {ω̂µ}Lµ=1 with
∑L

µ=1 ω̂µ = 1. We require 2L−3 ≥ k such that the

algebraic precision of corresponding quadrature is at least k, for example, one can particularly

take L = dk+3
2
e.

Theorem 3.2. Let the wave speeds in the HLL flux satisfy (2.30). If the polynomial vectors

{Un
j (x)} satisfy

B±
1,j+ 1

2

= Bconst, ∀j, (3.6)

Un
j (x̂

(µ)
j ) ∈ G, ∀µ ∈ {1, 2, · · · , L}, ∀j, (3.7)

then the high-order scheme (3.4) is PP under the CFL condition

∆tn
∆xj

max
{
α?j + σn,+

j− 1
2

, α?j − σ
n,−
j+ 1

2

}
≤ ω̂1, ∀j, (3.8)

where σn,±
j+ 1

2

:= σ±(U−
j+ 1

2

,U+
j+ 1

2

; 1), and

α?j := max
{
α?(U

+
j− 1

2

,U−
j+ 1

2

; 1), α?(U
−
j+ 1

2

,U+
j− 1

2

; 1)
}
.

Proof. Using (2.31)–(2.32), we can reformulate the numerical fluxes in (3.4) as

F̂1(U−
j+ 1

2

,U+
j+ 1

2

) = σn,−
j+ 1

2

Hj+ 1
2

+ F1(U−
j+ 1

2

)− σn,−
j+ 1

2

U−
j+ 1

2

, (3.9)

F̂1(U−
j− 1

2

,U+
j− 1

2

) = σn,+
j− 1

2

Hj− 1
2

+ F1(U+
j− 1

2

)− σn,+
j− 1

2

U+
j− 1

2

, (3.10)

where Hj+ 1
2

= H(U−
j+ 1

2

,U+
j+ 1

2

; 1). Under the conditions (3.6)–(3.7), we have Hj+ 1
2
∈ G∗ for

all j by using Theorem 2.2. The exactness of the L-point Gauss–Lobatto quadrature rule for

the polynomials of degree k implies

Ūn
j =

1

∆xj

∫
Ij

Un
j (x)dx =

L∑
µ=1

ω̂µU
n
j (x̂

(µ)
j ).
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Noting ω̂1 = ω̂L and x̂1,L
j = xj∓ 1

2
and using (3.9)–(3.10), we can rewrite the scheme (3.4) into

the following convex combination form

Ūn+1
j =

L−1∑
µ=2

ω̂µU
n
j (x̂

(µ)
j ) +

(
2ω̂1 + λσn,−

j+ 1
2

− λσn,+
j− 1

2

)
Ξ

+
(
− λσn,−

j+ 1
2

)
Hj+ 1

2
+ λσn,+

j− 1
2

Hj− 1
2
,

(3.11)

where λ := ∆tn/∆xj, and

Ξ :=

(
λ−1ω̂1 + σn,−

j+ 1
2

)
U−
j+ 1

2

− F1

(
U−
j+ 1

2

)
+
(
λ−1ω̂1 − σn,+j− 1

2

)
U+
j− 1

2

+ F1

(
U+
j− 1

2

)
λ−1ω̂1 + σn,−

j+ 1
2

+ λ−1ω̂1 − σn,+j− 1
2

.

The condition (3.8) implies

λ−1ω̂1 + σn,−
j+ 1

2

≥ α?j ≥ α?(U
−
j+ 1

2

,U+
j− 1

2

; 1), λ−1ω̂1 − σn,+j− 1
2

≥ α?j ≥ α?(U
+
j− 1

2

,U−
j+ 1

2

; 1),

which together with the condition (3.6) yield Ξ ∈ G∗ by Corollary 2.2. We therefore conclude

Ūn+1
j ∈ G from (3.11) according to the convexity of G∗ and Lemma 2.1. �

Remark 3.1. In practice, it is easy to ensure the condition (3.6), since the exact solution

B1(x, t) ≡ Bconst and the flux for B1 in the x-direction is zero. The condition (3.7) can be

enforced by a simple scaling limiter, which was designed in [13] by extending the techniques in

[65, 66, 67]. For readers’ convenience, the PP limiter is briefly reviewed in Appendix B.

The above PP analysis is focused on first-order time discretization. In fact, it is also valid

for the high-order explicit time discretization using strong stability-preserving (SSP) methods

(cf. [31]), because G is convex and an SSP method is a convex combination of the forward

Euler method.

4 Positivity-preserving schemes in multiple dimensions

In this section, we develop provably PP methods for the multidimensional ideal MHD. We

remark that the design of multidimensional PP schemes have challenges essentially different

from the 1D case, due to the divergence-free condition (1.2). For the sake of clarity, we shall

restrict ourselves to the 2D case (d = 2), keeping in mind that our PP methods and analyses

are extendable to the 3D case. We will use x ∈ Rd to denote the spatial coordinate vector.

Assume that the 2D spatial domain is partitioned into a mesh Th, which can be unstruc-

tured and consists of polygonal cells. An illustration of two special meshes is given in Fig.

4.1. Let K ∈ Th be a polygonal cell with edges E j
K , j = 1, · · · , NK , and Kj be the adjacent

cell which shares the edge E j
K with K. We denote by ξ

(j)
K =

(
ξ

(j)
1,K , · · · , ξ

(j)
d,K

)
the unit nor-

mal vector of E j
K pointing from K to Kj. The notations |K| and |E j

K | are used to denote

the area of K and the length of E j
K , respectively. The time interval is also divided into the

mesh {t0 = 0, tn+1 = tn + ∆tn, n ≥ 0} with the time step-size ∆tn determined by some CFL

condition. Throughout this section, the lower-case letter k will be used to denote the DG

polynomial degree, while the capital letter K always represents a cell.
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Fig. 0.1. Illustration of a triangular mesh (left) and a rectangular mesh (right).
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Fig. 0.1. Illustration of a triangular mesh (left) and a rectangular mesh (right).

1

Figure 4.1: Illustration of a rectangular mesh (left) and a triangular mesh (right).

4.1 First-order schemes

We consider the following first-order scheme for the Godunov form (1.4) of the ideal MHD

equations

Ūn+1
K = Ūn

K −
∆tn
|K|

NK∑
j=1

∣∣E j
K

∣∣ F̂(Ūn
K , Ū

n
Kj

; ξ
(j)
K

)
−∆tn

(
divKB̄n

)
S(Ūn

K), (4.1)

where Ūn
K is the numerical approximation to the cell average of U(x, tn) over the cell K, and

the numerical flux F̂ is taken as the HLL flux in (2.29). The last term at the right-hand side

of (4.1) is suitably discretized from the Godunov–Powell source, with divKB̄n defined by

divKB̄n :=
1

|K|

NK∑
j=1

∣∣E j
K

∣∣〈ξ(j)
K ,

σn,+K,j B̄
n
K − σ

n,−
K,j B̄

n
Kj

σn,+K,j − σ
n,−
K,j

〉
, (4.2)

where σn,±K,j := σ±(Ūn
K , Ū

n
Kj

; ξ
(j)
K ). The quantity divKB̄n can be considered as a discrete

divergence of magnetic field, because it is a first-order accurate approximation to the left-

hand side of
1

|K|

NK∑
j=1

∫
E j
K

〈
ξ

(j)
K ,B(x, tn)

〉
ds =

1

|K|

∫
K

∇ ·Bdx = 0.

In the special case of using the LF type fluxes, σn,+K,j = −σn,−K,j , then the discrete divergence

becomes

divKB̄n =
1

|K|

NK∑
j=1

∣∣E j
K

∣∣〈ξ(j)
K ,

B̄n
K + B̄n

Kj

2

〉
,

which is consistent with the one introduced in [53, 54] on the Cartesian meshes.

The PP property of the scheme (4.1) is shown as follows.

Theorem 4.1. Let the wave speeds in the HLL flux satisfy (2.30). If Ūn
K ∈ G, ∀K ∈ Th, then

the solution Ūn+1
K of (4.1) belongs to G for all K ∈ Th under the CFL-type condition

∆tn

(
1

|K|

NK∑
j=1

∣∣E j
K

∣∣ (−σn,−K,j )+

∣∣divKB̄n
∣∣

√
ρ̄nK

)
< 1, ∀K ∈ Th. (4.3)
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Proof. Let Hn
K,j := H(Ūn

K , Ū
n
Kj

; ξ
(j)
K ). Then the identity (2.31) implies

F̂
(
Ūn
K , Ū

n
Kj

; ξ
(j)
K

)
= σn,−K,jH

n
K,j +

〈
ξ

(j)
K ,F(Ūn

K)
〉
− σn,−K,j Ū

n
K . (4.4)

Using (4.4) and the identity
Nk∑
j=1

∣∣E j
K

∣∣ξ(j)
K = 0, (4.5)

one can rewrite the scheme (4.1) as

Ūn+1
K =

∆tn
|K|

NK∑
j=1

∣∣E j
K

∣∣ (−σn,−K,j )Hn
K,j + (1− λK)Ūn

K −∆tn
(
divKB̄n

)
S(Ūn

K), (4.6)

where λK := ∆tn
|K|
∑NK

j=1

∣∣E j
K

∣∣(− σn,−K,j ) ∈ [0, 1). Thanks to Theorem 2.2, we have Hn
K,j ∈ Gρ and

for any v∗,B∗ ∈ R3,

Hn
K,j · n∗ +

|B∗|2

2
≥ − v∗ ·B∗

σn,+K,j − σ
n,−
K,j

〈
ξ

(j)
K , B̄n

Kj
− B̄n

K

〉
. (4.7)

Since Hn
K,j ∈ Gρ and the first component of S(Ūn

K) is zero, we have ρ̄n+1
K ≥ (1−λK)ρ̄nK > 0.

For any v∗,B∗ ∈ R3, using (2.24) we derive from (4.6) that

Ūn+1
K · n∗ +

|B∗|2

2
= Π1 + Π2,

where

Π1 :=
∆tn
|K|

NK∑
j=1

∣∣E j
K

∣∣ (−σn,−K,j )(Hn
K,j · n∗ +

|B∗|2

2

)
+ ∆tn

(
divKB̄n

)(
v∗ ·B∗

)
,

Π2 := (1− λK)

(
Ūn
K · n∗ +

|B∗|2

2

)
−∆tn

(
divKB̄n

)
(v̄nK − v∗) · (B̄n

K −B∗).

Let us estimate the lower bounds of Π1 and Π2 respectively. Using (4.7) and (4.5) gives

Π1

(4.7)

≥ ∆tn
|K|

NK∑
j=1

∣∣E j
K

∣∣σn,−K,j
〈
ξ

(j)
K , B̄n

Kj
− B̄n

K

〉
σn,+K,j − σ

n,−
K,j

(
v∗ ·B∗

)
+ ∆tn

(
divKB̄n

)(
v∗ ·B∗

)
(4.2)
=

∆tn
|K|

NK∑
j=1

∣∣E j
K

∣∣(σn,−K,j
〈
ξ

(j)
K , B̄n

Kj
− B̄n

K

〉
σn,+K,j − σ

n,−
K,j

+

〈
ξ

(j)
K ,

σn,+K,j B̄
n
K − σ

n,−
K,j B̄

n
Kj

σn,+K,j − σ
n,−
K,j

〉)(
v∗ ·B∗

)
=

∆tn
|K|

NK∑
j=1

∣∣E j
K

∣∣ 〈ξ(j)
K , B̄n

K

〉 (
v∗ ·B∗

) (4.5)
= 0.

It follows from (2.25) that

Π2 ≥ (1− λK)

(
Ūn
K · n∗ +

|B∗|2

2

)
−∆tn

∣∣divKB̄n
∣∣

√
ρ̄nK

∣∣∣√ρ̄nK(v̄nK − v∗) · (B̄n
K −B∗)

∣∣∣
(2.25)

≥

(
1− λK −∆tn

∣∣divKB̄n
∣∣

√
ρ̄nK

)(
Ūn
K · n∗ +

|B∗|2

2

)
> 0.

Therefore, Ūn+1
K · n∗ + |B∗|2

2
> 0, ∀v∗,B∗ ∈ R3.

Hence Ūn+1
K ∈ G by Lemma 2.1. �
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It is worth emphasizing that the suitably discretized Godunov–Powell source term is crucial

for guaranteeing the PP property of the scheme (4.1). While the scheme (4.1) without this

term reduces to the 2D HLL scheme for the conservative MHD system (1.1), specifically,

Ūn+1
K = Ūn

K −
∆tn
|K|

NK∑
j=1

∣∣E j
K

∣∣F̂(Ūn
K , Ū

n
Kj

; ξ
(j)
K

)
. (4.8)

For the LF flux, the analysis in [53] on Cartesian meshes showed that the scheme (4.8) is

generally not PP, unless a discrete divergence-free (DDF) condition is satisfied. We find that,

on a general mesh Th, the corresponding DDF condition is

divKB̄n = 0, ∀K ∈ Th. (4.9)

As a direct consequence of Theorem 4.1, we immediately have the following corollary.

Corollary 4.1. Let the wave speeds in the HLL flux satisfy (2.30). If Ūn
K ∈ G, ∀K ∈ Th, and

satisfy the DDF condition (4.9), then under the CFL condition

∆tn
|K|

NK∑
j=1

∣∣E j
K

∣∣ (−σn,−K,j ) < 1, ∀K ∈ Th,

the solution Ūn+1
K of (4.8) belongs to G for all K ∈ Th.

If Th is a Cartesian mesh and the numerical flux F̂ is taken as the global LF flux, then the

scheme (4.8) preserves the DDF condition (4.9) provided that the DDF condition is satisfied

by the initial data [53]. It was also shown in [53] that even slightly violating the DDF condition

can cause the failure of the scheme (4.8) to preserve the positivity of pressure. Unfortunately,

on general meshes the scheme (4.8) does not necessarily preserve the DDF condition (4.9),

and it is generally not PP.

4.2 High-order schemes

We are now in the position to discuss provably PP high-order schemes for the multidimensional

ideal MHD. We mainly focus on the PP high-order DG methods, keeping in mind that the

analysis and framework also apply to high-order finite volume schemes.

4.2.1 Locally divergence-free schemes

We first propose locally divergence free schemes for the modified ideal MHD equations (1.4), as

they are the base schemes of our PP high-order schemes presented later. To achieve high-order

spatial accuracy, we approximate the exact solution U(x, tn) with a discontinuous piecewise

polynomial function Un
h(x), which is sought in the locally divergence-free space [36]

Vk
h =

{
u = (u1, · · · , u8)>

∣∣∣ u`∣∣K ∈ Pk(K), ∀`,
d∑
i=1

∂u4+i

∂xi

∣∣∣∣
K

= 0, ∀K ∈ Th

}
,

where Pk(K) denotes the space of polynomials in K of degree at most k.
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We consider the Pk-based locally divergence-free DG method for the Godunov form (1.4)

of the ideal MHD equations. Specifically, the DG solution Un
h ∈ Vk

h is evolved forward by∫
K

u · U
n+1
h −Un

h

∆tn
dxdy =

∫
K

∇u · F(Un
h)dx

−
NK∑
j=1

∫
E j
K

uint(K) ·
{

F̂
(
U
n,int(K)
h ,U

n,ext(K)
h ; ξ

(j)
K

)
−
[
ηK(x)

〈
ξ

(j)
K ,B

n,ext(K)
h −B

n,int(K)
h

〉
S
(
U
n,int(K)
h

)]}
ds, ∀u ∈ Vk

h,

(4.10)

where the numerical flux F̂ is taken as the HLL flux in (2.29), and the factor

ηK(x) :=
σ−
(
U
n,int(K)
h ,U

n,ext(K)
h ; ξ

(j)
K

)
σ+
(
U
n,int(K)
h ,U

n,ext(K)
h ; ξ

(j)
K

)
− σ−

(
U
n,int(K)
h ,U

n,ext(K)
h ; ξ

(j)
K

) , ∀x ∈ E j
K .

Here the superscripts “int(K)” and “ext(K)” indicate that the associated limits at the interface

E j
K are taken from the interior and exterior of K, respectively. The term inside the square

bracket in (4.10) is suitably discretized from the Godunov–Powell source term. The factor ηK

is carefully devised in an upwind manner according to the local wave speeds in the HLL flux.

This is very important, and is motivated from our following theoretical analysis for achieving

the provably PP property, as we will see the proof of Theorem 4.2 and Remark ??. If the

LF flux is employed, i.e., σ− = −σ+, then ηK(x) ≡ −1
2
, and the discretized Godunov–Powell

source term reduces to the one used in [54].

In the practical computations, the boundary and element integrals at the right-hand side

of (4.10) are discretized by certain quadratures of sufficiently high order accuracy (specifically,

the algebraic degree of accuracy should be at least 2k). For example, we can employ the Gauss

quadrature with Q = k + 1 points for the boundary integral:∫
E j
K

uint(K) ·
[
F̂
(
U
n,int(K)
h ,U

n,ext(K)
h ; ξ

(j)
K

)
− ηK(x)

〈
ξ

(j)
K ,B

n,ext(K)
h −B

n,int(K)
h

〉
S
(
U
n,int(K)
h

)]
ds

≈ |E j
K |

Q∑
q=1

ωqu
int(K)(x

(jq)
K ) ·

[
F̂
(
U
n,int(K)
h (x

(jq)
K ),U

n,ext(K)
h (x

(jq)
K ); ξ

(j)
K

)
− ηK(x

(jq)
K )

〈
ξ

(j)
K ,B

n,ext(K)
h (x

(jq)
K )−B

n,int(K)
h (x

(jq)
K )

〉
S
(
U
n,int(K)
h (x

(jq)
K )

)]
,

where {x(jq)
K }1≤q≤Q are the quadrature points on the interface E j

K , and {ωq}1≤q≤Q are the

associated weights.

Let

Un
h

∣∣
K

=: Un
K(x),

and its cell average over K be Ūn
K . Then we can derive from (4.10) the evolution equations

for the cell averages {Ūn
K} as follows

Ūn+1
K = Ūn

K + ∆tnLK(Un
h), (4.11)
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where

LK(Un
h) := − 1

|K|

NK∑
j=1

Q∑
q=1

|E j
K |ωq

[
F̂
(
U
n,int(K)
h (x

(jq)
K ),U

n,ext(K)
h (x

(jq)
K ); ξ

(j)
K

)
− ηK(x

(jq)
K )

〈
ξ

(j)
K ,B

n,ext(K)
h (x

(jq)
K )−B

n,int(K)
h (x

(jq)
K )

〉
S
(
U
n,int(K)
h (x

(jq)
K )

)]
.

The discrete equations (4.11) can also be derived from a finite volume method for (1.4),

if the approximate function Un
h in (4.11) is reconstructed from the cell averages {Ūn

K} by a

locally divergence-free approach (cf. [69, 61]) such that Un
h ∈ Vk

h.

When k = 0, the above DG and finite volume schemes reduce to the first-order scheme

(4.1), whose PP property has been proved in Theorem 4.1. When k ≥ 1, the above high-

order DG and finite volume schemes are not PP in general. However, we find that these

locally divergence-free schemes can be rendered provably PP by a simple limiting procedure,

as demonstrated in the following.

4.2.2 Positivity-preserving schemes

We first assume that there exists a special 2D quadrature on each cell K ∈ Th satisfying:

• The quadrature rule is with positive weights and exact for integrals of polynomials of

degree up to k on the cell K.

• The set of the quadrature points, denoted by SK , must include all the Gauss quadrature

points x
(jq)
K , j = 1, . . . , NK , q = 1, . . . , Q, on the cell interface.

In other words, we would like to have a special quadrature such that

1

|K|

∫
K

u(x)dx =

NK∑
j=1

Q∑
q=1

$jqu(x
(jq)
K ) +

Q̃∑
q=1

$̃qu(x̃
(q)
K ), ∀u ∈ Pk(K), (4.12)

where {x̃(q)
K } are the other (possible) quadrature nodes in K, and the quadrature weights

$jq, $̃q are positive and satisfy
∑NK

j=1

∑Q
q=1 $jq +

∑Q̃
q=1 $̃q = 1. For rectangular cells, such a

quadrature was constructed in [65, 66] by tensor products of Gauss quadrature and Gauss–

Lobatto quadrature. For triangular cells, it can be constructed by a Dubinar transform from

rectangles to triangles [68]. For more general polygonal cells, one can always decompose the

polygons into non-overlapping triangles, and then build the above quadrature rule by gathering

those on the small triangles; see, for example, [49, 24]. An illustration of the special quadrature

on rectangle and triangle for k = 2 is shown in Fig. 4.2, where the (red) solid points are {x(jq)
K }

and the (blue) hollow circles denote {x̃(q)
K }. We remark that such a special quadrature is not

employed for computing any integral, but only used in the PP limiter and theoretical analysis

as it decomposes the cell average into a convex combination of the desired point values.

Based on the high-order locally divergence-free schemes in Section 4.2.1 and the above

special quadrature, we construct the provably PP high-order DG and finite volume schemes

as follows. The rigorous proof of the PP property is very technical and will be given later.
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Fig. 0.1. Illustration of a triangular mesh (left) and a rectangular mesh (right).

1

Figure 4.2: Illustration of the quadrature (4.12) on a rectangular cell (left) and a triangular cell

(right) for k = 2. The (red) solid points are {x(jq)
K } and the (blue) hollow circles denote {x̃(q)

K }; all

of them constitute the point set SK .

Step 0. Initialization. Set t = 0 and n = 0. Using the initial data computes {Ū0
K} and

{U0
K(x)}. Ū0

K ∈ G can be ensured by the convexity of G, and U0
h ∈ Vk

h is guaranteed if a local

L2-projection of the initial data onto Vk
h is used.

Step 1. Given admissible cell averages
{
Ūn
K

}
and Un

h ∈ Vk
h, perform the PP limiting proce-

dure. Use the PP limiter in [13] to modify the polynomials
{
Un
K(x)

}
, such that the modified

polynomials
{
Ũn
K(x)

}
satisfy

Ũn
K(x) ∈ G, ∀x ∈ SK :=

{
x̃

(q)
K

}
1≤q≤Q̃

⋃{
x

(jq)
K

}
1≤j≤NK ,1≤q≤Q

. (4.13)

For readers’ convenience, the PP limiter is briefly reviewed in Appendix B. Let Ũn
h(x) denote

the discontinuous piecewise polynomial function defined by Ũn
K(x). We have Ũn

h ∈ Vk
h, because

the PP limiter only involves element and component wise convex combination of Un
K(x) and

its cell average.

Step 2. Update the cell averages by the scheme

Ūn+1
K = Ūn

K + ∆tnLK(Ũn
h), (4.14)

As will be shown in Theorem 4.2, the PP limiting procedure in Step 1 can ensure the computed

Ūn+1
K ∈ G, which meets the condition of performing PP limiting procedure in the next time-

forward step.

Step 3. Build the discontinuous piecewise polynomial function Un+1
h . For our Pk-based DG

method (k ≥ 1), evolve the high-order “moments” of the polynomials {Un+1
K (x)} by (4.10)

with Un
h replaced by Ũn

h. For a high-order finite volume scheme, reconstruct the approximate

solution polynomials {Un+1
K (x)} from the cell averages

{
Ūn+1
K

}
by a locally divergence-free

approach such that Un+1
h ∈ Vk

h. The details are omitted here, as these does not affect the PP

property of the proposed schemes.
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Step 4. Set tn+1 = tn + ∆tn. If tn+1 < T , assign n← n+ 1 and go to Step 1, where Ūn+1
K ∈ G

has been ensured in Step 2; otherwise, output numerical results.

We now prove the PP property of the above schemes, i.e., show that the cell average Ūn+1
K

computed by (4.14) always belongs to G under the condition (4.13). It is worth emphasizing

that the locally divergence-free spatial discretization and the suitably discretized Godunov–

Powell source term in (4.10) are crucial for achieving the provably PP scheme, as will be seen

from the proof of Theorem 4.2.

To shorten the notations, we define

U
int(K)
jq := Ũ

n,int(K)
h (x

(jq)
K ), U

ext(K)
jq := Ũ

n,ext(K)
h (x

(jq)
K ),

where the dependence on n is omitted. Let

σK,±jq := σ±
(
U

int(K)
jq ,U

ext(K)
jq ; ξ

(j)
K

)
.

For ∀K ∈ Th, we define

α̂
int(K)
jq := C (U

int(K)
jq ; ξ

(j)
K ) +

2

|∂K|

NK∑
i=1

|E i
K |
|Bint(K)

jq −B
int(K)
iq |√

ρ
int(K)
jq +

√
ρ

int(K)
iq

+ max

〈ξ(j)
K ,v

int(K)
jq

〉
,

1

|∂K|

NK∑
i=1

|E i
K |

〈
ξ

(j)
K − ξ

(i)
K ,

√
ρ

int(K)
jq v

int(K)
jq +

√
ρ

int(K)
iq v

int(K)
iq√

ρ
int(K)
jq +

√
ρ

int(K)
iq

〉 ,

with |∂K| :=
∑NK

i=1 |E i
K | denoting the circumference of the cell K.

Theorem 4.2. Let the wave speeds in the HLL flux satisfy (2.30). If the polynomial vectors

{Ũn
K(x)} are locally divergence-free and satisfy the condition (4.13), then the scheme (4.14)

preserves Ūn+1
K ∈ G under the CFL-type condition

∆tn
|E j
K |
|K|

αKjq <
$jq

ωq
, ∀K ∈ Th, 1 ≤ j ≤ NK , 1 ≤ q ≤ Q, (4.15)

with

αKjq := α̂
int(K)
jq − σK,−jq − ηK

(
x

(jq)
K

)(
ρ

int(K)
jq

)− 1
2
∣∣∣〈ξ(j)

K ,B
int(K)
jq −B

ext(K)
jq

〉∣∣∣ . (4.16)

Note that σK,−jq ≤ 0 and −1 ≤ ηK
(
x

(jq)
K

)
≤ 0. The last term in (4.16) is relatively small

compared to the maximum signal speed, and thus does not cause strict restriction on the time

step-size; see the detailed justification and numerical evidence in [54].

We now present the proof of Theorem 4.2.

Proof. Recalling the identity (2.31) and Theorem 2.2, one has

F̂
(
U

int(K)
jq ,U

ext(K)
jq ; ξ

(j)
K

)
= σK,−jq HK

jq +
〈
ξ

(j)
K ,F(U

int(K)
jq )

〉
− σK,−jq U

int(K)
jq

=
(
α̂

int(K)
jq − σK,−jq

)
U

int(K)
jq −

(
α̂

int(K)
jq U

int(K)
jq −

〈
ξ

(j)
K ,F(U

int(K)
jq )

〉)
+ σK,−jq HK

jq,
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where HK
jq := H(U

int(K)
jq ,U

ext(K)
jq ; ξ

(j)
K ) ∈ Gρ and for ∀v∗,B∗ ∈ R3,

HK
jq · n∗ +

|B∗|2

2
≥ − v∗ ·B∗

σK,+jq − σ
K,−
jq

〈
ξ

(j)
K ,B

ext(K)
jq −B

int(K)
jq

〉
. (4.17)

Plugging the above formula of F̂ into (4.14), we can rewrite the scheme (4.14) as

Ūn+1
K = Ūn

K + Ξ1 + Ξ2 + Ξ3 + Ξ4, (4.18)

with

Ξ1 :=
∆tn
|K|

NK∑
j=1

Q∑
q=1

|E j
K |ωq

(
σK,−jq − α̂

int(K)
jq

)
U

int(K)
jq

Ξ2 :=
∆tn
|K|

NK∑
j=1

Q∑
q=1

|E j
K |ωq

(
α̂

int(K)
jq U

int(K)
jq −

〈
ξ

(j)
K ,F(U

int(K)
jq )

〉)
,

Ξ3 :=
∆tn
|K|

NK∑
j=1

Q∑
q=1

|E j
K |ωq

(
−σK,−jq

)
HK
jq,

Ξ4 :=
∆tn
|K|

NK∑
j=1

Q∑
q=1

∣∣E j
K

∣∣ωqηK(x(jq)
K

) 〈
ξ

(j)
K ,B

ext(K)
jq −B

int(K)
jq

〉
S
(
U

int(K)
jq

)
.

For 1 ≤ q ≤ Q, let

U
int(K)

q :=
1

NK∑
j=1

∣∣E j
K

∣∣α̂int(K)
jq

NK∑
j=1

|E j
K |
(
α̂

int(K)
jq U

int(K)
jq −

〈
ξ

(j)
K ,F(U

int(K)
jq )

〉)
,

then Ξ2 can be reformulated as

Ξ2 =
∆tn
|K|

Q∑
q=1

ωq

(
NK∑
j=1

|E j
K |α̂

int(K)
jq

)
U

int(K)

q . (4.19)

Thanks to Theorem 2.1 and Eq. (4.5), we have, for all 1 ≤ q ≤ Q, U
int(K)

q ∈ Gρ and

U
int(K)

q · n∗ +
|B∗|2

2
≥ − v∗ ·B∗

NK∑
j=1

|E j
K |α̂

int(K)
jq

NK∑
j=1

|E j
K |
〈
ξ

(j)
K ,B

int(K)
jq

〉
, ∀v∗,B∗ ∈ R3.

Note
∑NK

j=1 |E
j
K |α̂

int(K)
jq > 0 as indicated in Remark 2.1. Therefore, Ξ2 ∈ Gρ, and

Π2 :=
∆tn
|K|

Q∑
q=1

ωq

(
NK∑
j=1

|E j
K |α̂

int(K)
jq

)(
U

int(K)

q · n∗ +
|B∗|2

2

)

≥ −∆tn
|K|

(
v∗ ·B∗

) Q∑
q=1

ωq

NK∑
j=1

|E j
K |
〈
ξ

(j)
K ,B

int(K)
jq

〉
.

(4.20)
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It follows that

Π2 ≥ −
∆tn
|K|

(
v∗ ·B∗

) NK∑
j=1

∫
E j
K

〈
ξ

(j)
K , B̃n

K

〉
ds

= −∆tn
|K|

(
v∗ ·B∗

) ∫
K

(
∇ · B̃n

K

)
dx = 0,

(4.21)

where we have sequentially used the exactness of the Q-point quadrature rule on each interface

for polynomials of degree up to k, Green’s theorem and the locally divergence-free property

of the polynomial vector B̃n
K(x).

Now, we first show ρ̄n+1
K > 0. Recalling that the first component of S(U) is zero, we know

that the first component of Ξ4 is zero. Since Ξ2 ∈ Gρ and HK
jq ∈ Gρ, 1 ≤ j ≤ NK , 1 ≤ q ≤ Q,

we deduce from (4.18) that

ρ̄n+1
K > ρ̄nK +

∆tn
|K|

NK∑
j=1

Q∑
q=1

|E j
K |ωq

(
σK,−jq − α̂

int(K)
jq

)
ρ

int(K)
jq

=

Q̃∑
q=1

$̃qρ̃
n
K(x̃

(q)
K ) +

NK∑
j=1

Q∑
q=1

$jqρ
int(K)
jq

+
∆tn
|K|

NK∑
j=1

Q∑
q=1

|E j
K |ωq

(
σK,−jq − α̂

int(K)
jq

)
ρ

int(K)
jq

≥
NK∑
j=1

Q∑
q=1

ωqρ
int(K)
jq

(
$jq

ωq
− ∆tn
|K|

∣∣E j
K

∣∣ (α̂int(K)
jq − σK,−jq

))
≥ 0,

where we have used in the above equality the exactness of the quadrature rule (4.12) for

polynomials of degree up to k, and in the last inequality the condition (4.15).

We then prove for any v∗,B∗ ∈ R3 that Ūn+1
K · n∗ + |B∗|2

2
> 0. It follows from (4.18) that

Ūn+1
K · n∗ +

|B∗|2

2
= Π0 + Π1 + Π2 + Π3 + Π4, (4.22)

where Π2 ≥ 0 is defined in (4.20), Π4 := Ξ4 · n∗, and

Π0 := Ūn
K · n∗ +

|B∗|2

2
, (4.23)

Π1 :=
∆tn
|K|

NK∑
j=1

Q∑
q=1

|E j
K |ωq

(
σK,−jq − α̂

int(K)
jq

)(
U

int(K)
jq · n∗ +

|B∗|2

2

)
, (4.24)

Π3 :=
∆tn
|K|

NK∑
j=1

Q∑
q=1

|E j
K |ωq

(
−σK,−jq

)(
HK
jq · n∗ +

|B∗|2

2

)
. (4.25)

We now estimate the lower bounds of Π0, Π3 and Π4 respectively. Based on the exactness

of the quadrature rule (4.12) for polynomials of degree up to k, we can decompose the cell

average as

Ūn
K =

1

|K|

∫
K

Ũn
h(x)dx =

Q̃∑
q=1

$̃qŨ
n
h(x̃

(q)
K ) +

NK∑
j=1

Q∑
q=1

$jqU
int(K)
jq .
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It follows that

Π0 =

Q̃∑
q=1

$̃q

(
Ũn
h(x̃

(q)
K ) · n∗ +

|B∗|2

2

)
+

NK∑
j=1

Q∑
q=1

$jq

(
U

int(K)
jq · n∗ +

|B∗|2

2

)

≥
NK∑
j=1

Q∑
q=1

$jq

(
U

int(K)
jq · n∗ +

|B∗|2

2

)
,

(4.26)

where the inequality follows from Lemma 2.1 and Ũn
h(x̃

(q)
K ) ∈ G according to (4.13). Noting

σK,−jq ≤ 0 and using (4.17) give a lower bound of Π3 as

Π3 ≥
∆tn
|K|

(v∗ ·B∗)
NK∑
j=1

Q∑
q=1

|E j
K |ωq

σK,−jq

σK,+jq − σ
K,−
jq

〈
ξ

(j)
K ,B

ext(K)
jq −B

int(K)
jq

〉

=
∆tn
|K|

(v∗ ·B∗)
NK∑
j=1

Q∑
q=1

|E j
K |ωqηK

(
x

(jq)
K

) 〈
ξ

(j)
K ,B

ext(K)
jq −B

int(K)
jq

〉
.

(4.27)

A lower bound of Π4 can be derived by using the inequality (2.26) as

Π4 ≥
∆tn
|K|

NK∑
j=1

Q∑
q=1

∣∣E j
K

∣∣ωq[ηK(x(jq)
K

) 〈
ξ

(j)
K ,B

int(K)
jq −B

ext(K)
jq

〉
(v∗ ·B∗)

−
(
ρ

int(K)
jq

)− 1
2
∣∣∣ηK(x(jq)

K

)〈
ξ

(j)
K ,B

int(K)
jq −B

ext(K)
jq

〉∣∣∣ (U
int(K)
jq · n∗ +

|B∗|2

2

)]
,

which, along with (4.27) and ηK(x
(jq)
K ) ≤ 0, further imply

Π3 + Π4 ≥
∆tn
|K|

NK∑
j=1

Q∑
q=1

[∣∣E j
K

∣∣ωqηK(x(jq)
K

) (
ρ

int(K)
jq

)− 1
2

×
∣∣∣〈ξ(j)

K ,B
int(K)
jq −B

ext(K)
jq

〉∣∣∣ (U
int(K)
jq · n∗ +

|B∗|2

2

)]
.

(4.28)

Combining the lower bounds in (4.21), (4.26), (4.28), with (4.22), we obtain

Ūn+1
K · n∗ +

|B∗|2

2
≥

NK∑
j=1

Q∑
q=1

$jq

(
U

int(K)
jq · n∗ +

|B∗|2

2

)

+
∆tn
|K|

NK∑
j=1

Q∑
q=1

|E j
K |ωq

[(
σK,−jq − α̂

int(K)
jq

)
+ ηK

(
x

(jq)
K

)

×

∣∣∣〈ξ(j)
K ,B

int(K)
jq −B

ext(K)
jq

〉∣∣∣√
ρ

int(K)
jq

(
U

int(K)
jq · n∗ +

|B∗|2

2

)]

=

NK∑
j=1

Q∑
q=1

(
$jq −

∆tn
|K|

∣∣E j
K

∣∣ωqαKjq)(U
int(K)
jq · n∗ +

|B∗|2

2

)
> 0,

where the CFL condition (4.15) and U
int(K)
jq ∈ G = G∗ have been used in the last inequality.

Therefore, we have

Ūn+1
K · n∗ +

|B∗|2

2
> 0, ∀v∗,B∗ ∈ R3,
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which, along with ρ̄n+1
K > 0, imply Ūn+1

K ∈ G by Lemma 2.1.

The proof is completed. �

Let us further understand the above PP DG schemes and the result in Theorem 4.2 on

two special meshes.

Example 1. Assume that the mesh is rectangular with cells {[xi− 1
2
, xi+ 1

2
] × [y`− 1

2
, y`+ 1

2
]}

and spatial step-sizes ∆xi := xi+ 1
2
− xi− 1

2
and ∆y` := y`+ 1

2
− y`− 1

2
in x- and y-directions

respectively, where (x, y) denotes the 2D spatial coordinate variables. Let Sxi = {x(q)
i }

Q
q=1 and

Sy` = {y(q)
` }

Q
q=1 denote the Q-point Gauss quadrature points in the intervals [xi− 1

2
, xi+ 1

2
] and

[y`− 1
2
, y`+ 1

2
] respectively. For the cell K = [xi− 1

2
, xi+ 1

2
]× [y`− 1

2
, y`+ 1

2
], the point set SK in (4.13)

is given by (cf. [65, 66])

SK =
(
Ŝxi ⊗ Sy`

)
∪
(
Sxi ⊗ Ŝy`

)
, (4.29)

where Ŝxi = {x̂(µ)
i }Lµ=1 and Ŝy` = {ŷ(µ)

` }Lµ=1 denote the L-point Gauss–Lobatto quadrature

points in the intervals [xi− 1
2
, xi+ 1

2
] and [y`− 1

2
, y`+ 1

2
] respectively, where L ≥ k+3

2
such that

the associated quadrature has algebraic accuracy of at least degree k. See Fig. 4.2 for an

illustration of SK for k = 2. With SK in (4.29), a special quadrature (cf. [65, 66]) satisfying

(4.12) can be constructed:

1

|K|

∫
K

u(x)dx =
∆xiω̂1

∆xi + ∆y`

Q∑
q=1

ωq

(
u
(
x

(q)
i , y`− 1

2

)
+ u
(
x

(q)
i , y`+ 1

2

))

+
∆y`ω̂1

∆xi + ∆y`

Q∑
q=1

ωq

(
u
(
xi− 1

2
, y

(q)
`

)
+ u
(
xi+ 1

2
, y

(q)
`

))

+
∆xi

∆xi + ∆y`

L−1∑
µ=2

Q∑
q=1

ω̂µωqu
(
x

(q)
i , ŷ

(µ)
`

)
+

∆y`
∆xi + ∆y`

L−1∑
µ=2

Q∑
q=1

ω̂µωqu
(
x̂

(µ)
i , y

(q)
`

)
, ∀u ∈ Pk(K),

(4.30)

where {ŵµ}Lµ=1 are the weights of the L-point Gauss–Lobatto quadrature. If labeling the

bottom, right, top and left adjacent cells of K as K1, K2, K3 and K4, respectively, as illustrated

in Fig. 4.1, then (4.30) implies

$jq =
∆xiω̂1ωq

∆xi + ∆y`
, j = 1, 3; $jq =

∆y`ω̂1ωq
∆xi + ∆y`

, j = 2, 4.

Then according to Theorem 4.2, the CFL condition (4.15) for our PP DG schemes on rectan-

gular meshes is

∆tn

(
1

∆xi
+

1

∆y`

)
αKjq < ω̂1 =

1

L(L− 1)
, ∀K ∈ Th, 1 ≤ j ≤ 4, 1 ≤ q ≤ Q.

Example 2. Assume that the mesh is triangular. A special quadrature satisfying (4.12)

30



was introduced in [68], with the point set SK , denoted by local barycentric coordinates, as{(
1

2
+ ζq, (

1

2
+ ζ̂µ)(

1

2
− ζq), (

1

2
− ζ̂µ)(

1

2
− ζq)

)
,(

(
1

2
− ζ̂µ)(

1

2
− ζq),

1

2
+ ζq, (

1

2
+ ζ̂µ)(

1

2
− ζq)

)
,(

(
1

2
+ ζ̂µ)(

1

2
− ζq), (

1

2
− ζ̂µ)(

1

2
− ζq),

1

2
+ ζq

)
, 1 ≤ q ≤ Q, 1 ≤ µ ≤ L

}
,

where {ζq}Qq=1 and {ζ̂µ}Lµ=1 are the Gauss quadrature points and the Gauss–Lobatto quadrature

points on
[
− 1

2
, 1

2

]
respectively, and L ≥ k+3

2
. For this quadrature, (4.12) becomes (cf. [68])

1

|K|

∫
K

u(x)dx =
2

3
ω̂1

3∑
j=1

Q∑
q=1

ωqu(x
(jq)
K ) +

Q̃∑
q=1

$̃qu(x̃
(q)
K ), ∀u ∈ Pk(K), (4.31)

where Q̃ = 3(L− 2)Q. The specific expressions of the weights $̃q at quadrature points in the

interior of K are omitted here. Eq. (4.31) implies

$jq =
2

3
ω̂1ωq, 1 ≤ j ≤ 3.

Then, according to Theorem 4.2, the CFL condition (4.15) for our PP DG schemes on trian-

gular meshes is

∆tn
|E j
K |
|K|

αKjq <
2

3
ω̂1 =

2

3L(L− 1)
, ∀K ∈ Th, 1 ≤ j ≤ 3, 1 ≤ q ≤ Q.

4.3 Why do we need the Godunov–Powell source term?

There are two features in our PP schemes: the locally divergence-free spatial discretization and

the properly discretized Godunov–Powell source term. The former leads to zero divergence

within each cell, while the latter controls the divergence error across the cell interfaces. The

proof of Theorem 4.2 shows that, thanks to these two features, the PP property is obtained

without requiring the DDF condition, which is needed for the PP property of the conservative

schemes without the discretized Godunov–Powell source, see the following theorem.

The scheme (4.14) without the discretized Godunov–Powell source term becomes

Ūn+1
K = Ūn

K −
∆tn
|K|

NK∑
j=1

Q∑
q=1

|E j
K |ωqF̂

(
U

int(K)
jq ,U

ext(K)
jq ; ξ

(j)
K

)
, (4.32)

which is a conservative finite volume scheme or the scheme satisfied by the cell averages of a

DG method for the conservative MHD system (1.1). As mentioned before, even the first-order

version (k = 0) of the scheme (4.32) is generally not PP unless a DDF condition is satisfied

by the numerical magnetic field. The DDF condition can also be generalized to high-order

schemes (k ≥ 1), as shown in Theorem 4.3.
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Theorem 4.3. Let the wave speeds in the HLL flux satisfy (2.30). If the polynomial vectors

{Ũn
K(x)} satisfy the condition (4.13), then under the CFL-type condition

∆tn
|E j
K |
|K|

(
α̂

int(K)
jq − σK,−jq

)
<
$jq

ωq
, ∀K ∈ Th, 1 ≤ j ≤ NK , 1 ≤ q ≤ Q, (4.33)

the solution Ūn+1
K of the scheme (4.32) satisfies that ρ̄n+1

K > 0 and

E(Ūn+1
K ) > −∆tn

(
ρ̄n+1
K

)−1
(m̄n+1

K · B̄n+1
K )

(
divKB̃n

h

)
, (4.34)

where divKB̃n
h is the discrete divergence defined by

divKB̃n
h :=

1

|K|

NK∑
j=1

Q∑
q=1

∣∣E j
K

∣∣ωq〈ξ(j)
K ,

σK,+jq B
int(K)
jq − σK,−jq B

ext(K)
jq

σK,+jq − σ
K,−
jq

〉
. (4.35)

Furthermore, if the magnetic field B̃n
h(x) satisfies the DDF condition

divKB̃n
h = 0, (4.36)

then Ūn+1
K ∈ G.

Proof. Since the first component of S(U) is zero, the discrete equations for ρ in the two

schemes (4.14) and (4.32) are the same. Hence ρ̄n+1
K > 0 directly follows from the proof of

Theorem 4.3.

Similar to the proof of Theorem 4.3, it can be derived for any v∗,B∗ ∈ R3 that

Ūn+1
K · n∗ +

|B∗|2

2
= Π0 + Π1 + Π2 + Π3, (4.37)

where Π2 is defined (4.20), and Π0, Π1 and Π3 are defined in (4.23)–(4.25), respectively.

Combining the estimates (4.20), (4.26) and (4.27), gives

Ūn+1
K · n∗ +

|B∗|2

2
≥ −∆tn(v∗ ·B∗)

(
divKB̃n

h

)
+

NK∑
j=1

Q∑
q=1

(
$jq −

∆tn
|K|

∣∣E j
K

∣∣ωq(α̂int(K)
jq − σK,−jq

))(
U

int(K)
jq · n∗ +

|B∗|2

2

)
> −∆tn(v∗ ·B∗)

(
divKB̃n

h

)
.

Taking v∗ = m̄n+1
K /ρ̄n+1

K and B∗ = B̄n+1
K gives (4.34).

Under the DDF condition (4.36), the estimate (4.34) becomes E(Ūn+1
K ) > 0, which along

with ρ̄n+1
K > 0 imply Ūn+1

K ∈ G. �

In practice, it is not easy to meet the DDF condition (4.36), because it depends on the limit-

ing values of the magnetic field calculated from the adjacent cells of K. The locally divergence-

free property cannot ensure the DDF condition (4.36). If Bn
h(x) is globally divergence-free,

i.e., locally divergence-free in each cell with normal magnetic component continuous across

the cell interfaces, then by Green’s theorem, the DDF condition divKBn
h = 0 is naturally

satisfied and the Godunov–Powell source vanishes. There exist a few numerical techniques
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to maintain globally divergence-free property in the literature (e.g., [37, 62, 27]). However,

unfortunately, the usual PP limiting technique (cf. [66, 13]) with local scaling may destroy the

globally divergence-free property of Bn
h(x). It is nontrivial and still open to design a limiting

procedure which can enforce the conditions (4.13) and (4.36) at the same time.

Let us split the discrete divergence into two parts:

divKB̃n
h =

1

|K|

NK∑
j=1

Q∑
q=1

∣∣E j
K

∣∣ωq 〈ξ(j)
K ,B

int(K)
jq

〉

+
1

|K|

NK∑
j=1

Q∑
q=1

∣∣E j
K

∣∣ωqηK(x
(jq)
K )

〈
ξ

(j)
K ,B

int(K)
jq −B

ext(K)
jq

〉
.

The first part becomes zero if the locally divergence-free discretization is used, while the

second part, which involves the divergence error across the cell interfaces, can be handled by

including our properly discretized Godunov–Powell source term. As we have seen in the above

analysis, a coupling of these two divergence-controlling techniques is very important in our PP

DG methods, because they exactly contribute the discrete divergence terms which are absent in

a standard multidimensional DG scheme (4.32) but crucial for ensuring the PP property. In

other words, the suitably discretized Godunov–Powell source term helps eliminate the effect of

divergence error on the positivity preservation. This is similar to the continuous case that the

inclusion of Godunov–Powell source makes the modified MHD system (1.4) able to preserve

the positivity even if the magnetic field is not divergence-free. It is also worth mentioning that,

once the discretized Godunov–Powell source term is dropped, even the P0-based DG scheme

(which is locally divergence-free) is not PP in general, and using arbitrary times larger wave

speeds and/or any given small CFL number does not help to guarantee the PP property [53],

unless the DDF condition is rigorously satisfied.

Remark 4.1. It is worth noting that in the 1D case, the divergence-free condition (1.2) and

the fifth equation of (1.1) imply B1(x, t) ≡ constant for all x and t ≥ 0. The proposed 1D

schemes exactly preserve the 1D globally divergence-free property, and the Godunov–Powell

source term does not exist in the proposed 1D PP schemes.

Remark 4.2. In the above discussions, we restrict ourselves to the first-order forward Euler

time discretization. One can also use SSP high-order time discretizations (cf. [31]) to solve the

ODE system d
dt

Uh = L(Uh). For instance, the explicit third-order SSP Runge-Kutta method

reads

U∗h = Ũn
h + ∆tnL(Ũn

h),

U∗∗h =
3

4
Ũn
h +

1

4

(
Ũ∗h + ∆tnL(Ũ∗h)

)
,

Un+1
h =

1

3
Ũn
h +

2

3

(
Ũ∗∗h + ∆tnL(Ũ∗∗h )

)
,

(4.38)

where the numerical solutions with “∼” at above denote the PP limited solutions. Since an

SSP method is a convex combination of the forward Euler method, our PP analysis of the

proposed schemes remains valid according to the convexity of G.
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5 Numerical tests

In this section, we present some numerical results of the proposed PP DG schemes for several

extreme MHD problems involving low density, low pressure, low plasma-beta β := 2p/|B|2,

and/or strong discontinuity, to verify the provenly PP property and to demonstrate the effec-

tiveness of our HLL flux and the proposed discretization of the Godunov–Powell source term.

The tests below are conducted on uniform 1D meshes or 2D rectangular meshes, while the

implementation of our PP schemes on unstructured triangular meshes is ongoing and will be

reported in a separate paper. Without loss of generality, we focus on the proposed PP third-

order (P2) DG methods with the SSP Runge-Kutta time discretization (4.38). Although our

analysis has suggested a CFL condition for guaranteeing the provably PP property, we observe

that our PP DG methods still work robustly and maintain the desired positivity with suitably

larger time step-size in the tested cases. Unless otherwise stated, the following computations

are restricted to the ideal EOS p = (γ − 1)ρe with γ = 1.4, and the CFL number is set as

0.15. The HLL flux is always used with the local wave speeds given by (2.36).

5.1 Smooth problems

A 1D and a 2D smooth problems are respectively solved on the uniform meshes of Md cells to

test the accuracy of the PP third-order DG methods. The 1D problem is similar to the one

simulated in [66] for testing the PP DG scheme for the Euler equations, and has the exact

solution

(ρ,v, p,B)(x, t) = (1 + 0.99 sin(x− t), 1, , 0, , 0, 1, 0.1, 0, 0), x ∈ [0, 2π], t ≥ 0,

which describes a sine wave propagating with low density. The 2D problem is the vortex

problem with the same setup as in [16] and has a extremely low pressure (about 5.3 × 10−12)

in the vortex center; the adiabatic index γ = 5
3
; the computational domain is [−10, 10]2 with

periodic boundary condition. Fig. 5.1 displays the numerical errors obtained by the third-

order DG method with the PP limiter at different grid resolutions. The results show that the

expected convergence order is achieved.

Next, we simulate several MHD problems involving discontinuities. Before using the PP

limiter, the WENO limiter [44] is also implemented with the aid of the local characteristic

decomposition, to enhance the numerical stability of high-order DG schemes in resolving the

strong discontinuities and their interactions. The 2D WENO limiter is combined with the

locally divergence-free reconstruction approach in [69]. The WENO limiter is only employed

in the “trouble” cells adaptively detected by the indicator of [35].

5.2 Riemann problems

Two 1D Riemann problems are solved. The first is a 1D vacuum shock tube problem (cf. [16])

with the initial data

(ρ,v, p,B)(x, 0) =

(10−12, 0, 0, 0, 10−12, 0, 0, 0), x < 0,

(1, 0, 0, 0, 0.5, 0, 1, 0), x > 0.
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Figure 5.1: Numerical errors obtained by the PP third-order DG method at different grid resolutions

with Md cells. Left: the 1D smooth problem at t = 0.1; right: the 2D smooth problem at t = 0.05.

The horizontal axis denotes the value of M .

It is used to demonstrate that our 1D PP DG scheme can handle extremely low density and

pressure. The adiabatic index γ = 5
3
, and the computational domain is set as [−0.5, 0.5].

Fig. 5.2 shows the density and pressure of the numerical solution on the mesh of 200 cells as

well as those of a highly resolved solution with 5000 cells at time t = 0.1. One can observe

that the solutions of low resolution and high resolution are in good agreement. We confirm

that the low pressure and the low density are both correctly captured by comparing with the

results in [16]. The PP third-order DG method works very robustly during the simulation. It

is noticed that, if the PP limiter is not used to enforce the condition (3.7), the method breaks

down within a few time steps due to unphysical solution.
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Figure 5.2: The density (left) and pressure (right) obtained by the PP third-order DG method on

the meshes of 200 cells (symbols “◦”) and 5000 cells (solid lines), respectively.

The second Riemann problem is a variant of the Leblanc problem (cf. [66]) of gas dynamics
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Figure 5.3: Numerical results at t = 0.00003 obtained by the PP third-order DG method with 2000

cells (symbols “◦”) and 10000 cells (solid lines). Left: log plot of density; right: magnetic pressure.

by adding a strong magnetic field. The initial condition is

(ρ,v, p,B)(x, 0) =

(2, 0, 0, 0, 109, 0, 5000, 5000), x < 0,

(0.001, 0, 0, 0, 1, 0, 5000, 5000), x > 0.

The initial pressure has a very large jump, and the plasma-beta at the right state is extremely

low (β = 4 × 10−8), making the successful simulation of this problem a challenge. The

computational domain is taken as [−10, 10]. To fully resolve the wave structure, a fine mesh

is required for this test [66]. Fig. 5.3 displays the numerical results at t = 0.00003 obtained by

the PP third-order DG method using 2000 cells and 10000 cells, respectively. We observe that

the strong discontinuities are well captured, and the low resolution and high resolution are

in good agreement. Fig. 5.4 gives a comparison of the numerical solutions resolved by using

the proposed HLL flux and the global LF flux of [53], respectively. As expected, the PP DG

method with the HLL flux exhibits better resolution. In this extreme test, it is also necessary

to enforce the condition (3.7) by the PP limiting procedure, otherwise negative pressure will

appear in the cell averages of the DG solution.

5.3 Blast problem

This test was first introduced by Balsara and Spicer [8], and has become a benchmark for

testing 2D MHD codes. If the low gas pressure, strong magnetic field or low plasma-beta is

involved, then simulating such MHD blast problems can be very challenging. Therefore, it is

often used to check the robustness of MHD schemes; see e.g., [13, 16].

The simulation is implemented in [−0.5, 0.5]2 with outflow boundary conditions. Our setup

is the same as in [8, 13]. Initially, the domain is filled with plasma at rest with unit density.

The explosion zone (r < 0.1) has a pressure of 1000, while the ambient medium (r > 0.1) has

a pressure of 0.1, where r =
√
x2 + y2. The magnetic field is initialized in the x-direction as

100/
√

4π. For this setup, the ambient medium has a small plasma-beta (about 2.51 × 10−4).

Our numerical results at t = 0.01, obtained by the PP third-order DG method with 320× 320
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Figure 5.4: Same as Fig. 5.3 except for the velocity v1 obtained by using the proposed HLL flux

(left) and the global LF flux (right).

cells, are displayed in Fig. 5.5. Our results agree well with those in [8, 37, 16], and the density

profile is well captured with much less oscillations than those shown in [8, 16]. The velocity

profile clearly shows higher resolution than that in [54] obtained by the same DG method but

with the global LF flux. We also notice that, if the PP limiter is turned off, the condition

(4.13) will be violated since t ≈ 2.24×10−4, and the method will fail due to negative numerical

pressure.

5.4 Shock cloud interaction

This problem [18] describes the disruption of a high density cloud by a strong shock wave,

and has been widely simulated in the literature (e.g., [48, 2]). We employ the same setup as

in [48, 2]. The simulation is implemented in the domain Ω = [0, 1]2 with the right boundary

specified as supersonic inflow condition and the others as outflow conditions. The adiabatic

index γ = 5
3
, and the initial conditions are given by the two states

(ρ,v, p,B) =

(3.86859, 0, 0, 0, 167.345, 0, 2.1826182,−2.1826182), x < 0.6,

(1,−11.2536, 0, 0, 1, 0, 0.56418958, 0.56418958), x > 0.6,

separated by a discontinuity parallel to the y-axis at x = 0.6. To the right of the discontinuity

there is a circular cloud of radius 0.15, centered at x = 0.8 and y = 0.5. The cloud has the

same states as the surrounding fluid except for a higher density of 10.

We simulate this problem by using our PP third-order DG method with 400 × 400 cells.

The numerical results at time t = 0.06 are shown in Fig. 5.6. It is seen that the complex flow

structures and interactions are captured with high resolution, and the results agree well with

those in the literature, e.g., [48, 2]. In this test, it is also necessary to employ the PP limiter to

enforce the condition (4.13). We also observe that, if the discretized Godunov–Powell source

term is dropped from our PP DG method, negative pressure will appear in the cell average

of the DG solutions and the code breaks down at t ≈ 0.014, because the resulting scheme
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Figure 5.5: The contour plots of density (top left), pressure (top right), velocity |v| (bottom left)

and magnetic pressure (bottom right) at time t = 0.01 for the blast problem.

(namely the locally divergence-free DG method with the proposed HLL flux and the PP and

WENO limiters) is not PP in general. This further confirms the importance of the discretized

Godunov–Powell source term.

5.5 Astrophysical jets

The last test is to simulate jet flow, which is relevant in astrophysics. In a high Mach number

jet with strong magnetic field, the internal energy is very small compared to the huge kinetic

and magnetic energy, thus negative pressure is very likely to be produced in the numerical

simulations. Moreover, there may exist strong shock wave, shear flow and interface instabilities

in high-speed jet flows. Successfully simulating such jet flows is indeed a challenge, cf. [66, 5,

55, 57].
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Figure 5.6: The schlieren images of density (left) and pressure (right) at time t = 0.06 for the shock

cloud interaction problem.

We consider the Mach 800 MHD jets proposed in [53, 54] and extended from the gas

dynamical jet of Balsara [5] by adding a magnetic field. Initially, the domain [−0.5, 0.5]×[0, 1.5]

is full of the static ambient medium with (ρ, p) = (0.1γ, 1). The adiabatic index γ = 1.4. A

Mach 800 dense jet is injected in the y-direction through the inlet part (|x| < 0.05) on the

bottom boundary (y = 0). The fixed inflow condition with (ρ, p, v1, v2, v3) = (γ, 1, 0, 800, 0) is

specified on the nozzle {y = 0, |x| < 0.05}, while the other boundary conditions are outflow.

A magnetic field (0, Ba, 0) is initialized along the y-direction. As Ba is set larger, this test

becomes more challenging. We set computational domain as [0, 0.5]×[0, 1.5] with the reflecting

boundary condition specified at x = 0, and divided it into 200× 600 cells. We here show our

numerical results in two strongly magnetized cases: (i) Ba =
√

2000, and the corresponding

plasma-beta βa = 10−3; (ii) Ba =
√

20000, and the corresponding plasma-beta βa = 10−4.

The schlieren images of the numerical solutions for these two cases are respectively displayed

in Figs. 5.7 and 5.8 within the domain [−0.5, 0.5]× [0, 1.5]. Those plots clearly show the time

evolution of the jets. It is seen that the flow structures in different magnetized cases are very

different. The present method well captures the Mach shock wave at the jet head and other

discontinuities with high resolution. The results agree with those in [54] computed by the

PP DG method with a global LF flux. In these extreme tests, our PP method exhibits good

robustness without using any artificial treatment. We also perform the tests with varied Mach

numbers, and the method also works very robustly. For example, the numerical result for a

Mach 2000 jet with Ba =
√

20000 is displayed in Fig. 5.9. Interestingly, the flow structures

are similar to those in Fig. 5.7 of the Mach 800 jet with a weaker magnetic field Ba =
√

2000.

This is probably due to the huge kinetic energy, which becomes dominant and weakens the

effect of magnetic field. The dynamics of the Mach 2000 jet evolve much faster than the Mach

800 jet, as expected. A higher Mach (Mach 10000) jet with Ba =
√

20000 is further simulated

and shown in Fig. 5.10. We see that this jet shape is thinner.
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Figure 5.7: The schlieren images of density logarithm (top) and gas pressure logarithm (bottom)

for the Mach 800 jet problem with Ba =
√

2000. From left to right: t = 0.001, 0.0015 and 0.002.

In the above simulations, it is necessary to employ the PP limiting procedure to meet

the condition (4.13), which is not satisfied automatically. To confirm the importance of the

suitably discretized Godunov–Powell source term in our PP schemes, we have also performed

the above tests by dropping this term and keeping the PP and WENO limiters turned on. The

resulting scheme is actually the locally divergence-free, conservative, third-order DG method

with PP and WENO limiters. We find that this scheme with either the proposed HLL flux

or the global LF flux, which is generally not PP in theory, cannot run the above jet tests.

The failure results from negative numerical pressure produced in the cell averages of the DG

solution. We observe that, without the discretized Godunov–Powell source term, the code also

fails on a refined mesh, and also for more strongly magnetized cases. This, again, demonstrates

that the suitably discretized Godunov–Powell source term is really crucial for guaranteeing

the PP property.
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Figure 5.8: The schlieren images of density logarithm (top) and magnetic pressure (bottom) for the

Mach 800 jet problem with Ba =
√

20000. From left to right: t = 0.001, 0.0015 and 0.002.

6 Conclusions

In this paper, we proposed and analyzed provably PP high-order DG and finite volume schemes

for the ideal MHD on general meshes. The unified auxiliary theories were built for rigorous

PP analysis of numerical schemes with HLL-type flux on an arbitrary polytopal mesh. A close

relation was established between the PP property and the discrete divergence of magnetic field

on general meshes. We also derived explicit estimates of the wave speeds in the HLL flux to

ensure the provably PP property. In the 1D case, we proved that the standard finite volume

and DG methods with the proposed HLL flux are PP, under a condition accessible by a PP

limiter. In the multidimensional cases, we constructed provably PP high-order DG schemes

based on suitable discretization of the modified MHD system (1.4). In addition to the proper

wave speeds in the numerical flux and a standard PP limiter, we demonstrated that a coupling

of two divergence-controlling techniques is also crucial for achieving the provably PP property.
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Figure 5.9: The schlieren images of density logarithm for the Mach 2000 jet problem with Ba =√
20000. From left to right: t = 0.00025, 0.0005 and 0.00075.

The two techniques are the locally divergence-free DG element and a properly discretized

Godunov–Powell source term, which control the divergence error within each cell and across

the cell interfaces, respectively. Our analysis clearly revealed that these two techniques exactly

contribute the discrete divergence terms which are absent in a standard multidimensional DG

schemes but very important for ensuring the PP property. We also proved in Appendix A

the positivity of the strong solution of the modified MHD system (1.1). Such a feature, not

enjoyed by the conservative system (1.1) (see [54]), can serve as a justification for designing

provably PP multidimensional schemes based on the modified system (1.4). The analysis and

findings in this paper provide a clear understanding, at both discrete and continuous levels,

of the relation between the PP property and the divergence-free constraint. The proposed

framework and analysis techniques as well as the provenly PP schemes can also be useful for

investigating or designing other PP schemes for the ideal MHD.

Several numerical tests were conducted on 1D mesh and 2D rectangular mesh, to confirm

the provenly PP property and to demonstrate the effectiveness of the proposed PP techniques.

The implementation of our PP DG schemes on unstructured triangular meshes is ongoing and

will be reported separately in the future.

A Positivity of strong solutions of the modified MHD

system

In [54], we analytically demonstrated that the exact smooth solution of the conservative MHD

system (1.1) may fail to be PP if the divergence-free condition (1.2) is violated. Here we would

like to show that the strong solutions of the modified MHD system (1.4) always retain the

positivity of density and pressure even if the divergence-free condition (1.2) is not satisfied. It

is reasonable to hope that such a claim may also hold for the weak entropy solutions of (1.4).
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Figure 5.10: The schlieren images of density logarithm for the Mach 10000 jet problem with Ba =√
20000. From left to right: t = 0.00005, 0.0001 and 0.00015.

Consider the initial-value problem of the system (1.4), for x ∈ Rd and t > 0, with initial

data

(ρ,v, p,B)(x, 0) = (ρ0,v0, p0,B0)(x), (A.1)

and the ideal EOS p = (γ − 1)ρe, where γ > 1. Using the method of characteristics, one can

show the following result.

Proposition A.1. Assume that the initial data (A.1) are in C1(Rd) with ρ0(x) > 0 and

p0(x) > 0, ∀x ∈ Rd. If the initial-value problem of (1.4) with (A.1) has a C1 solution

(ρ,v, p,B)(x, t) for x ∈ Rd and 0 ≤ t < T , then the solution satisfies ρ(x, t) > 0 and

p(x, t) > 0 for all x ∈ Rd and 0 ≤ t < T .

Proof. Let D
Dt

:= ∂t + v(x, t)∇· be the directional derivative along the direction

dx

dt
= v(x, t). (A.2)

For any (x̄, t̄) ∈ Rd×R+, let x = x(t; x̄, t̄) be the integral curve of (A.2) through the point (x̄, t̄).

Denote x0(x̄, t̄) := x(0; x̄, t̄), then, at t = 0, the curve passes through the point (x0(x̄, t̄), 0).

Recall that, for smooth solutions, the first equation of the system (1.4) can be reformulated

as
Dρ

Dt
= −ρ∇ · v. (A.3)

Integrating Eq. (A.3) along the curve x = x(t; x̄, t̄) gives

ρ(x̄, t̄) = ρ0(x0(x̄, t̄)) exp

(
−
∫ t̄

0

∇ · v(x(t; x̄, t̄), t)dt

)
> 0.

For smooth solutions, we derive from the modified system (1.4) the pressure equation

Dp

Dt
= −γp∇ · v, (A.4)

which implies p(x̄, t̄) = p0(x0(x̄, t̄)) exp
(
−γ
∫ t̄

0
∇ · v(x(t; x̄, t̄), t)dt

)
> 0. �
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Remark A.1. By similar arguments one can show that the above proposition also holds for

the modified MHD equations introduced by Janhunen [34], because the corresponding equations

for density and pressure are exactly also (A.3) and (A.4), respectively. This may explain why

it is also possible to develop PP schemes based on proper discretization of Janhunen’s MHD

system, cf. [34, 10, 50, 51].

Recall that the pressure equation associated with the conservative system (1.1) is

Dp

Dt
= −γp∇ · v − (γ − 1)(v ·B)∇ ·B,

which, in comparison with (A.4), has an additional term proportional to ∇ · B. As shown

in [54], due to this term, negative pressure can appear in the exact smooth solution of the

conservative MHD system (1.1) if ∇ ·B 6= 0.

B Review of the positivity-preserving limiter

We employ a simple PP limiter to enforce the condition (3.7) or (4.13) for our 1D or 2D

PP schemes. The limiter was originally proposed by Zhang and Shu [65, 66, 67] for scalar

conservation laws and the compressible Euler equations. It was extended to the ideal MHD

case in [13]. For readers’ convenience, we here briefly review this limiter. It is worth noting

that the PP limiter works only when the cell averages of the numerical solutions always stay

in G. This is rigorously proved for our PP high-order schemes, but does not always hold for

the standard multidimensional DG schemes without the suitably discretized Godunov–Powell

source term.

We perform the PP limiter separately for each cell. Let K denote a cell, and SK be the

quadrature points involved in the condition (3.7) or (4.13) in K. Let Un
K(x) be the approximate

polynomial solution within K, and Ūn
K be the cell average which is always preserved in G by

our PP schemes. If Un
K(x) /∈ G for some x ∈ SK , then we seek the modified polynomial Ũn

K(x)

with the same cell average such that Ũn
K(x) ∈ G for all x ∈ SK . To avoid the effect of the

rounding error, we introduce two sufficiently small positive numbers, ε1 and ε2, as the desired

lower bounds for density and internal energy, respectively, such that Ūn
K ∈ Gε = {U : ρ ≥

ε1, E(U) ≥ ε2}; e.g., take ε1 = min{10−13, ρ̄nK} and ε2 = min{10−13, E(Ūn
K)}.

The PP limiting procedure consists of two steps. First, modify the density to enforce the

positivity by

ρ̂K(x) = θ1(ρnK(x)− ρ̄nK) + ρ̄nK , θ1 = min

{
1,

ρ̄nK − ε1
ρ̄nK −minx∈SK ρ

n
K(x)

}
.

Then modify ÛK(x) := (ρ̂K(x),mn
K(x),Bn

K(x), En
K(x))> to enforce the positivity of internal

energy by

Ũn
K(x) = θ2(ÛK(x)− Ūn

K) + Ūn
K , θ2 = min

{
1,

E(Ūn
K)− ε2

E(Ūn
K)−minx∈SK E

(
ÛK(x)

)} .
It is easy to verify that Ũn

K(x) belongs to Gε for all x ∈ SK and has the cell average Ūn
K . Such

a limiter can also maintain the approximation accuracy; see [65, 66, 64].
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