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ON NEW STRATEGIES TO CONTROL THE ACCURACY OF WENO
ALGORITHMS CLOSE TO DISCONTINUITIES*

SERGIO AMAT', JUAN RUIZ ¥, AND CHI-WANG SHU §

Abstract. In this paper we construct and analyze new nonlinear optimal weights for WENO
interpolation which are capable of raising the order of accuracy close to jump discontinuities in
the function or in the first derivative (kinks). The new nonlinear optimal weights are constructed
using a strategy inspired by the original WENO algorithm, and they work very well for kinks or jump
discontinuities, leading to optimal theoretical accuracy. This is the first part of a series of two papers.
In this first part we analyze the performance of the new algorithms proposed for univariate function
approximation in the point values (interpolation problem). In the second part, we will extend the
analysis to univariate function approximation in the cell averages (reconstruction problem) and to
the solution of problems in the context of hyperbolic conservation laws.

Our aim is twofold: to raise the order of accuracy of the WENO type interpolation schemes both
near discontinuities in the function or in the first derivative (kinks) and in the intervals which contain
a kink. The first problem can be solved using the new nonlinear optimal weights, but the second one
requires a new strategy that locates the position of the singularity inside the cell in order to attain
adaption, this new strategy is inspired by the ENO-SR schemes proposed by Harten in A. Harten,
ENO schemes with subcell resolution, J. Comput. Phys. 83 (1) (1989) 148 — 184. Thus, we will
introduce two different algorithms in the point values. The first one can deal with kinks and jump
discontinuities for intervals not containing the singularity. The second algorithm can also deal with
intervals containing kinks, as they can be detected from the point values, but jump discontinuities
can not, as the information of their position is lost during the discretization process. As mentioned
before, the second part of this work will be devoted to the cell averages and, in this context, it will
be possible to work with jump discontinuities as well.

Key words. WENO schemes, new optimal weights, improved adaption to discontinuities, signal
processing.

AMS subject classifications. 65D05, 65D17, 65M06, 65N06

1. Introduction. The reconstruction of a piecewise continuous function from
some discretized data points is an important problem in the approximation theory.
We will consider two possible ways of discretizing the initial set of data: it might
come from a sampling of a piecewise continuous function or from the averaging of a
function in L' over certain intervals. In the first case we are talking about a point
value discretization and in the second case about a cell average discretization. This
is the first part of a series of two articles where we present a new algorithm for
approximation of piecewise smooth functions. In this part we will only consider the
point value discretization. The second part [1] will be dedicated to the cell average
discretization and its application to the solution of conservation laws.

When approximating a function from discretized data, we can choose to use linear
or nonlinear algorithms. Linear algorithms usually present accuracy problems when
the stencil crosses a discontinuity: Gibbs oscillations usually appear and the accuracy
is lost locally around the discontinuity. The increasing of the length of the stencil
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does not solve the problem and usually results in larger zones affected by oscillations.
ENO (essentially non-oscillatory) interpolation solves this problem choosing stencils
that do not cross the discontinuity. This algorithm was introduced in [2, 3] for solving
conservation laws problems. ENO scheme manages to reduce the zones affected by
oscillations to the interval where the discontinuity is placed. This task is done using
a stencil selection strategy which allows us to choose the smoothest stencil. The
reader interested in obtaining more information about ENO algorithm can refer to
the following incomplete list of references [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].

In [13], Liu, Osher and Chan proposed WENO (weighted ENO) algorithm, which
aim was to improve the results obtained by ENO method. This technique was pro-
posed in [13] as a nonlinear convex combination of the approximations obtained by
different interpolants constructed over sub-stencils, all of them fragments of a bigger
stencil. The weights used were calculated through an estimation of the smoothness
of the interpolants used.

The smoothness of the data is estimated using smoothness indicators that are
functions that take divided differences as arguments. In [14] the authors presented
new smoothness indicators which, crucially, were more efficient than those proposed
initially in [13]. The computation of these indicators is done through a measurement
based on the sum of the L? norms of the derivatives of the interpolatory polynomials
at the interval where we want to obtain the prediction. The computational cost of
this measurement is smaller than the one obtained using the total variation and its
result is smoother and easier to compute than the total variation. The nonlinear
weights are designed in such a way that the stencils that cross a discontinuity pose an
insignificant contribution to the resulting interpolation. The purpose of the WENO
algorithm proposed in the seminal reference [13] was to optimize the stencil used by
the ENO algorithm at smooth zones, in order to attain a higher order of accuracy.
The interested reader can refer to [5, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33] and especially to [34, 35] and the references therein in order to
get a more complete picture of the state of the art about WENO.

As it was originally conceived, the WENO strategy only imposes restrictions to
the weights of the convex combination in smooth zones: the main objective is to
reach maximum order of accuracy when the data is smooth in the whole bigger sten-
cil. However, close to discontinuities the value of the weights is mainly taking care
of the essentially non-oscillatory property, not the order of accuracy, hence the order
of accuracy is not optimized if there is more than one sub-stencil free of discontinu-
ities. Basically, this property of the WENO algorithm is due to the usage of fixed
optimal-weights when constructing the nonlinear weights of the convex combination of
interpolants. This problem can be easily appreciated if we perform a grid refinement
analysis around a discontinuity and we obtain the numerical accuracy obtained by
the algorithm. The interested reader can have a look to the experiments presented in
[36], especially Tables 1 and 3 or Figure 5.

Our aim in this article is to increase the accuracy of the WENO method close
to kinks or jump discontinuities when the data is discretized in the point values. We
will tackle this task by proposing new nonlinear optimal weights. The main objective
is to attain the maximum theoretical accuracy close to discontinuities in the function
or in the first derivative, while keeping maximum accuracy in smooth zones. New
smoothness indicators were introduced in [36] in order to allow the WENO scheme
to simultaneously detect kinks and jump discontinuities in the point values. At the
same time, these smoothness indicators show the same properties as the original
smoothness indicators proposed in [14]. Using these smoothness indicators we propose
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two new algorithms. The first one aims to attain optimal control of the accuracy of
the interpolation around discontinuities, but not in the interval that contains the
discontinuity. The objective of the second one is to raise the accuracy of the WENO
algorithm also in the intervals that contain a kink. It is well known that the classical
WENO scheme loses its accuracy when a discontinuity is placed in the central interval
of the stencil. The state of the art literature includes algorithms that try to solve this
issue of the classical WENO scheme. For example, in [37] the authors succeed in
increasing the accuracy of the approximation, but they do not obtain the maximum
accuracy theoretically possible. In this paper we increase the order of accuracy in the
central cell of the stencil and obtain optimal accuracy.

This paper is organized as follows: Section 2 introduces the discretization of data
that will be used in the whole article and shows how the WENO algorithm for point
values works. Subsection 2.1 presents a very brief description of the nonlinear WENO
weights. In Subsection 2.2 we review some smoothness indicators that appear in
the literature. Section 3 is devoted to the new WENO algorithm. Subsection 3.1 is
dedicated to the introduction of new smoothness indicators more adapted for working
with kinks. Subsection 3.2 explains how to redesign the WENO optimal weights in
order to control the accuracy close to discontinuities, but not in the interval that
contains the discontinuity. Subsection 3.3 presents a strategy through which we are
able of raising the accuracy in the interval that contains the kink and, at the same time,
controlling the order of accuracy close to it. Subsection 3.4 analyzes the ENO property
for the two algorithms presented. Section 4 is dedicated to test the new algorithms
through some numerical experiments. In particular, we analyze the performance of
the new algorithm using discretized univariate functions that show kinks and jump
discontinuities. Finally, Section 5 presents the conclusions.

2. Weighted essentially non-oscillatory (WENO) algorithm for point
values. In this section we introduce the classical WENO method. The concepts
presented in this section are already classic and can be found in many references, see
for example [13, 14, 36, 37], but their presence is strictly necessary to keep the paper
self-contained and to introduce the different notations that we will use.

Let us consider the space of finite sequences V', a uniform partition X of the
interval [a,b] in J subintervals, and the set of piecewise continuous functions in the
interval [a, b],

X={x} g, mo=a, h=z—x;_1, z;=0
We will use a point value discretization of the data,

fi=f@), f={f},-

We can see that the previous discretization preserves the information locally at the
sites x;. Although it is possible to locate the position of kinks, as shown in Figure
1, there is no hope in locating the exact positions of jumps, as they are lost in
the discretization process [38], as shown in Figure 2. We will always consider that
discontinuities are far enough from each other (for WENO algorithm and stencils of
6 points we will consider that we have at least four discretization grid-points between
any adjacent discontinuities).

In this section we introduce the WENO scheme. As mentioned before, this algo-
rithm allows us to obtain a high order of accuracy at smooth zones of f and, at the
same time, it manages to avoid Gibbs oscillations close to discontinuities. This tech-
nique appeared as an improvement of ENO reconstructions [2, 3]. The ENO scheme
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Tj—1 T T Tj+1 Tj+2

F1G. 1. This figure represents a kink placed in the interval (xj,xj41) at a position z*. If we
consider that the discretized data is in the point values, we can recover an approximation of the
position of the discontinuity crossing an interpolating polynomial built using the data to the right of

the discontinuity with another interpolating polynomial built using the data to the left.

S

Tj—1 Zj x Tj+1 Tj+2
F1G. 2. This figure represents a jump discontinuity placed in the interval (x;,xj41) at a position
z*. In this case it is not possible to recover the position of the discontinuity from the discretized
data in the point values [38].

uses a stencil selection procedure and manages to obtain an order of accuracy r + 1.
In order to do this, this scheme deals with several stencils of length r 4+ 1. The ENO
scheme uses divided differences in order to determine which stencil is the smoothest.
The WENO scheme uses smoothness indicators based on (divided) differences to de-
termine the smoothness of the stencil.

We will denote the different stencils by S/ (j) = {zj—m+i, - ,Zj+i—1}. The
WENO scheme uses the same stencil of 2r nodes S?"(j) = {@;_,, -+ ,xj4,_1} as the
ENO method when trying to interpolate in the interval (z;_1,z;). Using this stencil,
WENO manages to reach order of accuracy 2r [13] at smooth regions of f. In our
notation, S;,(j), k=0, --,r — 1 will represent the r sub-stencil of length r + 1 that
contains the interval (z;_1,z;), where we want to interpolate:

(2.1) Sp() =Azj—riks s xjyn}, k=0, ,r =1

Figure 3 presents a diagram where we show the big stencil S2”(j) and the sub-stencils
Si(j),k=0,---,r — 1 considered for the particular case r = 3.
Let’s consider the following convex combination,

r—1

(2.2) G—r(@) =Y _wi()P) ik (@),

k=0

where wj,(j) >0, k=0,--- ,r—1 and Zz;é wi(j) =1. In (2.2), pi_, ., () represents
the interpolatory polynomial of degree r defined on the stencil S}, (j). The prediction
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S8(7)
S3(5)
S2(5)
S8(5)
! ! ! ! ! !
s Tj-2 Tj-1 zj Tj41 Tjpz
FIG. 3. In this diagram we represent for r = 3 the big stencil S27(j) = {zj_r, -, Tjpr_1}
and the substencils S} (j) = {xj_rqk, " Tjix} for k=0,---,r =1

operator for the mid point of the target interval (x;_1,x;) is given by

(23) 1(z;_4:1) = wazmp;f”k (2,-3)-
k=0

The value of the weights is chosen in order to obtain order of accuracy 2r at x;_ 1 at
smooth regions of the function f. In [13], the authors use an interpolant satisfying,

(2.4) P (7my) =7 (2i-) +O (),

on the big stencil {z;_,, -, ;4r_1}, if we suppose that the function is smooth there.
We can also build r approximations

(2.5) Py (7-3) = £ (m,03) +O (7).

using the small stencils S} (j). The optimal linear weights must satisfy that C},(j) >
0,k and also that 37—} C5(j) = 1, such that

(2.6) Pt (o) = Z_j LGPt (2523 )
k=0

The formulae for the optimal weights are easy to obtain if we use Newton interpolating
polynomials. In [16], the authors give a proof for the following expression,

N | 2r - B

For r = 3 the optimal weights are Cj3(j) = i, C3(j) = 12,C3(j) = . In fact, in [39]
the authors prove that the weights C7(j) can be written as polynomials. However,
we are usually interested in computing the reconstruction in specific points of the
considered interval. In this case the polynomials Cj (j) take some specific positive

values. We will consider this case.
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2.1. Nonlinear weights. In [13], the non linear weights wj,(j) are designed to
satisfy the following relation at smooth zones,

(2.8) wp(j) = Cr(j) + O(h™), k=0,---,r—1
with m < r — 1. Then, at these zones the interpolation error satisfies,

(2.9) Flay_1) = qosle;_y) = O(hT+),
When m = r — 1 in (2.8), (2.9) assures that the accuracy attained is 2r. That said
accuracy is the same as the one obtained using the interpolant p?:l(z) that uses
all the nodes in the big stencil. The weights must also be designed in such a way
that they satisfy the ENO property. This means that the contribution to the convex
combination (2.3) of polynomials built from stencils crossing discontinuities should be
insignificant. As mentioned in [13], the weights should also be easy to compute. The

expression for the weights is,

v ;. (4) v Cr()

(2.10) wp(j) = Z::_Ol af(j)7 =0,---,r — 1 where aj(j) = RO
This expression for the weights satisfies that ), wi(j) = 1. In (2.10) I} (j) represents
a smoothness indicator for f(z) on the stencil S} (j). ¢ is an integer that has the
purpose of assuring the maximum order of accuracy close to the discontinuities. The
value of this parameter varies in the literature. For example, in [14] the authors choose
t = 2 and in [13], it is set to ¢ = r. In the theoretical proofs about the accuracy, we will
determine which value of ¢ we should take in our algorithm. The positive parameter
¢ that appears in the denominator of (2.10) is included to avoid divisions by zero.
Some references can be found in the literature [15, 16], where the authors prove that
€ plays a role when we are interpolating close to critical points at smooth zones. In
this article we will show that the smoothness indicators used satisfy the requirements
exposed in [13, 16] and necessary to attain the desired accuracy. We will also analyze
the role played by the parameter ¢ and explicitly set the value it must take in order
to obtain optimal results with the new algorithms presented.

As we will refer all the time to the big stencil S27(j) and in order to ease the
notation, we will drop (j) in S} (5),wp(4), Cr(4), ak(j) and use simply S}, w}, Ch, o

2.2. Classical smoothness indicators. As mentioned before, the computation
of the smoothness indicators is done through a measurement based on the sum of the
L? norms of the derivatives of the interpolatory polynomials at the interval where we
want to obtain the prediction [14],

r—1 2
. (%l o d
(2.11) 76 =Y [ (k@)
=1 i1

In [16] another expression for the smoothness indicators is introduced, this time for
data discretized in the point values,

I Ij dl 2
. 1—
(2.12) B0 =Y [ (@) de
=1 Ti-1
The smoothness indicators presented before are suitable for jump discontinuities, but

they do not work well for kinks.
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In [36] we propose a new expression for the smoothness indicators that works well
for kinks and for data discretized in the point values,

. " B Tirl [ dl - 2
(2.13) G =>"n 1/ (dxlpj_ﬂrk(m)) da.

This is the smoothness indicator used for computation of Hamilton-Jacobi equations
[40], for which kinks are the generic singularities in the viscosity solutions.

3. The new WENO algorithm for point values. In this section we intro-
duce the new WENO algorithm. The difference with the classical WENO algorithm
introduced in previous section is mainly located in the design of the WENO weights.
We also make use of new smoothness indicators more suitable for working in the point
values.

3.1. New smoothness indicators. The smoothness indicator in (2.13) inte-
grates in the interval (z;_ 1,5 +%), but it seems more logical to integrate in the
interval (x;_1,;), where the point where we will interpolate is in the middle. Thus,
in this article we propose to use the smoothness indicators in the point values given
by the expression

min(r,n) . 1 2
"o _ J d "
(3.1) po= Y @ [N (fa@) .
=2 Tj—1
where n is the degree of the polynomial and goes fromn =r—1,--- ,2r—1. As we will

see in Subsection 3.2, for r = 3 our algorithms make use of smoothness indicators of 3,
4, 5 and 6 points in order to optimize the accuracy of the new nonlinear interpolation
proposed. Thus, we will need to build polynomials from degree two to five with the
aim of replacing in (3.1) and obtaining such smoothness indicators. We work with
the stencil of six points S§ = {z;_3,2j_2,7;_1,%;,j4+1,2j12} and we will obtain the
smoothness indicators integrating in the interval (z;_1,z;). The point values used
will be {fj—s, fi—2, fi—1, fj fit1, Fiva}-

In order to obtain compact expressions for the smoothness indicators in terms
of finite differences, the polynomials can be expressed in the Newton form. The
polynomials of degree n starting at the node j have the form,

(3.2)
. — f. p— + f
) = i+ I i gy LMt e o)
—f; +3f301 = 3f540+ fivs U
+ e (=)@ —z)(e —ajp) +-+ 2 [ (@ =),
k=3
where 07 = flxj, -+ ,xj4n]h™ are finite differences of order n. Using a stencil of six

points, we can build four different polynomials of degree two {p3_5(z),p7 5(),
p5_1(x),p3(x)}, three of degree three {p_s(x),p} 5(z),p3_,(x)}, two of degree four
{p§73(x),p?72(:c)} and one of degree five {p?fl(m)}. We have used the notation
Pk for r = 3. We will use all of these polynomials to obtain smoothness indicators.
As before, we will drop (j) in the notation of the smoothness indicators I} (j) and
simply use 1.

The smoothness indicators of three points obtained through (3.1) forn = r—1 =2
and the polynomials {p§73(x),p?72(x),p?71(w),pf(z)} can be expressed in terms of
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finite differences as,

Izl - (5]2—3)2,
Ig = (5]2—2)27
(3.3) ) 5 o
L= (6]71) ’
I3 = (83)%,

with 522 = fi — 2 fiy1 + fir2. The smoothness indicators of four points obtained
through (3.1) for n = r = 3 and the polynomials in {p?_;(x),p} 5(x),p}_(x),} can
be expressed in terms of finite differences as,

10
1§ = 3(5}3—3)2 +35?—3532'—3 + (5?—3)23
4
(3.4) I} = 5(5]3'—2)2 + 5?—25?—2 + (532'—2)27

J—1%j—

4
1 = (02 = 800+ (6502

with 5? = —fi+3fix1 — 3 fize + firs. The smoothness indicators of five points
obtained using the same process and the polynomials {p?_3(x),p?_2(x)} are,
(3.5)

19 2 547 10

Iy = €5?_35§'_3 + §5?—35g2'—3 + go((s?—sy + 3(5?—3)2 +307_307_5 + (07_3)
89 1 1 4

It = %(5?—2)2 - 65;1_25?_2 - 55?—2532'—2 + 5(5?—2)2 + 533'—25?—2 + (5?—2)27

with 5;1 = fi—4 fiz1+6 fire —4fits + fira. The smoothness indicator of six points
obtained using the same process and the polynomial p?_?)(x) is,

(3.6)
5 1727, 5 5 0 203 5 4 13 5 3 1y o
I5 = 1260 (67_5)" + 724053'—353‘—3 - %5;'—3‘%—3 - g5j—35j—3
19 2 547 10
+ 35?—35?—3 + 5512'—3531—3 + 210 (5?—3)2 + §(5§?—3)2 + 3532'—35?—3 + (532'—3)27

with 6;5 =—fi+5 fix1 —10 fiya +10fi13 — 5fira + fi+s. To obtain these expressions
we have applied the formula in (3.1) integrating always in the interval (z;_1,z;).

THEOREM 3.1. At smooth zones, the smoothness indicators (3.4), (3.5) and (3.6)
calculated using the expression in (3.1) can be simplified to

2
I = (W2 1) - (A +O0(), n=345.

Proof. At smooth zones, obtaining the Taylor expansion of the values of the stencil
{fi=3, fi—2, fi—1, fj; fi+1, fi+2} around z;_; /o and replacing them in the expressions
of the smoothness indicators in (3.4), (3.5) and (3.6), we obtain that I3, I and I3 are
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equal to D1, I3 and I3 are equal to Dy and I3 is equal to D3, with

d*f 2 13 &3 f 2
D1:h4 (d 2 (xj 1/2)) +Eh6 (d 3(.’1’}‘7 1/2)>
1 d? 4
#351° ( (rm1re) ) G (2rma2) + 00,

a2 f 13 . (dBf 2
Dy = h? (d 5 (HJJ 1/2)) +Eh6 (d 3 ( j—1/2)>

(3.7)
7 o (df dif
B Eh (d 7 (5= 1/2)> Azt (j-1/2) + O(R7).
a2 f 13 o (dBf 2
Dy = I (d2 (%‘—1/2)) + 5 h <dl,3 (%—1/2))
5 . (d2f dif
+ﬁh (d 7 (75— 1/2)> Aot (zj-1/2) + O(hT).
2
Collecting h* ( (zj— 1/2)) , we get the result. 0

3.2. Obtaining optimal weights close to discontinuities in the point
values. If the optimal weights are obtained close to a discontinuity in the way spe-
cified in (2.6) without any other consideration, the accuracy can be lost when there
is more than one smooth substencil. A representation of a typical example of this
situation is shown in Figures 4 and 5. The idea is that when a stencil is affected by
a discontinuity, WENO is not designed to use all the available smooth information.
In fact, the only conditions imposed to obtain the weights of the convex combination
of polynomials of WENO interpolation in (2.2) is that they must depend on the
smoothness of the function (they are large if the corresponding sub-stencil is smooth
and small otherwise), and that at smooth zones the convex combination must provide
optimal accuracy. For example, if we are working with stencils of 6 points and a
convex combination of three polynomials of degree 3, then, in a situation like the
ones depicted in Figures 4 and 5, WENO interpolation will typically provide O(h)
accuracy at the interval that contains the discontinuity and O(h*) accuracy at the
other intervals of the stencils that are affected by the discontinuity, even though
there is available information to obtain O(h%) accuracy at the point z;_; /2 shown in
Figures 4 and 5. If we obtain O(h®) accuracy in the mentioned interval, it is just by
coincidence, as the weights as originally proposed in [14] are not designed to optimize
the use of the stencil. It is possible to optimize the weights of the convex combination
making the optimal weights also depend on the smoothness of the function, such that
the optimal order is attained in all the stencils affected by the discontinuity.

In this case, we will analyze how to attain optimal order with exactly the same
stencil and sub-stencils that WENO method uses. Thus, we will use the formula
for the interpolant in (2.3). In order to ease the presentation of the new opti-
mal weights, we analyze the case r = 3 that corresponds to n = 2r = 6 points.
Let’s start with the three stencils of four points Sj = {zj_s,xj—2, 51,2}, SP =
{zj_o,xj_1,2j,xj41} and S5 = {x;_1,2;,2j41,7j42}. The point values used will be
{fi=s, fi—2, fi—1, [js [i+1, fi+2}. With these conditions, it is straightforward to build
polynomials in the Newton form shown in (3.2). We can denote them by p§73 (@),
such that r = 3 denotes the degree of the polynomial and j — 3 + k the node where
the substencil starts. Nevertheless, it is more convenient to ease again the notation
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dropping the dependence with j and simply write pj,(z), as we will be referring all
the time to the stencil S§ = {x;_3,2j_2,2;_1,%;,%j41,7j42}. All the polynomials
are evaluated at the point of interpolation x;_; 2, as shown in Figures 4 and 5. Then
for 7 = 3 we will be dealing with pg(z),p3(x) and p3(x) for the convex combination
in (2.6) and p§(z),pi(x),p5(z) for calculating the nonlinear optimal weights. It is
straightforward to prove that taking the weights shown in (2.7) for r = 3,

po(@) = 2C5p;(x) + Cipi(x)

3.8
35 pl(w) = Cil(a) + 2033 (a).

with C§,C3, and Cj the optimal weights for r = 3 presented in (2.7). It is clear
that in the case represented in Figure 5 it would be convenient to use pf(z) in order
to interpolate at x;_;,o (and for the case presented in Figure 4, po(z) is the best
option). However, the WENO scheme does not assure that the convex combination of
pg(xj,l/g) and p‘;’(xj,l/g) will be equal to pé(xj,l/g). If the discontinuity is located
in the intervals (zj_2,7;-1) or (zj,2j11), WENO should obtain O(h*) accuracy as
there is always a smooth stencil of four points. In order to assure maximum accuracy,
we can design three vectors of optimal weights Cg, C5, C$, each of which is suitable
for a particular position of the discontinuity. The vectors will have the following
expression,

(3.9) C§ = (2C3,C3,0),
(3.10) Cj = (C§,C1,C3),
(3.11) Ci=(0,C3,20%).

C? is appropriate in the case presented in Figure 4. C% is adequate for the case
in Figure 5. Finally, C§ works well when there is no discontinuity. A weighted
average of these vectors will result in non-linear optimal weights that would replace
the optimal weights of WENO algorithm. The weights of the mentioned average
will be computed using the same technique introduced in [14] for averaging WENO
interpolatory polynomials: smoothness indicators. Thus, in order to assure optimal
accuracy, we will use smoothness indicators for the polynomials of 4,5 and 6 points
that arise from the selected 6 points stencil. Let’s now denote by @; the quotients,

(3 12) ~4 &El) ~5 &8 ~4 d?ll
. Wo= =1 =5 =47 Wo= =1 =5  =4> W1 = =1 =5  =1°
" agtag+tal’ 0 ag+agtal’ T Gg+ag+ad
with,
1 1 1
1 ~4 - . oat= _
S e A e A RN T

Now we can just define the adapted optimal weights as,
(3.14) (C3,C3,C3) = 05 Ca + w5 CY + @i Ce.

These nonlinear optimal weights C’,: are used in place of the optimal weights C} in

the expression (2.10). The smoothness indicators that appear in (2.10) are obtained

using four points, and have the expression shown in (3.4). We keep this part of the

algorithm untouched and we only modify the optimal weights, that now are nonlinear.
A first explanation of why this technique works is the following:
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334 o If all the sub-stencils S}, n = 3,4, 5, (three of four points, two of five points
335 and one of six points) are smooth and fj’.'_l/2 # 0, all of them are I} =

336 (R2f7

];1/2)2 -(14+0(h?)), n = 3,4,5 (as shown in Theorem 3.1). Then, at su-

337 fliciently smooth zones, the nonlinear weights in (3.12) satisfy the expression
oy 1 1
(:)Z = T T‘—(jlk = It r o r—j ? n= 475’
338 (3.15) aitr1 (e+1}) 1
i j+r—1
§=2 i=0 j=2 i=0 (e+ ;™)
339 where we are taking into account that the stencil has 2r points and r = 3.
2

340 Replacing now I} = (h2 j/'/—l/z) -(1+0(h?)), n = 4,5, as shown in Theorem

341 3.1, and taking e small enough, we obtain

" P31+ 0(h?)Y
343 but (1+ O(h?))! =1+ O(h?) and m =1+ O(h?), so,

(1+0(h2) 1

344 Oy = ot = — (14 O(Rh?)).

k= 3oz 3t om)
345 For the particular case r = 3, (3.14) transforms into,

e ma =~ 1
16 ag) (GO CHE) =5 (14 0M)(Co+ G+ Ch) = CF+0()
= (Cgv 0137 Og) + O(h2)7
347 that are the original optimal weights CJ () in (2.6) and proposed in [14] plus
348 a small perturbation that, as we will see in Theorem 3.2, does not affect
349 the order of accuracy. Applying exactly the same process but to the WENO
350 weights in (2.10), using as optimal weights those in (3.16) we obtain,
, ag, Cr +O(h?) 1
wk‘ = — = - — s
351 r-d . (e+1p)t =1 Cr + O(h?)
@ Z (6 + I?‘)t
i=0 i=0 @
2
352 Replacing again the expression I} = IT = (h2 J/‘L1/2) (1+0(h?)), for r = 3,
353 and taking e small enough, we obtain,
Cr+0(h?) (14+0(h?)t
354 3.17 r=—k =C} +O(h?
(3.17) “k=Trom)y 1rom koW

355 and the result is that the WENO weights are
356 (3.18) wy = CF + O(h?)
357 e The cases shown in Figure 4 and 5 are symmetric, so we can just analyze the
358 case presented in Figure 4. It is clear that a kink in the interval (x;41,%j4+2)
359 will produce that the smoothness indicators I and I§ shown in (3.5) and (3.6)
360 respectively will take a value O(h?) due to the presence of the discontinuity
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fi—2 f

-1
fios - o
- T

\\\
\\\\ fir
T - Jive
I \

Tj-3 Tj-2 Ti-1 Fj-12 T Tj+1 7 T

F1G. 4. Representation of a kink placed at x* in the interval (xj41,2;42).

in the first derivative, while I§ = (h2 i 1/2> (14 0O(h?)) = O(h?) as that
part of the stencil is smooth. If that is the case, then

4 1

T eromh)
5 1

T erom)
4 1

Then we have that,

ay 1 1
~n __ k
W = =5 (+I” p— , n=4,5,
~j4+r—1
> > Dy
j=2i=0 j=2i=0 6+IJ Bk

and r = 3. Assuming that ¢ is small enough, we obtain that the weights are,

g1 1 1 1 B 1
RGP S (R e (L O() T T+ O()
= = ( 6+I]+T byt
= 1+O(h2t ,
1 1 1 1
~4 2t
= : = = O0(h"),
w1 (€+I4)t r r—j 1 (EJr[il)t m(l +O(h2t)) ( )
j=21i=0 (€+IJ+’ 1)
1 1 1 1
5 2t
- _ =0(h*).
TR o i (4 18)" ey (1+0(h2))
j=211=0 6+IJ+T 1)

Then, the adapted optimal weights have the expression,
(319) (637013703) C4 +O(h2t) (200701a ) + O(h%)a

Exactly the same conclusions can be reached if a jump discontinuity in the
function is found in the interval (x;41,;42). The only difference is that in
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372 this case I and I3 are both O(1) and,
i1 1 1 1 !
O (e+ Iyt r =i 1 (€+10) a1+ O(h) 1+ O0(h*)
j=21=0 (6 + Iij+r 1)
— 1+ O(h4t ,
» 1 1 1 1 »
s wy = — = = O(h ),
73 (O ) L (e + I e (L O 1))
j=21=0 (6 + I]+r 1)
1 1 1 1
g = - : = - =O(h*).
O (e+ I3t r =i 1 (e+ I3) ﬁ(l—kO(h‘”)) ()
j=2 i=0 (e+ IJ+T Bl
374 Then, the adapted optimal weights have the expression,
375 (3.20) (C3,C5,C3) = Ca+ O(h*) = (2C3,C3,0) + O(h*).
376 If the discontinuity is placed in the interval (z;_s3,z;_2), the conclusions
377 would be exactly the same but
378 (321) (égv C~’137 023) = Céll + O(th) = (Oa Of7 203) + O(hgt)a
379 for a kink, or
380 (3.22) (C3,C3,C3) = CE+ O(h*) = (0,C5,2C3) + O(h*),
381 for a jump discontinuity.
382 Now, let’s see what we obtain using WENO algorithm with these adapted
383 optimal weights instead of the original optimal weights (2.10). If there is a
384 kink in the interval (z;41,2;4+2) we know that I§ = O(h*), I} = O(h*) and
385 I3 = O(h?). If we assume that e is small engugl}, we suppose that we have
386 obtained as nonlinear optimal weights (Cg,C7,C3) = (2C3,C?,0) + O(th)
387 as shown in (3.19) and we take into account that, in this case, Cg +C3 +C3 =
388 203 + C3 + O(h*) = 1 + O(h?"), then,
(3.23) ) )
e Ci 1 G 1
O (e+ 1Y)t S o3 (e + I3)t ey (C8 + CR(1+ O(h2)) + O(h2))
389 — (e+ (e+ 1Pt
3 3 2
— — h
1+ O(h2) 0 + O( )7
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5 3 1 3 1

T g (R (GR O(R) + CF + O())

1+ 0(h?) ! ’
390 = ~
3 C3 1 c3 1
wy = T - = - e
(e+13) X ¢3 (e 4+ 13)" (e (C8 + CP(1 + O(h2)) + O(h?))
 (e+1})!
C3 1
= 22t 1 2y O(h*).
O(h?") 5y (14 O(h2))
391 If there is a jump, the analysis is analogous and
392 (3.24) wi =C3+0(hY), wi =C}+0(Y), wi=0(h").
IR
i - -
fi1
/’O/
f]—3 . :
7\ A
| |
Tj—3 Tj—2 Tj-1  Tj-1/2 T Tj+1 Tj+2
FIG. 5. Representation of a kink placed at =* in the interval (x;_3,;_2).
393 e If there is a kink or a jump in the function affecting the stencil in the intervals
394 (xj,xj41) or (xj_2,x;_1), there is no hope of attaining adaption through the
395 modification of the optimal weights. The best order of accuracy that can
396 be obtained is O(h?*), the same as the classical WENO algorithm attains, as
397 there is only one smooth stencil. In this case the adapted optimal weights
398 (3.12) would be,
399 (3.25) Qi =0(1), @y=0(), &f=0(1).
400 In this situation, basically it is WENO strategy who decides the weights for
401 each polynomial in (2.2). Let’s see how WENO algorithm will behave. Let’s
402 analyze the case when the discontinuity is placed in the interval (z;, ;1) as
403 the case when the discontinuity is in the interval (z;_2,z;_1) is symmetric.
404 As we did before, we can apply the same process to the WENO weights in
105 (2.10), using as optimal weights those in (3.25). We know that we obtain,
~3
s O(1 1
i . SR R =012
406 — .3 (e+17) TZ o(1)
@; 3\t
i=0 i=0 (e+17)
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and that I3 = O(h*), I} = O(h?) and I3 = O(h?). If we assume that € is
small enough, and we suppose that we have obtained as nonlinear optimal
weights (C3,C3,C3) then,

(3.26)
c3 1 c3 1
3 _ 0 _ 0 _ 2t
wo = (e+I3)tr=1 3 - (e+I3)t 14+ O(h2t = 1+ O™,
Zii (+1%)t( +O(h?))
e+ 1)
5 C§ 1 e 1
1 3\t r—1 =~ - 3\t
(e+17) c3 (e+I7) (€+13)t(1 + O(h?))
e+ 17)
cf 1 2
= = O(h™)
2t 3 ’
O(h*") 054t)(1+0(h2t))
5 3 1 C3 1
Wy = [3 t r—1 = (€+13)t
e+ 3 2)' S (14 O(h2))
— 6—1—13
3 1 2t
= : = O(h™),

OU) oty (14 O(h>))

and the result is that the first stencil of WENO algorithm receives a weight
that is very close to 1 while the others are close to 0. If there is a jump
discontinuity in the interval (z;,z;11), the analysis is analogous and

(3.27) wi =14+0(*), W} =0(hY), wi=o0(h").

e Using the the new algorithm, it is clear that the hypothetical situation pre-
sented in Figure 6 will result in a loss of accuracy when the discontinuity is
placed at the central interval of the stencil.

fi+1

fi

- .

x
L1

Tj-3 Tj—2 Tj-1 Tj-12 T Tj+1 Tj+2
F1G. 6. Representation of a kink placed placed at x* in the interval (xj_1,x;).

Let’s consider the stencil S?" = {z;_3,7;_2,2j_1,2j,2j+1,Z;j+2} and the point
values {f;_3, fj—2,
fi=1, fi, fi+1, fi+2}. Now, we can prove the following theorem about the weights,
that will also provide us information about the value of ¢ and how small € must be.

THEOREM 3.2. Let’s assume that r =3, t > 1, € < h* and that the grid spacing
h is small enough such that there is only one discontinuity in the considered stencil.
In this situation we can take into account the four following situations:
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o [f the nonlinear optimal weights satisfy the following relation at smooth zones
where,

(C3,C3,C3) = 0iCa + 05 Cl + wict = CS + 0(h?),
with C§ = (C3,C3,C3), then Zz;é wiph(@j—12) = f(xj—1/2) + O(h).

o If there is a discontinuity in the interval (z;_s,xj—2) and the nonlinear opti-
mal weights satisfy the following relation,

(C3,C3,C3) = 0aCa + 05 Cl + wict = Ct+0(h?),
with C1 = (0,C%,2C3), then ZZ;B wipp(@j—1/2) = f(xj-1/2) + O(Rh®).

o If there is a discontinuity in the interval (z;y1,%;42) and the nonlinear opti-
mal weights satisfy the following relation,

(C’gaéfaé2) =@y Cq + @, Ch + Wi CT = C§ + O(h?),
with C§ = (2C3,C3,0), then Y p_o wiph(j_1/2) = f(zj_1/2) + O(h®).

o If there is a discontinuity in the intervals (xj,xj41) or (xj_2,xj_1), then the
nonlinear optimal weights satisfy the following relation,

(G3,C3,C9) = G4Ch + @CE + wict = (0(1),0(1),0(1)),
and Z};;[l) wiph(@j_1/2) = f(xj_1/2) + O(h*).
Proof.
e Let’s prove the first statement of the theorem. As shown in (3.9), the com-

ponents of the vector C§ are the C7(j) in (2.7). We can start by writing the
error of interpolation obtained by the expression in (2.2) at x,_; /25

r—1 r—1
> wiph(@j_12) = fim12 = Y wiph(@j—1y2) = ficip + Y Chpi(xi-1/2)
= k=0 k=0
r—1
=Y Cipi(xio1p),
k=0

where the C] are the WENO optimal weights in (2.7). Grouping terms we

obtain,
r—1 r—1 r—1
> wipkl@jo1g2) = o2 = Y wiph(@i_1j2) = > Chpp(zi-1/2)
k=0 k=0 k=0
r—1
+ Y Cipilwj—12) = fic1y2
k=0

= Z — CP)pi(j_1/2) + O(R").
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138 And due to the fact that S5 _fwp = S Cp =1,
r r—1
D wiph(@jo1/2) = fic1jp = YWk — CRpi(wj—1/2) + O(h™")
k=0
439 —I—Z —Cp)fiz1/2

_Z — CH)(Pi(xj—12) = fj—1/2) + O(h*")

440 From (3.17) it turns out that (wj, — C}) = O(h™) with m = 2,

(3.28)
r—1
441 D wkpk(xjo12) = fi12 = O(W™)O(R™H) + O(h*) = O(hmn T 120),
k=0
442 For the particular case r = 3, we obtain optimal accuracy O(h®) at smooth
443 zones.
444 e The second and third statements of the theorem are symmetric so let’s prove
445 only the second statement. As shown in (3.8), C$ = (0,C3,2C3). We can
446 reproduce the proof in the previous point and write the error of interpolation
447 obtained in this case by the expression in (2.2) at z;_1 2,
r—1
448 ZWIZPZ(%'AM) - fj71/2 = szp2($j71/2) f] 1/2 T ZC )Pk ( Lj— 1/2)
k=0 k=0
r—1
149 =Y CiR)pp(T-12),
k=0
450 where the C§{ are the WENO optimal weights that would provide O(h®)
451 accuracy in this case, as shown in (3.8). Grouping terms we obtain,
r—1 r—1 r—1
ZWZPZ(%‘AQ) = fi-12 = ZWZPZ(%ﬂ/z) - Z C‘f(k)p};(ﬂ?jﬂ/z)
=0 k=0 k=0
r—1
452 +ZC‘§(k)p2(£ﬂj_1/2) = fi-12
k=0
= Z k)P (zj-1/2) + O(h* 1),
453 And due to the fact that S f_p wrp = S5 _! C4(k) =1,
(3 29)
r—1
o Zwkpk vj_1y2) = fica2 = > _(wi — CHR)(0F(wj—1/2) — fi—1/2) + O(R*" ™)
o k=0
_ O(hm)o(hr+1) + O(h2r—1) _ O(hmin(m-',-r-!—l,2r—1))7
155 From (3.21) and (3.23), if ¢ > 1, it turns out that if (w} — C1(k)) = O(h™)
156 with m = 2 for kinks and m = 4 for jumps. Thus, for the particular case
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r = 3, we obtain optimal accuracy O(h®) for the situation presented in Figure
5.

The proof of the fourth statement of the theorem corresponds to the case
when there is a discontinuity in the interval (z;,2;41) or (zj_2,2;_1). In this
case there is only one smooth substencil of four points and WENO algorithm
reaches the maximum accuracy without any modification. Lets consider the
case analyzed in (3.26) when the discontinuity is in the interval (x;,z;41) as
the other case is symmetric. From (3.26) we can consider the vector C =

(1,0,0). Following the same process as before, we have that,

r—1 r—1 r—1
> wrpi(@i—1y2) = fimip = Y wipk(@i_12) = fimap + Y CR)pi(wj_1/2)

r—1
- Zc(k)PZ(%‘—uﬂ,
k=0

Grouping terms we obtain,

r—1 r—1 r—1
ZWZPZ(%‘—Vz) —fic12 = ZWZPZ(%—UQ) - Z C(k)p(zj-1/2)
k=0 k=0 k=0
r—1
+ ) Clk)pi(wj—1/2) = fi—1)2
k=0

= i(wi — C(k))pp(zj_1/2) + O(h™).
k=0

And due to the fact that ;¢ wp = S 5_0 C(k) =1,

(3.30)

r—1 r—1

> wiph(@i1ye) = fim12 = > _(wh — C(k) Pk (xj-1/2) — fi—1/2) + O(A"H)
k=0 k=0

_ O(hm)o(hr+1) + O(hr+1) _ O(hmin(m+r+1,r+1)).

From (3.26) and (3.27) it is clear that m = 2t for kinks and m = 4¢ for jumps.
Thus, for the particular case r = 3 with ¢ > 1, we obtain optimal accuracy
O(h*) if we find a discontinuity in the intervals (z;,z;j41) or (zj_2,z;_1). O

The previous theorem leads to the following corollary

COROLLARY 3.3. Considering the initial hypothesis r = 3, t > 1, and € < h* the

new WENQO interpolant is at least as good as WENO interpolant close to discontinui-

ties.

Proof. The proof is straightforward from the hypothesis and the proof of previous
theorem. It basically consists in comparing the order of accuracy that WENO would
obtain with the accuracy that the new WENO method obtains. In order to do this,
we can just follow the proof of the previous theorem:

e If there is no discontinuity affecting the stencil, for » = 3 WENO obtains

O(h®) accuracy and from (3.28) the new WENO algorithm also obtains O(hS)
accuracy.
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o If there is a discontinuity in the interval (z;_3,z;_2) or (z 41, +2), WENO
algorithm typically obtains O(h*) accuracy. From (3.29) the new WENO
algorithm obtains O(h%) accuracy with ¢ > 1.

e If there is a discontinuity in the intervals (z;,2;41) or (z;—2,2;-1), WENO
algorithm obtains O(h?*) accuracy. From (3.30) the new WENO algorithm
obtains O(h%) accuracy with ¢ > 1.

A small enough value of € in (3.13) and in (2.10) is a value of order O(h*), as this
is the minimum value of the new smoothness indicators (3.4), (3.5) and (3.6), that is
reached at smooth zones, as can be seen from Theorem 3.1. 0

3.3. Increasing the accuracy at the central interval of the stencil in
the point values. In this subsection we will analyze how to increase the accuracy
attained by WENO method when a kink is placed at the central interval of the stencil,
as shown in Figure 6. It is important to remember that in the point value setting, the
position of jump discontinuities is lost during the discretization process and we can not
hope to localize their exact position [38]. In [1] we extend the algorithm presented
in this article for working in the cell averages and to the solution of conservation
laws. We can use the smoothness indicators of three points shown in (3.3) in order to
detect the presence of a kink in the central interval of the big stencil. If we use these
smoothness indicators and a kink is placed in the interval (z;_1,x;), then the first
substencil S2, = {z;_3,%j_2,7;_1} and the fourth substencil S5 = {z;, 741, %j12}
are smooth and I%, and I? take a value that is O(h*), while the second and third
stencils S2 = {xj_o,x;_1,2;}, St = {x;_1,2;,2;41} are not smooth so I and I take
value that is O(h?). This is a hint that should lead us to think that there is a kink at
the interval (z;_1,2;). For isolated discontinuities, we will have the following cases:

e If there is not a discontinuity in the interval (z;_1,x;), then 12, I3, I and
12 are O(h*).
e If there is a discontinuity in the interval (x;_1,z;), then I2, and I3 are O(h*)
and I2 and I? are O(h?).
e If there is a discontinuity at z;_1, then I2,,I? and I3 are O(h*) and I is
O(h?).
e If there is a discontinuity at z;, then I2, I? and I2 are O(h*) and I? is O(h?).
Our objective is to localize the position of the discontinuity and, depending on its
position with respect to z;_;/9, then extrapolate at x;_,,, using S2, or S2. This
process is inspired by Harten’s ENO subcell resolution algorithm. Due to the bigger
errors associated to the extrapolation process we would like to use it only when it is
strictly necessary. Moreover, the extrapolation process that we propose reduces the
stencil in order to avoid the discontinuity and, hence, implies order reduction if the
location process fails and detects a discontinuity at a smooth zone. Thus, we only
want to apply it at real singularities.

Being h the grid spacing, when h(Ig + I#) > I?| + I3 the interval (z;_1, ;)
is considered suspicious of containing a discontinuity. In this case, we build the
second order interpolating polynomial pZ(z), using the data {fj_s, fj_2, fj—1}, that
corresponds to the stencil S2, and the second order interpolating polynomial p(z),
using the data {f;, fj+1, fj+2}, that correspond to S2. Then we build the function
g(z) = p3(x) — p3(x). Supposing that there is only one zero of g(z) inside the interval
(z;—1,;), that zero corresponds to the position of the discontinuity with O(h?) accu-
racy. Even though, we do not need to find the zeros of g(z) but only to know if one of
them is placed in the interval (z;_1,2;_1/2) or in the interval (x;_1/2,7;). Evaluating
g(x) at x;_1,2;_1/2 and z; and using Bolzano’s theorem we can know in which of the
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previous subintervals we can find the discontinuity, if there is one. If the discontinuity
is placed in the interval (z;_1,2;_1/2), we will use p3() to extrapolate at Ti_12 in
order to obtain an O(h?®) approximation. On the other hand, if the discontinuity is
placed in the interval (z;_; /2, 2;), we will use p3(x) to extrapolate at xj_1/2- This
technique assures O(h?®) accuracy when a kink is placed in the central interval of the
stencil. This process is somewhat similar to the one described by Harten in [41] to
construct ENO subcell-resolution algorithm for conservation laws. Of course, the grid
must be fine enough so that the discontinuity can be detected. Thus, it must be a-
ssured that the grid spacing is below a critical value h. that guarantees the detection
of the singularity. The smoothness indicators used in this work are based on second
order differences, which are the base of the detection algorithm in [38]. As a conse-
quence, the value of the critical grid spacing h. can be directly taken from Section 4,
Lemma 2 of [38]. The interested reader can refer to [38] for a deeper explanation of
this point.

3.4. ENO property. It is important to remember that the technique presented
in Section 3.2 or 3.3 is basically a WENO algorithm where we modify the original
optimal weights in order to assure the maximum possible order close to discontinuities.

The new WENO technique assures that the resulting polynomial satisfies the
following properties:

e It is a piecewise polynomial interpolation composed of polynomials of even
degree 7.
e Every polynomial must satisfy the so-called essentially non-oscillatory pro-
perty, through the emulation of the ENO algorithm [14]:
— If the function f is smooth at the stencil S}, then the weight related to
this stencil will verify wj, = O(1).
— If the function f has a singularity at the stencil S}, then the correspon-
ding wj, will verify w}, < O (h").
If the weights wj, that appear in (2.3) are designed to satisfy the ENO property, then
¢j—r(x) in (2.2) is a nonlinear convex combination of polynomials built using smooth
stencils and where the contribution of stencils crossing discontinuities is negligible.

THEOREM 3.4. The new algorithm satisfies the ENO property fort > 2, satisfying
at the same time Theorem 3.2.

Proof. For t > 1 Theorem 3.2 is satisfied, so for ¢ > 2 it is also satisfied. From
(3.18), (3.23) and (3.26) we can see that for ¢ > 2:
o If the function f is smooth at the stencil S, then the weight related to this
stencil will verify wj, = O(1).
o If the function f has a singularity at the stencil S}, then the corresponding
wy, will verify wj, <O (k7).
This is precisely the ENO property. ]

4. Numerical experiments. In this section we have used the functions plotted
in Figure 7 and presented in (4.1), (4.2) and (4.3). The function in (4.1) is a piecewise
polynomial of degree eight. The function in (4.2) is the product of two sinusoidal
functions plus a polynomial. The function in (4.3) presents a jump discontinuity.
We have used a stencil of six points, i.e. r = 3 in (2.1), so no one of the functions
proposed can be interpolated exactly. Following Corollary 3.3 and Subsection 3.4,
we have chosen the parameters ¢t = 2 and ¢ < h* for the new algorithm shown in
Subsection 3.2. For WENO it is enough to choose t = 2 and € < h?, as shown in [15].
We have used in all the experiments the smoothness indicators proposed in (3.1).
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583 In all the experiments presented, in order to obtain lower resolution versions of
584 the initial data, we start from a discretized version at a higher resolution and then
585 we take one of every 2™ samples. Using interpolation we recover a high resolution
586 approximation of the original data. We have chosen to interpolate at the odd knots.
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F1G. 7. In this figure we represent the functions (4.1), (4.2) and (4.3) that will be used for the
numerical experiments of this section.

587 Example 1 Let’s start with the function plotted in Figure (7) to the left,
s (A1) f(z) = |(x — 3)(z — 1.5)(x — 0.5)(z + n)(x 4 0.3)(z + 0.6)(x + 5)(x + 1.5)|,
589 for —0.5 — ¢ < z < 0.5 — & Setting grid spacing to h; = %72’ =6,7,---,12, we
590 check the accuracy of the interpolation through a grid refinement analysis close to the
591 discontinuity at = 0. In order to obtain the error, we compare with the function
592 discretized with h;y1 = 2% The worst case is when the discontinuity does not fall
593 in a grid point (otherwise, there is always a smooth stencil). In order to assure the
594 worse case for all the discretizations used, we place the discontinuity around which
595 we will do the grid refinement analysis at * = —n, with n = (2/3)h13 and we place
596  the left side of the interval at © = —0.5 — £ with £ = 10h;3. These considerations are
597 only taken for doing the grid refinement analysis and would not be necessary in a real
598 application of the algorithm.
599 We consider the errors at the nodes {xgj,(;, Toj—d,T25—2, T2j, 242, T2j+4, x2j+6},
600 being xg; the prediction at the interval that contains the discontinuity (in this first
1 experiment close to = 0). Table 1 shows the results obtained by WENO algorithm
2 using the smoothness indicator proposed in (3.1) and whose expressions are shown
503 in (3.4). Table 2 shows the results obtained at the same points for the new optimal
| weights, described in Subsection 3.2, and WENO. The two tables show the order of
5 accuracy between the successive errors when refining the grid. We can see how the
506 accuracy is lost by both algorithms at the interval that contains the discontinuity.
507 Also, as explained in Subsection 3.2, WENO is designed to obtain optimal order at
8 smooth zones and to eliminate spurious oscillations close to discontinuities, but not
509 optimizing the order in this last case. This fact can be seen in Table 1 at x2;_4 and
610 x2;4+4. In both cases there are two smooth stencils, containing in total 5 points be-
611 longing to the same side of the singularity. This means that the maximum theoretical
612 accuracy that can be obtained is O(h®) and WENO algorithm obtains O(h?). As it
613 can be analyzed in Table 2, using the new optimal weights presented in Subsection
614 3.2, we attain the maximum theoretical accuracy in the whole interval except at the
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interval that contains the singularity. Table 3 shows the results obtained by the new
algorithm proposed in Subsection 3.3. We can see how the algorithm reproduces the
behavior of the algorithm presented in Subsection 3.2 in terms of accuracy, at the
intervals that are close to the discontinuity but do not contain it. At the interval that
contains the discontinuity we have managed to raise the accuracy using the strategy
inspired by ENO-Subcell resolution algorithm that was presented in Subsection 3.3.
Figure 8 shows the absolute error distribution for the three algorithms when interpo-
lating the function in (4.1) using 2'? = 4096 samples. To the left we can see the error
obtained by WENO algorithm, at the center the error obtained using the new weights
presented in Subsection 3.2 and to the right the error obtained by the new algorithm
presented in Subsection 3.3. We can see how the error presented in this last plot is
six orders of magnitude smaller than in the other two plots.

T2j—6 254 T25j-2 T2j 2542 L2544 L2546
i e; logy (:ﬁ) e; log, (ﬁ) e; log, (ﬁ) e; log, (fj) e; log, efﬁ) e; log, :j) e; log, :ﬁ)
6 | 1.848¢-08 - 4.867¢-07 - 2.031¢-06 - 1.0760-03 - 5.188¢-05 - 1.475¢-05 - 2.299¢-08 -
7 | 2.943e-10 5.973 2.972e-08 4.034 1.271e-07 3.998 1.075e-03 0.001 1.771e-06 4.873 2.325e-07 5.988 3.274e-10 6.133
8 | 4.668e-12 5.978 1.843e-09 4.011 7.934e-09 4.002 1.052e-03 0.032 1.901e-08 6.542 2.696e-09 6.430 4.914e-12 6.058
9 | 7.359e-14 5.987 1.148¢-10 4.005 4.941e-10 4.005 1.017e-03 0.048 5.484e-10 5.115 1.178e-10 4.516 7.546e-14 6.025
10 | 1.154¢-15 5.995 7.141c-12 4.007 2.974¢-11 1.054 8.539¢-04 0.253 3.132¢-11 4130 717112 4.038 1.171e-15 6.010
11 | 1.908e-17 | 5.918 | 4.482¢-13 3.994 1.94Te-12 3.938 1.491e-04 2,518 2.220e-12 3.818 1.673¢-13 3.940 1.735e-17 | 6.077
12 0 - 2.800e-14 4.000 1.212e-13 4.001 1.532e-04 -0.039 1.227e-13 4.177 2.806e-14 4.058 1.301e-18 3.737
TABLE 1
Grid refinement analysis for the smoothness indicators presented in (3.1) and WENO algorithm
for the function in (4.1). We can see how the accuracy is reduced at the interval that contains the
singularity and around it. At xo;_4 and x9;44 there is enough information to obtain O(h®) accuracy,
but WENO is not designed to optimize the accuracy close to the discontinuities.
T2j—6 T2j—4 T2j—2 T2j T2j42 L2544 T2j4+6
i e log, (f:) e log, (E—:ﬁ) e log, (Tjﬁ) ¢ log, (‘:T) ¢ log, ’L‘T) e; log, ’f—_]) e log, ﬁ)
6 | 1.848e-08 - 6.681e-09 - 2.052e-06 - 1.076e-03 - 3.048e-05 - 1.084e-05 - 2.299e-08 -
7 | 2.943e-10 5.973 1.240e-10 5.751 1.278e-07 4.005 1.077e-03 -0.000 9.762e-07 4.964 3.377e-08 8.326 3.275e-10 6.133
8 | 4.668¢-12 5.978 9.3340-12 3.732 7.961c-09 4.005 1.062¢-03 0.020 1.457c-08 6.066 5.100c-11 9.371 4.914c-12 6.058
9 | 7.359e-14 5.987 3.789%-13 4.623 4.956e-10 4.006 1.034e-03 0.039 5.593e-10 4.703 6.597e-13 6.272 7.546e-14 6.025
10 | 1.154e-15 5.995 1.294e-14 1.872 2.952%¢-11 1.069 8.537c-04 0.276 3.125¢-11 1.162 1.677c-14 5.208 1.171e-15 6.010
11 | 1.908e-17 5.918 4.454e-16 4.861 1.942¢-12 3.926 1.511e-04 2.499 2.121e-12 3.881 5.594e-16 4.906 1.735e-17 6.077
12 0 - 1400c-17 | 4.982 | 1.213¢-13 | 4.001 | 1.540c-04 | -0.028 | 1.232¢-13 | 4.106 | 1.518¢-17 | 5.204 | 8.674c-19 4.322
TABLE 2
Grid refinement analysis for the new optimal weights presented in Subsection 3.2 and WENO
algorithm for the function in (4.1). We can see how the accuracy is lost at the interval that contains
the singularity, but it is controlled close to it, decreasing step by step as we move towards the
singularity.
T2j—6 T2j—4 T2j-2 T2j T2j+2 Z2j+4 L2j+6
i e; log, (F’L) e; log, (F'L) e; log, (e(i.) e; log,y (e(f,.) e; logy e‘jﬂ) e; logy efi‘) e log, P:‘l:)
6 | 1.848e-08 - 6.681e-09 - 8.870e-05 - 1.416e-04 - 3.048e-05 - 1.084e-05 - 2.299e-08 -
7 | 2.943¢-10 5.973 1.240¢-10 5.751 1.278¢-07 9.439 1.610e-05 3.136 9.762¢-07 4.964 3.377¢-08 8.326 3.275¢-10 6.133
8 | 4.668e-12 5.978 9.334e-12 3.732 7.961e-09 4.005 1.911e-06 3.075 1.457e-08 6.066 5.100e-11 9.371 4.914e-12 6.058
9 | 7.359e-14 5.987 3.789%-13 4.623 4.956e-10 4.006 2.325e-07 3.039 5.593e-10 4.703 6.597e-13 6.272 7.546e-14 6.025
10 | 1.154e-15 5.995 1.294e-14 4.872 2.952e-11 4.069 2.810e-08 3.049 3.125e-11 4.162 1.677e-14 5.298 1.171e-15 6.010
11 | 1.908e-17 | 5.918 | 4.454e-16 4.361 1.942¢-12 3.926 3.573¢-09 2.975 2.121e-12 3.881 5.594e-16 4.906 1.735e-17 | 6.077
12 0 - 1.409e-17 | 4.982 | 1.213e-13 | 4.001 | 4.450e-10 | 3.005 | 1.232e-13 | 4.106 | 1.518e-17 | 5.204 | 8.674e-19 4.322
TABLE 3

Grid refinement analysis for the algorithm presented in Subsection 3.3 for the function in (4.1).
We can see how the accuracy is raised at the interval that contains the singularity and how the order
decreases in a controlled way, step by step as we move towards the singularity.
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Fic. 8. Absolute error obtained when reconstructing the function in (4.1) through WENO (left),
through the algorithm presented in Subsection 3.2 (center) and through the algorithm presented in
Subsection 3.3 (right). The original data was 8192 points and the subsampled data was 4096 points.

Example 2 Let’s continue with the function plotted in Figure (7) at the center,

(4.2) l(xz) = |sin (dw(x +n))|cos ((2(x +n)) +z, —-05—-&<x<05—-E&

As before, we set h; = %,z = 6,7,---,12, in order to check the accuracy of the
interpolation through a grid refinement analysis close to the singularity that is placed
in the interval (—0.3, —0.2). As before, in order to obtain the error we compare with
the function discretized with h;41 = 2% As mentioned in the previous experiment,
in order to assure that the singularities do not fall at a grid point, we shift the
function by n = (2/3)h13 and we place the left side of the interval at © = —0.5 — ¢
with € = 3hy3. Table 4 shows a grid refinement analysis for the results of WENO
algorithm at the singularity placed in the interval (—0.2,—0.3) of function in (4.2).
The conclusions that we can reach for this experiment are the same as those we
obtained for the previous experiment. We can clearly observe how the accuracy is
reduced around the interval that contains the singularity, but not in an optimal way.
Table 5 shows the results obtained for the same function but using WENO with the
new weights introduced in Subsection 3.2. We can see that the accuracy also decreases
around the central interval but, in this case, reducing the order one step at a time
as we proceed towards the singularity. Table 6 shows the results obtained using the
new algorithm introduced in Subsection 3.3. We can see that the order of accuracy
is optimal, including the interval that contains the singularity. Figure 9 shows the
absolute error distribution for the three algorithms when interpolating the function
in (4.2) using 2'? samples. As before, we can see how the error presented in the plot
to the right is several orders of magnitude smaller than the ones to the left and at the
center.
Example 3 Let’s finish with the function plotted in Figure (7) to the right,
—Ax" + 2* + 522 + 3z, 0.5 <z <0,
(4.3) f(m)_{ 8T+t 1524 3r+1, 0<z<0.5,
In this case we have set again h; = %,z =7,8,9---11, for the grid refinement analysis.
The function in (4.3) only presents a jump discontinuity that is placed at x = 0. Table
7 shows a grid refinement analysis for the results obtained using the WENO algorithm.
Table 8 shows the result obtained using the optimal weights presented in Subsection
3.2. In this case, the algorithm presented in Subsection 3.3 can not be applied, as the
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T2j-6 Loj—4 T25—2 25 L2542 T2j+4 L2j+6
i e log, (JT) e log, (E—:ﬁ) e log, (T::) e log, (‘57) e log, ’ET) e; log, ('f—_]) e log, ﬁ)
6 | 1.812¢-06 - 6.743¢-06 - 3.322¢-05 - 9.801c-04 - 1.064¢-04 - 1.735¢-05 - 6.014¢-07 -
7 | 2.312¢-08 6.202 3.3540-07 | 4.329 1.634¢-06 1.346 9.807¢-04 | -0.001 | 1.591¢-06 6.063 3.1426-07 5.787 2.348¢-10 | 11.322
8 | 3.274e-10 6.142 1.862¢-08 471 8.709¢-08 4.230 9.810c-04 | -0.000 | 5.206¢-08 4.934 1.198¢-08 4713 1.553¢-10 0.596
9 | 4.88%c-12 6.065 1.095¢-09 1.088 1.958¢-09 1135 9.790¢-04 0.003 3.677c-09 3.824 8.862¢-10 3.756 3.753¢-12 5.371
10 | 7.441e-14 6.033 6.637c-11 1.044 2.945¢-10 1.073 9.591c-04 0.030 2.520¢-10 3.867 5.976¢-11 3.890 6.881c-14 5.770
11 | 1.027e-15 |  6.179 | 4.086e-12 1.022 1.792¢-11 1.038 9.232¢-04 0.055 1.658¢-11 3.926 3.878¢-12 3.946 1.443¢-15 | 5.575
12 | 1.388¢-16 2.888 2537c-13 |  4.010 | 1.105e-12 | 4.019 | 7.755¢-04 | 0.251 | 1.063c-12 | 3.963 | 2.467c-13 | 3.974 | 1.388¢-16 3.379
TABLE 4
Grid refinement analysis for the smoothness indicators presented in (3.1) and WENO algorithm
for the function in (4.2). We can see how the accuracy is reduced at the interval that contains the
singularity and around it. At x2j_4 and x2;14 there is enough information to obtain O(h®) accuracy,
but WENO s not designed to optimize the accuracy close to the singularities.
T2j—6 T2j—a Taj—2 T2j L2542 T2j+4 T2j+6
i e log, (E"") e log, (F"'l) e log, (e(“ |) € log,y (e:““) € logy e:‘:‘) € logy (E“‘) e log, El"}:)
6 | 1.815¢-06 - 2.339¢-06 - 3.324¢-05 - 9.801¢-04 - 7.058¢-05 - 1.682¢-05 - 6.092¢-07 -
7 | 2.315¢-08 6.293 9.660¢-08 4.598 1.634¢-06 1.346 9.808¢-04 | -0.001 | 9.005¢-07 6.292 1.722¢-07 6.610 1.660c-10 | 11.842
8 [ 3:275e-10 6.143 3.324e-09 1.861 8.709¢-08 1.230 9812004 | -0.001 | 4.733¢-08 1250 | 4.230e-09 5.347 1.556¢-10 0.093
9 | 4.890c-12 6.066 1.090¢-10 1.930 1.958¢-09 4135 9.798¢-04 0.002 3.626¢-09 3.706 1.241¢-10 5.001 3.756¢-12 5.372
10 | 7.438¢-14 6.039 3.496¢-12 4.963 2.945¢-10 4.073 9.672¢-04 0.019 2.517¢-10 3.848 3.725¢-12 5.058 6.881c-14 5.771
11 | 1.027¢-15 | 6.179 | 1.107¢-13 4.981 1.792¢-11 1.038 9.386¢-04 0.043 1.658¢-11 3.924 1.143¢-13 5.027 1.443¢-15 | 5.575
12 | 1.943¢-16 2.402 3.192e-15 | 5.116 | 1.105e-12 | 4.020 | 7.753¢-04 | 0.276 | 1.063e-12 | 3.963 | 3.358¢-15 | 5.080 | 1.388¢-16 3.379
TABLE 5
Grid refinement analysis for the new optimal weights presented in Subsection 3.2 and WENO
algorithm for the function in (4.2). We can see how the accuracy is lost at the interval that contains
the singularity, but it is controlled close to it, decreasing step by step as we move towards the
singularity.
T2j—6 T2j-4 T2j-2 T2j 2542 L2544 L2546
i e log, (&) e log, ((cﬁ) e log, (("ﬁ) e; log, ((fj) e; log, (rfﬁ) €; logy (i) e; logy (
6 | 1.815¢-06 - 2.339¢-06 - 1.862c-03 - 2.322¢-03 - 7.058¢-05 - 1.682¢-05 - 6.092¢-07 -
7 | 2.315¢-08 6.203 9.660¢-08 1.598 2.599¢-04 2.841 2.8940-04 3.005 9.005¢-07 6.292 1.722¢-07 6.610 1.660c-10 | 11.842
8 | 3.275¢-10 6.143 3.324¢-09 1.861 3.382¢-05 2.942 3.567¢-05 3.020 1.733¢-08 1250 | 4.230e-09 5.347 1.556¢-10 0.093
9 | 4.890c-12 6.066 1.090¢-10 4.930 4.958¢-00 | 12.736 | 4.414¢-06 3.015 3.626¢-09 3.706 1.241c-10 5.001 3.756¢-12 5.372
10 | 7.438¢-14 6.039 3.496¢-12 4.963 2.945¢-10 1.073 5.485¢-07 3.008 2.517¢-10 3.848 3.725¢-12 5.058 6.881c-14 5.771
11| 1.027e-15 | 6.179 | 1.107-13 1.981 1.792e-11 1,038 6.835¢-08 3.005 1.658¢-11 3.924 1.143e-13 5.027 1.443¢-15 | 5.575
12 | 1.943¢-16 2.402 3.192¢-15 | 5.116 | 1.105e-12 | 4.020 | 8.5100-09 | 3.006 | 1.063c-12 | 3.963 | 3.358¢-15 | 5.089 | 1.388¢-16 3.379
TABLE 6
Grid refinement analysis for the algorithm presented in Subsection 3.3 for the function in (4.2).
We can see how the accuracy is raised at the interval that contains the singularity and how the order
decreases in a controlled way, step by step as we move towards the singularity.
657 position of the jump discontinuity has been lost in the discretization process [38]. We
658 can see how the new optimal weights allow to control the reduction of accuracy close
659 to the discontinuity.
Tj—6 T4 Toj—2 Taj T2j42 T2j4+4 T2j46
i e; log, ((:37) €; log, ((fj) €; log, ((fj) € log, <:,Ej) € log, (:7) €; log, (,,67,]) e; log, ﬁ)
6 | 8.073¢-11 - 1.284¢-08 - 5.5960-08 - 1.996¢-01 - 5.508¢-08 - 1.204c-08 - 1.349¢-10 -
7 | 8.178¢-13 6.625 8.054¢-10 3.995 3.493¢-09 4.002 1.999¢-01 | -0.001 3.486¢-09 3.982 8.061¢-10 1.004 8.493¢-13 7.311
8 | 9.354e-15 6.450 5.037e-11 3.999 2.183¢-10 4.000 5.000e-01 | -0.000 | 2.182¢-10 3.998 5.037e-11 4.000 377515 | 7.814
9 [ 119716 | 6.288 | 3.148¢-12 4.000 1.36de-11 4,000 5.0000-01 | -0.000 | 1.364e-11 4.000 3.148¢-12 4.000 2.220¢-16 4.087
10 0 - 1.968¢-13 1.000 8.527e-13 1.000 5.000e-01 | -0.000 | 8:527e-13 £.000 1.970e-13 3.999 0 -
11 0 - 1.230e-14 4.000 5.320¢-14 1.000 5.000e-01 | -0.000 | 5.329e-14 1.000 1.243¢-14 3.985 0 -
12 0 - 7.685c-16 | 4.000 | 3.331e-15 | 4.000 | 5.000e-01 | -0.000 | 3.331e-15 | 4.000 | 6.661c-16 | 4.222 | 2.220e-16 -
TABLE 7

Grid refinement analysis for the smoothness indicator proposed in (3.1) and WENO algorithm
for the function in (4.3). We can see how the accuracy is reduced at the central interval of the
stencil and around it.
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F1c. 9. Absolute error obtained when reconstructing the function in (4.2) through WENO (left),
through the algorithm presented in Subsection 3.2 (center) and through the algorithm presented in

Subsection 3.3 (right). The original data was 2'° points and the subsampled data was 2'2 points.
T2j-6 Toj—4 Tj-—2 Ta; L2542 Toj44 T2j+6
i € log, ((fj) € log, ((57) € log, ((57) € log, (ﬁ) €; log, ((fj) € log, (ﬁfg) e logy (’:’j)
6 | 8.073¢-11 - 1.295¢-10 - 5.597¢-08 - £.996-01 - 5.507¢-08 - 1.475¢-10 - 1.349¢-10 -
7 | 8.178e-13 6.625 1.201e-12 6.753 3.493e-09 4.002 4.999e-01 -0.001 3.486e-09 3.982 3.296e-12 7.085 8.493e-13 7.311
8 | 9.354e-15 6.450 1.235e-14 6.603 2.183e-10 4.000 5.000e-01 -0.000 2.182e-10 3.998 2.287e-14 7.171 3.775e-15 7.814
9 | 1.162e-16 6.331 1.440e-16 6.423 1.364e-11 4.000 5.000e-01 -0.000 1.364e-11 4.000 2.220e-16 6.687 2.220e-16 4.087
10 [ 1.735¢-18 | 6.066 | 1.735¢-18 | 6.375 | 8.527¢-13 4,000 5.0000-01 | -0.000 | 8:527¢-13 £.000 0 - 0 -
11 0 - 0 - 5.329e-14 4.000 5.000e-01 -0.000 5.329e-14 4.000 0 - 0
12 0 - 0 - 3.331e-15 4.000 5.000e-01 -0.000 3.331e-15 4.000 2.220e-16 - 0
TABLE 8

Grid refinement analysis for the new optimal weights and WENQO algorithm for the function
in (4.3). We can see how the accuracy is increased around the discontinuity.

Example 4 In this experiment we would like to check the computational perfor-
mance of the new algorithms compared to the classical WENO algorithm. The code
has been written in Matlab R2017b and executed in a laptop running OSX version
10.9.5 with a microprocessor Intel Core 15, 1.4GHz and 8 GB of RAM memory. In Ta-
ble 9 we present the results. In order to obtain each result presented in the table, we
have executed 50 times each algorithm with the same initial data, we have obtained
the computational time using the tic-toc buil-tin routines of Matlab and then we have
obtained the mean of the 50 results. The initial data have been the same as the one
used in the Examples 1, 2 and 3 at the same resolution used in the grid refinement
analysis presented. The conclusions that we can reach from these experiments is that
the new algorithms proposed are more expensive than the classical WENO, but not
so much. Comparing the two new algorithms presented in this paper, both behave
approximately the same in terms of computational time.

5. Conclusions. In this article we have presented and analyzed two strategies
that allow to improve the results obtained by WENO algorithm. The first one consists
in a new nonlinear design of the WENO optimal weights. This new strategy allows
to control the order of accuracy of the interpolation close to the discontinuity but
not in the interval that contains it. The second strategy is inspired by the ENO-
SR algorithm [41]. This second algorithm manages to raise the order of accuracy
even at the interval that contains the discontinuity. Both strategies make use of new
smoothness indicators that are inspired by those presented in [36]. The new algorithms
have been theoretically analyzed to determine the value of the parameters ¢ and e
that appear in (2.10) and (3.13). It turns out that the value of these parameters is
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Example 1 Example 2 Example 3

[ WENO | New WENO | WENO-SR | WENO | New WENO | WENO-SR | WENO | New WENO | WENO-SR
6 | 0.0039189 | 0.0050155 0.0067716 | 0.0037825 | 0.0063749 0.0055041 | 0.0040808 | 0.0060425 0.0060831
7 1 0.0041907 | 0.0064866 0.0072892 | 0.0032467 | 0.0066217 0.0074879 | 0.0028794 | 0.0070028 0.0056376
8

9

0.0052122 0.01333 0.0094176 | 0.0049805 0.0093341 0.010404 | 0.0046728 0.0094143 0.011844
0.0092705 0.021184 0.023047 | 0.0092013 0.019338 0.028683 | 0.0094946 0.018851 0.018876
10 | 0.01928 0.038014 0.045976 0.018954 0.034816 0.038187 0.018083 0.035791 0.036507
11 | 0.035951 0.061106 0.062691 0.034358 0.061173 0.060977 0.036714 0.061167 0.061914
12 | 0.059382 0.12116 0.12277 0.059937 0.12127 0.12286 0.059257 0.12214 0.12334

TABLE 9
In this table we present the computational time consumed by WENO, the algorithm presented
in Subsection 3.2 (labeled as New WENO) and the algorithm presented in Subsection 3.3 (labeled as
WENO-SR).

important in order to assure that the algorithms satisfy the ENO property, presented
in Subsection 3.4, and the accuracy requirement for which they have been designed:
attaining optimal accuracy control even close to kinks and jump discontinuities. The
numerical experiments presented confirm all the theoretical conclusions reached. This
work is the first one of a series of two, and is devoted to the point values version of the
algorithms presented. The second article [1] will be devoted to the cell averages and
how to implement a shock capturing scheme for the accurate solution of hyperbolic
conservation laws.

Acknowledgments. We would like to thank the referees and the editor for their
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quality of this paper.
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