

15 **Imaging and control of critical fluctuations in two-dimensional magnets**

16

17 Chenhao Jin^{1*}, Zui Tao^{1,2}, Kaifei Kang², Kenji Watanabe³, Takashi Taniguchi³, Kin Fai Mak^{1,2,4*},
18 Jie Shan^{1,2,4*}

19

20

21

22 ¹ Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY 14853, USA

23 ² School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA

24 ³ National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan.

25 ⁴ Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA.

26

27

28 * Correspondence to: jinchenhao@cornell.edu, km627@cornell.edu, jie.shan@cornell.edu

29

30 **Abstract:**

31 Strong magnetization fluctuations are expected near the thermodynamic critical point of a
32 continuous magnetic phase transition. Such critical fluctuations are highly correlated and in
33 principle can occur at any time- and length-scales¹; they govern critical phenomena and
34 potentially can drive new phases^{2,3}. Although critical phenomena in magnetic materials have
35 been studied using neutron scattering, magnetic AC susceptibility and other techniques⁴⁻⁶, direct
36 real-time imaging of critical magnetization fluctuations remains elusive. Here we develop a fast
37 and sensitive magneto-optical imaging microscope to achieve wide-field, real-time monitoring of
38 critical magnetization fluctuations in single-layer ferromagnetic insulator CrBr₃. We track the
39 critical phenomena directly from the fluctuation correlations and observe both slowing-down
40 dynamics and enhanced correlation length. Through real-time feedback control of the critical
41 fluctuations, we further achieve switching of magnetic states solely by electrostatic gating. The
42 ability to directly image and control critical fluctuations in 2D magnets opens up exciting
43 opportunities to explore critical phenomena and develop applications in nanoscale engines and
44 information science.

45

46

47 Two-dimensional (2D) van der Waals magnets have attracted much recent interest^{2,3,7-19}. As
48 atomically-thin layers, they have been incorporated into van der Waals heterostructures and
49 device architectures to enable novel functionalities, such as gate-controllable magnetism and
50 spin-filter tunneling⁹⁻¹⁴. The 2D nature of layered magnets also leads to distinct physical
51 properties from that of their bulk counterparts, ranging from stacking-dependent magnetism to
52 topological spin excitations¹⁵⁻¹⁹. Of particular interest are magnetization fluctuations near a
53 thermodynamic critical point^{2,3}, which are crucial to understanding magnetism in two dimensions
54 but remain largely unexplored experimentally. In three dimensions the phase space for thermal
55 fluctuations to become critical is small and difficult to access according to the Ginzburg
56 criterion^{1,20}. In one-dimension fluctuations are so strong that magnetic long-range order is
57 typically destroyed²¹. 2D layered magnets, in which fluctuations and long-range order reach a
58 good balance, are therefore ideal to access and harness critical magnetization fluctuations.

59 Here we demonstrate real-time imaging of critical magnetization fluctuations and direct
60 determination of their temporal and spatial correlations in single-layer ferromagnetic insulator
61 CrBr_3 by a fast and sensitive magneto-optical imaging technique. We observe macroscopic
62 spatial correlations and orders-of-magnitude change in the correlation time within around 0.5 K
63 of the Curie temperature T_c . The observed extreme sensitivity of magnetization fluctuations to
64 environment is different from non-critical thermal fluctuations in minuscule systems, and enables
65 unprecedented flexibility for control. We are thereby able to switch the magnetic state of 2D
66 CrBr_3 in a non-volatile, magnetic-field-free and current-free manner by harnessing critical
67 fluctuations as a stochastic driving force, i.e. by toggling the critical fluctuations based on a real-
68 time measurement of the magnetic state.

69 Being stochastic in nature, direct observation of critical fluctuations in real-time for a large
70 sample area is challenging. We have developed a real-time magnetic circular dichroism (MCD)
71 imaging technique that combines high temporal (up to 100 frames per second) and spatial (~ 600
72 nm) resolution with high sensitivity, which allows us to monitor the magnetization fluctuations
73 in a single-layer ferromagnet CrBr_3 . Figure 1a shows an illustration of our experimental setup. It
74 enhances the optical contrast of MCD through polarization control (see Supplementary Note 2
75 and Methods). The concept of polarization control is well known in polarization microscopy, but
76 the enhancement of the optical contrast is limited by the low polarization extinction ratio, which
77 is typically several hundred due to polarization distortion from high numerical-aperture (NA)
78 objectives^{22,23}. The key improvement of our technique is to separate the effective NA for
79 illumination and imaging: A long-focal-length lens L1 focuses the illumination beam roughly at
80 the back aperture of an objective, minimizing the effective NA for illumination and thus
81 polarization distortion. Similarly, specular-reflected light from a featureless substrate also
82 maintains high polarization purity. However, scattered light from features on the sample is
83 collected with the large effective NA of the objective. The spatial resolution is thus not
84 compromised, as there is no physical aperture limiting the NA in the collection path. We are
85 therefore able to achieve simultaneously a high extinction ratio ($> 3 \times 10^4$) and high spatial
86 resolution (~ 600 nm) over the entire field of view. In this configuration, the optical contrast is
87 approximately proportional to the MCD signal (and therefore also the out-of-plane magnetization
88 of the sample), but is enhanced by more than 100 times compared to the MCD signal without
89 polarization control. In addition, because the MCD signal is determined by the dielectric function
90 of the sample and the local field factor of the environment, we can optimize the substrate to
91 further improve the optical contrast by a few times (see Supplementary Note 3).

92 Figure 1b shows an optical microscopy image of a monolayer CrBr₃ sample S1 (inside the
93 white dashed box), which is encapsulated with hexagonal boron nitride (hBN) on both sides. It
94 shows a giant magneto-optical contrast of $\pm 60\%$ for the two remanent magnetization states at 18
95 K (Fig. 1c and 1d), which are prepared by cooling the sample under an out-of-plane magnetic
96 field of different polarities. Here the optical contrast is evaluated by using reflection from the
97 CrBr₃ sample above T_c as reference. A nearby CrBr₃ flake (inside the green dashed box) can also
98 be seen, but will not be focused on because of its smaller size. We first characterize the CrBr₃
99 monolayer (averaged over a 3x3 μm area in the center) away from T_c . The magnetization against
100 magnetic field shows a hysteresis loop below T_c and paramagnetic behavior above T_c (Fig. 1e).
101 We extract the remanent magnetization from the data below T_c (Fig. 1h) and the DC magnetic
102 susceptibility χ from the data above T_c (red circles, Fig. 1f). The remanent magnetization
103 decreases when temperature T approaches T_c from below; and χ increases dramatically when T
104 approaches T_c from above. In contrast, a thin bulk CrBr₃ flake (~ 10 nm thick) shows a much
105 weaker temperature dependence in susceptibility above T_c and no remanent magnetization below
106 T_c (black squares, Fig. 1f). The lack of remanent magnetization is presumably due to domains or
107 antiferromagnetic ordering from the interlayer exchange and/or dipole-dipole interaction^{7,8}. We
108 determine T_c by fitting the temperature-dependent susceptibility to a critical scaling law $\chi \sim (T -$
109 $T_c)^{-\gamma}$ (Fig. 1g). We obtain $T_c \approx 22.3$ K and 28 K, and critical exponent $\gamma \approx 2.4$ and 1.2 for the
110 monolayer and thin bulk samples, respectively. The value of T_c for the monolayer determined
111 from susceptibility is consistent with the temperature dependence of the magnetization amplitude,
112 which shows a sharp drop near 22.3 K (Fig. 1h). The critical exponent γ of the thin bulk matches
113 well with previous results for bulk CrBr₃, and is close to the mean-field value ($\gamma = 1$)²⁴. On the
114 other hand, the critical exponent for monolayer CrBr₃ is between the predictions of a 2D Ising (γ

115 = 1.75) and 2D Heisenberg ($\gamma = 3$) model^{25,26}. This can potentially be understood from a recent
116 theoretical proposal that 2D CrBr₃ is described by a 2D XXZ model with anisotropic exchange
117 interaction¹⁷, and shows a crossover behavior between the Ising and Heisenberg model. Although
118 the exact model to describe 2D CrBr₃ is still under debate¹⁷⁻¹⁹, our observation demonstrates its
119 distinct behavior from that of the bulk, and substantial deviation from the mean-field description
120 due to enhanced fluctuations in 2D.

121 As temperature further approaches T_c (22.3K) from below, the magnetization in monolayer
122 CrBr₃ starts to fluctuate spontaneously under zero external magnetic field. Such fluctuations are
123 not observed in the bulk sample under the same experimental conditions (see supplementary
124 movie 1). We analyze both the temporal and spatial dependences of the magnetic fluctuations in
125 monolayer CrBr₃. Figure 2a summarizes the fluctuation amplitude map of the magnetization,
126 $\delta M(\mathbf{r}) = \sqrt{\langle M(\mathbf{r}, t)^2 \rangle - \langle M(\mathbf{r}, t) \rangle^2}$, at representative temperatures (see supplementary movie 2-
127 13 for the real-time magnetization fluctuations). Here $M(\mathbf{r}, t)$ is the out-of-plane magnetization
128 at a given point (\mathbf{r}, t) in space and time, and the time average $\langle \dots \rangle$ is equivalent to the ensemble
129 average by assuming ergodicity (see Methods). The magnetization fluctuations first emerge at
130 the corners of the monolayer flake at 21.6 K, quickly expand into the center with increasing
131 temperature, remain large until T_c , then rapidly diminish above T_c . Figure 2c shows the
132 magnetization dynamics at a fixed location P1 (green circle in Fig. 2a) for varying temperatures.
133 The measured magnetization fluctuation dynamics and their temperature dependence resemble
134 the result of a Monte Carlo simulation for a 2D Ising model²⁷. Particularly, in the vicinity of T_c ,
135 the magnetization shows random values between that of the fully spin-up state (referred to as
136 state “1”) and the fully spin-down state (state “0”). This strongly supports that the observed
137 magnetization fluctuations are critical fluctuations. We have also carried out several control

138 experiments to exclude potential experimental artifacts for the observed magnetization
139 fluctuations (see Supplementary Note 8). Particularly, we have verified that the probe light has
140 no effect on the fluctuations except for a systematic temperature shift of $\sim 0.05\text{K}$.

141 The central quantity that describes the critical fluctuations is the fluctuation correlation
142 function between magnetizations at point \mathbf{r}_1 and \mathbf{r}_2 separated by time Δt (Ref.¹)

143
$$C(\mathbf{r}_1, \mathbf{r}_2, \Delta t) = \langle M(\mathbf{r}_1, t)M(\mathbf{r}_2, t + \Delta t) \rangle - \langle M(\mathbf{r}_1, t) \rangle \langle M(\mathbf{r}_2, t + \Delta t) \rangle. \quad (1)$$

144 The temporal correlation at a given point, $C(\mathbf{r}_1 = \mathbf{r}_2, \Delta t)$, contains direct information of the
145 dynamics in the critical regime. Figure 2d shows the temporal correlation function at position P1
146 at varying temperatures. It is well described by $e^{-\Delta t/\tau}$, where τ is the correlation decay time. The
147 fluctuations are substantially slowed down at 21.8 K (green curve in Fig. 2c), leading to a
148 marked increase in τ . Figure 2e summarizes the correlation decay time as a function of
149 temperature. The significant slowing-down (up to a second) is a consequence of the enhanced
150 critical magnetic fluctuations in 2D and has been independently confirmed by AC susceptibility
151 measurements (see Methods and Supplementary Note 7 for more discussions). The peak of the
152 correlation decay time, however, occurs at about 0.5 K below the average T_c of the sample
153 (vertical dashed line). A more complete picture is obtained by examining the spatial dependence
154 of the correlation decay time (Fig. 2b). The correlation decay time shows orders-of-magnitude
155 change across the sample at a fixed temperature. It is peaked at slightly different temperatures for
156 different locations. The slowing-down dynamics is in accord with the large fluctuation amplitude
157 shown in Fig. 2a, both occurring within a narrow temperature range ($\pm 0.5\text{ K}$) of T_c and both
158 showing strong spatial inhomogeneity. Potential sources for inhomogeneity include the physical
159 boundary, spatial variations in the carrier doping density (which changes T_c as shown in Fig. 4),

160 local strain, etc. The extreme sensitivity of magnetic fluctuations to perturbations in the vicinity
161 of the critical point further supports their critical nature.

162 The critical behavior of the magnetic fluctuations and the spatial inhomogeneity effects are
163 also clearly seen in the spatial correlation function $C(\mathbf{r}_1, \mathbf{r}_2, \Delta t = 0)$. Figure 3a shows $C(\mathbf{r}_1, \mathbf{r}_2)$
164 at several representative temperatures (see Supplementary Note 4 for more temperatures), where
165 \mathbf{r}_1 is mapped over the entire field of view and \mathbf{r}_2 is fixed at position P1 (left panel) or P2 (right
166 panel). Below T_c , the correlation functions at both positions are anisotropic with different
167 patterns. The three-fold pattern (P1) and two-fold pattern (P2) at 22.2 K reflect the local
168 geometry of the boundary. Above T_c , on the other hand, the patterns become largely isotropic
169 since the inhomogeneity effect is less important when the long-range magnetic order is destroyed.
170 Figure 3b and 3c show a line cut of the correlation function map for position P1 and P2,
171 respectively, along the dotted lines in Fig. 3a at varying temperatures. The correlation functions
172 feature both an oscillatory component and an exponential envelope function, and can be well
173 fitted by $\cos(\frac{\pi l}{\lambda}) e^{-\frac{l}{\xi}}$ (solid lines in Fig. 3b and 3c). Here l is the distance to position P1 or P2;
174 and λ and ξ represent the oscillation half-period and the decay length, respectively. An enhanced
175 correlation decay length ξ is seen for both positions near T_c , but it peaks at slightly different
176 temperatures (Fig. 3e), again showing the effect of sample inhomogeneity. The oscillatory
177 component in the spatial correlation is not well understood. It suggests the presence of a domain-
178 like structure with a characteristic width λ (Fig. 3d). The extracted width λ is larger than the
179 sample size for T below ~ 21 K (see Supplementary Movie 2) and decreases rapidly when T
180 approaches T_c . Such a behavior is consistent with the prediction that in 2D ferromagnets even a
181 tiny dipole-dipole interaction becomes increasingly important near T_c and leads to a decreased
182 domain size^{28,29}.

183 The sharp temperature dependence of the critical magnetization fluctuations in 2D magnets
184 demonstrated above is fundamentally different from the behavior of non-critical Brownian
185 fluctuations in minuscule systems³⁰ and opens up opportunities for their efficient control. We
186 fabricate field-effect devices of monolayer CrBr₃ with a graphene gate and contact, and achieve
187 tuning of T_c at a rate of ~ -0.4 K/V by applying a gate voltage V_g . Gating primarily introduces
188 doping and tunes the intralayer magnetic exchange coupling in monolayer CrBr₃ (See Methods
189 and Supplementary Note 6)¹³. Because critical fluctuations depend sensitively on how close the
190 system is from the critical point, they can be effectively controlled by V_g for instance at a fixed
191 sample temperature. Figure 4a shows the magnetization dynamics of device S2 under different
192 gate voltages at 17.90 K (below T_c at $V_g=0$ V). The corresponding gate-dependent fluctuation
193 amplitude and the correlation decay time are shown in Fig. 4b. At this temperature, application
194 of $V_g < 0.5$ V can turn on the critical fluctuations that are absent without V_g . In Fig. 4c we
195 demonstrate switching of a magnetic bit by harnessing the critical fluctuations. In the unshaded
196 regions ($V_g=0$ V), the critical fluctuations are absent, and the magnetic bit stays either in state “1”
197 or state “0” as prepared. In the yellow shaded regions ($V_g=0.4$ V), the fluctuations are activated.
198 Using real-time feedback control (i.e. removing V_g at the right moment according to the real-time
199 magnetization measurement), one can set the bit into a desired state (see Supplementary Note 5
200 for similar switching operation in sample S1 with optical control). Because the spontaneous and
201 stochastic fluctuations are the only driving force here, the outcome cannot be deterministic
202 without feedback. For example, Fig. 4d shows that the magnet can be stochastically switched
203 between state “1” and “0” by applying square gate voltage pulses with an amplitude 0.4 V and a
204 pulse width 50 ms (see Methods). Deterministic logical operations can, however, be achieved by
205 making one measurement after each gate pulse and stop the procedure until the desired state is

206 reached; and in principle the only energy cost of the switching operation is in measuring the
207 system's state. This critical-fluctuation-based concept can therefore potentially provide a
208 solution to efficient magnetic processing and storage, such as logic gates and race-track memory.

209 We note that complete understanding of the critical fluctuations in 2D CrBr₃ will require a
210 sophisticated model that at least accounts for finite magnetic anisotropy, dipolar interaction and
211 the boundary effect in a framework beyond the mean-field theory. It would be interesting to see
212 the potential crossover between different universality classes or the emergence of hidden phases
213 near the critical point^{28,29} and real-time imaging of fluctuations can provide invaluable
214 information to that purpose. Nevertheless, our observation clearly demonstrates an unexplored
215 and unique aspect of 2D layered ferromagnets compared to their bulk counterparts. Combining
216 the opportunity to access the critical fluctuation regime in 2D, the device-compatibility of
217 layered materials to enable electrical readout and manipulation, and the magneto-optical imaging
218 technique to monitor magnetization fluctuations in real-time, 2D layered magnets provide an
219 attractive platform for studying spin fluctuations and critical phenomena, as well as for
220 fluctuation-based apparatuses such as dissipationless memories, Brownian motors and reservoir
221 computation.

222

223

224 **References**

225 1 Kardar, M. *Statistical Physics of Fields*. (Cambridge University Press, 2007).
226 2 Gibertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, K. S. Magnetic 2D materials and
227 heterostructures. *Nat Nanotechnol* **14**, 408-419, (2019).
228 3 Burch, K. S., Mandrus, D. & Park, J. G. Magnetism in two-dimensional van der Waals materials.
229 *Nature* **563**, 47-52, (2018).
230 4 Dunlavy, M. J. & Venus, D. Critical slowing down in the two-dimensional Ising model measured
231 using ferromagnetic ultrathin films. *Phys Rev B* **71**, 144406, (2005).
232 5 Djurberg, C. *et al.* Dynamics of an interacting particle system: Evidence of critical slowing down.
233 *Phys Rev Lett* **79**, 5154-5157, (1997).
234 6 Collins, M. F. *Magnetic Critical Scattering*. (Oxford University Press, 1989).
235 7 Huang, B. *et al.* Layer-dependent ferromagnetism in a van der Waals crystal down to the
236 monolayer limit. *Nature* **546**, 270-+, (2017).
237 8 Gong, C. *et al.* Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals.
238 *Nature* **546**, 265-+, (2017).
239 9 Song, T. C. *et al.* Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures.
240 *Science* **360**, 1214-+, (2018).
241 10 Klein, D. R. *et al.* Probing magnetism in 2D van der Waals crystalline insulators via electron
242 tunneling. *Science* **360**, 1218-+, (2018).
243 11 Deng, Y. J. *et al.* Gate-tunable room-temperature ferromagnetism in two-dimensional Fe₃GeTe₂.
244 *Nature* **563**, 94-+, (2018).
245 12 Huang, B. *et al.* Electrical control of 2D magnetism in bilayer CrI₃. *Nat Nanotechnol* **13**, 544-+,
246 (2018).
247 13 Jiang, S. W., Li, L. Z., Wang, Z. F., Mak, K. F. & Shan, J. Controlling magnetism in 2D CrI₃ by
248 electrostatic doping. *Nat Nanotechnol* **13**, 549-+, (2018).
249 14 Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices.
250 *Science* **363**, 706-+, (2019).
251 15 Chen, L. B. *et al.* Topological Spin Excitations in Honeycomb Ferromagnet CrI₃. *Phys Rev X* **8**,
252 041028, (2018).
253 16 Sivadas, N., Okamoto, S., Xu, X. D., Fennie, C. J. & Xiao, D. Stacking-Dependent Magnetism in
254 Bilayer CrI₃. *Nano Lett* **18**, 7658-7664, (2018).
255 17 Lado, J. L. & Fernandez-Rossier, J. On the origin of magnetic anisotropy in two dimensional CrI₃.
256 *2d Mater* **4**, 035002, (2017).
257 18 Xu, C. S., Feng, J. S., Xiang, H. J. & Bellaiche, L. Interplay between Kitaev interaction and single
258 ion anisotropy in ferromagnetic CrI₃ and CrGeTe₃ monolayers. *Npj Comput Mater* **4**, 57, (2018).
259 19 Lee, I. *et al.* Fundamental Spin Interactions Underlying the Magnetic Anisotropy in the Kitaev
260 Ferromagnet CrI₃. *Phys Rev Lett* **124**, 017201, (2020).
261 20 Alsnielsen, J. & Birgeneau, R. J. Mean Field-Theory, Ginzburg Criterion, and Marginal
262 Dimensionality of Phase-Transitions. *Am J Phys* **45**, 554-560, (1977).
263 21 Mermin, N. D. & Wagner, H. Absence of Ferromagnetism or Antiferromagnetism in One- or 2-
264 Dimensional Isotropic Heisenberg Models. *Phys Rev Lett* **17**, 1133-&, (1966).
265 22 Robinson, P. C. & Bradbury, S. *Qualitative Polarized-Light Microscopy*. (Oxford University Press,
266 1992).
267 23 Liu, K. H. *et al.* High-throughput optical imaging and spectroscopy of individual carbon
268 nanotubes in devices. *Nat Nanotechnol* **8**, 917-922, (2013).
269 24 Ho, J. T. & Litster, J. D. Divergences of Magnetic Properties of Cr₃Br₂ near Critical Point. *J Appl
270 Phys* **40**, 1270-&, (1969).

271 25 Fisher, M. E. Renormalization Group in Theory of Critical Behavior. *Rev Mod Phys* **46**, 597-616,
272 (1974).

273 26 Wilson, K. G. Renormalization Group - Critical Phenomena and Kondo Problem. *Rev Mod Phys* **47**,
274 773-840, (1975).

275 27 Giordano, N. J. *Computational physics*. (Second edition. Upper Saddle River, NJ :
276 Pearson/Prentice Hall, [2006] ©2006, 2006).

277 28 Kashuba, A. & Pokrovsky, V. L. Stripe Domain-Structures in a Thin Ferromagnetic Film. *Phys Rev*
278 **Lett** **70**, 3155-3158, (1993).

279 29 Portmann, O., Vaterlaus, A. & Pescia, D. An inverse transition of magnetic domain patterns in
280 ultrathin films. *Nature* **422**, 701-704, (2003).

281 30 Jia, D. D., Hamilton, J., Zaman, L. M. & Goonewardene, A. The time, size, viscosity, and
282 temperature dependence of the Brownian motion of polystyrene microspheres. *Am J Phys* **75**,
283 111-115, (2007).

284

285

286 **Methods:**

287 Sample preparation: Thin flakes of CrBr₃ encapsulated by hexagonal boron nitride (hBN) on
288 both sides were employed in this study. The hBN-CrBr₃-hBN stacks were fabricated using a dry
289 transfer method³¹. CrBr₃ and hBN flakes were first exfoliated from their bulk crystals onto
290 silicon substrates with a 300-nm oxide layer. The thickness of hBN and thicker flakes of
291 CrBr₃ was determined by atomic force microscopy. The thickness of 2D CrBr₃ was
292 determined from the calibrated optical reflection contrast (see Supplementary Note 1). A
293 stamp made of polycarbonate (PC) on polydimethylsiloxane (PDMS) was used to pick up the
294 top hBN flake, the CrBr₃ flake and the bottom hBN flake from Si substrates in sequence at
295 40°C. For gate-tunable monolayer CrBr₃ device S2, two additional bilayer graphene flakes were
296 exfoliated from bulk crystals and picked up during the assembly, serving as the contact and back
297 gate, respectively. The complete structure was then stamped onto a clean silicon substrate with
298 pre-patterned gold electrodes at 120°C to delaminate the PC film with the heterostructure from
299 the PDMS layer. The residual PC was dissolved in chloroform at room temperature. The
300 transfer process was performed inside a nitrogen gas filled glovebox with less than 1 part per
301 million (ppm) oxygen and moisture to avoid degradation of the CrBr₃ flakes.

302 Real-time MCD imaging: A 409-nm laser diode (Thorlabs L405P150) was used as the probe
303 light source. The photon energy was chosen to be slightly below the absorption edge of CrBr₃ to
304 enhance the magneto-optical sensitivity. Two Glan-Taylor polarizers (Thorlabs GT10), one
305 broadband half-wave plate (Thorlabs AHWP05M-600) and one broadband quarter-wave plate
306 (Thorlabs AQWP05M-600) were used to control and analyze the polarization of the probe beam.
307 The probe beam transmitted through a beamsplitter (Thorlabs BS028) and an objective (Olympus
308 LUCPlanFLN 40x, NA = 0.6), and impinged on the sample. The beamsplitter was mounted on a

309 post by epoxy to minimize strain and polarization distortion from strain. Samples were mounted
310 in a Montana cryostation (Standard series). An out-of-plane magnetic field was applied through a
311 home-made coil surrounding the sample chamber with a maximum field strength of 20 Oe. The
312 incident intensity of the probe beam on the sample was $0.09 \mu\text{W}/\mu\text{m}^2$ for all the measurements
313 presented in the text. For control experiment with different probe beam intensities, see
314 Supplementary Note 8. A 2D electron-multiplying CCD camera (Princeton Instruments, ProEM
315 512x512) was used to detect reflected light for real-time imaging.

316 Measurement of magnetic properties away from T_c : The hysteresis loop of CrBr_3 monolayer (Fig.
317 1e) and the DC magnetic susceptibility of both the CrBr_3 monolayer and the thin bulk CrBr_3 (Fig.
318 1f and 1g) were obtained from the magnetization-magnetic field (M-H) dependence under an
319 external magnetic field provided by the home-made coil. The magnetization of each flake was
320 obtained by averaging the magneto-optical contrast over a $3 \times 3 \mu\text{m}$ region in the center of the
321 flake. For temperatures close to T_c , the M-H curve of monolayer CrBr_3 becomes ill-defined due
322 to the stochastic critical spin fluctuations at the macroscopic scale. Remanent magnetization in
323 Fig. 1h is obtained by averaging the magneto-optical contrast over the $3 \times 3 \mu\text{m}$ region and 70
324 second to average out fluctuations.

325 Extraction of the correlation functions from real-time images: The temporal and spatial
326 correlation functions (Fig. 2 and 3) were obtained directly from the real-time images of the
327 magnetization fluctuations following the definition given in the text. The average was calculated
328 as a time average over 5000 frames (taken at 70 frames per second) at each temperature. We note
329 that, owing to the importance of the spatial inhomogeneity effect, common analysis methods that
330 require spatial averaging, such as the Fourier transform³², become not applicable. The time
331 average adopted in this study is closer to the original definition of the ensemble average given

332 the uniformity in time at equilibrium, and can directly provide information on the effects of
333 spatial inhomogeneity.

334 Unusually strong critical slowing-down in 2D CrBr₃: Although critical fluctuations in principle
335 can occur at any timescale, critical dynamics observed in solid-state spin systems is usually
336 faster than a millisecond^{4,33}. To further verify the remarkable critical slowing-down in 2D CrBr₃
337 observed in real-time imaging, we performed AC susceptibility measurement as an independent
338 probe. AC susceptibility is commonly used to determine the relaxation time of a system and its
339 critical dynamics^{4,5}. Prominent critical slowing-down is observed in monolayer CrBr₃ with
340 timescales over a hundred milliseconds, but not in a ~ 10 nm thin bulk reference sample (see
341 Supplementary Note 7). The good agreement between the AC susceptibility and real-time
342 imaging measurements further confirms that the observed fluctuations are from the intrinsic
343 critical behaviors of 2D CrBr₃. The differences between the monolayer and bulk CrBr₃ samples
344 support enhanced critical fluctuations in 2D.

345 Magnetic switching of 2D CrBr₃: Measurement was performed to determine the state of a
346 magnetic bit following the application of a square gate pulse that temporarily enables critical
347 fluctuations. Gate pulses of variable amplitude and width were generated by a digital delay/pulse
348 generator (Stanford Research DG535), which was triggered by a data acquisition (DAC) card
349 (National instruments USB-6212). In Fig. 4d, the gate pulses have an amplitude 0.4 V and a
350 pulse width 50 ms. The DAC card also triggered the electron-multiplying CCD camera to
351 synchronize the electrical control and the MCD imaging. Measurement of the magnetization of
352 the bit was made 200 ms after the start of each pulse to ensure that V_g and hence critical
353 fluctuations are turned off. The above process was repeated with periodicity of 300 ms to obtain
354 measurement sequences as exemplified in Fig. 4d.

355 **Data availability:**

356 The data that support the findings of this study are available within the paper and its
357 Supplementary Information. Additional data are available from the corresponding authors upon
358 request.

359 **References for Methods**

360 31 Wang, L. *et al.* One-Dimensional Electrical Contact to a Two-Dimensional Material. *Science* **342**,
361 614-617, (2013).

362 32 Honerkamp-Smith, A. R., Veatch, S. L. & Keller, S. L. An introduction to critical points for
363 biophysicists; observations of compositional heterogeneity in lipid membranes. *Bba-Biomembranes* **1788**, 53-63, (2009).

365 33 Zhang, J. *et al.* Discovery of slow magnetic fluctuations and critical slowing down in the
366 pseudogap phase of YBa₂Cu₃O_y. *Sci Adv* **4**, aao5235, (2018).

367

368 **Competing interests:**

369 The authors declare no competing interests.

370 **Acknowledgements**

371 We acknowledge discussions with J. Sethna and J. Kent-Dobias. This work was supported by the
372 National Science Foundation (NSF, DMR-1807810) for the development of the magneto-optical
373 imaging microscope, the ARO Award W911NF-17-1-0605 for sample and device fabrication,
374 the Cornell Center for Materials Research with funding from the NSF MRSEC program (DMR-
375 1719875) for optical characterizations, and the Air Force Office of Scientific Research under
376 award number FA9550-19-1-0390 for data analysis. The growth of hBN crystals was supported
377 by the Elemental Strategy Initiative of MEXT, Japan and CREST (JPMJCR15F3). K.F.M.
378 acknowledges support from a David and Lucille Packard Fellowship. C.J. acknowledges support
379 from a Kavli Postdoctoral Fellowship. Z.T. acknowledges support from THE WATT W. WEBB
380 Graduate Fellowship in Nanoscience.

381 **Author contributions**

382 C.J. conceived the experiment. C.J. and Z.T. developed the measurement technique and
383 performed the experiment and analysis; Z.T. prepared the samples and K.K. fabricated the
384 devices. K.W. and T.T. grew the bulk hBN crystals. C.J., K.F.M. and J.S. co-wrote the
385 manuscript. All authors discussed the results and commented on the manuscript.

386

387

388 **Figure captions**

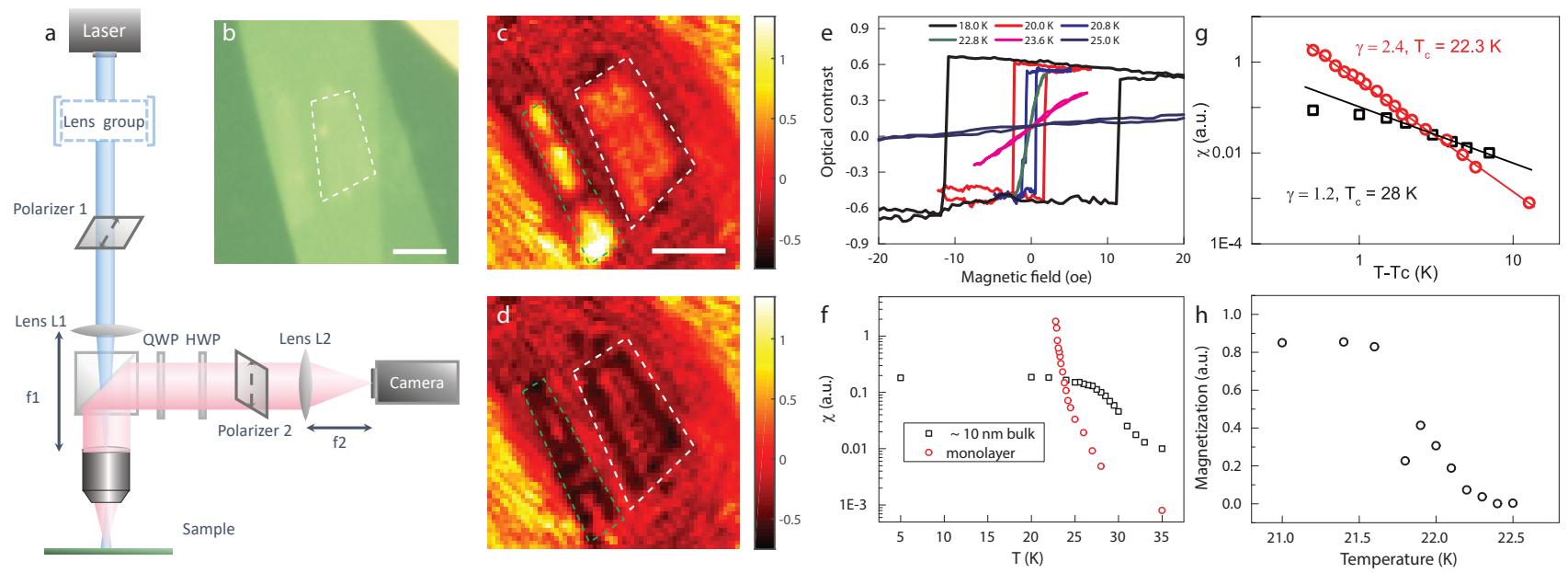
389 **Figure 1 | Polarization-enhanced magnetic circular dichroism (MCD) imaging of 2D CrBr₃.**

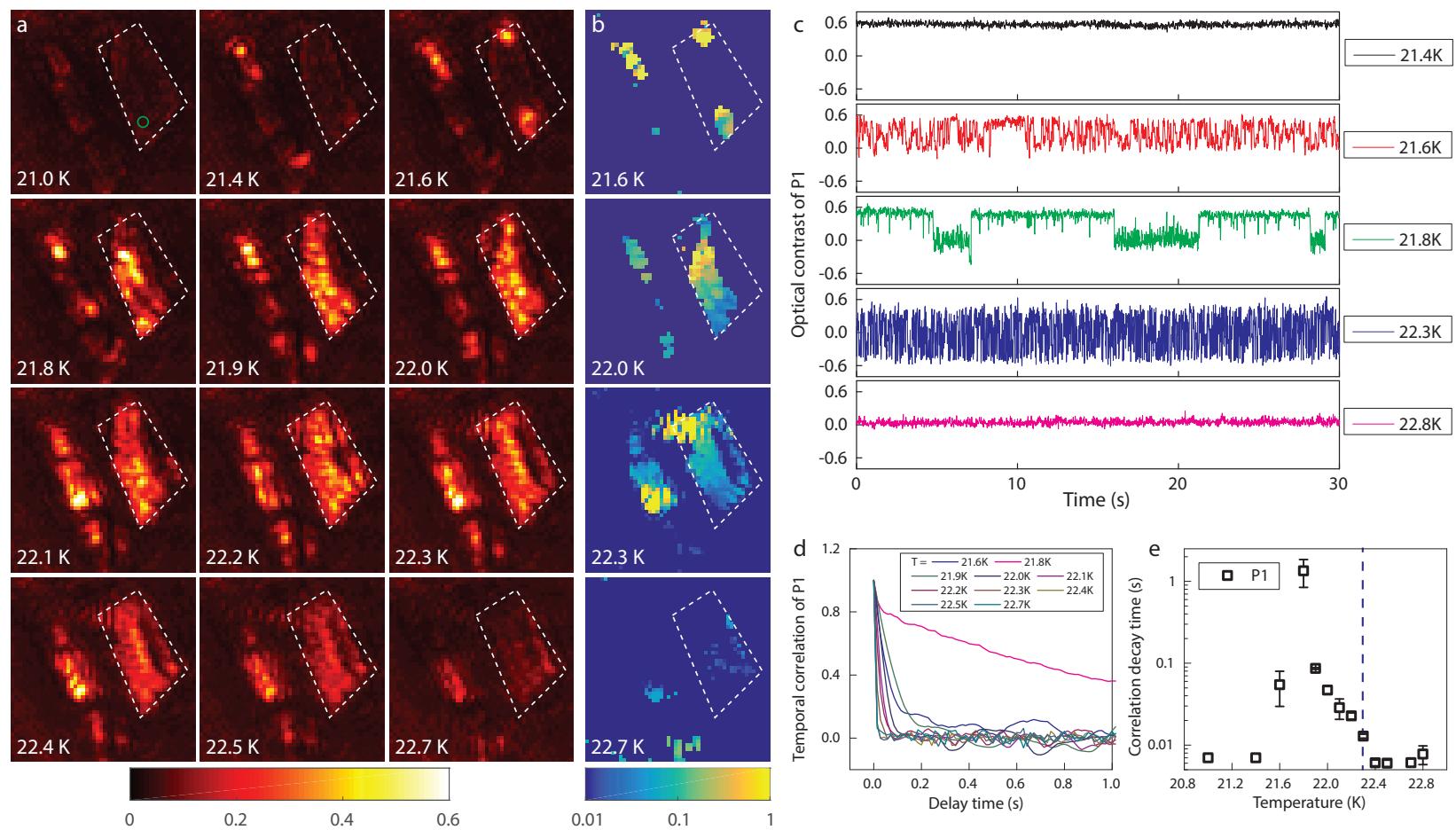
390 **a**, Illustration of the experimental setup. Blue and red beams represent illumination light from the
391 laser and scattered light from the sample. They have different effective numerical-apertures.
392 HWP: Half-wave plate. QWP: Quarter-wave plate. **b-d**, Optical microscopy image (**b**) and
393 polarization-enhanced MCD image (**c**, **d**) of a monolayer CrBr₃ sample S1 (white dashed box).
394 The MCD image shows giant optical contrast of $\pm 60\%$ for the positive (**c**) and negative (**d**)
395 remanent magnetization. Green dashed box indicates another 2D CrBr₃ flake nearby. Scale bar is
396 5 μm . **e**, Optical contrast of the monolayer against magnetic field shows a hysteresis loop at
397 temperatures below T_c (22.3 K) and paramagnetic behavior above T_c . **f**, **g**, Temperature
398 dependence of the DC magnetic susceptibility of the monolayer (red) and a bulk of ~ 10 nm
399 thickness (black) (**f**), and the corresponding power law fitting as described in the text (**g**). (**h**)
400 Temperature-dependent remanent magnetization amplitude of the monolayer shows a sharp drop
401 near T_c . Results in **e-h** are the averaged properties of a 3 x 3 μm area near the center of the
402 sample.

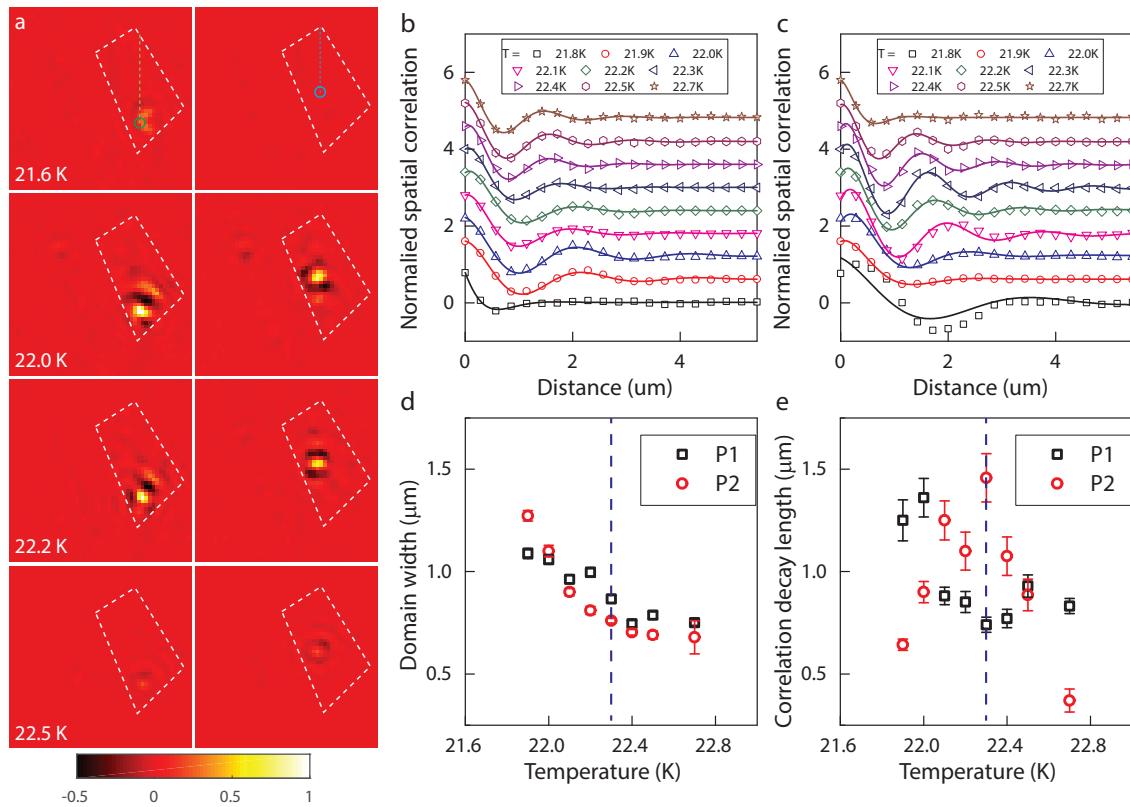
403

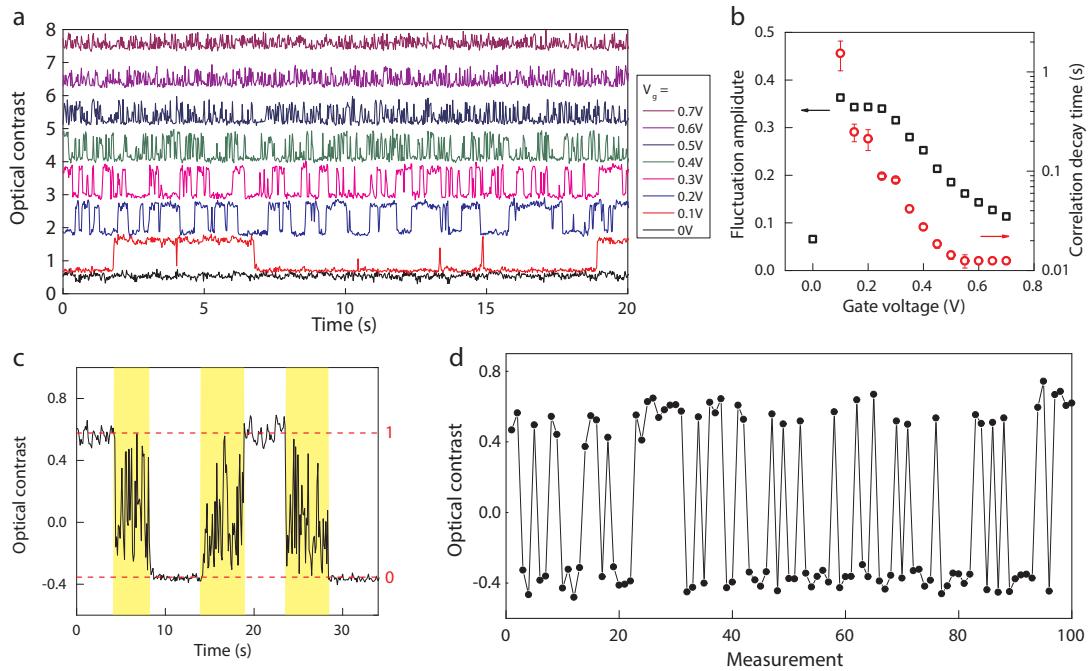
404

405


406


407 **Figure 2 | Real-time imaging of critical fluctuations in 2D CrBr₃.** **a**, Temperature-dependent
408 amplitude map of magnetization fluctuations in sample S1. The critical fluctuations emerge first
409 at the corners of the sample and exist in a narrow temperature range of ~ 0.5 K around the
410 critical point (22.3 K). **b**, Map of fluctuation correlation decay time at representative
411 temperatures. **c, d**, Magnetization time trace (**c**) and temporal correlation function (**d**) of position
412 P1 (green circle in **a**) at varying temperatures, showing prominent slowing-down around 21.8 K.
413 The temporal correlation functions are normalized to 1 at zero delay. **e**, Temperature dependence
414 of the correlation decay time (symbols) and uncertainty (error bars) from exponential function
415 fitting of the temporal correlation function of **d**. Error in temperature is smaller than the symbol
416 size. Vertical dashed lines represent the average T_c of the sample.


418 **Figure 3 | Spatial correlation function.** **a**, Spatial correlation function for position P1 (left) and
419 P2 (right) at representative temperatures. The correlation patterns are anisotropic and distinct
420 between the two points below T_c , and largely isotropic and similar above T_c . **b, c**, Normalized
421 spatial correlation function for P1 (**b**) and P2 (**c**) along the dotted lines in **a**, which are roughly
422 perpendicular to the domain-like structures. Symbols are experiment and solid lines are fits
423 described in the text. Results for different temperatures are displaced vertically and successively
424 by 0.6 for clarity. **d, e**, Domain width (**d**) and correlation decay length (**e**) obtained from fitting
425 the spatial correlation function of P1 (black) and P2 (red). Error bars are standard deviations of
426 the fitting parameters. Vertical dashed lines represent the average T_c of the sample. The
427 characteristic domain width shows a monotonic decrease for both positions as temperature
428 approaches T_c from below. The correlation decay length peaks near T_c , but deviates slightly from
429 P1 to P2 indicating spatial inhomogeneity.


430

431 **Figure 4 | Electrical control of the critical fluctuations.** **a**, Magnetization time traces of
432 position P3 in monolayer CrBr_3 device S2 with graphene back gate. The gate voltage V_g
433 dramatically changes the critical fluctuations through tuning T_c . **b**, Gate-dependent amplitude
434 (black) and correlation decay time (red) of critical fluctuations extracted from the time traces in **a**.
435 **c**, At 17.90K (slightly below T_c at $V_g = 0\text{V}$), the critical fluctuations are absent without gate
436 voltage (unshaded regions) and the magnetization stays in state “1” or “0” (red dashed lines). A
437 $V_g (=0.4\text{V})$ is used to temporarily turn on the critical fluctuations (yellow shaded regions). A
438 specific state is written into the magnet by removing gate voltage at the right moment according
439 to the real-time magnetization measurements. **d**, Switching between state “1” and “0” by
440 applying square gate voltage pulses with an amplitude 0.4 V and a pulse width 50 ms at 17.90K
441 (see text and Methods for details). A representative sequence of 100 measurements is shown.

