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1. Introduction. In this paper we propose an analysis framework to obtain the L2-norm15

stability of the explicit Runge-Kutta discontinuous Galerkin (RKDG) methods, when solving the16

linear constant-coefficient conservation law17

(1.1) Ut + βUx = 0, x ∈ I = (0, 1), t > 0,18

which is, for simplicity, subject to the periodic boundary condition. Here U(x, t) is the unknown19

solution and β 6= 0 is a given constant. In this paper we would like to take the one-dimensional20

scalar equations as an example. One-dimensional systems can be treated in the same way by21

diagonalization. The multi-dimensional case is also similar, with the main difference coming from22

the inverse properties of the discontinuous finite element spaces.23

After the first version of the discontinuous Galerkin (DG) method was introduced in 1973 by24

Reed and Hill [22], in the framework of neutron linear transport, the DG method has been the focus25

of intensive research, because it has many advantages. For example, this method has strong stability,26

optimal accuracy, and can capture discontinuous jumps sharply. It combines the advantages of finite27

element methods and finite volume methods. An important development in the DG method was28

carried out in the late 1980’s, when Cockburn et al. [4–8] combined the explicit Runge-Kutta time-29

marching and the DG spatial discretization to form the RKDG schemes. There have been many30

published papers in this field since then, see for example the review papers [3, 9] and the references31

therein.32

Compared with the wide applications of RKDG methods, there is relatively less work on the33

theory, for example, on the numerical stability in suitable norm, which is an important issue for34

the reliability of the scheme. Related to the semi-discrete DG method for nonlinear conservation35

laws, the well-known conclusion is the local cell entropy inequality, given by Jiang and Shu [16],36

which implies that the L2-norm of the numerical solution does not increase with time. The stability37

mechanism provided by the spatial DG discretization is very weak, hence the explicit time-marching38

to the DG method must be carefully treated with, if the time step is assumed to only satisfy the39
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standard Courant-Friedrichs-Lewy (CFL) condition that the ratio of the time step over the spatial40

mesh size is upper bounded by a constant. For example, the Euler-forward time-marching to the DG41

method is linearly unstable under the standard CFL condition for any polynomial degree k ≥ 1. To42

overcome this difficulty, one successful treatment is to adopt the explicit total-variation-diminishing43

Runge-Kutta time-marching [23]; please refer to the series of papers by Cockburn et al. [4–8]. This44

type of time-marching has been later termed strong-stability-preserving (SSP) [13], which is widely45

applied in the analysis of nonlinear stability including the total-variation-diminishing in the means46

(TVDM) property [3] and the positivity-preserving property [30] for nonlinear conservation laws.47

In this paper we focus on the fully-discrete RKDG methods for linear constant-coefficient hy-48

perbolic equations, and would like to establish a general framework for analyzing their L2-norm49

stability. We start by noting that this analysis cannot follow the SSP’s framework [13, Lemma50

2.1], because the RKDG method does not satisfy the basic assumption that the Euler-forward time-51

marching in each stage evolution is stable under the standard CFL condition. Thus the high-order52

Runge-Kutta time discretization must be analyzed directly. There are two main strategies to do53

this analysis. The easier strategy is to carry out a Fourier analysis [14,19,31], which might give the54

sharp CFL condition. However, this technique demands many assumptions, for example, uniform55

meshes and the periodic boundary condition, and, if only eigenvalues of the amplification matrices56

are considered, it would also require the spatial discretization operator to be normal. This technique57

is also difficult to be generalized to non-uniform meshes, non-periodic boundary conditions, the lin-58

ear variable-coefficient problems or the nonlinear problems, or the multidimensional problems [17].59

Therefore, we would like in this paper to follow the second strategy, which is the so-called energy60

analysis to overcome the above difficulties. The motivation comes from the analysis of the optimal61

error estimates for two RKDG methods to solve nonlinear conservation laws carried out in [28, 29],62

which is obtained by virtue of suitable projections and the stability analysis for the linear case.63

In this paper we develop the technique initialized in [28,29] to any RKDG(s, r, k) method with64

stage s and order r (in time-marching), as well as with polynomial degree k in the spatial DG65

discretization. The main treatment in the stability analysis is to establish a good energy equation66

to clearly reflect the evolution of the L2-norm of the numerical solution, and to explicitly show the67

stability mechanism hidden in the fully-discrete scheme. For this purpose, we follow the original68

idea in [28,29] and make the following important developments in this paper:69

1. The first development is the temporal differences of the numerical solution in different70

Runge-Kutta stages (sometimes abbreviatedly referred to as the “stage solutions” below),71

which are related to different orders of time derivatives. These temporal differences are72

easily defined by induction, and their treatment is not limited to one-step time-marching.73

In fact, we combine multiple steps in the time-marching, with possibly different time step74

sizes as well. See sections 3 and 5.3 for more details.75

2. The second development is the simple matrix transferring process, which enables us to76

transform an ordinary energy equation to a particular energy equation in our desired form.77

In this transferring process, the temporal differences of stage solutions play a very important78

role, and some general properties of the DG spatial discretization are also implicitly used.79

After the transferring process, we can obtain the expected stability conclusion by looking80

at a termination index ζ and a contribution index ρ, as defined and discussed in section 3.81

These indices explicitly reflect the stability mechanism of the RKDG method, hence they82

are very useful in analyzing different stabilities for fully-discrete RKDG methods.83

This general framework, which heavily uses various temporal differences of the DG numerical solution84

in different Runge-Kutta stages, might turn out to be useful for future generalizations to linear85

variable coefficient and nonlinear problems. Furthermore, our line of analysis is very convenient86

and useful to obtain optimal error estimates of the RKDG method, as having been done in [29]87

and [20]. We believe that this technique works well for many numerical methods to solve (almost)88

skew-symmetric problems.89

We point out related earlier work in [18,24,26] for the stability of Runge-Kutta time discretiza-90
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tions for semi-negative spatial operators with temporal accuracy up to fourth order. Levy and91

Tadmor [18] used the energy method to prove, for coercive problems, the monotonicity stability of92

some fully-discrete schemes with Runge-Kutta time-marching of order r = 3, 4 (please see section93

2 for the definition of monotonicity stability). After that, this result has been extended to the94

general linear Runge-Kutta time-marching, and the SSP framework [13] was utilized. However, the95

RKDG methods for the hyperbolic problems are not strongly coercive, and the SSP framework is96

not suitable for their L2-norm stability analysis. In 2002, Tadmor [26] proved the monotonicity sta-97

bility of the three-stage third order Runge-Kutta time discretization with any semi-negative linear98

spatial operator, including the RKDG(3, 3, k) method, without the coercive assumption, and posed99

the monotonicity stability of the four-stage fourth order Runge-Kutta time discretization with a100

semi-negative linear spatial operator, including the RKDG(4, 4, k) method, as an open problem. In101

2010, Zhang and Shu [29] and Burman and Ern [1], independently, proved the monotonicity sta-102

bility and error estimates for the RKDG(3, 3, k) method, along different analysis lines. The open103

problem proposed by Tadmor [26] has been partly answered by Sun and Shu [24] in 2017, by a104

simple counter-example that the four-stage fourth order Runge-Kutta time discretization with a105

semi-negative linear spatial operator does not always have the monotonicity stability. However, the106

L2-norm of the solution is proved to have the monotonicity property after every two time steps.107

Notice that the semi-negative linear operator in the counter example in [24] is not the DG operator,108

hence the result in [24] does not answer the question whether the RKDG(4, 4, k) method has the109

monotonicity stability or not. In this paper, we use numerical examples (see Example 1 in section110

6) to show that the monotonicity stability does not hold for the first time step of the RKDG(4, 4, k)111

method. Actually, the destruction on the monotonicity can happen at any time level. Using our112

analysis technique, we successfully recover the conclusions in [24] and prove in addition that the L2-113

norm of the numerical solution is monotone after every three-steps, which implies the strong stability114

(please see section 2 for the definition of strong stability) of the RKDG(4, 4, k) method after the115

second time step. Very recently, Sun and Shu [25] extended their earlier work in [24] by developing a116

general framework in analyzing the stability of Runge-Kutta time-marching for semi-negative linear117

spatial operators. Some of the results obtained in our paper overlap with the results in [25], however118

we concentrate on the particular DG spatial operator and use its properties explicitly, hence we are119

able to obtain some results not covered in [25]. The lines of analysis in our paper and in [25] are120

also very different.121

The content of this paper is organized as follows. In section 2, we firstly present the general122

construction of the RKDG methods and state the L2-norm stability of the RKDG(r, r, k) methods,123

for any degree k ≥ 0 and 1 ≤ r ≤ 12. Also, the weak(γ) stability, the strong (boundedness)124

stability, and the monotonicity stability are defined in this section. In section 3 we present the125

framework for our analysis, including the temporal differences of solutions in different stages, the126

matrix transferring process, and two important indices. In section 4 the above discussion is applied127

to four classical RKDG methods from the first-order to the fourth-order in time. Some important128

remarks and extensions are given in section 5. Numerical examples are given in section 6, and129

concluding remarks are given in section 7.130

2. RKDG method and the main result. In this section we would like to present the RKDG131

method under consideration, expressed in the Shu-Osher form [23].132

2.1. Discontinuous finite element space. Let {Ij}Jj=1 be a quasi-uniform partition of I,133

where each element Ij = (xj−1/2, xj+1/2) has length hj = xj+1/2 − xj−1/2. The maximum length of134

elements is denoted by h = maxj=1,2,...,J hj . The discontinuous finite element space is defined as135

(2.1) Vh = { v ∈ L2(I) : v|Ij ∈ Pk(Ij), j = 1, . . . , J },136

where Pk(Ij) denotes the space of polynomials in Ij of degree at most k ≥ 0. Note that the137

functions in Vh are allowed to have discontinuities across element interfaces. Following [2], the jump138
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and weighted average are respectively denoted by139

(2.2) [[v]]j+ 1
2

= v+
j+ 1

2

− v−
j+ 1

2

and {{v}}(θ)
j+ 1

2

= θv−
j+ 1

2

+ (1− θ)v+
j+ 1

2

,140

where v±j+1/2 are traces along different directions at the point xj+1/2, and θ is the given weight.141

2.2. Semi-discrete scheme. Following the notations of [20,29], the semi-discrete DG method142

of (1.1) is defined as follows: find the map u : [0, T ]→ Vh such that143

(2.3) (ut, v) = H(u, v), ∀ v ∈ Vh, t ∈ (0, T ],144

subject to the initial solution u(x, 0) ∈ Vh. Here (·, ·) is the standard inner product in L2(I), with145

the associated L2-norm ‖ · ‖, and146

(2.4) H(u, v) =
∑

1≤j≤J

[∫
Ij

βuvx dx+ β{{u}}(θ)
j+ 1

2

[[v]]j+ 1
2

]
147

is the spatial DG discretization. We would assume β(θ−1/2) > 0 in this paper, such that f̂(u−, u+) ≡148

β{{u}}(θ) forms an upwind-biased numerical flux at each element interface. Actually, f̂(u−, u+) is149

just the purely upwind flux when θ = 0 for β < 0, and θ = 1 for β > 0.150

It is worthy to mention that the periodic boundary condition has been used in the above defi-151

nition. Other boundary conditions can be treated in a similar way. For example, please refer to [27]152

for the inflow boundary condition.153

Remark 2.1. In general, u(x, 0) is given as the approximation of the given initial solution. For154

example, the L2-projection is frequently used in practice. In this paper we will not discuss this issue,155

since the initial solution only affects the error, but not the stability.156

2.3. Fully-discrete scheme. In the fully-discrete method, we would like to seek the numerical157

solution un at time levels tn = nτ , where τ is the time step. The time step could actually change158

from step to step. For simplicity, in this paper we take it as a constant unless otherwise stated.159

By virtue of the Shu-Osher representation [23], the general construction of the RKDG(s, r, k)160

method is given as follows. For ` = 0, 1, . . . , s − 1, the stage solutions, advancing from tn to tn+1,161

are successively sought by the following variation form162

(2.5) (un,`+1, v) =
∑

0≤κ≤`

[
c`κ(un,κ, v) + d`κτH(un,κ, v)

]
, ∀v ∈ Vh,163

where d`` 6= 0. Here un,0 = un and un+1 = un,s.164

There are plenty of examples in the review paper [11]. In this paper we would like to start165

from the RKDG(r, r, k) method whose number of stages s is equal to the order r. For the linear166

constant-coefficient problem, all Runge-Kutta methods with the same number of stages and order167

are equivalent [13]. Under the SSP framework, the coefficients in (2.5) of this method can be written168

into two matrices169

{c`κ} =


1

. . .

1
gr−1,0 · · · gr−1,r−2 gr−1,r−1

 , {d`κ} =


1

. . .

1
gr−1,r−1

 ,170

where the row (and column) numbers are both taken from {0, 1, 2, . . . , r − 1}. The parameters are171

defined as follows. Let g0,0 = 1, and recursively define for r ≥ 2 that172

gr−1,` =
1

`
gr−2,`−1, ` = 1, 2, . . . , r − 2,173
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Table 1
Coefficients of the RKDG(r, r, k) methods.

r gr−1,0 gr−1,1 gr−1,2 gr−1,3 gr−1,4 gr−1,5 gr−1,6 gr−1,7

1 1

2 1
2

1
2

3 1
3

1
2

1
6

4 3
8

1
3

1
4

1
24

5 11
30

3
8

1
6

1
12

1
120

6 53
144

11
30

3
16

1
18

1
48

1
720

7 103
280

53
144

11
60

3
48

1
72

1
240

1
5040

8 2119
5760

103
280

53
288

11
180

1
64

1
360

1
1140

1
40320

with gr−1,r−1 = 1/r! and gr−1,0 = 1 −
∑r−1
`=1 gr−1,`. The related coefficients for r ≤ 8 are listed in174

Table 1 [13, Table 3.1].175

Remark 2.2. Only for homogeneous linear problems, both SSP and non-SSP Runge-Kutta meth-176

ods of s-stages with sth-order accuracy are identical. This is not true for the general linear and non-177

linear problems. It is a well-known conclusion [12] that there does not exist any SSP Runge-Kutta178

scheme of four-stages with fourth-order accuracy for nonlinear problems.179

2.4. Main result. Denote by λ = |β|τh−1 the CFL number. To clearly state the L2-norm180

stability of the RKDG methods, we would like to adopt three different stability concepts in this181

paper. They are given as follows.182

1. Weak(γ) stability: there exists an integer γ ≥ 2, such that183

(2.6) ‖un+1‖2 ≤ (1 + Cλγ)‖un‖2, n ≥ 0,184

if the CFL number λ is small enough, where the constant C > 0 is independent of τ, h and185

n. As a result, the RKDG method is generally stable with the exponent-type constant,186

provided that λγ/τ is bounded.187

2. Strong (boundedness) stability: there exists an integer n∗, such that188

(2.7) ‖un‖ ≤ ‖u0‖, n ≥ n∗,189

if the CFL number λ is small enough.190

3. Monotonicity stability: there holds ‖un+1‖ ≤ ‖un‖ for n ≥ 0, if the CFL number λ is small191

enough. Obviously, monotonicity stability implies the strong (boundedness) stability. Note192

that our monotonicity stability is sometimes called strong stability in the literature.193

It is worthy to mention the following facts. If the weak(γ) stability can not be strengthened to the194

other two stabilities, the scheme might be linearly unstable for any fixed CFL number, no matter195

how small it is. If both the weak(γ) stability and the strong (boundedness) stability hold, the scheme196

is obviously stable under the standard CFL condition.197

Now we present the L2-norm stability results for some popular RKDG methods, which is stated198

in the following theorem.199

Theorem 2.1. For the RKDG(r, r, k) methods, with 1 ≤ r ≤ 12 and arbitrary k, the stability200

conclusion strongly depends on the remainder when r is divided by 4, namely201

r mod 4 0 1 2 3
stability type strong weak(r + 1) weak(r + 2) monotonicity

202

5
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At the end of this section, we would like to give some remarks below.203

Remark 2.3. If the RKDG(r, r, k) method is weakly stable, a stronger constraint on the time204

step size is needed to ensure the general stability. Theorem 2.1 shows that τ = O(h
r+1
r ) is sufficient205

for r ≡ 1 (mod 4), and τ = O(h
r+2
r+1 ) for r ≡ 2 (mod 4). This conclusion generalizes the result206

in [10, Theorem 3.2] for the even-order time-marching, in which the strictly skew-symmetric property207

(see section 3, which implies that the spatial operator is normal) for the spatial discretization is208

required. In this paper, we only require an approximate skew-symmetric property (which could be a209

non-normal operator) as specified in section 3.210

3. Stability analysis. In this section we present the line of analysis to obtain the L2-norm211

stability of any RKDG methods. It is based on the energy technique, and mainly includes two212

components. Below we will use the generalized notations213

(3.1) un,κ+ms = un+m,κ, κ = 0, 1, . . . , s− 1,214

for any given integer m ≥ 1. Here n and n+ m are called the time levels, κ and κ+ ms are called215

the stage numbers, and m is called the step number. In many cases, we take m = 1.216

3.1. Preliminaries. Now we recall some preliminary conclusions that will be used below. If217

the proofs are trivial, we will omit them.218

3.1.1. Inverse inequity and discrete trace inequity of the finite element space. For219

any function v ∈ Vh, there exists an inverse constant µ independent of h and v, such that220

‖vx‖ ≤ µh−1‖v‖, (inverse inequity)(3.2a)221

‖v‖Γh ≤ µh−1/2‖v‖, (discrete trace inequity)(3.2b)222223

where ‖v‖ is the L2-norm as usual, and224

‖vx‖ =

 ∑
1≤j≤J

∫
Ij

(vx)2 dx


1
2

, ‖v‖Γh =

 ∑
1≤j≤J

1

2

[
(v−
j+ 1

2

)2 + (v+
j− 1

2

)2
]

1
2

.225

For more detailed discussions on this issue, please see [15,21].226

3.1.2. Properties of the DG discretization. An application of integration by parts yields227

the next lemma, which plays an important role in the following analysis. See [2, 29] for details.228

Lemma 3.1. The DG discretization has the following approximate skew-symmetric property229

(3.3) H(w, v) +H(v, w) = −2β(θ − 1/2)
∑

1≤j≤J

[[w]]j+ 1
2
[[v]]j+ 1

2
,230

for any w and v ∈ Vh.231

Remark 3.1. If the right-hand side of (3.3) is always equal to zero, this property is called the232

strictly skew-symmetric property. It happens when θ = 1/2.233

As a corollary, the DG discretization has the negative semi-definite property234

(3.4) H(w,w) = −β(θ − 1/2)‖[[w]]‖2Γh ≤ 0, ∀w ∈ Vh,235

which explicitly shows the stability contribution owing to the spatial discretization. Similar to the236

result in Sun and Shu [24, Lemma 2.3], the following development provides a deeper insight on this237

issue. For the completeness of this paper, we give a simplified proof again.238
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Lemma 3.2. Let G = {gij} be a symmetric positive semi-definite matrix, whose row numbers239

and column numbers are both taken from a given set G. For any family {wi}i∈G ⊂ Vh, there holds240

(3.5)
∑
i∈G

∑
j∈G

gijH(wi, wj) ≤ 0.241

Proof. Consider the eigenvalue decomposition G = Q>diag(σi)Q, where Q = (qij) is an or-242

thonormal matrix, and diag(σi) is a diagonal matrix consisting of the nonnegative eigenvalues.243

Namely, there holds gij =
∑
`∈G q`iσ`q`j . It implies244

∑
i∈G

∑
j∈G

gijH(wi, wj) =
∑
`∈G

σ`H

∑
i∈G

q`iwi,
∑
j∈G

q`jwj

 .245

Since the arguments in the DG discretization are the same, we can complete the proof of this lemma246

by using (3.4).247

By applying the inverse properties and Cauchy-Schwarz inequality, we can easily have the fol-248

lowing lemma, which will be used to determine the CFL condition.249

Lemma 3.3. The DG discretization is continuous in Vh × Vh, in the sense250

(3.6) |H(w, v)| ≤ C|β|h−1‖w‖‖v‖, ∀w, v ∈ Vh,251

where the bounding constant C > 0 solely depends on θ and µ.252

3.2. Temporal differences of stage solutions. For the stage solutions after the time level253

tn, we would like to adopt the key concepts in [28,29] and recursively define a series of the temporal254

differences in the form255

(3.7) Dκun =
∑

0≤`≤κ

σκ`u
n,`, κ ≥ 1,256

such that
∑

0≤`≤κ σκ` = 0 and257

(3.8) (Dκun, v) = τH(Dκ−1u
n, v), ∀ v ∈ Vh.258

Here and below we denote D0u
n = un for simplicity. Owing to the relationship (3.8) and the259

definition of H(·, ·), the temporal differences can be viewed as an approximation of certain time260

derivatives multiplying a constant depending on the time step.261

Lemma 3.4. There exists a constant C > 0 solely depending on θ and µ, such that262

(3.9) ‖Dκun‖ ≤ Cλ‖Dκ−1u
n‖, κ ≥ 1,263

holds for any n ≥ 0.264

Proof. The proof is straightforward by taking v = Dκun in (3.8) and employing Lemma 3.3.265

These temporal differences are very easily obtained by a linear combination of the schemes,266

since the spatial discretization is linear. Actually, this process does not depend on the particular267

definition of the spatial discretization, since the temporal differences solely depend on the fashion of268

time-marching.269

3.3. Transferring of energy equations. In the above process to define the temporal differ-270

ences, we also achieve the evolution identity271

(3.10) α0u
n+m =

∑
0≤i≤ms

αiDiun,272

7
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where α0 > 0 is used only for scaling. For convenience, denote α = (α0, α1, . . . , αms).273

By taking the L2-norm on both sides of (3.10), we have the energy equation274

(3.11) α2
0(‖un+m‖2 − ‖un‖2) =

∑
0≤i,j≤ms

aij(Diun,Djun) ≡ RHS,275

where a00 = 0 and aij = αiαj if i + j > 0. This expression is not very useful for the stability276

analysis, since the stability contribution of the particular spatial discretization is not reflected.277

Hence we introduce a simple transferring to write the right-hand side of (3.11) into an equivalent278

but more useful expression, which is denoted in the form279

(3.12) RHS(`) =
∑

0≤i,j≤ms

a
(`)
ij (Diun,Djun) +

∑
0≤i,j≤ms

b
(`)
ij τH(Diun,Djun).280

For the convenience of notations, we express (3.12) by two symmetric matrices of (ms+ 1)-th order281

(3.13) A(`) = {a(`)
ij }, B(`) = {b(`)ij },282

where the row number i and column number j are both taken from {0, 1, . . . ,ms}. Obviously, the283

matrices A(0) = {aij} and B(0) = O are given, for the initial situation.284

The motivation of matrix transferring in (3.12) is owing to two issues. One is the relationship285

(3.8) among those temporal differences. The other is the fully usage of the approximate skew-286

symmetric property of the spatial discretization, which has been stated in Lemma 3.1.287

Below we present the detailed implementation. Assume that the `-th transferring starts from288

the given matrix289

(3.14) A(`) =



O O O · · · O
O a

(`)
`` a

(`)
`,`+1 · · · a

(`)
`,ms

O a
(`)
`+1,` a

(`)
`+1,`+1 · · · a

(`)
`+1,ms

...
...

...
. . .

...

O a
(`)
ms,` a

(`)
ms,`+1 · · · a

(`)
ms,ms

 .290

Note that those zeros at the left and the top do not exist if ` = 0, since A(0) = {aij}.291

If a
(`)
`` 6= 0, then the transferring process stops, and the termination index is defined as ζ = `.292

For the initial situation, a
(0)
00 = a00 = 0, hence 1 ≤ ζ ≤ ms.293

Otherwise, if a
(`)
`` = 0, the following transferring will be carried out to get new matrices A(`+1)294

and B(`+1). The main action is to move the same-order temporal information into an equivalent295

expression of spatial information. Here the temporal information refers to (Diun,Djun), whose296

coefficients are shown by the nonzero entries at the `-th row (and column) of A(`). The spatial297

information refers to τH(Diun,Djun), whose coefficients are shown by the entries at the `-th row298

(and column) of B(`+1). By making the full usage of the relationship (3.8) among those temporal299

differences, we have300

(3.15a) 2a
(`)
`+1,`(D`+1u

n,D`un) = 2a
(`)
`+1,`

[
τH(D`un,D`un)

]
,301

and for `+ 1 ≤ i ≤ ms− 1,302

2a
(`)
i+1,`(Di+1u

n,D`un) +Qi,`+1a
(`)
i,`+1(Diun,D`+1u

n)

= Qi,`+1

[
a

(`)
i,`+1 −

2a
(`)
i+1,`

Qi,`+1

]
(Diun,D`+1u

n) + 2a
(`)
i+1,`

[
τH(Diun,D`un) + τH(D`un,Diun)

]
.

(3.15b)303
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Here Qi,`+1 is equal to 1 if i = `+ 1, or equal to 2 otherwise. Writing the above coefficients in the304

matrices A(`+1) and B(`+1), we can define the transferring as follows:305

(3.16) a
(`+1)
ij =


0, 0 ≤ j ≤ `,
a

(`)
ij − 2a

(`)
i+1,j−1, i = `+ 1 and j = `+ 1,

a
(`)
ij − a

(`)
i+1,j−1, `+ 2 ≤ i ≤ ms− 1 and j = `+ 1,

a
(`)
ij , otherwise,

306

and307

(3.17) b
(`+1)
ij =

{
2a

(`)
i+1,j , ` ≤ i ≤ ms− 1 and j = `,

b
(`)
ij , otherwise.

308

Since the symmetric property is preserved in the transferring process, the above formulations are309

only given for the lower-triangular part of the matrices.310

Remark 3.2. Following (3.16) and (3.17), we can see that the nonzero entries of A(`) and the311

zero entries of B(`) are mainly located in the right and the bottom. In each matrix transferring, only312

two rows (and columns) are different between A(`) and A(`+1), and only one row (and column) is313

different between B(`) and B(`+1).314

3.4. Discussions and statements. Below we use Q1(λ) and Q2(λ) to denote generic poly-315

nomials of the CFL number λ with nonnegative coefficients. They are always bounded if the CFL316

number is smaller than 1. Their expression may be different at each occurrence.317

In what follows we separately estimate two terms in RHS(ζ), where ζ is the termination index.318

The first term solely includes the inner-product of the temporal differences. By using Lemma 3.4319

and Cauchy-Schwarz inequality, we have320

(3.18)
∑

0≤i,j≤ms

a
(ζ)
ij (Diun,Djun) ≤

[
a

(ζ)
ζζ + λQ1(λ)

]
‖Dζun‖2,321

where λ is the CFL number, and a
(ζ)
ζζ 6= 0.322

The second term in RHS(ζ) explicitly shows the detailed contribution of the spatial discretiza-323

tion. Associated with the matrix B(ζ), we define the index set of the bad submatrices324

(3.19) B = {κ : detB(ζ)
κ ≤ 0, and 0 ≤ κ ≤ ζ − 1},325

where B(ζ)
κ = {b(ζ)ij }0≤i,j≤κ is the (κ+ 1)-th order leading principal submatrix of B(ζ). Note that the326

lower-order leading principal submatrix is preserved at the subsequent transferring process, which327

implies B(ζ)
κ = B(κ+1)

κ , and that the index set B can be obtained along the transferring process. Then328

we define the contribution index of the spatial discretization as329

(3.20) ρ =

{
min{i : i ∈ B}, if B 6= ∅,
ζ, otherwise.

330

It follows from the definition that 0 ≤ ρ ≤ ζ. Define three sets331

(3.21) π1 = {0, 1, . . . , ρ− 1}, π2 = {ρ, ρ+ 1, . . . , ζ − 1}, π3 = {ζ, ζ + 1, . . . ,ms}.332

They form a partition of {0, 1, . . . ,ms}. Note that π1 = ∅ if ρ = 0, and π2 = ∅ if ρ = ζ. In the333

following, we are going to estimate each term in the separation334

(3.22)
∑

0≤i,j≤ms

τb
(ζ)
ij H(Diun,Djun) =

∑
ξ,η=1,2,3

Tξη,335
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where the row numbers and column numbers in each term are taken from one of the three subsets,336

namely337

(3.23) Tξη =
∑

i∈πξ,j∈πη

τb
(ζ)
ij H(Diun,Djun).338

If one set is empty, the corresponding terms are equal to zero.339

As a result of the definition (3.20), the submatrix B(ζ)
ρ−1 is positive definite. Hence, there exists a340

constant ε > 0, for example, the smallest eigenvalue, such that B(ζ)
ρ−1−εIρ−1 is positive semi-definite,341

where Iρ−1 is the identity matrix. Owing to Lemma 3.2 and identity (3.4), we have342

(3.24) T11 ≤ −εβ(θ − 1

2
)τ
∑
i∈π1

‖[[Diun]]‖2Γh .343

Owing to the approximate skew-symmetric property (Lemma 3.1), Young’s inequality, the second344

inverse inequality, and the relationship among temporal differences (Lemma 3.4), we have345

T12 + T21 = − β(θ − 1

2
)τ

∑
i∈π1,j∈π2

b
(ζ)
ij ‖[[Diu

n]]‖Γh‖[[Djun]]‖Γh

≤ 1

4
εβ(θ − 1

2
)τ
∑
i∈π1

‖[[Diun]]‖2Γh + ε−1β(θ − 1

2
)(ζ − ρ)τ

∑
j∈π2

[∑
i∈π1

(b
(ζ)
ij )2

]
‖[[Djun]]‖2Γh

≤ 1

4
εβ(θ − 1

2
)τ
∑
i∈π1

‖[[Diun]]‖2Γh + λQ2(λ)‖Dρun‖2.

(3.25)

346

Similarly, we also have347

(3.26) T22 + T23 + T32 ≤ λQ2(λ)‖Dρun‖2 + λQ2(λ)‖Dζun‖2.348

Along the same line, we have349

(3.27) T13 + T31 ≤
1

4
εβ(θ − 1

2
)τ
∑
i∈π1

‖[[Diun]]‖2Γh + λQ1(λ)‖Dζun‖2.350

Furthermore, it is trivial to see that T33 = 0, since all related coefficients are zero. Collecting up the351

above estimations, we have the inequality352

(3.28) α2
0(‖un+m‖2 − ‖un‖2) ≤ Y1 + Y2,353

where different stability mechanisms are shown in354

Y1 =
[
a

(ζ)
ζζ + λQ1(λ) + λQ2(λ)

]
‖Dζun‖2 + λQ2(λ)‖Dρun‖2,(3.29a)355

Y2 = − 1

2
εβ(θ − 1

2
)τ

∑
0≤i≤ρ−1

‖[[Diun]]‖2Γh .(3.29b)356

357

In the first term Y1, the polynomials Q1(·) and Q2(·) show the negative effects due to the time-358

marching, and the approximate skew-symmetric property of the spatial DG discretization, respec-359

tively. The second term Y2, which is always nonpositive, shows the good stability mechanism360

inherited from the spatial DG discretization.361

We are now ready to present the main theorem in this paper, where the second stability mecha-362

nism is omitted. The sign of a
(ζ)
ζζ 6= 0 strongly affects the stability conclusion of the RKDG schemes.363
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Theorem 3.1. Let m = 1. With the termination index ζ and the contribution index ρ obtained364

by the above matrix transferring process, we have the following statements for the RKDG scheme.365

1. If a
(ζ)
ζζ < 0 and ρ = ζ, then the scheme has the monotonicity stability;366

2. If a
(ζ)
ζζ < 0 and ρ < ζ, then the scheme has the weak(2ρ+ 1) stability;367

3. If a
(ζ)
ζζ > 0, then the scheme has the weak(γ) stability with γ = min(2ζ, 2ρ+ 1).368

Proof. Since a
(ζ)
ζζ < 0 and ρ = ζ, we can get369

Y1 =
[
a

(ζ)
ζζ + λQ1(λ) + λQ2(λ)

]
‖Dζun‖2 ≤ 0,370

if the CFL number λ is small enough. This implies the first conclusion.371

If a
(ζ)
ζζ < 0 and ρ < ζ, we can still keep the non-positivity as above, if the CFL number is small372

enough. As a result, we can get from Lemma 3.4 that373

Y1 ≤ Cλ‖Dρun‖2 ≤ Cλ2ρ+1‖un‖2,374

which implies the second conclusion.375

The last conclusion can be obtained along the same line, so the proof is omitted.376

The second stability mechanism will be discussed in more depth in section 5. If this mechanism377

is not equal to zero, it may help us to obtain the monotonicity stability for some of the lower-degree378

polynomials, like the RKDG(2,2,1) method in [28].379

Before we discuss examples of the RKDG methods in the next section, we would like to give an380

explanation on the conclusion of Theorem 3.1.381

• The first conclusion focuses on the case that neither the temporal nor the spatial discretiza-382

tion produces any anti-dissipative energy. Hence, the monotonicity stability holds in this383

case. An example is the RKDG(3, 3, k) method in section 4.3.384

• The second conclusion is pointed to an intermediate state that the temporal discretization385

provides dissipative energy, but the spatial discretization causes some anti-dissipative modes386

that must be controlled by reducing the time step. This trouble results from the approximate387

skew-symmetric property in H(·, ·). More discussions are given in the next remark.388

• The third conclusion focuses on the case that the temporal discretization has an anti-389

dissipative energy that can only be controlled through a time-step reduction. Two well-390

known examples are the RKDG(1, 1, k) method and the RKDG(2, 2, k) method; see sections391

4.1 and 4.2, respectively.392

Remark 3.3. It is worthy to mention that the second conclusion in Theorem 3.1 is not good393

enough to show the real performance of stability. This weak conclusion is achieved by the approxi-394

mate skew-symmetric property of the spatial discretization, and the statement for the one-step time-395

marching. Two comments are given here.396

• If the functions in Vh are restricted to be continuous (the DG method degenerates to the397

standard finite element method) or the central numerical flux (i.e., θ = 1/2) is used, there398

holds the strictly skew-symmetric property for H(·, ·), which leads to Q2(·) = 0. Along399

the same line as the previous analysis, we can prove that the fully-discrete scheme has400

monotonicity stability, since the spatial discretization does not cause any trouble in the L2-401

norm stability for the semi-discrete scheme.402

• For many schemes related to this conclusion, at least those considered in this paper, we often403

get ρ = ζ − 1 for the one-step time-marching. In this case, we have a great opportunity to404

establish the monotonicity stability of multiple-steps time-marching, which together with the405

second conclusion in Theorem 3.1 derive the strong stability. See the RKDG(4, 4, k) scheme406

in section 4.4 as an example.407

At the end of this section, we would like to point out that the technique used in Theorem 3.1 can408

be applied in the stability analysis for many fully-discrete methods. The key point in this analysis409
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is the interplay between the stability mechanism of the temporal discretization and the dissipative410

effect of the spatial discretization, which is easily implemented with the help of temporal differences.411

More discussion about this issue will be given in section 5, when the lower polynomial degree is used412

in the RKDG methods.413

4. RKDG methods with the same stages and order. In this section we show the flexibility414

and effectiveness of the above framework, and present the detailed proof of Theorem 2.1 for r ≤ 4.415

The proofs for the other schemes are similar, hence they are omitted to shorten the length of the416

paper.417

4.1. The first-order scheme. Let us start from the Euler forward time-marching, which is418

implemented as follows. For any test function v ∈ Vh, there holds the following variational formula419

(4.1) (un+1, v) = (un, v) + τH(un, v).420

The stability result is stated in the following proposition.421

Proposition 4.1. The RKDG(1,1,k) scheme has the weak(2) stability.422

Proof. It is easy to see that D1u
n = un+1 − un, which implies α = (1, 1) and423

(4.2) A(0) =

[
0 1
1 1

]
, B(0) = O.424

Since a
(0)
00 = 0, we transform the energy equation into an equivalent form with425

(4.3) A(1) =

[
0

1

]
, B(1) =

[
2 0
0 0

]
.426

Since a
(1)
11 = 1 > 0, we stop the transferring. It is easy to see that ρ = ζ = 1, which implies the427

weak(2) stability.428

4.2. Second-order scheme. The RKDG(2, 2, k) scheme is implemented as follows. For any429

test function v ∈ Vh, there hold the following variational formulas430

(un,1, v) = (un, v) + τH(un, v),(4.4a)431

(un+1, v) =
1

2
(un, v) +

1

2
(un,1, v) +

τ

2
H(un,1, v).(4.4b)432

433

The stability result is stated in the following proposition.434

Proposition 4.2. The RKDG(2,2,k) scheme has the weak(4) stability.435

Proof. By the first equation of this scheme, we have un,1 = un + D1u
n. Put it into the second436

equation, we have437

(un+1, v) =
1

2
(D0u

n, v) +
1

2
(D0u

n + D1u
n, v) +

τ

2
H(D0u

n + D1u
n, v)

=
1

2
(D0u

n, v) +
1

2
(D0u

n + D1u
n, v) +

1

2
(D1u

n + D2u
n, v)

= (D0u
n + D1u

n +
1

2
D2u

n, v),

438

for any test function v ∈ Vh. Hence we have the evolution identity439

(4.5) 2un+1 = 2D0u
n + 2D1u

n + D2u
n,440
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with α = (2, 2, 1) and the temporal differences441

(4.6)

D0u
n

D1u
n

D2u
n

 =

 1
−1 1
0 −2 2

 un

un,1

un+1

 .442

As we have shown in the previous section, the initial energy equation can be expressed by the443

matrices444

(4.7) A(0) =

0 4 2
4 4 2
2 2 1

 , B(0) = O.445

Since a
(0)
00 = 0, we need to carry out the transferring and get that446

(4.8) A(1) =

 0
0 2
2 1

 , B(1) =

 8 4 0
4 0 0
0 0 0

 .447

Since a
(1)
11 = 0, we continue the transferring process, and get448

(4.9) A(2) =

 0
0

1

 , B(2) =

 8 4 0
4 4 0
0 0 0

 .449

Since a
(2)
22 = 1 > 0, we stop the transferring and get ζ = 2. Also, it is easy to see that ρ = 2. Then450

it follows from Lemma 3.1 that the scheme has the weak(4) stability.451

Remark 4.1. A similar weak L2-norm stability result has been implicitly given in [28] that452

a stronger condition τ = O(h4/3) is needed for the stability with higher-order (k ≥ 2) piecewise453

polynomials.454

4.3. Third-order scheme. The RKDG(3, 3, k) scheme is implemented as follows. For any455

test function v ∈ Vh, there hold the following variational formulas456

(un,`+1, v) = (un,`, v) + τH(un,`, v), ` = 0, 1,(4.10a)457

(un+1, v) =
1

3
(un, v) +

1

2
(un,1, v) +

1

6
(un,2, v) +

τ

6
H(un,2, v).(4.10b)458

459

The stability result is shown in the following proposition, same as that in [29].460

Proposition 4.3. The RKDG(3, 3, k) scheme has the monotonicity stability.461

Proof. By some linear combinations of the RKDG(3, 3, k) scheme, it is easy to define the tem-462

poral differences in the form463

(4.11)


D0u

n

D1u
n

D2u
n

D3u
n

 =


1
−1 1
1 −2 1
−3 0 −3 6



un

un,1

un,2

un+1

 ,464

and get the evolution identity465

(4.12) 6un+1 = 6D0u
n + 6D1u

n + 3D2u
n + D3u

n.466
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This implies α = (6, 6, 3, 1) and the initial matrices467

(4.13) A(0) =


0 36 18 6
36 36 18 6
18 18 9 3
6 6 3 1

 , B(0) = O.468

The first transferring leads to469

(4.14) A(1) =


0

0 12 6
12 9 3
6 3 1

 , B(1) =


72 36 12 0
36 0 0 0
12 0 0 0
0 0 0 0

 .470

The second transferring leads to471

(4.15) A(2) =


0

0
−3 3
3 1

 , B(2) =


72 36 12 0
36 24 12 0
12 12 0 0
0 0 0 0

 .472

Since a
(2)
22 = −3 < 0, the transferring process is terminated with ζ = 2. Furthermore, it is easy to473

see ρ = 2, since the two leading principal determinants are respectively equal to 72 and 432. By474

applying Lemma 3.1, we complete the proof of this proposition.475

Remark 4.2. In the above analysis, it is very important that the term −3‖D2u
n‖2 provides an476

additional stability mechanism (or dissipative energy) owing to the time-discretization. This result477

is the same as that in [21, 29]. In this paper we give a new and simpler analysis process based on478

the matrix transferring, which is more natural and is easier to be systematically extended to higher479

order time-marching.480

4.4. Fourth-order scheme. Let us consider the RKDG(4, 4, k) scheme, where the coefficients481

are defined by Table 1. For any test function v ∈ Vh, there hold the following variational formulas482

(un,`+1, v) = (un,`, v) + τH(un,`, v), ` = 0, 1, 2,(4.16a)483

(un+1, v) =
3

8
(un, v) +

1

3
(un,1, v) +

1

4
(un,2, v) +

1

24
(un,3, v) +

1

24
τH(un,3, v).(4.16b)484

485

The stability result is shown in the following proposition, which is similar as and slightly stronger486

than the result in [24].487

Proposition 4.4. The RKDG(4, 4, k) scheme has the strong stability for n ≥ 2.488

Proof. Firstly consider one-step time-marching. By induction, we can define the temporal dif-489

ferences in the form490

(4.17)


D0u

n

D1u
n

D2u
n

D3u
n

D4u
n

 =


1
−1 1
1 −2 1
−1 3 −3 1
−8 −12 0 −4 24



un

un,1

un,2

un,3

un+1

491

and obtain the evolution identity492

(4.18) 24un+1 = 24D0u
n + 24D1u

n + 12D2u
n + 4D3u

n + D4u
n,493
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with α = (24, 24, 12, 4, 1). Limited by the length of the paper, below we will only present the final494

matrices in the energy equation495

(4.19) A(3) =


0

0
0
−8 4
4 1

 , B(3) =


1152 576 192 48 0
576 384 144 48 0
192 144 48 24 0
48 48 24 0 0
0 0 0 0 0

 .496

Namely, the termination index is ζ = 3, and a
(3)
33 = −8 < 0. It is easy to see ρ = 2 = ζ − 1, since the497

three leading principal minors in order are 1152, 110592, and −884736. As a result of Lemma 3.1,498

the RKDG(4, 4, k) scheme with one-step time-marching is of the weak(5) stability.499

To prove this proposition, we need to show the monotonicity stability for combining multiple500

time steps in the time-marching.501

The updating of the solution from tn to tn+2 by using the RKDG(4, 4, k) method for two502

consecutive time steps is looked upon as an one-step time-marching by the RKDG(8, 4, k) method.503

In additional to (4.17), four more temporal differences are recursively defined in the form504

(4.20)


D5u

n

D6u
n

D7u
n

D8u
n

 =


44 36 12 4 −120 24
−80 −24 0 8 216 −144 24

8 −120 −72 −8 −24 360 −168 24
64 192 0 −64 −384 −576 384 −192 576

un,505

where un = (un, un,1, un,2, . . . , un,6, un,7, un+2)>, and we then obtain the evolution identity506

(4.21) α0u
n+2 =

∑
0≤i≤8

αiDiun,507

with α = (576, 1152, 1152, 768, 384, 144, 40, 8, 1). After three transferring processes, we obtain508

A(3) =



0
0

0
−9216 170496 73152 22656 4992 768
170496 147456 55296 15360 3072 384
73152 55296 20736 5760 1152 144
22656 15360 5760 1600 320 40
4992 3072 1152 320 64 8
768 384 144 40 8 1


,509

and510

B(3) =



1327104 1327104 884736 442368 165888 46080 9216 1152 0
1327104 1769472 1327104 718848 285696 82944 17280 2304 0
884736 1327104 1050624 599040 248832 74880 16128 2304 0
442368 718848 599040 0 0 0 0 0 0
165888 285696 248832 0 0 0 0 0 0
46080 82944 74880 0 0 0 0 0 0
9216 17280 16128 0 0 0 0 0 0
1152 2304 2304 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0


.511

Since a
(3)
33 = −9216 < 0, we stop the transferring process and get ζ = 3. It is easy to see ρ = 3, since512

the three leading principal minors in order are 1327104, 587068342272 and 10820843684757504. It513
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follows from Lemma 3.1 that the monotonicity stability is proved for combining two steps in the514

time-marching.515

The updating of the solution from tn to tn+3 by combining three time steps of the RKDG(4, 4, k)516

method is looked upon as an one-step time-marching by an RKDG(12, 4, k) method. The analysis517

follows the same line as before, but the process is more lengthy. We omit the intermediate steps of518

the detailed definitions of temporal differences up to the 12th order. Finally, we have the evolution519

identity (3.10) with520

(4.22) α = (13824, 41472, 62208, 62208, 46656, 27648, 13248, 5184, 1656, 424, 84, 12, 1).521

The matrices A(3) and B(3) are shown in Tables 2 and 3, respectively. It shows that the termination522

index is ζ = 3, and a
(3)
33 = −7962624 < 0. Also, it is easy to see ρ = 3, since the three leading523

principal minors in order are 1146617856, 986049380773527552, and 117773106967986435753246720.524

Then it follows from Lemma 3.1 that the monotonicity stability is proved for three steps in the525

time-marching.526

Starting from n = 0, the above two sequences cover all integers n ≥ 2. By the above results for527

combining multiple time steps with both m = 2 and m = 3, we can conclude the strong stability for528

n ≥ 2, and hence complete the proof of this proposition.529

Remark 4.3. The above performance of the RKDG(4, 4, k) method shows the negative effect of530

the approximate skew-symmetric property of the spatial discretization. Although the jumps provide531

extra L2-norm stability in the semi-discrete method, they might have negative effect in the fully-532

discrete method as the spatial operator is no longer normal. However, owing to a
(ζ)
ζζ < 0, there exists533

a good stability mechanism provided by the time discretization, and thus the combination of multiple534

steps in the time-marching is able to enrich the contribution of the spatial DG discretization. As535

is shown in the above discussion, the contribution index ρ can catch up with ζ when the number536

of time steps m increases. Another good example is that the RKDG(10, 4, k) method [11] has the537

monotonicity stability.538

5. Remarks and extensions. In this section we give some remarks and extension for the539

above conclusions and/or the technique.540

5.1. Discussion on combining multiple steps. We focus on the RKDG(r, r, k) method541

when r ≡ 1 (mod 4) and r ≡ 2 (mod 4). Even for combining multiple steps in the time-marching,542

the analysis process always shows ζ = ρ and a
(ζ)
ζζ > 0. For example, when r = 2, for m-steps there543

always holds ζ = ρ = 2, and544

m-steps 2 3 4 5 6

a
(2)
22 8 48 256 1280 6144

545

with α0 = 2m. Since all numbers are positive, we cannot claim the monotonicity stability by546

combining m steps. We conjecture that these RKDG schemes may not be strongly stable, and only547

have the the weak stability, for arbitrary polynomial degree k.548

5.2. Lower polynomial degrees. Although the monotonicity stability does not hold for ar-549

bitrary polynomial degree, it may hold if the degree is small enough when ρ ≥ 1.550

Lemma 5.1. There exists a constant C > 0 solely depending on θ, i and µ, such that551

(5.1) ‖∂ix(D`un)‖ ≤ τ |β|‖∂i+1
x (D`−1u

n)‖+ Cτ |β|h−i−1/2‖[[D`−1u
n]]‖Γh ,552

for any i, ` and n. Here and below, ∂ix refers to the spatial derivative of order i.553

Proof. Denote S = D`un + τβ∂x(D`−1u
n). Integrating by parts yields554

(5.2) (S, v) = −τβ
∑

1≤j≤J

[[D`−1u
n]]j+ 1

2
{{v}}(1−θ)

j+ 1
2

, ∀ v ∈ Vh.555
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Taking v = S in (5.2) and using the inverse inequality, we have556

(5.3) (S,S) = −τβ
∑

1≤j≤J

[[D`−1u
n]]j+ 1

2
{{S}}(1−θ)

j+ 1
2

≤ Cτ |β|h− 1
2 ‖[[D`−1u

n]]‖Γh‖S‖,557

which implies this lemma for i = 0.558

Let i ≥ 1. Taking v = ∂2i
x S in (5.2), and integrating by parts for i times to deal with (S, ∂2i

x S),559

we have560

(−1)i‖∂ixS‖2 +
∑

0≤i′<i

∑
1≤j≤J

(−1)i−i
′
[[∂i+i

′

x S∂i−i
′−1

x S]]j+ 1
2

= −τβ
∑

1≤j≤J

[[D`−1u
n]]j+ 1

2
{{∂2i

x S}}
(1−θ)
j+ 1

2

,561

which implies, by the inverse inequality, that562

‖∂ixS‖2 ≤ Ch−1
∑

0≤i′<i

‖∂i+i
′

x S‖‖∂i−i
′−1

x S‖+ Cτ |β|h−1/2‖[[D`−1u
n]]‖Γh‖∂2i

x S‖

≤ Ch−i‖∂ixS‖‖S‖+ Cτ |β|h−1/2−i‖[[D`−1u
n]]‖Γh‖∂ixS‖.

563

Substituting the estimate of S, and we complete the proof of this lemma.564

As a corollary, we have the following theorem for lower order degrees.565

Theorem 5.1. Let ρ ≥ 1. Under the condition of Theorem 3.1, the RKDG(s, r, k) method has566

the monotonicity stability, for those piecewise polynomials with degree at most ρ− 1.567

Proof. Applying recursively Lemma 5.1, and we have568

‖Dκun‖2 ≤ C‖∂`x(Dκ−`un)‖2 + λQ3(λ)τ
∑

1≤i≤`

‖[[Dκ−iun]]‖2Γh ,569

here and below Q3(λ) is a polynomial of CFL number with nonnegative coefficients. Taking κ =570

` = ρ, we have the following conclusion571

‖Dρun‖2 ≤ λQ3(λ)τ
∑

0≤i≤ρ−1

‖[[Diun]]‖2Γh ,572

since the ρ-th order derivative in each element is zero, for any polynomials of degree at most ρ− 1.573

Note that ‖Dζun‖ ≤ C‖Dρun‖, following from Lemma 3.4, since ρ ≤ ζ and λ is smaller than 1.574

Hence, if the CFL number is small enough, we have Y1 + Y2 ≤ 0, which implies the monotonicity575

stability, by substituting the above two results into (3.28).576

Remark 5.1. For the RKDG(r, r, k) methods with 1 ≤ r ≤ 12, we list the important quantities577

related to their stability in the following table:578

r 1 2 3 4 5 6 7 8 9 10 11 12
ζ 1 2 2 3 3 4 4 5 5 6 6 7
ρ 1 2 2 2 3 4 4 4 5 6 6 6
γ 2 4 5 6 8 9 10 12 13
k∗ 0 1 1 2 3 3 4 5 5

579

Here k∗ is the maximal degree of piecewise polynomials to achieve the monotonicity stability. This580

result coincides with that for the RKDG(2,2,1) method in [28]. From this table, we can find out that581

ζ = br/2c+ 1 and γ = ζ + ρ, where582

(5.4) ρ =

{
ζ − 1, if r ≡ 0 (mod 4),
ζ, otherwise,

583

and br/2c is the largest integer not greater than r/2. In the evolution identity, we can conclude that584

(5.5) αi =
1

i!
α0, 1 ≤ i ≤ r.585

The above statements have been partly proved, and they will be finished in the further work.586
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5.3. Stability by combining multiple time steps with different step sizes. The frame-587

work presented in this paper can be applied in combining multiple time steps in the time-marching,588

even when the time step τn = tn+1 − tn is changing. The one-step stability analysis is the same589

as before. However, the multi-steps stability analysis becomes a little more complicated. As an590

example, in the following we present the multi-steps stability analysis of the RKDG(4, 4, k) scheme,591

which implies the strong stability.592

Lemma 5.2. Denote λn = |β|τnh−1. The RKDG(4, 4, k) scheme has the two-steps monotonicity593

stability, if λn is small enough and λn+1/λn ∈ (0.44, 2.29) holds for every n.594

Proof. Denote η ≡ τn+1/τn. The two-steps time-marching can be rewritten in the form595

(un,`+1, v) =
∑

0≤κ≤`

[
c`κ(un,κ, v) + d`κτ

nH(un,κ, v)
]
,(5.6a)596

(un+1,`+1, v) =
∑

0≤κ≤`

[
c`κ(un+1,κ, v) + d̃`κτ

nH(un+1,κ, v)
]
,(5.6b)597

598

where d̃`κ = d`κη and ` = 0, 1, 2, 3. This can be looked upon as one-step time-marching of a new599

RKDG(8,4,k) scheme with the time step τn, hence the previous line of analysis still works. After600

defining the temporal differences, we can get the final expression601

(5.7) un+2 =
∑

0≤i≤8

αiD̃iun,602

with the new definition of temporal differences D̃iun (same for i ≤ 4) and603

α = (576, 576η + 576, 288η2 + 576η + 288, 96η3 + 288η2 + 288η + 96,

24η4 + 96η3 + 144η2 + 96η + 24, 24η4 + 48η3 + 48η2 + 24η,

12η4 + 16η3 + 12η2, 4η4 + 4η3, η4).

604

The termination index is ζ = 3, the same as that when using a fixed time step, since the matrix605

transferring does not affect this index that solely depends on those lower-order (r ≤ 4) temporal606

differences. At this moment, we have a
(3)
33 = −4608η6−4608 < 0, and three leading principal minors607

detB(3)
0 = 663552η + 663552,

detB(3)
1 = 36691771392η4 + 146767085568η3 + 220150628352η2

+ 146767085568η + 36691771392,

detB(3)
2 = − 169075682574336η9 − 507227047723008η8 + 2028908190892032η6

+ 4057816381784064η5 + 4057816381784064η4 + 2028908190892032η3

− 507227047723008η − 169075682574336.

608

To ensure all numbers are positive, it is sufficient to require 0.44 < η < 2.29. This implies ρ = 3,609

hence the scheme (5.6) has monotonicity stability by Lemma 3.1. �610

A similar but more involved discussion leads to the following conclusion.611

Lemma 5.3. The RKDG(4, 4, k) scheme has the three-steps monotonicity stability, if λn is small612

enough and λn+1/λn ∈ [0.5, 2] holds for all n.613

As a consequence of the above two lemmas, we can conclude the stability for the RKDG(4, 4, k)614

method.615

Proposition 5.1. The RKDG(4, 4, k) scheme has the strong stability for n ≥ 2, if λn is small616

enough and λn+1/λn ∈ [0.5, 2] holds for all n.617
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Remark 5.2. Both the RKDG(8,8,k) method and the RKDG(12,12,k) method are similarly618

proved to have the strong stability for n ≥ 2, if λn is small enough, as well as λn+1/λn ∈ [0.61, 1.65]619

and λn+1/λn ∈ [0.70, 1.44], respectively, for all n.620

5.4. More examples. Along the same line of analysis, we can also obtain the L2-norm stability621

for the following RKDG methods that are all cited from [11].622

• The RKDG(10, 4, k) method and the RKDG(5, 3, k) methods have the monotonicity stabil-623

ity.624

• The RKDG(s, 1, k) method has the weak(2) stability, and the RKDG(s, 2, k) method has625

the weak(4) stability. These results are proved for s ≤ 7.626

• The RKDG(r + 1, r, k) method has the same stability as the RKDG(r, r, k) method. These627

results are proved for r ≤ 12.628

The detailed proof is omitted to save space.629

6. Numerical results. In this section we give some numerical examples to demonstrate our630

results. For simplicity, we use uniform meshes with J elements and take β = 1 in (1.1).631

Example 1. Firstly we numerically verify the stability result for the RKDG(4, 4, k) method.632

From the previous analysis, this scheme has the monotonicity stability when k = 1, and the strong633

stability when k = 2, 3. Take J = 16, 32, 64, and choose the standard orthogonal basis of Vh. Then634

this scheme can be written in the form635

(6.1) ũn+1 = Kũn,636

where K is a matrix of order (k + 1)J , and ũn is a vector made up of expansion coefficients of637

the numerical solution un. The spectral norm of Km, denoted by ‖Km‖2, is equal to the L2-norm638

amplification of solutions for every m-steps. In Figure 1 we plot ‖Km‖22−1 for different CFL number639

λ, where m = 1, 2, 3 and k = 1, 2, 3. For k = 1 and m = 1, 2, 3, this quantity is always close to640

the machine precision, which can be looked upon as zero. This shows the monotonicity stability for641

linear piecewise polynomials. For k = 2, 3 and m = 1, this quantity strongly depends on λ, with642

slope 5 in the logarithmic coordinates. These two pictures at least imply the weak(5)-stability for643

high order piecewise polynomials. For k = 2, 3 and m = 2, 3, this quantity is also close to zero, and644

shows the m-step monotonicity stability, hence, the strong stability for k = 2, 3. These numerical645

results coincide with Proposition 4.4.646

We also plot in Figure 2 the L2-norm of solutions, ‖un‖, for 0 ≤ n ≤ 12. Here J = 64 and647

λ = 0.05, and u0 is taken as the unit singular vector with respect to the largest singular value of648

K. For k = 1, the monotonicity stability is clearly observed. However, for k ≥ 2, the monotonicity649

stability does not hold at n = 1, and the multi-steps monotonicity stability is observed. Hence the650

RKDG(4,4,k) method only has the strong stability in general.651

Example 2. Now we investigate the weak stability of the RKDG(5, 5, k) method. As we have652

done in the previous example, we plot in Figure 3 the quantity ‖Km‖22− 1 for different CFL number653

λ, where k = 2, 3, 4 and m = 1, 2, 3. For k = 2 and m = 1, 2, 3, this quantity is very close to zero,654

which numerically verifies the monotonicity stability for lower-degree piecewise polynomials. For655

k = 3 and k = 4, this quantity strongly depends on λ, with slope 6 in the logarithmic coordinates,656

for m = 1, 2, 3. This performance is not the same as the RKDG(4, 4, k) method.657

Below we would like to numerically check whether the RKDG(5,5,4) scheme is linearly unstable.658

To this end, the initial solution u0 is taken as the L2-projection of u(x, 0) =
√

2 sin( J162πx) with659

J = 16, 32, 64. The CFL number is taken as λ = 0.06, 0.08, 0.10, since the maximal value listed660

in [9] is 0.115 to ensure the L2-norm stability. Notice that the results in [9] are based on Fourier661

eigenvalue analysis, and hence are only valid for normal spatial operators, while upwind-biased DG662

operators are not normal. The numerical results are shown in Figure 4, where the L2-norm of the663

solution exponentially increases after an extremely large number of time steps (for most cases), and664

this phenomenon is independent of the mesh size. From the theoretical analysis in this paper, we665

know that the increased factor of the L2-norm, at each time-step, is proportional to λ6. When the666
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Fig. 1. The behavior of ‖Km‖22 − 1 of the RKDG(4, 4, k) method for different CFL number λ: k = 1, 2, 3 from
top to bottom, m = 1, 2, 3 from left to right. Here J = 16, 32, 64 and θ = 0.75, 1.00, 1.25.

CFL number is small, for example, λ ≤ 0.1, this increased factor of the L2-norm may be tiny, such667

that the instability phenomenon is difficult to be observed numerically. This can be seen from the668

pictures with upwind parameters θ = 0.75, 1.00. Note that the increasing of the L2-norm becomes669

more serious when θ = 1.25, if λ ≥ 0.08.670

Similar results have been observed for the RKDG(6, 6, 4) method. Hence, we conjecture from our671

numerical experiments that the RKDG(r, r, k) method is linearly unstable for high-degree piecewise672

polynomials with any fixed CFL number, if r ≡ 1 (mod 4) or r ≡ 2 (mod 4).673

Example 3. Let us numerical verify the strong stability for the RKDG(4,4,3) method without674

the same time step. To do that, we take J = 64 and τ0 = 0.05/J . For n ≥ 1, we randomly take675

the time step τn ∈ [0.5τ0, τ0]. The initial solution u0 is taken the same as that in Example 1. The676

numerical result is plotted in Figure 5, which shows the strong stability of the scheme.677

7. Concluding remarks. In this paper we have proposed a flexible framework to carry out the678

L2-norm stability analysis for the RKDG schemes when solving linear constant-coefficient hyperbolic679

equations. Based on this technique, we are able to find out the different stability mechanisms and680
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Fig. 2. The evolution of ‖un‖ for the RKDG(4, 4, k) method: k = 1, 2, 3 from top to bottom, θ = 0.75, 1.00, 1.25
from left to right. Here J = 64 and λ = 0.05.

the detailed performances for many popular Runge-Kutta time marching, with order up to the681

12th. We believe that this technique can be applied to many algorithms when solving the PDEs682

with approximate skew-symmetric spatial discretizations. In future work, we will generalize this683

technique to handle multi-steps time-marching, and apply it to hyperbolic equations with variable684

coefficients and nonlinear conservation laws.685
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