THE L^2 -NORM STABILITY ANALYSIS OF RUNGE-KUTTA DISCONTINUOUS GALERKIN METHODS FOR LINEAR HYPERBOLIC EQUATIONS

YUAN XU*, QIANG ZHANG[†], CHI-WANG SHU[‡], AND HAIJIN WANG[§]

Abstract. In this paper we propose a simple and unified framework to investigate the L^2 -norm stability of the explicit Runge-Kutta discontinuous Galerkin (RKDG) methods, when solving the linear constant-coefficient hyperbolic equations. Two key ingredients in the energy analysis are the temporal differences of numerical solutions in different Runge-Kutta stages, and a matrix transferring process. Many popular schemes, including the fourth order RKDG schemes, are discussed in this paper to show that the presented technique is flexible and useful. Different performances in the L^2 -norm stability of different RKDG schemes are carefully investigated. For some lower-degree piecewise polynomials, the monotonicity stability is proved if the stability mechanism can be provided by the upwind-biased numerical fluxes. Some numerical examples are also given.

Key words. Runge-Kutta discontinuous Galerkin method, explicit time-marching, energy analysis, L^2 -norm stability

AMS subject classifications. 65M12, 65M60

1. Introduction. In this paper we propose an analysis framework to obtain the L²-norm stability of the explicit Runge-Kutta discontinuous Galerkin (RKDG) methods, when solving the linear constant-coefficient conservation law

18 (1.1)
$$U_t + \beta U_x = 0, \quad x \in I = (0, 1), \quad t > 0,$$

which is, for simplicity, subject to the periodic boundary condition. Here U(x,t) is the unknown solution and $\beta \neq 0$ is a given constant. In this paper we would like to take the one-dimensional scalar equations as an example. One-dimensional systems can be treated in the same way by diagonalization. The multi-dimensional case is also similar, with the main difference coming from the inverse properties of the discontinuous finite element spaces.

After the first version of the discontinuous Galerkin (DG) method was introduced in 1973 by Reed and Hill [22], in the framework of neutron linear transport, the DG method has been the focus of intensive research, because it has many advantages. For example, this method has strong stability, optimal accuracy, and can capture discontinuous jumps sharply. It combines the advantages of finite element methods and finite volume methods. An important development in the DG method was carried out in the late 1980's, when Cockburn et al. [4–8] combined the explicit Runge-Kutta timemarching and the DG spatial discretization to form the RKDG schemes. There have been many published papers in this field since then, see for example the review papers [3,9] and the references therein.

Compared with the wide applications of RKDG methods, there is relatively less work on the theory, for example, on the numerical stability in suitable norm, which is an important issue for the reliability of the scheme. Related to the semi-discrete DG method for nonlinear conservation laws, the well-known conclusion is the local cell entropy inequality, given by Jiang and Shu [16], which implies that the L²-norm of the numerical solution does not increase with time. The stability mechanism provided by the spatial DG discretization is very weak, hence the explicit time-marching to the DG method must be carefully treated with, if the time step is assumed to only satisfy the

^{*}Department of Mathematics, Nanjing University, Nanjing 210093, Jiangsu Province, China (dz1721005@smail.nju.edu.cn). Research supported by NSFC grants 11671199 and 11571290.

[†]Department of Mathematics, Nanjing University, Nanjing 210093, Jiangsu Province, China (qzh@nju.edu.cn). Research supported by NSFC grants 11671199 and 11571290.

 $^{^{\}ddagger}$ Division of Applied Mathematics, Brown University, Providence, RI 02912 (shu@dam.brown.edu). Research supported by ARO grant W911NF-16-1-0103 and NSF grant DMS-1719410.

[§]School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu Province, China (hjwang@njupt.edu.cn). Research sponsored by NSFC grants 11601241 and 11671199, and Natural Science Foundation of Jiangsu Province grant BK20160877.

standard Courant-Friedrichs-Lewy (CFL) condition that the ratio of the time step over the spatial mesh size is upper bounded by a constant. For example, the Euler-forward time-marching to the DG method is linearly unstable under the standard CFL condition for any polynomial degree $k \ge 1$. To overcome this difficulty, one successful treatment is to adopt the explicit total-variation-diminishing Runge-Kutta time-marching [23]; please refer to the series of papers by Cockburn et al. [4–8]. This type of time-marching has been later termed *strong-stability-preserving* (SSP) [13], which is widely applied in the analysis of nonlinear stability including the total-variation-diminishing in the means (TVDM) property [3] and the positivity-preserving property [30] for nonlinear conservation laws.

In this paper we focus on the fully-discrete RKDG methods for linear constant-coefficient hyperbolic equations, and would like to establish a general framework for analyzing their L²-norm stability. We start by noting that this analysis cannot follow the SSP's framework [13, Lemma 2.1], because the RKDG method does not satisfy the basic assumption that the Euler-forward timemarching in each stage evolution is stable under the standard CFL condition. Thus the high-order Runge-Kutta time discretization must be analyzed directly. There are two main strategies to do this analysis. The easier strategy is to carry out a Fourier analysis [14,19,31], which might give the sharp CFL condition. However, this technique demands many assumptions, for example, uniform meshes and the periodic boundary condition, and, if only eigenvalues of the amplification matrices are considered, it would also require the spatial discretization operator to be normal. This technique is also difficult to be generalized to non-uniform meshes, non-periodic boundary conditions, the linear variable-coefficient problems or the nonlinear problems, or the multidimensional problems [17]. Therefore, we would like in this paper to follow the second strategy, which is the so-called energy analysis to overcome the above difficulties. The motivation comes from the analysis of the optimal error estimates for two RKDG methods to solve nonlinear conservation laws carried out in [28, 29]. which is obtained by virtue of suitable projections and the stability analysis for the linear case.

In this paper we develop the technique initialized in [28,29] to any RKDG(s,r,k) method with stage s and order r (in time-marching), as well as with polynomial degree k in the spatial DG discretization. The main treatment in the stability analysis is to establish a good energy equation to clearly reflect the evolution of the L²-norm of the numerical solution, and to explicitly show the stability mechanism hidden in the fully-discrete scheme. For this purpose, we follow the original idea in [28,29] and make the following important developments in this paper:

- 1. The first development is the temporal differences of the numerical solution in different Runge-Kutta stages (sometimes abbreviatedly referred to as the "stage solutions" below), which are related to different orders of time derivatives. These temporal differences are easily defined by induction, and their treatment is not limited to one-step time-marching. In fact, we combine multiple steps in the time-marching, with possibly different time step sizes as well. See sections 3 and 5.3 for more details.
- 2. The second development is the simple matrix transferring process, which enables us to transform an ordinary energy equation to a particular energy equation in our desired form. In this transferring process, the temporal differences of stage solutions play a very important role, and some general properties of the DG spatial discretization are also implicitly used. After the transferring process, we can obtain the expected stability conclusion by looking at a termination index ζ and a contribution index ρ , as defined and discussed in section 3. These indices explicitly reflect the stability mechanism of the RKDG method, hence they are very useful in analyzing different stabilities for fully-discrete RKDG methods.

This general framework, which heavily uses various temporal differences of the DG numerical solution in different Runge-Kutta stages, might turn out to be useful for future generalizations to linear variable coefficient and nonlinear problems. Furthermore, our line of analysis is very convenient and useful to obtain optimal error estimates of the RKDG method, as having been done in [29] and [20]. We believe that this technique works well for many numerical methods to solve (almost) skew-symmetric problems.

We point out related earlier work in [18, 24, 26] for the stability of Runge-Kutta time discretiza-

tions for semi-negative spatial operators with temporal accuracy up to fourth order. Levy and Tadmor [18] used the energy method to prove, for coercive problems, the monotonicity stability of some fully-discrete schemes with Runge-Kutta time-marching of order r=3,4 (please see section 2 for the definition of monotonicity stability). After that, this result has been extended to the general linear Runge-Kutta time-marching, and the SSP framework [13] was utilized. However, the RKDG methods for the hyperbolic problems are not strongly coercive, and the SSP framework is not suitable for their L²-norm stability analysis. In 2002, Tadmor [26] proved the monotonicity stability of the three-stage third order Runge-Kutta time discretization with any semi-negative linear spatial operator, including the RKDG(3,3,k) method, without the coercive assumption, and posed the monotonicity stability of the four-stage fourth order Runge-Kutta time discretization with a semi-negative linear spatial operator, including the RKDG(4,4,k) method, as an open problem. In 2010, Zhang and Shu [29] and Burman and Ern [1], independently, proved the monotonicity stability and error estimates for the RKDG(3,3,k) method, along different analysis lines. The open problem proposed by Tadmor [26] has been partly answered by Sun and Shu [24] in 2017, by a simple counter-example that the four-stage fourth order Runge-Kutta time discretization with a semi-negative linear spatial operator does not always have the monotonicity stability. However, the L²-norm of the solution is proved to have the monotonicity property after every two time steps. Notice that the semi-negative linear operator in the counter example in [24] is not the DG operator, hence the result in [24] does not answer the question whether the RKDG(4,4,k) method has the monotonicity stability or not. In this paper, we use numerical examples (see Example 1 in section 6) to show that the monotonicity stability does not hold for the first time step of the RKDG(4,4,k)method. Actually, the destruction on the monotonicity can happen at any time level. Using our analysis technique, we successfully recover the conclusions in [24] and prove in addition that the L²norm of the numerical solution is monotone after every three-steps, which implies the strong stability (please see section 2 for the definition of strong stability) of the RKDG(4,4,k) method after the second time step. Very recently, Sun and Shu [25] extended their earlier work in [24] by developing a general framework in analyzing the stability of Runge-Kutta time-marching for semi-negative linear spatial operators. Some of the results obtained in our paper overlap with the results in [25], however we concentrate on the particular DG spatial operator and use its properties explicitly, hence we are able to obtain some results not covered in [25]. The lines of analysis in our paper and in [25] are also very different.

91

92

93

94

95 96

97

98

99

100

101

102103

104

106

108

110

111

112

113

114 115

116

117

118

119

120

121

122

123

124

125 126

127 128

129

130

The content of this paper is organized as follows. In section 2, we firstly present the general construction of the RKDG methods and state the L²-norm stability of the RKDG(r, r, k) methods, for any degree $k \geq 0$ and $1 \leq r \leq 12$. Also, the weak (γ) stability, the strong (boundedness) stability, and the monotonicity stability are defined in this section. In section 3 we present the framework for our analysis, including the temporal differences of solutions in different stages, the matrix transferring process, and two important indices. In section 4 the above discussion is applied to four classical RKDG methods from the first-order to the fourth-order in time. Some important remarks and extensions are given in section 5. Numerical examples are given in section 6, and concluding remarks are given in section 7.

- 2. RKDG method and the main result. In this section we would like to present the RKDG method under consideration, expressed in the Shu-Osher form [23].
- 2.1. Discontinuous finite element space. Let $\{I_j\}_{j=1}^J$ be a quasi-uniform partition of I, where each element $I_j = (x_{j-1/2}, x_{j+1/2})$ has length $h_j = x_{j+1/2} x_{j-1/2}$. The maximum length of elements is denoted by $h = \max_{j=1,2,...,J} h_j$. The discontinuous finite element space is defined as

136 (2.1)
$$V_h = \{ v \in L^2(I) : v|_{I_i} \in \mathcal{P}^k(I_j), j = 1, \dots, J \},$$

where $\mathcal{P}^k(I_j)$ denotes the space of polynomials in I_j of degree at most $k \geq 0$. Note that the functions in V_h are allowed to have discontinuities across element interfaces. Following [2], the jump

and weighted average are respectively denoted by

140 (2.2)
$$[v]_{j+\frac{1}{2}} = v_{j+\frac{1}{2}}^+ - v_{j+\frac{1}{2}}^- \text{ and } \{v\}_{j+\frac{1}{2}}^{(\theta)} = \theta v_{j+\frac{1}{2}}^- + (1-\theta)v_{j+\frac{1}{2}}^+,$$

- where $v_{j+1/2}^{\pm}$ are traces along different directions at the point $x_{j+1/2}$, and θ is the given weight.
- 2.2. Semi-discrete scheme. Following the notations of [20,29], the semi-discrete DG method of (1.1) is defined as follows: find the map $u: [0,T] \to V_h$ such that

144 (2.3)
$$(u_t, v) = \mathcal{H}(u, v), \quad \forall v \in V_h, \quad t \in (0, T],$$

subject to the initial solution $u(x,0) \in V_h$. Here (\cdot,\cdot) is the standard inner product in $L^2(I)$, with the associated L²-norm $\|\cdot\|$, and

147 (2.4)
$$\mathcal{H}(u,v) = \sum_{1 \le j \le J} \left[\int_{I_j} \beta u v_x \, \mathrm{d}x + \beta \{\!\!\{u\}\!\!\}_{j+\frac{1}{2}}^{(\theta)} [\!\![v]\!\!]_{j+\frac{1}{2}} \right]$$

is the spatial DG discretization. We would assume $\beta(\theta-1/2) > 0$ in this paper, such that $\hat{f}(u^-, u^+) \equiv \beta\{\{u\}\}^{(\theta)}$ forms an upwind-biased numerical flux at each element interface. Actually, $\hat{f}(u^-, u^+)$ is just the purely upwind flux when $\theta = 0$ for $\beta < 0$, and $\theta = 1$ for $\beta > 0$.

It is worthy to mention that the periodic boundary condition has been used in the above definition. Other boundary conditions can be treated in a similar way. For example, please refer to [27] for the inflow boundary condition.

REMARK 2.1. In general, u(x,0) is given as the approximation of the given initial solution. For example, the L^2 -projection is frequently used in practice. In this paper we will not discuss this issue, since the initial solution only affects the error, but not the stability.

2.3. Fully-discrete scheme. In the fully-discrete method, we would like to seek the numerical solution u^n at time levels $t^n = n\tau$, where τ is the time step. The time step could actually change from step to step. For simplicity, in this paper we take it as a constant unless otherwise stated.

By virtue of the Shu-Osher representation [23], the general construction of the RKDG(s, r, k) method is given as follows. For $\ell = 0, 1, \ldots, s-1$, the stage solutions, advancing from t^n to t^{n+1} , are successively sought by the following variation form

(2.5)
$$(u^{n,\ell+1},v) = \sum_{0 \le \kappa \le \ell} \left[c_{\ell\kappa}(u^{n,\kappa},v) + d_{\ell\kappa}\tau \mathcal{H}(u^{n,\kappa},v) \right], \quad \forall v \in V_h,$$

164 where $d_{\ell\ell} \neq 0$. Here $u^{n,0} = u^n$ and $u^{n+1} = u^{n,s}$.

151

152

153

154 155

156

157

158

159

160

161

165

166167

168

169

There are plenty of examples in the review paper [11]. In this paper we would like to start from the RKDG(r, r, k) method whose number of stages s is equal to the order r. For the linear constant-coefficient problem, all Runge-Kutta methods with the same number of stages and order are equivalent [13]. Under the SSP framework, the coefficients in (2.5) of this method can be written into two matrices

$$\{c_{\ell\kappa}\} = \begin{bmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & \\ g_{r-1,0} & \cdots & g_{r-1,r-2} & g_{r-1,r-1} \end{bmatrix}, \quad \{d_{\ell\kappa}\} = \begin{bmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & \\ & & & g_{r-1,r-1} \end{bmatrix},$$

where the row (and column) numbers are both taken from $\{0, 1, 2, ..., r-1\}$. The parameters are defined as follows. Let $g_{0,0} = 1$, and recursively define for $r \ge 2$ that

$$g_{r-1,\ell} = \frac{1}{\ell} g_{r-2,\ell-1}, \quad \ell = 1, 2, \dots, r-2,$$

Table 1 Coefficients of the RKDG(r, r, k) methods.

\overline{r}	$g_{r-1,0}$	$g_{r-1,1}$	$g_{r-1,2}$	$g_{r-1,3}$	$g_{r-1,4}$	$g_{r-1,5}$	$g_{r-1,6}$	$g_{r-1,7}$
1	1							
2	$\frac{1}{2}$	$\frac{1}{2}$						
3	$\frac{1}{3}$	$\frac{1}{2}$	$\frac{1}{6}$					
4	$\frac{3}{8}$	$\frac{1}{3}$	$\frac{1}{4}$	$\frac{1}{24}$				
5	$\frac{11}{30}$	$\frac{3}{8}$	$\frac{1}{6}$	$\frac{1}{12}$	$\frac{1}{120}$			
6	$\frac{53}{144}$	$\frac{11}{30}$	$\frac{3}{16}$	$\frac{1}{18}$	$\frac{1}{48}$	$\frac{1}{720}$		
7	$\frac{103}{280}$	$\frac{53}{144}$	$\frac{11}{60}$	$\frac{3}{48}$	$\frac{1}{72}$	$\frac{1}{240}$	$\frac{1}{5040}$	
8	$\frac{2119}{5760}$	$\frac{103}{280}$	$\frac{\frac{11}{60}}{\frac{53}{288}}$	$\frac{11}{180}$	$\frac{1}{64}$	$\frac{1}{360}$	$\frac{1}{1140}$	$\frac{1}{40320}$

with $g_{r-1,r-1} = 1/r!$ and $g_{r-1,0} = 1 - \sum_{\ell=1}^{r-1} g_{r-1,\ell}$. The related coefficients for $r \leq 8$ are listed in Table 1 [13, Table 3.1].

REMARK 2.2. Only for homogeneous linear problems, both SSP and non-SSP Runge-Kutta methods of s-stages with sth-order accuracy are identical. This is not true for the general linear and non-linear problems. It is a well-known conclusion [12] that there does not exist any SSP Runge-Kutta scheme of four-stages with fourth-order accuracy for nonlinear problems.

- **2.4. Main result.** Denote by $\lambda = |\beta|\tau h^{-1}$ the CFL number. To clearly state the L²-norm stability of the RKDG methods, we would like to adopt three different stability concepts in this paper. They are given as follows.
 - 1. Weak(γ) stability: there exists an integer $\gamma \geq 2$, such that

(2.6)
$$||u^{n+1}||^2 \le (1 + C\lambda^{\gamma})||u^n||^2, \quad n \ge 0,$$

if the CFL number λ is small enough, where the constant C>0 is independent of τ,h and n. As a result, the RKDG method is generally stable with the exponent-type constant, provided that λ^{γ}/τ is bounded.

2. Strong (boundedness) stability: there exists an integer n_* , such that

$$||u^n|| < ||u^0||, \quad n > n_*,$$

if the CFL number λ is small enough.

3. Monotonicity stability: there holds $||u^{n+1}|| \le ||u^n||$ for $n \ge 0$, if the CFL number λ is small enough. Obviously, monotonicity stability implies the strong (boundedness) stability. Note that our monotonicity stability is sometimes called strong stability in the literature.

It is worthy to mention the following facts. If the weak(γ) stability can not be strengthened to the other two stabilities, the scheme might be linearly unstable for any fixed CFL number, no matter how small it is. If both the weak(γ) stability and the strong (boundedness) stability hold, the scheme is obviously stable under the standard CFL condition.

Now we present the L^2 -norm stability results for some popular RKDG methods, which is stated in the following theorem.

THEOREM 2.1. For the RKDG(r, r, k) methods, with $1 \le r \le 12$ and arbitrary k, the stability conclusion strongly depends on the remainder when r is divided by 4, namely

$r \mod 4$	0	1	2	3
stability type	strong	weak(r+1)	weak(r+2)	monotonicity

At the end of this section, we would like to give some remarks below. 203

Remark 2.3. If the RKDG(r, r, k) method is weakly stable, a stronger constraint on the time 204 step size is needed to ensure the general stability. Theorem 2.1 shows that $\tau = \mathcal{O}(h^{\frac{r+1}{r}})$ is sufficient 205 for $r \equiv 1 \pmod{4}$, and $\tau = \mathcal{O}(h^{\frac{r+2}{r+1}})$ for $r \equiv 2 \pmod{4}$. This conclusion generalizes the result 206 in [10, Theorem 3.2] for the even-order time-marching, in which the strictly skew-symmetric property 207 (see section 3, which implies that the spatial operator is normal) for the spatial discretization is 208 required. In this paper, we only require an approximate skew-symmetric property (which could be a 209 non-normal operator) as specified in section 3. 210

3. Stability analysis. In this section we present the line of analysis to obtain the L²-norm 211 stability of any RKDG methods. It is based on the energy technique, and mainly includes two 212 components. Below we will use the generalized notations 213

214 (3.1)
$$u^{n,\kappa+ms} = u^{n+m,\kappa}, \quad \kappa = 0, 1, \dots, s-1,$$

- for any given integer $m \ge 1$. Here n and n + m are called the time levels, κ and $\kappa + ms$ are called 215 the stage numbers, and m is called the step number. In many cases, we take m=1. 216
- 217 **3.1. Preliminaries.** Now we recall some preliminary conclusions that will be used below. If the proofs are trivial, we will omit them. 218
- 3.1.1. Inverse inequity and discrete trace inequity of the finite element space. For 219 any function $v \in V_h$, there exists an inverse constant μ independent of h and v, such that 220

$$||v_x|| \le \mu h^{-1} ||v||, \qquad \text{(inverse inequity)}$$

221 (3.2a)
$$||v_x|| \le \mu h^{-1} ||v||$$
, (inverse inequity)
223 (3.2b) $||v||_{\Gamma_h} \le \mu h^{-1/2} ||v||$, (discrete trace inequity)

where ||v|| is the L²-norm as usual, and 224

$$||v_x|| = \left\{ \sum_{1 \le j \le J} \int_{I_j} (v_x)^2 \, \mathrm{d}x \right\}^{\frac{1}{2}}, \quad ||v||_{\Gamma_h} = \left\{ \sum_{1 \le j \le J} \frac{1}{2} \left[(v_{j+\frac{1}{2}}^-)^2 + (v_{j-\frac{1}{2}}^+)^2 \right] \right\}^{\frac{1}{2}}.$$

- For more detailed discussions on this issue, please see [15, 21]. 226
- **3.1.2.** Properties of the DG discretization. An application of integration by parts yields 227 the next lemma, which plays an important role in the following analysis. See [2,29] for details. 228
- LEMMA 3.1. The DG discretization has the following approximate skew-symmetric property

230 (3.3)
$$\mathcal{H}(w,v) + \mathcal{H}(v,w) = -2\beta(\theta - 1/2) \sum_{1 \le j \le J} \llbracket w \rrbracket_{j+\frac{1}{2}} \llbracket v \rrbracket_{j+\frac{1}{2}},$$

- for any w and $v \in V_h$. 231
- Remark 3.1. If the right-hand side of (3.3) is always equal to zero, this property is called the 232 strictly skew-symmetric property. It happens when $\theta = 1/2$. 233
- As a corollary, the DG discretization has the negative semi-definite property 234

235 (3.4)
$$\mathcal{H}(w,w) = -\beta(\theta - 1/2) \| [w] \|_{\Gamma_h}^2 \le 0, \quad \forall w \in V_h,$$

- which explicitly shows the stability contribution owing to the spatial discretization. Similar to the 236 result in Sun and Shu [24, Lemma 2.3], the following development provides a deeper insight on this
- issue. For the completeness of this paper, we give a simplified proof again.

LEMMA 3.2. Let $\mathbb{G} = \{g_{ij}\}$ be a symmetric positive semi-definite matrix, whose row numbers and column numbers are both taken from a given set \mathcal{G} . For any family $\{w_i\}_{i\in\mathcal{G}}\subset V_h$, there holds

241 (3.5)
$$\sum_{i \in G} \sum_{j \in G} g_{ij} \mathcal{H}(w_i, w_j) \le 0.$$

242 Proof. Consider the eigenvalue decomposition $\mathbb{G} = \mathbb{Q}^{\top} \operatorname{diag}(\sigma_i) \mathbb{Q}$, where $\mathbb{Q} = (q_{ij})$ is an orthonormal matrix, and $\operatorname{diag}(\sigma_i)$ is a diagonal matrix consisting of the nonnegative eigenvalues.

Namely, there holds $g_{ij} = \sum_{\ell \in \mathcal{G}} q_{\ell i} \sigma_{\ell} q_{\ell j}$. It implies

$$\sum_{i \in \mathcal{G}} \sum_{j \in \mathcal{G}} g_{ij} \mathcal{H}(w_i, w_j) = \sum_{\ell \in \mathcal{G}} \sigma_{\ell} \mathcal{H} \left(\sum_{i \in \mathcal{G}} q_{\ell i} w_i, \sum_{j \in \mathcal{G}} q_{\ell j} w_j \right).$$

- Since the arguments in the DG discretization are the same, we can complete the proof of this lemma by using (3.4).
- By applying the inverse properties and Cauchy-Schwarz inequality, we can easily have the following lemma, which will be used to determine the CFL condition.
- Lemma 3.3. The DG discretization is continuous in $V_h \times V_h$, in the sense

251 (3.6)
$$|\mathcal{H}(w,v)| \le C|\beta|h^{-1}||w|| ||v||, \quad \forall w, v \in V_h,$$

- where the bounding constant C > 0 solely depends on θ and μ .
- 3.2. Temporal differences of stage solutions. For the stage solutions after the time level t^n , we would like to adopt the key concepts in [28,29] and recursively define a series of the temporal differences in the form

$$\mathbb{D}_{\kappa}u^{n} = \sum_{0 \le \ell \le \kappa} \sigma_{\kappa\ell}u^{n,\ell}, \quad \kappa \ge 1,$$

257 such that $\sum_{0 \le \ell \le \kappa} \sigma_{\kappa \ell} = 0$ and

$$(\mathbb{D}_{\kappa}u^n, v) = \tau \mathcal{H}(\mathbb{D}_{\kappa-1}u^n, v), \quad \forall v \in V_h.$$

- Here and below we denote $\mathbb{D}_0 u^n = u^n$ for simplicity. Owing to the relationship (3.8) and the definition of $\mathcal{H}(\cdot,\cdot)$, the temporal differences can be viewed as an approximation of certain time derivatives multiplying a constant depending on the time step.
- Lemma 3.4. There exists a constant C > 0 solely depending on θ and μ , such that

$$\|\mathbb{D}_{\kappa}u^n\| \le C\lambda \|\mathbb{D}_{\kappa-1}u^n\|, \quad \kappa \ge 1,$$

- 264 holds for any $n \ge 0$.
- *Proof.* The proof is straightforward by taking $v = \mathbb{D}_{\kappa} u^n$ in (3.8) and employing Lemma 3.3. \square
- These temporal differences are very easily obtained by a linear combination of the schemes, since the spatial discretization is linear. Actually, this process does not depend on the particular definition of the spatial discretization, since the temporal differences solely depend on the fashion of time-marching.
- 3.3. Transferring of energy equations. In the above process to define the temporal differences, we also achieve the evolution identity

$$\alpha_0 u^{n+m} = \sum_{\substack{0 \le i \le ms}} \alpha_i \mathbb{D}_i u^n,$$

where $\alpha_0 > 0$ is used only for scaling. For convenience, denote $\alpha = (\alpha_0, \alpha_1, \dots, \alpha_{ms})$.

By taking the L²-norm on both sides of (3.10), we have the energy equation

275 (3.11)
$$\alpha_0^2(\|u^{n+m}\|^2 - \|u^n\|^2) = \sum_{0 \le i, j \le ms} a_{ij}(\mathbb{D}_i u^n, \mathbb{D}_j u^n) \equiv \text{RHS},$$

where $a_{00} = 0$ and $a_{ij} = \alpha_i \alpha_j$ if i + j > 0. This expression is not very useful for the stability analysis, since the stability contribution of the particular spatial discretization is not reflected. Hence we introduce a simple transferring to write the right-hand side of (3.11) into an equivalent but more useful expression, which is denoted in the form

$$RHS(\ell) = \sum_{0 < i, j < ms} a_{ij}^{(\ell)}(\mathbb{D}_i u^n, \mathbb{D}_j u^n) + \sum_{0 < i, j < ms} b_{ij}^{(\ell)} \tau \mathcal{H}(\mathbb{D}_i u^n, \mathbb{D}_j u^n).$$

For the convenience of notations, we express (3.12) by two symmetric matrices of (ms+1)-th order

282 (3.13)
$$\mathbb{A}^{(\ell)} = \{a_{ij}^{(\ell)}\}, \quad \mathbb{B}^{(\ell)} = \{b_{ij}^{(\ell)}\},$$

where the row number i and column number j are both taken from $\{0, 1, ..., ms\}$. Obviously, the matrices $\mathbb{A}^{(0)} = \{a_{ij}\}$ and $\mathbb{B}^{(0)} = \mathbb{O}$ are given, for the initial situation.

The motivation of matrix transferring in (3.12) is owing to two issues. One is the relationship (3.8) among those temporal differences. The other is the fully usage of the approximate skew-symmetric property of the spatial discretization, which has been stated in Lemma 3.1.

Below we present the detailed implementation. Assume that the ℓ -th transferring starts from the given matrix

$$\mathbb{A}^{(\ell)} = \begin{bmatrix} \mathbb{O} & \mathbb{O} & \mathbb{O} & \mathbb{O} \\ \mathbb{O} & a_{\ell\ell}^{(\ell)} & a_{\ell,\ell+1}^{(\ell)} & \cdots & a_{\ell,ms}^{(\ell)} \\ \mathbb{O} & a_{\ell+1,\ell}^{(\ell)} & a_{\ell+1,\ell+1}^{(\ell)} & \cdots & a_{\ell+1,ms}^{(\ell)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbb{O} & a_{ms,\ell}^{(\ell)} & a_{ms,\ell+1}^{(\ell)} & \cdots & a_{ms,ms}^{(\ell)} \end{bmatrix}.$$

Note that those zeros at the left and the top do not exist if $\ell = 0$, since $\mathbb{A}^{(0)} = \{a_{ij}\}$.

If $a_{\ell\ell}^{(\ell)} \neq 0$, then the transferring process stops, and the termination index is defined as $\zeta = \ell$. For the initial situation, $a_{00}^{(0)} = a_{00} = 0$, hence $1 \leq \zeta \leq ms$. Otherwise, if $a_{\ell\ell}^{(\ell)} = 0$, the following transferring will be carried out to get new matrices $\mathbb{A}^{(\ell+1)}$

Otherwise, if $a_{\ell\ell}^{(\ell)} = 0$, the following transferring will be carried out to get new matrices $\mathbb{A}^{(\ell+1)}$ and $\mathbb{B}^{(\ell+1)}$. The main action is to move the same-order temporal information into an equivalent expression of spatial information. Here the temporal information refers to $(\mathbb{D}_i u^n, \mathbb{D}_j u^n)$, whose coefficients are shown by the nonzero entries at the ℓ -th row (and column) of $\mathbb{A}^{(\ell)}$. The spatial information refers to $\tau \mathcal{H}(\mathbb{D}_i u^n, \mathbb{D}_j u^n)$, whose coefficients are shown by the entries at the ℓ -th row (and column) of $\mathbb{B}^{(\ell+1)}$. By making the full usage of the relationship (3.8) among those temporal differences, we have

$$2a_{\ell+1,\ell}^{(\ell)}(\mathbb{D}_{\ell+1}u^n,\mathbb{D}_{\ell}u^n) = 2a_{\ell+1,\ell}^{(\ell)}\Big[\tau\mathcal{H}(\mathbb{D}_{\ell}u^n,\mathbb{D}_{\ell}u^n)\Big],$$

and for $\ell + 1 \le i \le ms - 1$,

288

292

293294

295

296

297

298

299

$$2a_{i+1,\ell}^{(\ell)}(\mathbb{D}_{i+1}u^n, \mathbb{D}_{\ell}u^n) + Q_{i,\ell+1}a_{i,\ell+1}^{(\ell)}(\mathbb{D}_{i}u^n, \mathbb{D}_{\ell+1}u^n)$$

$$= Q_{i,\ell+1}\left[a_{i,\ell+1}^{(\ell)} - \frac{2a_{i+1,\ell}^{(\ell)}}{Q_{i,\ell+1}}\right](\mathbb{D}_{i}u^n, \mathbb{D}_{\ell+1}u^n) + 2a_{i+1,\ell}^{(\ell)}\left[\tau\mathcal{H}(\mathbb{D}_{i}u^n, \mathbb{D}_{\ell}u^n) + \tau\mathcal{H}(\mathbb{D}_{\ell}u^n, \mathbb{D}_{i}u^n)\right].$$

Here $Q_{i,\ell+1}$ is equal to 1 if $i = \ell + 1$, or equal to 2 otherwise. Writing the above coefficients in the matrices $\mathbb{A}^{(\ell+1)}$ and $\mathbb{B}^{(\ell+1)}$, we can define the transferring as follows:

$$a_{ij}^{(\ell+1)} = \begin{cases} 0, & 0 \le j \le \ell, \\ a_{ij}^{(\ell)} - 2a_{i+1,j-1}^{(\ell)}, & i = \ell+1 \text{ and } j = \ell+1, \\ a_{ij}^{(\ell)} - a_{i+1,j-1}^{(\ell)}, & \ell+2 \le i \le ms-1 \text{ and } j = \ell+1, \\ a_{ij}^{(\ell)}, & \text{otherwise,} \end{cases}$$

and 307

308 (3.17)
$$b_{ij}^{(\ell+1)} = \begin{cases} 2a_{i+1,j}^{(\ell)}, & \ell \le i \le ms - 1 \text{ and } j = \ell, \\ b_{ij}^{(\ell)}, & \text{otherwise.} \end{cases}$$

- Since the symmetric property is preserved in the transferring process, the above formulations are 309 only given for the lower-triangular part of the matrices. 310
- Remark 3.2. Following (3.16) and (3.17), we can see that the nonzero entries of $\mathbb{A}^{(\ell)}$ and the 311 zero entries of $\mathbb{B}^{(\ell)}$ are mainly located in the right and the bottom. In each matrix transferring, only 312 two rows (and columns) are different between $\mathbb{A}^{(\ell)}$ and $\mathbb{A}^{(\ell+1)}$, and only one row (and column) is 313 different between $\mathbb{B}^{(\ell)}$ and $\mathbb{B}^{(\ell+1)}$. 314
- **3.4.** Discussions and statements. Below we use $Q_1(\lambda)$ and $Q_2(\lambda)$ to denote generic poly-315 nomials of the CFL number λ with nonnegative coefficients. They are always bounded if the CFL 316 number is smaller than 1. Their expression may be different at each occurrence. 317
- In what follows we separately estimate two terms in $RHS(\zeta)$, where ζ is the termination index. 318 The first term solely includes the inner-product of the temporal differences. By using Lemma 3.4 319 and Cauchy-Schwarz inequality, we have 320

321 (3.18)
$$\sum_{0 \le i, j \le ms} a_{ij}^{(\zeta)}(\mathbb{D}_i u^n, \mathbb{D}_j u^n) \le \left[a_{\zeta\zeta}^{(\zeta)} + \lambda \mathcal{Q}_1(\lambda) \right] \|\mathbb{D}_{\zeta} u^n\|^2,$$

- 322
- where λ is the CFL number, and $a_{\zeta\zeta}^{(\zeta)} \neq 0$. The second term in RHS(ζ) explicitly shows the detailed contribution of the spatial discretiza-323 tion. Associated with the matrix $\mathbb{B}^{(\zeta)}$, we define the index set of the bad submatrices 324

325 (3.19)
$$\mathcal{B} = \{ \kappa \colon \det \mathbb{B}_{\kappa}^{(\zeta)} \le 0, \text{ and } 0 \le \kappa \le \zeta - 1 \},$$

- where $\mathbb{B}_{\kappa}^{(\zeta)} = \{b_{ij}^{(\zeta)}\}_{0 \leq i,j \leq \kappa}$ is the $(\kappa+1)$ -th order leading principal submatrix of $\mathbb{B}^{(\zeta)}$. Note that the lower-order leading principal submatrix is preserved at the subsequent transferring process, which implies $\mathbb{B}_{\kappa}^{(\zeta)} = \mathbb{B}_{\kappa}^{(\kappa+1)}$, and that the index set \mathcal{B} can be obtained along the transferring process. Then 327 328
- we define the contribution index of the spatial discretization as
- 329

330 (3.20)
$$\rho = \begin{cases} \min\{i : i \in \mathcal{B}\}, & \text{if } \mathcal{B} \neq \emptyset, \\ \zeta, & \text{otherwise.} \end{cases}$$

It follows from the definition that $0 \le \rho \le \zeta$. Define three sets 331

332 (3.21)
$$\pi_1 = \{0, 1, \dots, \rho - 1\}, \quad \pi_2 = \{\rho, \rho + 1, \dots, \zeta - 1\}, \quad \pi_3 = \{\zeta, \zeta + 1, \dots, ms\}.$$

They form a partition of $\{0,1,\ldots,ms\}$. Note that $\pi_1=\emptyset$ if $\rho=0$, and $\pi_2=\emptyset$ if $\rho=\zeta$. In the 333 following, we are going to estimate each term in the separation 334

335 (3.22)
$$\sum_{0 \le i,j \le ms} \tau b_{ij}^{(\zeta)} \mathcal{H}(\mathbb{D}_i u^n, \mathbb{D}_j u^n) = \sum_{\xi,\eta=1,2,3} T_{\xi\eta},$$

where the row numbers and column numbers in each term are taken from one of the three subsets, namely

338 (3.23)
$$T_{\xi\eta} = \sum_{i \in \pi_{\xi}, j \in \pi_{\eta}} \tau b_{ij}^{(\zeta)} \mathcal{H}(\mathbb{D}_{i}u^{n}, \mathbb{D}_{j}u^{n}).$$

339 If one set is empty, the corresponding terms are equal to zero.

As a result of the definition (3.20), the submatrix $\mathbb{B}_{\rho-1}^{(\zeta)}$ is positive definite. Hence, there exists a constant $\varepsilon > 0$, for example, the smallest eigenvalue, such that $\mathbb{B}_{\rho-1}^{(\zeta)} - \varepsilon \mathbb{I}_{\rho-1}$ is positive semi-definite, where $\mathbb{I}_{\rho-1}$ is the identity matrix. Owing to Lemma 3.2 and identity (3.4), we have

343 (3.24)
$$T_{11} \leq -\varepsilon \beta (\theta - \frac{1}{2}) \tau \sum_{i \in \pi_1} \| [\![\mathbb{D}_i u^n]\!] \|_{\Gamma_h}^2.$$

Owing to the approximate skew-symmetric property (Lemma 3.1), Young's inequality, the second inverse inequality, and the relationship among temporal differences (Lemma 3.4), we have

$$(3.25)$$

$$T_{12} + T_{21} = -\beta(\theta - \frac{1}{2})\tau \sum_{i \in \pi_{1}, j \in \pi_{2}} b_{ij}^{(\zeta)} \| [\mathbb{D}_{i}u^{n}] \|_{\Gamma_{h}} \| [\mathbb{D}_{j}u^{n}] \|_{\Gamma_{h}}$$

$$\leq \frac{1}{4}\varepsilon\beta(\theta - \frac{1}{2})\tau \sum_{i \in \pi_{1}} \| [\mathbb{D}_{i}u^{n}] \|_{\Gamma_{h}}^{2} + \varepsilon^{-1}\beta(\theta - \frac{1}{2})(\zeta - \rho)\tau \sum_{j \in \pi_{2}} \left[\sum_{i \in \pi_{1}} (b_{ij}^{(\zeta)})^{2} \right] \| [\mathbb{D}_{j}u^{n}] \|_{\Gamma_{h}}^{2}$$

$$\leq \frac{1}{4}\varepsilon\beta(\theta - \frac{1}{2})\tau \sum_{i \in \pi_{1}} \| [\mathbb{D}_{i}u^{n}] \|_{\Gamma_{h}}^{2} + \lambda \mathcal{Q}_{2}(\lambda) \| \mathbb{D}_{\rho}u^{n} \|^{2}.$$

347 Similarly, we also have

348 (3.26)
$$T_{22} + T_{23} + T_{32} \le \lambda \mathcal{Q}_2(\lambda) \|\mathbb{D}_{\rho} u^n\|^2 + \lambda \mathcal{Q}_2(\lambda) \|\mathbb{D}_{\zeta} u^n\|^2.$$

349 Along the same line, we have

350 (3.27)
$$T_{13} + T_{31} \le \frac{1}{4} \varepsilon \beta (\theta - \frac{1}{2}) \tau \sum_{i \in \pi_1} \| [\![\mathbb{D}_i u^n]\!] \|_{\Gamma_h}^2 + \lambda \mathcal{Q}_1(\lambda) \| \mathbb{D}_{\zeta} u^n \|^2.$$

Furthermore, it is trivial to see that $T_{33} = 0$, since all related coefficients are zero. Collecting up the

352 above estimations, we have the inequality

353 (3.28)
$$\alpha_0^2(\|u^{n+m}\|^2 - \|u^n\|^2) \le \mathcal{Y}_1 + \mathcal{Y}_2,$$

354 where different stability mechanisms are shown in

355 (3.29a)
$$\mathcal{Y}_1 = \left[a_{\zeta\zeta}^{(\zeta)} + \lambda \mathcal{Q}_1(\lambda) + \lambda \mathcal{Q}_2(\lambda) \right] \|\mathbb{D}_{\zeta} u^n\|^2 + \lambda \mathcal{Q}_2(\lambda) \|\mathbb{D}_{\rho} u^n\|^2,$$

356 (3.29b)
$$\mathcal{Y}_2 = -\frac{1}{2}\varepsilon\beta(\theta - \frac{1}{2})\tau \sum_{0 \le i \le \rho - 1} \| [\![\mathbb{D}_i u^n]\!] \|_{\Gamma_h}^2.$$

In the first term \mathcal{Y}_1 , the polynomials $\mathcal{Q}_1(\cdot)$ and $\mathcal{Q}_2(\cdot)$ show the negative effects due to the timemarching, and the approximate skew-symmetric property of the spatial DG discretization, respectively. The second term \mathcal{Y}_2 , which is always nonpositive, shows the good stability mechanism inherited from the spatial DG discretization.

We are now ready to present the main theorem in this paper, where the second stability mechanism is omitted. The sign of $a_{\zeta\zeta}^{(\zeta)} \neq 0$ strongly affects the stability conclusion of the RKDG schemes.

Theorem 3.1. Let m=1. With the termination index ζ and the contribution index ρ obtained by the above matrix transferring process, we have the following statements for the RKDG scheme.

- 1. If $a_{\zeta\zeta}^{(\zeta)} < 0$ and $\rho = \zeta$, then the scheme has the monotonicity stability; 2. If $a_{\zeta\zeta}^{(\zeta)} < 0$ and $\rho < \zeta$, then the scheme has the weak $(2\rho + 1)$ stability;
- 3. If $a_{\zeta\zeta}^{(\zeta)} > 0$, then the scheme has the weak(γ) stability with $\gamma = \min(2\zeta, 2\rho + 1)$.

Proof. Since $a_{\zeta\zeta}^{(\zeta)} < 0$ and $\rho = \zeta$, we can get

$$\mathcal{Y}_1 = \left[a_{\zeta\zeta}^{(\zeta)} + \lambda \mathcal{Q}_1(\lambda) + \lambda \mathcal{Q}_2(\lambda) \right] \| \mathbb{D}_{\zeta} u^n \|^2 \le 0,$$

if the CFL number λ is small enough. This implies the first conclusion.

If $a_{\zeta\zeta}^{(\zeta)} < 0$ and $\rho < \zeta$, we can still keep the non-positivity as above, if the CFL number is small enough. As a result, we can get from Lemma 3.4 that

$$\mathcal{Y}_1 \le C\lambda \|\mathbb{D}_{\rho} u^n\|^2 \le C\lambda^{2\rho+1} \|u^n\|^2,$$

which implies the second conclusion.

364 365

366 367

368

369

370

371

372 373

374

375

377

378

380

381

382 383

384

385

386

387

388 389

390

391

392

393

394

395 396

397

398

399

400 401

402

403

404

405

406 407

408

The last conclusion can be obtained along the same line, so the proof is omitted.

The second stability mechanism will be discussed in more depth in section 5. If this mechanism is not equal to zero, it may help us to obtain the monotonicity stability for some of the lower-degree polynomials, like the RKDG(2,2,1) method in [28].

Before we discuss examples of the RKDG methods in the next section, we would like to give an explanation on the conclusion of Theorem 3.1.

• The first conclusion focuses on the case that neither the temporal nor the spatial discretization produces any anti-dissipative energy. Hence, the monotonicity stability holds in this case. An example is the RKDG(3,3,k) method in section 4.3.

- The second conclusion is pointed to an intermediate state that the temporal discretization provides dissipative energy, but the spatial discretization causes some anti-dissipative modes that must be controlled by reducing the time step. This trouble results from the approximate skew-symmetric property in $\mathcal{H}(\cdot,\cdot)$. More discussions are given in the next remark.
- The third conclusion focuses on the case that the temporal discretization has an antidissipative energy that can only be controlled through a time-step reduction. Two wellknown examples are the RKDG(1,1,k) method and the RKDG(2,2,k) method; see sections 4.1 and 4.2, respectively.

Remark 3.3. It is worthy to mention that the second conclusion in Theorem 3.1 is not good enough to show the real performance of stability. This weak conclusion is achieved by the approximate skew-symmetric property of the spatial discretization, and the statement for the one-step timemarching. Two comments are given here.

- If the functions in V_h are restricted to be continuous (the DG method degenerates to the standard finite element method) or the central numerical flux (i.e., $\theta = 1/2$) is used, there holds the strictly skew-symmetric property for $\mathcal{H}(\cdot,\cdot)$, which leads to $\mathcal{Q}_2(\cdot)=0$. Along the same line as the previous analysis, we can prove that the fully-discrete scheme has monotonicity stability, since the spatial discretization does not cause any trouble in the L^2 norm stability for the semi-discrete scheme.
- For many schemes related to this conclusion, at least those considered in this paper, we often get $\rho = \zeta - 1$ for the one-step time-marching. In this case, we have a great opportunity to establish the monotonicity stability of multiple-steps time-marching, which together with the second conclusion in Theorem 3.1 derive the strong stability. See the RKDG(4,4,k) scheme in section 4.4 as an example.

At the end of this section, we would like to point out that the technique used in Theorem 3.1 can be applied in the stability analysis for many fully-discrete methods. The key point in this analysis

- is the interplay between the stability mechanism of the temporal discretization and the dissipative effect of the spatial discretization, which is easily implemented with the help of temporal differences. More discussion about this issue will be given in section 5, when the lower polynomial degree is used in the RKDG methods.
- 4. **RKDG** methods with the same stages and order. In this section we show the flexibility 415 and effectiveness of the above framework, and present the detailed proof of Theorem 2.1 for $r \le 4$. 416 The proofs for the other schemes are similar, hence they are omitted to shorten the length of the 417 paper.
- 4.1. The first-order scheme. Let us start from the Euler forward time-marching, which is 419 implemented as follows. For any test function $v \in V_h$, there holds the following variational formula

420 (4.1)
$$(u^{n+1}, v) = (u^n, v) + \tau \mathcal{H}(u^n, v).$$

- The stability result is stated in the following proposition.
- PROPOSITION 4.1. The RKDG(1,1,k) scheme has the weak(2) stability.
- *Proof.* It is easy to see that $\mathbb{D}_1 u^n = u^{n+1} u^n$, which implies $\alpha = (1,1)$ and

424 (4.2)
$$\mathbb{A}^{(0)} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad \mathbb{B}^{(0)} = \mathbb{O}.$$

Since $a_{00}^{(0)} = 0$, we transform the energy equation into an equivalent form with

$$\mathbb{A}^{(1)} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \mathbb{B}^{(1)} = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}.$$

- Since $a_{11}^{(1)}=1>0$, we stop the transferring. It is easy to see that $\rho=\zeta=1$, which implies the weak(2) stability.
- 429 **4.2. Second-order scheme.** The RKDG(2, 2, k) scheme is implemented as follows. For any 430 test function $v \in V_h$, there hold the following variational formulas

431 (4.4a)
$$(u^{n,1}, v) = (u^n, v) + \tau \mathcal{H}(u^n, v),$$

$$(u^{n+1}, v) = \frac{1}{2}(u^n, v) + \frac{1}{2}(u^{n,1}, v) + \frac{\tau}{2}\mathcal{H}(u^{n,1}, v).$$

- 434 The stability result is stated in the following proposition.
- Proposition 4.2. The RKDG(2,2,k) scheme has the weak(4) stability.
- Proof. By the first equation of this scheme, we have $u^{n,1} = u^n + \mathbb{D}_1 u^n$. Put it into the second equation, we have

$$(u^{n+1}, v) = \frac{1}{2}(\mathbb{D}_0 u^n, v) + \frac{1}{2}(\mathbb{D}_0 u^n + \mathbb{D}_1 u^n, v) + \frac{\tau}{2} \mathcal{H}(\mathbb{D}_0 u^n + \mathbb{D}_1 u^n, v)$$

$$= \frac{1}{2}(\mathbb{D}_0 u^n, v) + \frac{1}{2}(\mathbb{D}_0 u^n + \mathbb{D}_1 u^n, v) + \frac{1}{2}(\mathbb{D}_1 u^n + \mathbb{D}_2 u^n, v)$$

$$= (\mathbb{D}_0 u^n + \mathbb{D}_1 u^n + \frac{1}{2} \mathbb{D}_2 u^n, v),$$

439 for any test function $v \in V_h$. Hence we have the evolution identity

440 (4.5)
$$2u^{n+1} = 2\mathbb{D}_0 u^n + 2\mathbb{D}_1 u^n + \mathbb{D}_2 u^n,$$

with $\alpha = (2, 2, 1)$ and the temporal differences

$$\begin{bmatrix} \mathbb{D}_0 u^n \\ \mathbb{D}_1 u^n \\ \mathbb{D}_2 u^n \end{bmatrix} = \begin{bmatrix} 1 \\ -1 & 1 \\ 0 & -2 & 2 \end{bmatrix} \begin{bmatrix} u^n \\ u^{n,1} \\ u^{n+1} \end{bmatrix}.$$

443 As we have shown in the previous section, the initial energy equation can be expressed by the
444 matrices

$$\mathbb{A}^{(0)} = \begin{bmatrix} 0 & 4 & 2 \\ 4 & 4 & 2 \\ 2 & 2 & 1 \end{bmatrix}, \quad \mathbb{B}^{(0)} = \mathbb{O}.$$

Since $a_{00}^{(0)} = 0$, we need to carry out the transferring and get that

$$\mathbb{A}^{(1)} = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}, \quad \mathbb{B}^{(1)} = \begin{bmatrix} 8 & 4 & 0 \\ 4 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Since $a_{11}^{(1)} = 0$, we continue the transferring process, and get

$$\mathbb{A}^{(2)} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbb{B}^{(2)} = \begin{bmatrix} 8 & 4 & 0 \\ 4 & 4 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

- Since $a_{22}^{(2)} = 1 > 0$, we stop the transferring and get $\zeta = 2$. Also, it is easy to see that $\rho = 2$. Then it follows from Lemma 3.1 that the scheme has the weak(4) stability.
- REMARK 4.1. A similar weak L^2 -norm stability result has been implicitly given in [28] that a stronger condition $\tau = \mathcal{O}(h^{4/3})$ is needed for the stability with higher-order $(k \geq 2)$ piecewise polynomials.
- 455 **4.3. Third-order scheme.** The RKDG(3,3,k) scheme is implemented as follows. For any 456 test function $v \in V_h$, there hold the following variational formulas

457 (4.10a)
$$(u^{n,\ell+1}, v) = (u^{n,\ell}, v) + \tau \mathcal{H}(u^{n,\ell}, v), \qquad \ell = 0, 1,$$

$$(u^{n+1}, v) = \frac{1}{3}(u^n, v) + \frac{1}{2}(u^{n,1}, v) + \frac{1}{6}(u^{n,2}, v) + \frac{\tau}{6}\mathcal{H}(u^{n,2}, v).$$

- 460 The stability result is shown in the following proposition, same as that in [29].
- PROPOSITION 4.3. The RKDG(3,3,k) scheme has the monotonicity stability.
- 462 *Proof.* By some linear combinations of the RKDG(3,3,k) scheme, it is easy to define the tem-463 poral differences in the form

$$\begin{bmatrix} \mathbb{D}_0 u^n \\ \mathbb{D}_1 u^n \\ \mathbb{D}_2 u^n \\ \mathbb{D}_3 u^n \end{bmatrix} = \begin{bmatrix} 1 \\ -1 & 1 \\ 1 & -2 & 1 \\ -3 & 0 & -3 & 6 \end{bmatrix} \begin{bmatrix} u^n \\ u^{n,1} \\ u^{n,2} \\ u^{n+1} \end{bmatrix},$$

and get the evolution identity

466 (4.12)
$$6u^{n+1} = 6\mathbb{D}_0 u^n + 6\mathbb{D}_1 u^n + 3\mathbb{D}_2 u^n + \mathbb{D}_3 u^n.$$

This implies $\alpha = (6, 6, 3, 1)$ and the initial matrices

$$\mathbb{A}^{(0)} = \begin{bmatrix} 0 & 36 & 18 & 6 \\ 36 & 36 & 18 & 6 \\ 18 & 18 & 9 & 3 \\ 6 & 6 & 3 & 1 \end{bmatrix}, \quad \mathbb{B}^{(0)} = \mathbb{O}.$$

469 The first transferring leads to

$$\mathbb{A}^{(1)} = \begin{bmatrix} 0 & & & \\ & 0 & 12 & 6 \\ & 12 & 9 & 3 \\ & 6 & 3 & 1 \end{bmatrix}, \quad \mathbb{B}^{(1)} = \begin{bmatrix} 72 & 36 & 12 & 0 \\ 36 & 0 & 0 & 0 \\ 12 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

471 The second transferring leads to

476

478

479

480

$$\mathbb{A}^{(2)} = \begin{bmatrix} 0 \\ 0 \\ -3 & 3 \\ 3 & 1 \end{bmatrix}, \quad \mathbb{B}^{(2)} = \begin{bmatrix} 72 & 36 & 12 & 0 \\ 36 & 24 & 12 & 0 \\ 12 & 12 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Since $a_{22}^{(2)} = -3 < 0$, the transferring process is terminated with $\zeta = 2$. Furthermore, it is easy to see $\rho = 2$, since the two leading principal determinants are respectively equal to 72 and 432. By applying Lemma 3.1, we complete the proof of this proposition.

REMARK 4.2. In the above analysis, it is very important that the term $-3\|\mathbb{D}_2 u^n\|^2$ provides an additional stability mechanism (or dissipative energy) owing to the time-discretization. This result is the same as that in [21, 29]. In this paper we give a new and simpler analysis process based on the matrix transferring, which is more natural and is easier to be systematically extended to higher order time-marching.

481 **4.4. Fourth-order scheme.** Let us consider the RKDG(4, 4, k) scheme, where the coefficients are defined by Table 1. For any test function $v \in V_h$, there hold the following variational formulas

483 (4.16a)
$$(u^{n,\ell+1}, v) = (u^{n,\ell}, v) + \tau \mathcal{H}(u^{n,\ell}, v), \qquad \ell = 0, 1, 2,$$

$$(u^{n+1}, v) = \frac{3}{8}(u^n, v) + \frac{1}{3}(u^{n,1}, v) + \frac{1}{4}(u^{n,2}, v) + \frac{1}{24}(u^{n,3}, v) + \frac{1}{24}\tau \mathcal{H}(u^{n,3}, v).$$

The stability result is shown in the following proposition, which is similar as and slightly stronger than the result in [24].

PROPOSITION 4.4. The RKDG(4,4,k) scheme has the strong stability for $n \geq 2$.

Proof. Firstly consider one-step time-marching. By induction, we can define the temporal differences in the form

$$\begin{bmatrix} \mathbb{D}_{0}u^{n} \\ \mathbb{D}_{1}u^{n} \\ \mathbb{D}_{2}u^{n} \\ \mathbb{D}_{3}u^{n} \\ \mathbb{D}_{4}u^{n} \end{bmatrix} = \begin{bmatrix} 1 \\ -1 & 1 \\ 1 & -2 & 1 \\ -1 & 3 & -3 & 1 \\ -8 & -12 & 0 & -4 & 24 \end{bmatrix} \begin{bmatrix} u^{n} \\ u^{n,1} \\ u^{n,2} \\ u^{n,3} \\ u^{n+1} \end{bmatrix}$$

492 and obtain the evolution identity

493 (4.18)
$$24u^{n+1} = 24\mathbb{D}_0 u^n + 24\mathbb{D}_1 u^n + 12\mathbb{D}_2 u^n + 4\mathbb{D}_3 u^n + \mathbb{D}_4 u^n,$$

with $\alpha = (24, 24, 12, 4, 1)$. Limited by the length of the paper, below we will only present the final matrices in the energy equation

$$\mathbb{A}^{(3)} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ -8 & 4 \\ 4 & 1 \end{bmatrix}, \quad \mathbb{B}^{(3)} = \begin{bmatrix} 1152 & 576 & 192 & 48 & 0 \\ 576 & 384 & 144 & 48 & 0 \\ 192 & 144 & 48 & 24 & 0 \\ 48 & 48 & 24 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Namely, the termination index is $\zeta = 3$, and $a_{33}^{(3)} = -8 < 0$. It is easy to see $\rho = 2 = \zeta - 1$, since the three leading principal minors in order are 1152, 110592, and -884736. As a result of Lemma 3.1, the RKDG(4, 4, k) scheme with one-step time-marching is of the weak(5) stability.

To prove this proposition, we need to show the monotonicity stability for combining multiple time steps in the time-marching.

The updating of the solution from t^n to t^{n+2} by using the RKDG(4,4,k) method for two consecutive time steps is looked upon as an one-step time-marching by the RKDG(8,4,k) method. In additional to (4.17), four more temporal differences are recursively defined in the form

$$\begin{bmatrix} \mathbb{D}_5 u^n \\ \mathbb{D}_6 u^n \\ \mathbb{D}_7 u^n \\ \mathbb{D}_8 u^n \end{bmatrix} = \begin{bmatrix} 44 & 36 & 12 & 4 & -120 & 24 \\ -80 & -24 & 0 & 8 & 216 & -144 & 24 \\ 8 & -120 & -72 & -8 & -24 & 360 & -168 & 24 \\ 64 & 192 & 0 & -64 & -384 & -576 & 384 & -192 & 576 \end{bmatrix} \mathbf{u}^n,$$

where $\mathbf{u}^n = (u^n, u^{n,1}, u^{n,2}, \dots, u^{n,6}, u^{n,7}, u^{n+2})^{\mathsf{T}}$, and we then obtain the evolution identity

$$\alpha_0 u^{n+2} = \sum_{0 \le i \le 8} \alpha_i \mathbb{D}_i u^n,$$

with $\alpha = (576, 1152, 1152, 768, 384, 144, 40, 8, 1)$. After three transferring processes, we obtain

510 and

500

501

Since $a_{33}^{(3)} = -9216 < 0$, we stop the transferring process and get $\zeta = 3$. It is easy to see $\rho = 3$, since the three leading principal minors in order are 1327104, 587068342272 and 10820843684757504. It

follows from Lemma 3.1 that the monotonicity stability is proved for combining two steps in the 514 time-marching. 515

The updating of the solution from t^n to t^{n+3} by combining three time steps of the RKDG(4,4,k)method is looked upon as an one-step time-marching by an RKDG(12,4,k) method. The analysis follows the same line as before, but the process is more lengthy. We omit the intermediate steps of the detailed definitions of temporal differences up to the 12th order. Finally, we have the evolution identity (3.10) with

$$\alpha = (13824, 41472, 62208, 62208, 46656, 27648, 13248, 5184, 1656, 424, 84, 12, 1).$$

516

517

518 519

520

527

528

529

530

533 534

535

536

538

540

541

544

545

546

548

549

The matrices $\mathbb{A}^{(3)}$ and $\mathbb{B}^{(3)}$ are shown in Tables 2 and 3, respectively. It shows that the termination 522 index is $\zeta = 3$, and $a_{33}^{(3)} = -7962624 < 0$. Also, it is easy to see $\rho = 3$, since the three leading principal minors in order are 1146617856, 986049380773527552, and 117773106967986435753246720. 523 Then it follows from Lemma 3.1 that the monotonicity stability is proved for three steps in the 526 time-marching.

Starting from n=0, the above two sequences cover all integers $n\geq 2$. By the above results for combining multiple time steps with both m=2 and m=3, we can conclude the strong stability for $n \geq 2$, and hence complete the proof of this proposition.

Remark 4.3. The above performance of the RKDG(4,4,k) method shows the negative effect of the approximate skew-symmetric property of the spatial discretization. Although the jumps provide extra L²-norm stability in the semi-discrete method, they might have negative effect in the fullydiscrete method as the spatial operator is no longer normal. However, owing to $a_{\zeta\zeta}^{(\zeta)} < 0$, there exists a good stability mechanism provided by the time discretization, and thus the combination of multiple steps in the time-marching is able to enrich the contribution of the spatial DG discretization. As is shown in the above discussion, the contribution index ρ can catch up with ζ when the number of time steps m increases. Another good example is that the RKDG(10,4,k) method [11] has the monotonicity stability.

- 5. Remarks and extensions. In this section we give some remarks and extension for the above conclusions and/or the technique.
- **5.1. Discussion on combining multiple steps.** We focus on the RKDG(r, r, k) method 542 when $r \equiv 1 \pmod{4}$ and $r \equiv 2 \pmod{4}$. Even for combining multiple steps in the time-marching, the analysis process always shows $\zeta = \rho$ and $a_{\zeta\zeta}^{(\zeta)} > 0$. For example, when r = 2, for m-steps there 543 always holds $\zeta = \rho = 2$, and

with $\alpha_0 = 2^m$. Since all numbers are positive, we cannot claim the monotonicity stability by combining m steps. We conjecture that these RKDG schemes may not be strongly stable, and only have the weak stability, for arbitrary polynomial degree k.

- 5.2. Lower polynomial degrees. Although the monotonicity stability does not hold for arbitrary polynomial degree, it may hold if the degree is small enough when $\rho \geq 1$.
- LEMMA 5.1. There exists a constant C > 0 solely depending on θ , i and μ , such that

$$\|\partial_x^i(\mathbb{D}_{\ell}u^n)\| \le \tau |\beta| \|\partial_x^{i+1}(\mathbb{D}_{\ell-1}u^n)\| + C\tau |\beta| h^{-i-1/2} \|[\mathbb{D}_{\ell-1}u^n]\|_{\Gamma_h},$$

- for any i, ℓ and n. Here and below, ∂_x^i refers to the spatial derivative of order i. 553
- *Proof.* Denote $S = \mathbb{D}_{\ell}u^n + \tau \beta \partial_x(\mathbb{D}_{\ell-1}u^n)$. Integrating by parts yields 554

$$(\mathcal{S}, v) = -\tau \beta \sum_{1 \le j \le J} [\![\mathbb{D}_{\ell-1} u^n]\!]_{j+\frac{1}{2}} \{\!\{v\}\!\}_{j+\frac{1}{2}}^{(1-\theta)}, \quad \forall v \in V_h.$$

Table 2 $Table \ 2$ The matrix $\mathbb{A}^{(3)}$: RKDG(4,4,k) scheme and m=3.

0										
0										
0										
	-7962624	Η	1087893504		235892736	79958016	21634560	4520448	684288	62208
	1660207104	2	1289945088	_	241864704	77262336	19782144	3919104	559872	46656
	1087893504	Π	764411904	• •	143327232	45785088	11722752	2322432	331776	27648
	564461568		366280704		68677632	21938688	5617152	1112832	158976	13248
	235892736		143327232		26873856	8584704	2198016	435456	62208	5184
	79958016		45785088		8584704	2742336	702144	139104	19872	1656
	21634560		11722752		2198016	702144	179776	35616	5088	424
	4520448	3919104	2322432	1112832	435456	139104	35616	7056	1008	84
	684288		331776		62208	19872	5088	1008	144	12
	62208		27648		5184	1656	424	84	12	1

Table 3 $The \ matrix \ \mathbb{B}^{(3)} \colon RKDG(4,4,k) \ scheme \ and \ m=3.$

0	0	0										_
27648	82944	124416									0	
331776	089296	1410048								0		
2322432	6635520	9483264							0			
11722752	32845824	46116864						0				
45785088	125632512	173187072					0					
143327232	384196608	519340032				0						
366280704	955514880	1264066560			0							
764411904	1926955008	2484338688		0								
1289945088	3105423360	3877797888	0									
1719926784	3869835264	4634247168	387777988	2484338688	1264066560	519340032	173187072	46116864	9483264	1410048	124416	
1719926784			3105423360									_
			1289945088									

Taking v = S in (5.2) and using the inverse inequality, we have

$$(\mathcal{S}, \mathcal{S}) = -\tau \beta \sum_{1 \le j \le J} [\![\mathbb{D}_{\ell-1} u^n]\!]_{j+\frac{1}{2}} \{\![\mathcal{S} \}\!]_{j+\frac{1}{2}}^{(1-\theta)} \le C\tau |\beta| h^{-\frac{1}{2}} |\![\mathbb{D}_{\ell-1} u^n]\!] \|_{\Gamma_h} |\!| \mathcal{S} |\!|,$$

which implies this lemma for i = 0.

563

565

568

569

Let $i \ge 1$. Taking $v = \partial_x^{2i} \mathcal{S}$ in (5.2), and integrating by parts for i times to deal with $(\mathcal{S}, \partial_x^{2i} \mathcal{S})$, we have

$$(-1)^{i} \|\partial_{x}^{i} \mathcal{S}\|^{2} + \sum_{0 \leq i' < i} \sum_{1 \leq j \leq J} (-1)^{i-i'} [\![\partial_{x}^{i+i'} \mathcal{S} \partial_{x}^{i-i'-1} \mathcal{S}]\!]_{j+\frac{1}{2}} = -\tau \beta \sum_{1 \leq j \leq J} [\![\mathbb{D}_{\ell-1} u^{n}]\!]_{j+\frac{1}{2}} \{\![\partial_{x}^{2i} \mathcal{S}]\!]_{j+\frac{1}{2}}^{(1-\theta)},$$

which implies, by the inverse inequality, that

$$\|\partial_x^i\mathcal{S}\|^2 \leq Ch^{-1}\sum_{0\leq i'< i}\|\partial_x^{i+i'}\mathcal{S}\|\|\partial_x^{i-i'-1}\mathcal{S}\| + C\tau|\beta|h^{-1/2}\|[\![\mathbb{D}_{\ell-1}u^n]\!]\|_{\Gamma_h}\|\partial_x^{2i}\mathcal{S}\|$$

$$\leq Ch^{-i} \|\partial_x^i \mathcal{S}\| \|\mathcal{S}\| + C\tau |\beta| h^{-1/2-i} \| [\![\mathbb{D}_{\ell-1} u^n]\!] \|_{\Gamma_h} \|\partial_x^i \mathcal{S}\|.$$

Substituting the estimate of S, and we complete the proof of this lemma.

As a corollary, we have the following theorem for lower order degrees.

THEOREM 5.1. Let $\rho \geq 1$. Under the condition of Theorem 3.1, the RKDG(s, r, k) method has the monotonicity stability, for those piecewise polynomials with degree at most $\rho - 1$.

Proof. Applying recursively Lemma 5.1, and we have

$$\|\mathbb{D}_{\kappa}u^n\|^2 \le C\|\partial_x^{\ell}(\mathbb{D}_{\kappa-\ell}u^n)\|^2 + \lambda \mathcal{Q}_3(\lambda)\tau \sum_{1 \le i \le \ell} \|[\mathbb{D}_{\kappa-i}u^n]\|_{\Gamma_h}^2,$$

here and below $Q_3(\lambda)$ is a polynomial of CFL number with nonnegative coefficients. Taking $\kappa = 0$, we have the following conclusion

$$\|\mathbb{D}_{\rho}u^n\|^2 \leq \lambda \mathcal{Q}_3(\lambda)\tau \sum_{0 \leq i \leq \rho-1} \|[\mathbb{D}_i u^n]\|_{\Gamma_h}^2,$$

- since the ρ -th order derivative in each element is zero, for any polynomials of degree at most $\rho 1$.
- Note that $\|\mathbb{D}_{\zeta}u^n\| \leq C\|\mathbb{D}_{\rho}u^n\|$, following from Lemma 3.4, since $\rho \leq \zeta$ and λ is smaller than 1.
- Hence, if the CFL number is small enough, we have $\mathcal{Y}_1 + \mathcal{Y}_2 \leq 0$, which implies the monotonicity stability, by substituting the above two results into (3.28).
- REMARK 5.1. For the RKDG(r, r, k) methods with $1 \le r \le 12$, we list the important quantities related to their stability in the following table:

\overline{r}	1	2	3	4	5	6	7	8	9	10	11	12
ζ	1	2	2	3	3	4	4	5	5	6	6	7
$\overline{\rho}$	1	2	2	2	3	4	4	4	5	6	6	6
$\overline{\gamma}$	2	4		5	6	8		9	10	12		13
k^*	0	1		1	2	3		3	4	5		5

Here k^* is the maximal degree of piecewise polynomials to achieve the monotonicity stability. This

result coincides with that for the RKDG(2,2,1) method in [28]. From this table, we can find out that

582 $\zeta = |r/2| + 1$ and $\gamma = \zeta + \rho$, where

583 (5.4)
$$\rho = \begin{cases} \zeta - 1, & \text{if } r \equiv 0 \pmod{4}, \\ \zeta, & \text{otherwise}, \end{cases}$$

and $\lfloor r/2 \rfloor$ is the largest integer not greater than r/2. In the evolution identity, we can conclude that

585 (5.5)
$$\alpha_i = \frac{1}{i!} \alpha_0, \quad 1 \le i \le r.$$

The above statements have been partly proved, and they will be finished in the further work.

5.3. Stability by combining multiple time steps with different step sizes. The framework presented in this paper can be applied in combining multiple time steps in the time-marching, even when the time step $\tau^n = t^{n+1} - t^n$ is changing. The one-step stability analysis is the same as before. However, the multi-steps stability analysis becomes a little more complicated. As an example, in the following we present the multi-steps stability analysis of the RKDG(4, 4, k) scheme, which implies the strong stability.

LEMMA 5.2. Denote $\lambda^n = |\beta| \tau^n h^{-1}$. The RKDG(4, 4, k) scheme has the two-steps monotonicity stability, if λ^n is small enough and $\lambda^{n+1}/\lambda^n \in (0.44, 2.29)$ holds for every n.

Proof. Denote $\eta \equiv \tau^{n+1}/\tau^n$. The two-steps time-marching can be rewritten in the form

596 (5.6a)
$$(u^{n,\ell+1}, v) = \sum_{0 \le \kappa \le \ell} \left[c_{\ell\kappa}(u^{n,\kappa}, v) + d_{\ell\kappa}\tau^n \mathcal{H}(u^{n,\kappa}, v) \right],$$

597 (5.6b)
$$(u^{n+1,\ell+1}, v) = \sum_{0 \le \kappa \le \ell} \left[c_{\ell\kappa}(u^{n+1,\kappa}, v) + \tilde{d}_{\ell\kappa} \tau^n \mathcal{H}(u^{n+1,\kappa}, v) \right],$$

where $\tilde{d}_{\ell\kappa}=d_{\ell\kappa}\eta$ and $\ell=0,1,2,3$. This can be looked upon as one-step time-marching of a new

RKDG(8,4,k) scheme with the time step τ^n , hence the previous line of analysis still works. After

defining the temporal differences, we can get the final expression

602 (5.7)
$$u^{n+2} = \sum_{0 \le i \le 8} \alpha_i \widetilde{\mathbb{D}}_i u^n,$$

with the new definition of temporal differences $\widetilde{\mathbb{D}}_i u^n$ (same for i < 4) and

$$\alpha = (576, 576\eta + 576, 288\eta^2 + 576\eta + 288, 96\eta^3 + 288\eta^2 + 288\eta + 96,$$

$$24\eta^4 + 96\eta^3 + 144\eta^2 + 96\eta + 24, 24\eta^4 + 48\eta^3 + 48\eta^2 + 24\eta,$$

$$12\eta^4 + 16\eta^3 + 12\eta^2, 4\eta^4 + 4\eta^3, \eta^4).$$

- The termination index is $\zeta = 3$, the same as that when using a fixed time step, since the matrix transferring does not affect this index that solely depends on those lower-order $(r \leq 4)$ temporal
- differences. At this moment, we have $a_{33}^{(3)} = -4608\eta^6 4608 < 0$, and three leading principal minors

$$\det \mathbb{B}_{0}^{(3)} = 663552\eta + 663552,$$

$$\det \mathbb{B}_{1}^{(3)} = 36691771392\eta^{4} + 146767085568\eta^{3} + 220150628352\eta^{2} + 146767085568\eta + 36691771392,$$

$$\det \mathbb{B}_{2}^{(3)} = -169075682574336\eta^{9} - 507227047723008\eta^{8} + 2028908190892032\eta^{6}$$

$$\det \mathbb{B}_{2}^{(3)} = -169075682574336\eta^{9} - 507227047723008\eta^{8} + 2028908190892032\eta^{6}$$

$$+ 4057816381784064\eta^{5} + 4057816381784064\eta^{4} + 2028908190892032\eta^{3}$$

$$- 507227047723008\eta - 169075682574336.$$

To ensure all numbers are positive, it is sufficient to require $0.44 < \eta < 2.29$. This implies $\rho = 3$, hence the scheme (5.6) has monotonicity stability by Lemma 3.1.

A similar but more involved discussion leads to the following conclusion.

LEMMA 5.3. The RKDG(4,4,k) scheme has the three-steps monotonicity stability, if λ^n is small enough and $\lambda^{n+1}/\lambda^n \in [0.5,2]$ holds for all n.

As a consequence of the above two lemmas, we can conclude the stability for the RKDG(4,4,k) method.

PROPOSITION 5.1. The RKDG(4, 4, k) scheme has the strong stability for $n \ge 2$, if λ^n is small enough and $\lambda^{n+1}/\lambda^n \in [0.5, 2]$ holds for all n.

REMARK 5.2. Both the RKDG(8,8,k) method and the RKDG(12,12,k) method are similarly proved to have the strong stability for $n \ge 2$, if λ^n is small enough, as well as $\lambda^{n+1}/\lambda^n \in [0.61, 1.65]$ and $\lambda^{n+1}/\lambda^n \in [0.70, 1.44]$, respectively, for all n.

- **5.4.** More examples. Along the same line of analysis, we can also obtain the L^2 -norm stability for the following RKDG methods that are all cited from [11].
 - The RKDG(10, 4, k) method and the RKDG(5, 3, k) methods have the monotonicity stability.
 - The RKDG(s, 1, k) method has the weak(2) stability, and the RKDG(s, 2, k) method has the weak(4) stability. These results are proved for $s \leq 7$.
 - The RKDG(r+1,r,k) method has the same stability as the RKDG(r,r,k) method. These results are proved for r < 12.

629 The detailed proof is omitted to save space.

6. Numerical results. In this section we give some numerical examples to demonstrate our results. For simplicity, we use uniform meshes with J elements and take $\beta = 1$ in (1.1).

Example 1. Firstly we numerically verify the stability result for the RKDG(4,4,k) method. From the previous analysis, this scheme has the monotonicity stability when k = 1, and the strong stability when k = 2, 3. Take J = 16, 32, 64, and choose the standard orthogonal basis of V_h . Then this scheme can be written in the form

636 (6.1)
$$\widetilde{\mathbf{u}}^{n+1} = \mathbb{K}\widetilde{\mathbf{u}}^n,$$

where \mathbb{K} is a matrix of order (k+1)J, and $\widetilde{\mathbf{u}}^n$ is a vector made up of expansion coefficients of the numerical solution u^n . The spectral norm of \mathbb{K}^m , denoted by $\|\mathbb{K}^m\|_2$, is equal to the L²-norm amplification of solutions for every m-steps. In Figure 1 we plot $\|\mathbb{K}^m\|_2^2 - 1$ for different CFL number λ , where m=1,2,3 and k=1,2,3. For k=1 and m=1,2,3, this quantity is always close to the machine precision, which can be looked upon as zero. This shows the monotonicity stability for linear piecewise polynomials. For k=2,3 and m=1, this quantity strongly depends on λ , with slope 5 in the logarithmic coordinates. These two pictures at least imply the weak(5)-stability for high order piecewise polynomials. For k=2,3 and m=2,3, this quantity is also close to zero, and shows the m-step monotonicity stability, hence, the strong stability for k=2,3. These numerical results coincide with Proposition 4.4.

We also plot in Figure 2 the L²-norm of solutions, $||u^n||$, for $0 \le n \le 12$. Here J = 64 and $\lambda = 0.05$, and u^0 is taken as the unit singular vector with respect to the largest singular value of \mathbb{K} . For k = 1, the monotonicity stability is clearly observed. However, for $k \ge 2$, the monotonicity stability does not hold at n = 1, and the multi-steps monotonicity stability is observed. Hence the RKDG(4,4,k) method only has the strong stability in general.

Example 2. Now we investigate the weak stability of the RKDG(5,5,k) method. As we have done in the previous example, we plot in Figure 3 the quantity $\|\mathbb{K}^m\|_2^2 - 1$ for different CFL number λ , where k = 2, 3, 4 and m = 1, 2, 3. For k = 2 and m = 1, 2, 3, this quantity is very close to zero, which numerically verifies the monotonicity stability for lower-degree piecewise polynomials. For k = 3 and k = 4, this quantity strongly depends on λ , with slope 6 in the logarithmic coordinates, for m = 1, 2, 3. This performance is not the same as the RKDG(4, 4, k) method.

Below we would like to numerically check whether the RKDG(5,5,4) scheme is linearly unstable. To this end, the initial solution u^0 is taken as the L^2 -projection of $u(x,0) = \sqrt{2}\sin(\frac{J}{16}2\pi x)$ with J=16,32,64. The CFL number is taken as $\lambda=0.06,0.08,0.10$, since the maximal value listed in [9] is 0.115 to ensure the L²-norm stability. Notice that the results in [9] are based on Fourier eigenvalue analysis, and hence are only valid for normal spatial operators, while upwind-biased DG operators are not normal. The numerical results are shown in Figure 4, where the L²-norm of the solution exponentially increases after an extremely large number of time steps (for most cases), and this phenomenon is independent of the mesh size. From the theoretical analysis in this paper, we know that the increased factor of the L²-norm, at each time-step, is proportional to λ^6 . When the

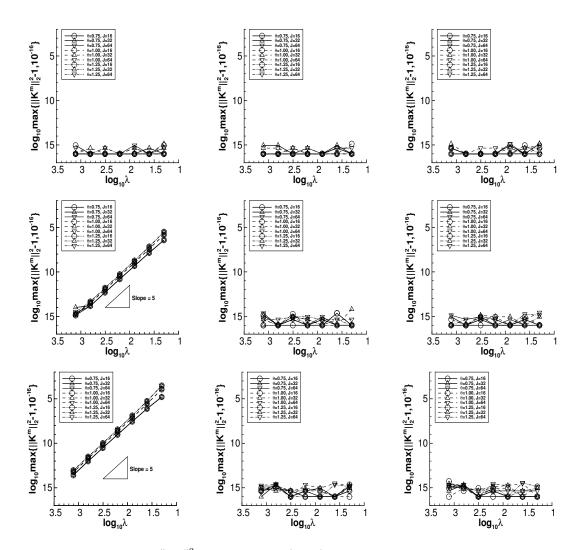


Fig. 1. The behavior of $\|\mathbb{K}^m\|_2^2 - 1$ of the RKDG(4,4,k) method for different CFL number λ : k = 1, 2, 3 from top to bottom, m = 1, 2, 3 from left to right. Here J = 16, 32, 64 and $\theta = 0.75, 1.00, 1.25$.

CFL number is small, for example, $\lambda \leq 0.1$, this increased factor of the L²-norm may be tiny, such that the instability phenomenon is difficult to be observed numerically. This can be seen from the pictures with upwind parameters $\theta = 0.75, 1.00$. Note that the increasing of the L²-norm becomes more serious when $\theta = 1.25$, if $\lambda \geq 0.08$.

Similar results have been observed for the RKDG(6, 6, 4) method. Hence, we conjecture from our numerical experiments that the RKDG(r, r, k) method is linearly unstable for high-degree piecewise polynomials with any fixed CFL number, if $r \equiv 1 \pmod{4}$ or $r \equiv 2 \pmod{4}$.

Example 3. Let us numerical verify the strong stability for the RKDG(4,4,3) method without the same time step. To do that, we take J=64 and $\tau^0=0.05/J$. For $n\geq 1$, we randomly take the time step $\tau^n\in[0.5\tau^0,\tau^0]$. The initial solution u^0 is taken the same as that in Example 1. The numerical result is plotted in Figure 5, which shows the strong stability of the scheme.

7. Concluding remarks. In this paper we have proposed a flexible framework to carry out the L^2 -norm stability analysis for the RKDG schemes when solving linear constant-coefficient hyperbolic equations. Based on this technique, we are able to find out the different stability mechanisms and

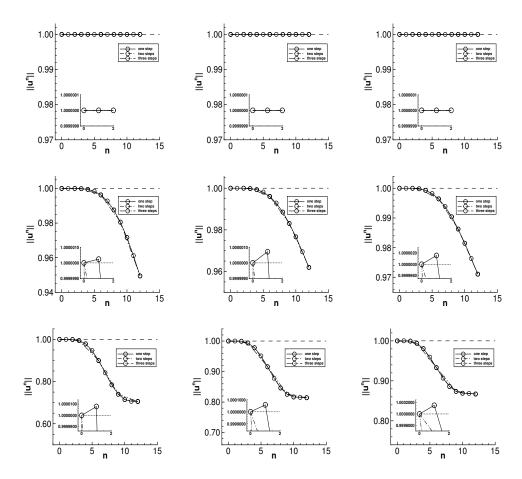


Fig. 2. The evolution of $||u^n||$ for the RKDG(4,4,k) method: k=1,2,3 from top to bottom, $\theta=0.75,1.00,1.25$ from left to right. Here J=64 and $\lambda=0.05$.

the detailed performances for many popular Runge-Kutta time marching, with order up to the 12th. We believe that this technique can be applied to many algorithms when solving the PDEs with approximate skew-symmetric spatial discretizations. In future work, we will generalize this technique to handle multi-steps time-marching, and apply it to hyperbolic equations with variable coefficients and nonlinear conservation laws.

686 REFERENCES

681

682

683

684

685

687

688

689

690

691

692

693 694

695 696

697

698

- [1] E. Burman, A. Ern, and M. A. Fernández, Explicit Runge-Kutta schemes and finite elements with symmetric stabilization for first-order linear PDE systems, SIAM J. Numer. Anal., 48 (2010), pp. 2019 2042.
- Y. CHENG, X. MENG, AND Q. ZHANG, Application of generalized Gauss-Radau projections for the local discontinuous Galerkin method for linear convection-diffusion equations, Math. Comp., 86 (2017), pp. 1233 – 1267.
- [3] B. COCKBURN, An introduction to the discontinuous Galerkin method for convection-dominated problems, in: Advanced numerical approximation of nonlinear hyperbolic equations (Cetraro, 1997), vol. 1697 of Lecture Notes in Math., Springer, Berlin, 1998, pp. 15 – 268.
- [4] B. COCKBURN, S. HOU, AND C.-W. SHU, The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case, Math. Comp., 54 (1990), pp. 545 – 581.
- [5] B. COCKBURN, S. Y. LIN, AND C. -W. SHU, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems, J. Comput. Phys., 84 (1989), pp. 90
 – 113

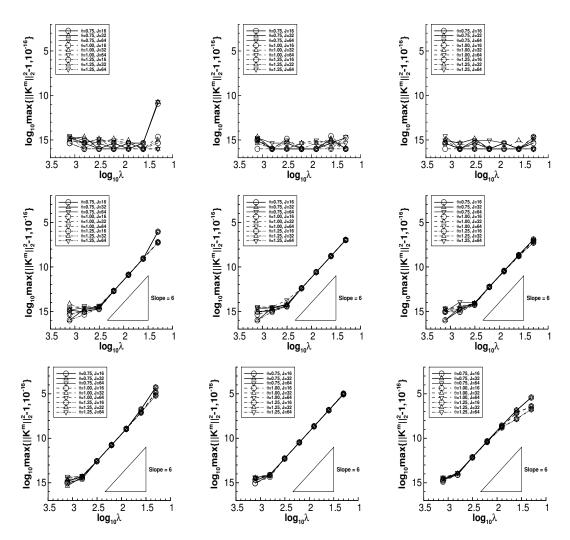


Fig. 3. The behaviour of $\|\mathbb{K}^m\|_2^2 - 1$ of the RKDG(5,5,k) method for different CFL number λ : k = 2,3,4 from top to bottom, m = 1,2,3 from left to right. Here J = 16,32,64 and $\theta = 0.75,1.00,1.25$.

 [6] B. COCKBURN AND C.-W. SHU, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework, Math. Comp., 52 (1989), pp. 411 – 435.

700

703

704

705 706

707 708

715

716

717

- [7] B. COCKBURN AND C. -W. SHU, The Runge-Kutta local projection P1-discontinuous-Galerkin finite element method for scalar conservation laws, RAIRO Modl. Math. Anal. Numr., 25 (1991), pp. 337 – 361.
- [8] B. COCKBURN AND C. -W. SHU, The Runge-Kutta discontinuous Galerkin method for conservation laws. V. Multidimensional systems, J. Comput. Phys., 141 (1998), pp. 199 – 224.
- [9] B. Cockburn and C. -W. Shu, Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput., 16 (2001), pp. 173 – 261.
- [10] E. Deriaz, Stability conditions for the numerical solution of convection-dominated problems with skewsymmetric discretizations, SIAM J. Numer. Anal., 50 (2012), pp. 1058 – 1085.
- symmetric discretizations, SIAM J. Numer. Anal., 50 (2012), pp. 1058 1085.
 [11] S. GOTTLIEB, D. I. KETCHESON, AND C. -W. SHU, High order strong stability preserving time discretizations, J.
 Sci. Comput., 38 (2009), pp. 251 289.
- [12] S. GOTTLIEB, AND C. -W. SHU, Total Variation Diminishing Runge-Kutta Schemes, Math. Comp., 1998, 67
 (221), pp. 73 85.
 [13] S. GOTTLIEB, C. -W. SHU, AND E. TADMOR, Strong stability-preserving high-order time discretization methods,
 - [13] S. GOTTLIEB, C. -W. SHU, AND E. TADMOR, Strong stability-preserving high-order time discretization methods, SIAM Rev., 43 (2001), pp. 89 112.
 - [14] W. Guo, X. H. Zhong, and J. M. Qiu, Superconvergence of discontinuous Galerkin and local discontinuous Galerkin methods: Eigen-structure analysis based on Fourier approach, J. Comput. Phy., 235 (2013), pp. 458 – 485.

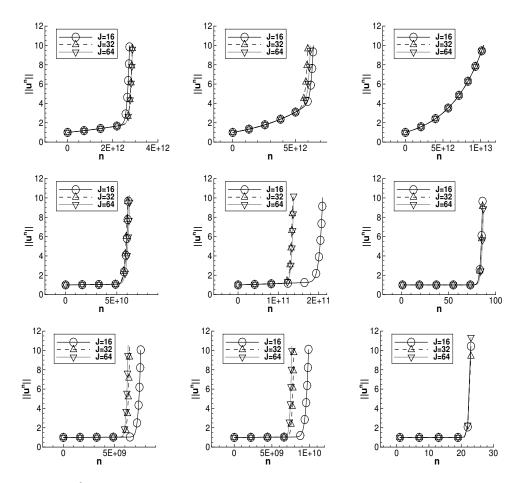


Fig. 4. The L^2 -norm of solution of the RKDG(5,5,4) scheme: $\lambda=0.06,0.08,0.10$ from top to bottom, $\theta=0.75,1.00,1.25$ from left to right. Here J=16,32,64.

[15] I. HARARI AND T. J. R. HUGHES, What are C and h?: inequalities for the analysis and design of finite element methods, Comput. Methods Appl. Mech. Engrg., 97 (1992), pp. 157 – 192.

719

720

721

722

727 728

729

730

731

732

- [16] G. S. Jiang and C. -W. Shu, On a cell entropy inequality for discontinuous Galerkin methods, Math. Comp., 62 (1994), pp. 531 – 538.
- [17] E. J. Kubatko, C. Dawson, J. J. Westerink, Time step restrictions for Runge-Kutta discontinuous Galerkin
 methods on triangular grids, J. Comp. Phy., 227 (2008), pp. 9697 9710.
- 725 [18] D. Levy and E. Tadmor, From semi-discrete to fully discrete: stability of Runge-Kutta schemes by the energy 726 method, SIAM Rev., 40 (1998), pp. 40 – 73.
 - [19] Y. J. Liu, C. -W. Shu, E. Tadmor, and M. P. Zhang, L² stability of the central discontinuous Galerkin method and a comparison between the central and regular discontinuous Galerkin methods, ESAIM: M2AN 42 (2008), pp. 593 – 607.
 - [20] X. Meng, C. -W. Shu, and B. Y. Wu, Optimal error estimates for discontinuous Galerkin methods based on upwind-biased fluxes for linear hyperbolic equations, Math. Comp., 85 (2016), pp. 1225 – 1261.
 - [21] J. X. QIU AND Q. ZHANG, Stability, error estimate and limiters of discontinuous Galerkin methods, in: Handbook of Numerical Analysis: Basic and Fundamental Issues, Elsevier, 2016, pp. 147 171.
- 734 [22] W. H. REED AND T. R. HILL, Triangular mesh methods for the neutron transport equation, Los Alamos Scientific 735 Laboratory report LA-UR-73-479, (1973).
- 736 [23] C. -W. Shu and S. Osher, Efficient implementation of essentially nonoscillatory shock-capturing schemes, J. Comput. Phys., 77 (1988), pp. 439 471.
- 738 [24] Z. Sun and C. -W. Shu, Stability of the fourth order Runge-Kutta method for time dependent partial differential 739 equations, Ann. Math. Sci. Appl., 2 (2017), pp. 255 – 284.
- [740] Z. Sun and C. -W. Shu, Strong stability of explicit Runge-Kutta time discretizations, arXiv:1811.10680, accepted
 by SIAM. J. Numer. Anal.

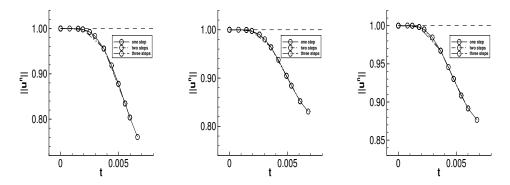


Fig. 5. The development of $\|u^n\|$ with variable time step: RKDG(4,4,3), $\theta = 0.75, 1.00, 1.25$, J = 64 and $\lambda^0 = 0.05$, $\lambda^n \in [0.025, 0.05]$ randomly taken for $n \ge 1$.

- 742 [26] E. TADMOR, From semidiscrete to fully discrete: stability of Runge-Kutta schemes by the energy method. II, in:
 743 lectures on the preservation of stability under discretization (Fort Collins, CO, 2001), SIAM, Philadelphia,
 744 PA, 2002, pp. 25 49.
- [27] Q. Zhang, Third order explicit Runge-Kutta discontinuous Galerkin method for linear conservation law with
 inflow boundary condition, J. Sci. Comput., 46 (2011), pp. 294 313.
 - [28] Q. ZHANG AND C.-W. SHU, Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin methods for scalar conservation laws, SIAM J. Numer. Anal., 42 (2004), pp. 641 – 666.
- [749] Q. Zhang and C. -W. Shu, Stability analysis and a priori error estimates of the third order explicit Runge Kutta discontinuous Galerkin method for scalar conservation laws, SIAM J. Numer. Anal., 48 (2010), pp.
 1038 1063.
 [30] X. X. Zhang and C.-W. Shu, On positive-preserving high order discontinuous Galerkin schemes for compress-

747

748

- [30] X. X. ZHANG AND C.-W. SHU, On positive-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes, J. Comput. Phys., 229 (2010), pp. 8918 – 8934.
- [31] X. H. Zhong and C.-W. Shu, Numerical resolution of discontinuous Galerkin methods for time dependent wave
 equations, Comput. Methods Appl. Mech. Engrg. 200 (2011), pp. 2814 2827.