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THE L2-NORM STABILITY ANALYSIS OF RUNGE-KUTTA DISCONTINUOUS
GALERKIN METHODS FOR LINEAR HYPERBOLIC EQUATIONS

YUAN XU*, QIANG ZHANGT, CHI-WANG SHU?, AND HAIJIN WANGS#

Abstract. In this paper we propose a simple and unified framework to investigate the L2-norm stability of the
explicit Runge-Kutta discontinuous Galerkin (RKDG) methods, when solving the linear constant-coefficient hyperbolic
equations. Two key ingredients in the energy analysis are the temporal differences of numerical solutions in different
Runge-Kutta stages, and a matrix transferring process. Many popular schemes, including the fourth order RKDG
schemes, are discussed in this paper to show that the presented technique is flexible and useful. Different performances
in the L2-norm stability of different RKDG schemes are carefully investigated. For some lower-degree piecewise
polynomials, the monotonicity stability is proved if the stability mechanism can be provided by the upwind-biased
numerical fluxes. Some numerical examples are also given.
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1. Introduction. In this paper we propose an analysis framework to obtain the LZ-norm
stability of the explicit Runge-Kutta discontinuous Galerkin (RKDG) methods, when solving the
linear constant-coefficient conservation law

(1.1) U +pU, =0, z€lI=(0,1), t>0,

which is, for simplicity, subject to the periodic boundary condition. Here U(z,t) is the unknown
solution and 8 # 0 is a given constant. In this paper we would like to take the one-dimensional
scalar equations as an example. One-dimensional systems can be treated in the same way by
diagonalization. The multi-dimensional case is also similar, with the main difference coming from
the inverse properties of the discontinuous finite element spaces.

After the first version of the discontinuous Galerkin (DG) method was introduced in 1973 by
Reed and Hill [22], in the framework of neutron linear transport, the DG method has been the focus
of intensive research, because it has many advantages. For example, this method has strong stability,
optimal accuracy, and can capture discontinuous jumps sharply. It combines the advantages of finite
element methods and finite volume methods. An important development in the DG method was
carried out in the late 1980’s, when Cockburn et al. [4-8] combined the explicit Runge-Kutta time-
marching and the DG spatial discretization to form the RKDG schemes. There have been many
published papers in this field since then, see for example the review papers [3,9] and the references
therein.

Compared with the wide applications of RKDG methods, there is relatively less work on the
theory, for example, on the numerical stability in suitable norm, which is an important issue for
the reliability of the scheme. Related to the semi-discrete DG method for nonlinear conservation
laws, the well-known conclusion is the local cell entropy inequality, given by Jiang and Shu [16],
which implies that the L?-norm of the numerical solution does not increase with time. The stability
mechanism provided by the spatial DG discretization is very weak, hence the explicit time-marching
to the DG method must be carefully treated with, if the time step is assumed to only satisfy the
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standard Courant-Friedrichs-Lewy (CFL) condition that the ratio of the time step over the spatial
mesh size is upper bounded by a constant. For example, the Euler-forward time-marching to the DG
method is linearly unstable under the standard CFL condition for any polynomial degree k > 1. To
overcome this difficulty, one successful treatment is to adopt the explicit total-variation-diminishing
Runge-Kutta time-marching [23]; please refer to the series of papers by Cockburn et al. [4-8]. This
type of time-marching has been later termed strong-stability-preserving (SSP) [13], which is widely
applied in the analysis of nonlinear stability including the total-variation-diminishing in the means
(TVDM) property [3] and the positivity-preserving property [30] for nonlinear conservation laws.

In this paper we focus on the fully-discrete RKDG methods for linear constant-coefficient hy-
perbolic equations, and would like to establish a general framework for analyzing their L2-norm
stability. We start by noting that this analysis cannot follow the SSP’s framework [13, Lemma
2.1], because the RKDG method does not satisfy the basic assumption that the Euler-forward time-
marching in each stage evolution is stable under the standard CFL condition. Thus the high-order
Runge-Kutta time discretization must be analyzed directly. There are two main strategies to do
this analysis. The easier strategy is to carry out a Fourier analysis [14,19,31], which might give the
sharp CFL condition. However, this technique demands many assumptions, for example, uniform
meshes and the periodic boundary condition, and, if only eigenvalues of the amplification matrices
are considered, it would also require the spatial discretization operator to be normal. This technique
is also difficult to be generalized to non-uniform meshes, non-periodic boundary conditions, the lin-
ear variable-coefficient problems or the nonlinear problems, or the multidimensional problems [17].
Therefore, we would like in this paper to follow the second strategy, which is the so-called energy
analysis to overcome the above difficulties. The motivation comes from the analysis of the optimal
error estimates for two RKDG methods to solve nonlinear conservation laws carried out in [28,29],
which is obtained by virtue of suitable projections and the stability analysis for the linear case.

In this paper we develop the technique initialized in [28,29] to any RKDG(s, r, k) method with
stage s and order r (in time-marching), as well as with polynomial degree k in the spatial DG
discretization. The main treatment in the stability analysis is to establish a good energy equation
to clearly reflect the evolution of the L?-norm of the numerical solution, and to explicitly show the
stability mechanism hidden in the fully-discrete scheme. For this purpose, we follow the original
idea in [28,29] and make the following important developments in this paper:

1. The first development is the temporal differences of the numerical solution in different
Runge-Kutta stages (sometimes abbreviatedly referred to as the “stage solutions” below),
which are related to different orders of time derivatives. These temporal differences are
easily defined by induction, and their treatment is not limited to one-step time-marching.
In fact, we combine multiple steps in the time-marching, with possibly different time step
sizes as well. See sections 3 and 5.3 for more details.

2. The second development is the simple matrix transferring process, which enables us to
transform an ordinary energy equation to a particular energy equation in our desired form.
In this transferring process, the temporal differences of stage solutions play a very important
role, and some general properties of the DG spatial discretization are also implicitly used.
After the transferring process, we can obtain the expected stability conclusion by looking
at a termination index ¢ and a contribution index p, as defined and discussed in section 3.
These indices explicitly reflect the stability mechanism of the RKDG method, hence they
are very useful in analyzing different stabilities for fully-discrete RKDG methods.

This general framework, which heavily uses various temporal differences of the DG numerical solution
in different Runge-Kutta stages, might turn out to be useful for future generalizations to linear
variable coefficient and nonlinear problems. Furthermore, our line of analysis is very convenient
and useful to obtain optimal error estimates of the RKDG method, as having been done in [29]
and [20]. We believe that this technique works well for many numerical methods to solve (almost)
skew-symmetric problems.

We point out related earlier work in [18,24,26] for the stability of Runge-Kutta time discretiza-
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tions for semi-negative spatial operators with temporal accuracy up to fourth order. Levy and
Tadmor [18] used the energy method to prove, for coercive problems, the monotonicity stability of
some fully-discrete schemes with Runge-Kutta time-marching of order r = 3,4 (please see section
2 for the definition of monotonicity stability). After that, this result has been extended to the
general linear Runge-Kutta time-marching, and the SSP framework [13] was utilized. However, the
RKDG methods for the hyperbolic problems are not strongly coercive, and the SSP framework is
not suitable for their L2-norm stability analysis. In 2002, Tadmor [26] proved the monotonicity sta-
bility of the three-stage third order Runge-Kutta time discretization with any semi-negative linear
spatial operator, including the RKDG(3, 3, k) method, without the coercive assumption, and posed
the monotonicity stability of the four-stage fourth order Runge-Kutta time discretization with a
semi-negative linear spatial operator, including the RKDG(4, 4, k) method, as an open problem. In
2010, Zhang and Shu [29] and Burman and Ern [1], independently, proved the monotonicity sta-
bility and error estimates for the RKDG(3, 3, k) method, along different analysis lines. The open
problem proposed by Tadmor [26] has been partly answered by Sun and Shu [24] in 2017, by a
simple counter-example that the four-stage fourth order Runge-Kutta time discretization with a
semi-negative linear spatial operator does not always have the monotonicity stability. However, the
L2-norm of the solution is proved to have the monotonicity property after every two time steps.
Notice that the semi-negative linear operator in the counter example in [24] is not the DG operator,
hence the result in [24] does not answer the question whether the RKDG(4, 4, k) method has the
monotonicity stability or not. In this paper, we use numerical examples (see Example 1 in section
6) to show that the monotonicity stability does not hold for the first time step of the RKDG(4, 4, k)
method. Actually, the destruction on the monotonicity can happen at any time level. Using our
analysis technique, we successfully recover the conclusions in [24] and prove in addition that the L2-
norm of the numerical solution is monotone after every three-steps, which implies the strong stability
(please see section 2 for the definition of strong stability) of the RKDG(4,4, k) method after the
second time step. Very recently, Sun and Shu [25] extended their earlier work in [24] by developing a
general framework in analyzing the stability of Runge-Kutta time-marching for semi-negative linear
spatial operators. Some of the results obtained in our paper overlap with the results in [25], however
we concentrate on the particular DG spatial operator and use its properties explicitly, hence we are
able to obtain some results not covered in [25]. The lines of analysis in our paper and in [25] are
also very different.

The content of this paper is organized as follows. In section 2, we firstly present the general
construction of the RKDG methods and state the L2-norm stability of the RKDG(r, 7, k) methods,
for any degree k£ > 0 and 1 < r < 12. Also, the weak(~y) stability, the strong (boundedness)
stability, and the monotonicity stability are defined in this section. In section 3 we present the
framework for our analysis, including the temporal differences of solutions in different stages, the
matrix transferring process, and two important indices. In section 4 the above discussion is applied
to four classical RKDG methods from the first-order to the fourth-order in time. Some important
remarks and extensions are given in section 5. Numerical examples are given in section 6, and
concluding remarks are given in section 7.

2. RKDG method and the main result. In this section we would like to present the RKDG
method under consideration, expressed in the Shu-Osher form [23].

2.1. Discontinuous finite element space. Let {Ij}j]:1 be a quasi-uniform partition of I,
where each element I; = (x;_1/2,2;41/2) has length h; = Tji1/2 — Tj_1/2. The maximum length of
elements is denoted by A = max;—1 2. s h;. The discontinuous finite element space is defined as

(2.1) Vi ={veL*(I):v|, € P*(;),j=1,..., T},
where PF (I;) denotes the space of polynomials in I; of degree at most £ > 0. Note that the

functions in V, are allowed to have discontinuities across element interfaces. Following [2], the jump
3
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and weighted average are respectively denoted by
— ot - 0  _ g~ +
(2.2) [[v]]j+%fvj+%fvj+% and {{v}}j+%—9vj+%+(179)vj+%,

where v

172 Are traces along different directions at the point x;, /2, and 6 is the given weight.

2.2. Semi-discrete scheme. Following the notations of [20,29], the semi-discrete DG method
of (1.1) is defined as follows: find the map u: [0,7] — V}, such that

(2.3) (ug,v) = H(u,v), YveV, te(0,T],

subject to the initial solution u(z,0) € V},. Here (-, -) is the standard inner product in L?(I), with
the associated L2-norm || - ||, and

(2.4) Hlu,v)= Y [ /1 Buv, dx+ﬁ~{{u}};i)%[[v]]j+%

1<i<g L7

is the spatial DG discretization. We would assume 5(6—1/2) > 0 in this paper, such that fA(u*, ut) =
BLu}® forms an upwind-biased numerical flux at each element interface. Actually, f (u=,ut) is
just the purely upwind flux when 6 = 0 for 8 < 0, and 8 = 1 for g > 0.

It is worthy to mention that the periodic boundary condition has been used in the above defi-
nition. Other boundary conditions can be treated in a similar way. For example, please refer to [27]
for the inflow boundary condition.

REMARK 2.1. In general, u(z,0) is given as the approzimation of the given initial solution. For
example, the L?-projection is frequently used in practice. In this paper we will not discuss this issue,
since the initial solution only affects the error, but not the stability.

2.3. Fully-discrete scheme. In the fully-discrete method, we would like to seek the numerical
solution u™ at time levels t" = n7, where 7 is the time step. The time step could actually change
from step to step. For simplicity, in this paper we take it as a constant unless otherwise stated.

By virtue of the Shu-Osher representation [23], the general construction of the RKDG(s, r, k)
method is given as follows. For £ = 0,1,...,s — 1, the stage solutions, advancing from ¢" to t"+1!,
are successively sought by the following variation form

(2.5) (u"’“lm) = Z [czn(u”’“w) + dg,.;ﬁ-[(u”"ﬂv)}7 Yo € Wy,

0<k<t

where dg # 0. Here u™° = u™ and u"t! = u™*.

There are plenty of examples in the review paper [11]. In this paper we would like to start
from the RKDG(r,r, k) method whose number of stages s is equal to the order r. For the linear
constant-coefficient problem, all Runge-Kutta methods with the same number of stages and order
are equivalent [13]. Under the SSP framework, the coefficients in (2.5) of this method can be written
into two matrices

1 ;' 1 !
{CZN} - 3 , {dén} == 3 y
,,,,,,,,,,,,,,,,,,,, Lo R S B
gr—1,0 “° Gr—17r-2 ' Gr—1,r—1 P Gr—1,r—1
where the row (and column) numbers are both taken from {0,1,2,...,7 — 1}. The parameters are
defined as follows. Let goo = 1, and recursively define for r > 2 that

1
gr—1,4 = Zgr—2,l—1a = 1,27"',7'727

4
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TABLE 1
Coefficients of the RKDG(r,r, k) methods.

| 9r—1,0 Yr-11 YGr-12 Gr-13 YGr-14 Gr-15 YGr-1,6 Gr—1,7
1 1
1 1
2 2 2
1 1 1
31 3 3 5
3 1 1 1
413 3 1 21
5 11 3 1 1 _1
30 8 6 12 120
6 53 11 3 1 1 _1
144 30 16 18 48 720
7 103 53 11 3 1 _1 1
280 144 60 48 72 240 5040
8 2119 103 53 11 1 _1 1 1
5760 280 288 180 64 360 1140 40320

with g,—1,-1 =1/rl and g,_10=1— Zz;l gr—1,¢. The related coefficients for » < 8 are listed in
Table 1 [13, Table 3.1].

REMARK 2.2. Only for homogeneous linear problems, both SSP and non-SSP Runge-Kutta meth-
ods of s-stages with sth-order accuracy are identical. This is not true for the general linear and non-
linear problems. It is a well-known conclusion [12] that there does not exist any SSP Runge-Kutta
scheme of four-stages with fourth-order accuracy for nonlinear problems.

2.4. Main result. Denote by A = |3|7h~! the CFL number. To clearly state the L2-norm
stability of the RKDG methods, we would like to adopt three different stability concepts in this
paper. They are given as follows.

1. Weak(~y) stability: there exists an integer v > 2, such that

(2.6) [uH? < (1 4+ CA[[u]?, n >0,

if the CFL number A is small enough, where the constant C' > 0 is independent of 7,k and
n. As a result, the RKDG method is generally stable with the exponent-type constant,
provided that A7 /7 is bounded.

2. Strong (boundedness) stability: there exists an integer n., such that

(2.7) lut | < el n = n.,

if the CFL number X is small enough.

3. Monotonicity stability: there holds |[u™*!|| < ||u™|| for n > 0, if the CFL number A is small
enough. Obviously, monotonicity stability implies the strong (boundedness) stability. Note
that our monotonicity stability is sometimes called strong stability in the literature.

It is worthy to mention the following facts. If the weak(~y) stability can not be strengthened to the
other two stabilities, the scheme might be linearly unstable for any fixed CFL number, no matter
how small it is. If both the weak(+y) stability and the strong (boundedness) stability hold, the scheme
is obviously stable under the standard CFL condition.

Now we present the L2-norm stability results for some popular RKDG methods, which is stated
in the following theorem.

THEOREM 2.1. For the RKDG(r,r, k) methods, with 1 < r < 12 and arbitrary k, the stability
conclusion strongly depends on the remainder when r is divided by 4, namely

r mod 4 0 1 2 3
stability type | strong weak(r +1) weak(r +2) monotonicity

5
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At the end of this section, we would like to give some remarks below.

REMARK 2.3. If the RKDG(r,r, k) method is weakly stable, a stronger constraint on the time
step size is needed to ensure the general stability. Theorem 2.1 shows that T = O(h%) is sufficient

forr =1 (mod 4), and 7 = O(h%) for r = 2 (mod 4). This conclusion generalizes the result
in [10, Theorem 8.2] for the even-order time-marching, in which the strictly skew-symmetric property
(see section 3, which implies that the spatial operator is mnormal) for the spatial discretization is
required. In this paper, we only require an approximate skew-symmetric property (which could be a
non-normal operator) as specified in section 3.

3. Stability analysis. In this section we present the line of analysis to obtain the L2-norm
stability of any RKDG methods. It is based on the energy technique, and mainly includes two
components. Below we will use the generalized notations

(3.1) yrtms — ntme e —01,...,s— 1,
for any given integer m > 1. Here n and n + m are called the time levels, x and k + ms are called
the stage numbers, and m is called the step number. In many cases, we take m = 1.

3.1. Preliminaries. Now we recall some preliminary conclusions that will be used below. If
the proofs are trivial, we will omit them.

3.1.1. Inverse inequity and discrete trace inequity of the finite element space. For
any function v € V},, there exists an inverse constant p independent of A and v, such that
(3.2a) vz |l < ph™ vl (inverse inequity)
(3.2b) lvllr, < ph™2|v|, (discrete trace inequity)

where ||v]| is the L2-norm as usual, and

2 2

ool = 3 [ ey L ol =8 2 g5+ 00,7

1<j<T 4 1<5<J

For more detailed discussions on this issue, please see [15,21].

3.1.2. Properties of the DG discretization. An application of integration by parts yields
the next lemma, which plays an important role in the following analysis. See [2,29] for details.

LeEMMA 3.1. The DG discretization has the following approzimate skew-symmetric property
(33) H(w,v) +H(v,w) = =280 —1/2) > [w]y1[0]51,
1<5<J
for any w and v € V4.

REMARK 3.1. If the right-hand side of (3.3) is always equal to zero, this property is called the
strictly skew-symmetric property. It happens when 8 = 1/2.

As a corollary, the DG discretization has the negative semi-definite property
(3.4) H(w,w) = =40 — 1/2)[|[w][|}, <0, VYw€E Vi,

which explicitly shows the stability contribution owing to the spatial discretization. Similar to the
result in Sun and Shu [24, Lemma 2.3], the following development provides a deeper insight on this
issue. For the completeness of this paper, we give a simplified proof again.

6
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LEMMA 3.2. Let G = {g;;} be a symmetric positive semi-definite matriz, whose row numbers
and column numbers are both taken from a given set G. For any family {w;}i;cg C Vi, there holds

(3.5) Z Z gijH(wi, w;) < 0.
1€G jEG

Proof. Consider the eigenvalue decomposition G = Q'diag(c;)Q, where Q = (g;;) is an or-
thonormal matrix, and diag(c;) is a diagonal matrix consisting of the nonnegative eigenvalues.
Namely, there holds g;; = ) ,cg qeioeqe;- It implies

SO giHwiwy) =Y oeH | Y quwi, Y qew;

i€G jEG Leg i€G Jj€g
Since the arguments in the DG discretization are the same, we can complete the proof of this lemma
by using (3.4). |

By applying the inverse properties and Cauchy-Schwarz inequality, we can easily have the fol-
lowing lemma, which will be used to determine the CFL condition.

LEMMA 3.3. The DG discretization is continuous in Vy, X Vy, in the sense
(3.6) [H(w, v)| < CIBI wl[lo]l, Vw,v e Vi,

where the bounding constant C' > 0 solely depends on 0 and p.

3.2. Temporal differences of stage solutions. For the stage solutions after the time level
t", we would like to adopt the key concepts in [28,29] and recursively define a series of the temporal
differences in the form

(3.7) Dou™ = Z oo™t k> 1,
0<t<k

such that » o /<, 0xe = 0 and
(3.8) (Dpu™,v) = THDk_1u",v), Vv e V.

Here and below we denote Dou™ = u™ for simplicity. Owing to the relationship (3.8) and the
definition of H(-,-), the temporal differences can be viewed as an approximation of certain time
derivatives multiplying a constant depending on the time step.

LEMMA 3.4. There exists a constant C > 0 solely depending on 6 and u, such that
(3.9 IDu"]| < CA|Dg—1u™||, & >1,

holds for any n > 0.
Proof. The proof is straightforward by taking v = D,u™ in (3.8) and employing Lemma 3.3. 0O

These temporal differences are very easily obtained by a linear combination of the schemes,
since the spatial discretization is linear. Actually, this process does not depend on the particular
definition of the spatial discretization, since the temporal differences solely depend on the fashion of
time-marching.

3.3. Transferring of energy equations. In the above process to define the temporal differ-
ences, we also achieve the evolution identity

(3.10) aput™ = Z o;Dju™,
0<i<ms
7
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where «g > 0 is used only for scaling. For convenience, denote o = (g, @1, - - . , Q).
By taking the L2-norm on both sides of (3.10), we have the energy equation

(3.11) ™™ P =)= > ai (D", Dyut) = RES,

0<4,5<ms

where agp = 0 and a;; = aya; if 4+ 5 > 0. This expression is not very useful for the stability
analysis, since the stability contribution of the particular spatial discretization is not reflected.
Hence we introduce a simple transferring to write the right-hand side of (3.11) into an equivalent
but more useful expression, which is denoted in the form

(3.12) RHS(O) = Y all @™ Djum)y+ > b rH (D", Dyun).

0<i,j<ms 0<i,j<ms

For the convenience of notations, we express (3.12) by two symmetric matrices of (ms + 1)-th order
¢ ¢
(3.13) AD ={af}, BY = ()},

where the row number 7 and column number j are both taken from {0,1,...,ms}. Obviously, the
matrices A = {a;;} and B()) = O are given, for the initial situation.

The motivation of matrix transferring in (3.12) is owing to two issues. One is the relationship
(3.8) among those temporal differences. The other is the fully usage of the approximate skew-
symmetric property of the spatial discretization, which has been stated in Lemma 3.1.

Below we present the detailed implementation. Assume that the /-th transferring starts from
the given matrix

o, 0 ! O 0
""" N ) R ¢/ N ) N
,,@;,,?%Z,,L,,%}ﬂ ,,,,,,,,,,, (%3”
(3.14) AO = | O tagyy,ialy o Apt1,ms
e W ¢
(O av(n)s,l ; agn)s,l+1 asn)&ms

Note that those zeros at the left and the top do not exist if £ = 0, since A®) = {a;;}.
If a%) # 0, then the transferring process stops, and the termination index is defined as ¢ = £.

For the initial situation, aé%) =agp =0, hence 1 < { < ms.

Otherwise, if a%) = 0, the following transferring will be carried out to get new matrices A(¢+1)
and B¢+, The main action is to move the same-order temporal information into an equivalent
expression of spatial information. Here the temporal information refers to (D;u”,D;u™), whose
coefficients are shown by the nonzero entries at the (-th row (and column) of A®). The spatial
information refers to 7H(D;u™,D;u™), whose coefficients are shown by the entries at the ¢-th row
(and column) of B¢+D. By making the full usage of the relationship (3.8) among those temporal
differences, we have

(3.152) 2“221/(]1)&1“”1@216”) = 2“221,14 TH(Dpu", Deu™) |,

and for / +1<i<ms—1,

QQEQL/{ (DiJrlu", ]D)gu”) + Qi75+1az(',é2+l (Diu"’, ]D)Hlu"’)
(3.15b) 9
_ (£) i+1,0 oM on (£) o) on on on
= Q41| p4q — TZM} (Diu™, Deru™) + 2a;/; o |[THDu", Deu™) + 7H(Deu"™, Diu™) ).

8
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Here Q; ¢41 is equal to 1 if 7 = £ 4 1, or equal to 2 otherwise. Writing the above coefficients in the
matrices AUt and B¢+ we can define the transferring as follows:

0, 0<y<Y,
a9 — 24 i=F¢+1land j=0+1

(3.16) S O (.

* a;; —agﬂ_jfl, (+2<i<ms—1landj=~0+1,

az(f) , otherwise,

and

(3.17) D _ 2a§f’~_)u, (<i<ms—1andj=2/¢

. * b; Ji> , otherwise.

Since the symmetric property is preserved in the transferring process, the above formulations are
only given for the lower-triangular part of the matrices.

REMARK 3.2. Following (3.16) and (3.17), we can see that the nonzero entries of AY) and the
zero entries of BY) are mainly located in the right and the bottom. In each matriz transferring, only
two rows (and columns) are different between AY) and AT | and only one row (and column) is
different between B and BUHD

3.4. Discussions and statements. Below we use Q;(\) and Qs()) to denote generic poly-
nomials of the CFL number A\ with nonnegative coefficients. They are always bounded if the CFL
number is smaller than 1. Their expression may be different at each occurrence.

In what follows we separately estimate two terms in RHS((), where ( is the termination index.
The first term solely includes the inner-product of the temporal differences. By using Lemma 3.4
and Cauchy-Schwarz inequality, we have

(3.18) > af @, D) < [af + 22 )] IDeu

0<4,7<ms

where A is the CFL number, and aé? # 0.
The second term in RHS(() explicitly shows the detailed contribution of the spatial discretiza-
tion. Associated with the matrix B(S), we define the index set of the bad submatrices

(3.19) B={k: detBY) <0, and 0 < r < —1},

where B = {bgﬁ)}ogi,jgﬁ is the (k4 1)-th order leading principal submatrix of B(¢). Note that the
lower-order leading principal submatrix is preserved at the subsequent transferring process, which
implies B,(f) = B£K+1)7 and that the index set B can be obtained along the transferring process. Then
we define the contribution index of the spatial discretization as

[ min{i:ie B}, if B#0,
(3.20) p= { ¢, otherwise.

It follows from the definition that 0 < p < (. Define three sets
(321) ﬂl:{oﬂlw"ap*l}’ 7T2:{pap+1a"',<71}7 73:{<7C+1a"'7m5}'

They form a partition of {0,1,...,ms}. Note that m; = 0 if p = 0, and 7o = ) if p = (. In the
following, we are going to estimate each term in the separation

(3.22) S I HDu D) = Y T,
0<i,j<ms &n=1,2,3
9
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337

338

346

where the row numbers and column numbers in each term are taken from one of the three subsets,
namely

(3.23) Tep= Y. 7m0 HDu",Du).

1€ETe,JETy
If one set is empty, the corresponding terms are equal to zero.
As a result of the definition (3.20), the submatrix IB%(le is positive definite. Hence, there exists a

constant € > 0, for example, the smallest eigenvalue, such that IB(pa)l —ell,—; is positive semi-definite,
where I,_; is the identity matrix. Owing to Lemma 3.2 and identity (3.4), we have

1
(3.24) Ty < —eB(f - 5)7'1; IDsu"]II3, -

Owing to the approximate skew-symmetric property (Lemma 3.1), Young’s inequality, the second
inverse inequality, and the relationship among temporal differences (Lemma 3.4), we have

(3.25)
1
T+ T =~ @~ > b IDa e, (D",
1€m,jET2
1 1 . _ 1 n
< 8800 = 7 YD, +7180 - )= p)r 3 | 3 65)?] IiyuTi,
1ETYL JEmY €M
1 1 . N
< PO =7 D IDsu ][I, +AQa (M) IDyu (.
1€
Similarly, we also have
(3.26) Tog + Toz + T2 < AQa(N)|D,u™||? + AQ2 (V)| Deu™||%.

Along the same line, we have
(3.27) Tis + T < *6ﬁ 0 —5)7 Y IDiw"IIE, +AQu(N)[Deu”|.
1€

Furthermore, it is trivial to see that T35 = 0, since all related coefficients are zero. Collecting up the
above estimations, we have the inequality

(3.28) ag (a1 = [u™[*) < V1 + D,

where different stability mechanisms are shown in

(3.290) ) = ag? £21(0) + A (V)] IDeu™ 2 + AQa (N[22
1
(3.20b) Vo= — 566(9 = > lPaE,
0<i<p—1

In the first term ), the polynomials Q;(-) and Qz(-) show the negative effects due to the time-
marching, and the approximate skew-symmetric property of the spatial DG discretization, respec-
tively. The second term )», which is always nonpositive, shows the good stability mechanism
inherited from the spatial DG discretization.

We are now ready to present the main theorem in this paper, where the second stability mecha-
nism is omitted. The sign of a“) # 0 strongly affects the stability conclusion of the RKDG schemes.

10
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THEOREM 3.1. Let m = 1. With the termination index ( and the contribution index p obtained
by the above matrixz transferring process, we have the following statements for the RKDG scheme.

1. If aé? < 0 and p = (, then the scheme has the monotonicity stability;
2. If aé? < 0 and p <, then the scheme has the weak(2p + 1) stability;
3. If aé? > 0, then the scheme has the weak(vy) stability with v = min(2¢,2p + 1).

Proof. Since aé? < 0 and p = (, we can get

1= [0l + 2@ + 2@ (V)] IDeu” | < 0,

if the CFL number A is small enough. This implies the first conclusion.

If aé? < 0 and p < ¢, we can still keep the non-positivity as above, if the CFL number is small
enough. As a result, we can get from Lemma 3.4 that

Vi < CAD,u™|? < CA2PT||lu™|1?,

which implies the second conclusion.
The last conclusion can be obtained along the same line, so the proof is omitted. 0

The second stability mechanism will be discussed in more depth in section 5. If this mechanism
is not equal to zero, it may help us to obtain the monotonicity stability for some of the lower-degree
polynomials, like the RKDG(2,2,1) method in [28].

Before we discuss examples of the RKDG methods in the next section, we would like to give an
explanation on the conclusion of Theorem 3.1.

e The first conclusion focuses on the case that neither the temporal nor the spatial discretiza-
tion produces any anti-dissipative energy. Hence, the monotonicity stability holds in this
case. An example is the RKDG(3, 3, k) method in section 4.3.

e The second conclusion is pointed to an intermediate state that the temporal discretization
provides dissipative energy, but the spatial discretization causes some anti-dissipative modes
that must be controlled by reducing the time step. This trouble results from the approximate
skew-symmetric property in #H(-,-). More discussions are given in the next remark.

e The third conclusion focuses on the case that the temporal discretization has an anti-
dissipative energy that can only be controlled through a time-step reduction. Two well-
known examples are the RKDG(1, 1, k) method and the RKDG(2, 2, k) method; see sections
4.1 and 4.2, respectively.

REMARK 3.3. It is worthy to mention that the second conclusion in Theorem 3.1 is not good
enough to show the real performance of stability. This weak conclusion is achieved by the approxi-
mate skew-symmetric property of the spatial discretization, and the statement for the one-step time-
marching. Two comments are given here.

e If the functions in 'V}, are restricted to be continuous (the DG method degenerates to the
standard finite element method) or the central numerical flux (i.e., 8 = 1/2) is used, there
holds the strictly skew-symmetric property for H(-,-), which leads to Qs(-) = 0. Along
the same line as the previous analysis, we can prove that the fully-discrete scheme has
monotonicity stability, since the spatial discretization does not cause any trouble in the L?-
norm stability for the semi-discrete scheme.

e For many schemes related to this conclusion, at least those considered in this paper, we often
get p = — 1 for the one-step time-marching. In this case, we have a greal opportunity to
establish the monotonicity stability of multiple-steps time-marching, which together with the
second conclusion in Theorem 3.1 derive the strong stability. See the RKDG (4,4, k) scheme
in section 4.4 as an example.

At the end of this section, we would like to point out that the technique used in Theorem 3.1 can
be applied in the stability analysis for many fully-discrete methods. The key point in this analysis

11
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is the interplay between the stability mechanism of the temporal discretization and the dissipative
effect of the spatial discretization, which is easily implemented with the help of temporal differences.
More discussion about this issue will be given in section 5, when the lower polynomial degree is used
in the RKDG methods.

4. RKDG methods with the same stages and order. In this section we show the flexibility
and effectiveness of the above framework, and present the detailed proof of Theorem 2.1 for r < 4.
The proofs for the other schemes are similar, hence they are omitted to shorten the length of the

paper.
4.1. The first-order scheme. Let us start from the Euler forward time-marching, which is
implemented as follows. For any test function v € V},, there holds the following variational formula

(4.1) (w1 0) = (u™,v) + TH(u", v).

The stability result is stated in the following proposition.

PROPOSITION 4.1. The RKDG(1,1,k) scheme has the weak(2) stability.

Proof. Tt is easy to see that Dju™ = u™*!

— u™, which implies a = (1, 1) and
o _ |01 0 _
" w-P 1), w00

Since aé%) = 0, we transform the energy equation into an equivalent form with

w_ [0 ] po_[2.0

» s [0 ], 0= [2i0],
Since aﬁ) =1 > 0, we stop the transferring. It is easy to see that p = ¢ = 1, which implies the
weak(2) stability. |

4.2. Second-order scheme. The RKDG(2,2, k) scheme is implemented as follows. For any
test function v € V},, there hold the following variational formulas

(4.4a) (u™ v) = (u",v) + TH(u",v),
(4.4b) (' 0) = S 0) + 5 0) + M),

The stability result is stated in the following proposition.
PROPOSITION 4.2. The RKDG(2,2,k) scheme has the weak(4) stability.

Proof. By the first equation of this scheme, we have u™! = u™ 4+ Du™. Put it into the second
equation, we have

(Ut ) = %(Dou",v) + %(Dou” + Dy, v) + g?—[(ﬂ)ou” +Dyu", v)
= %(Dou",v) + %(]D)ou” + Dyu”,v) + %(]D)lu” + Dou™, v)
= (Dou"™ 4+ Dyu"™ + %Dgu”, v),
for any test function v € V3. Hence we have the evolution identity

(4.5) 2u" ! = 2Dgu” + 2D u™ + Dou™,
12

This manuscript is for review purposes only.



141

442

443
444

445

446

448

449
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461

162
463

464

465

466

with & = (2,2, 1) and the temporal differences

Dou™ 1 u™
(4.6) Dy = |[-1 1 u™!
Dou™ 0 -2 2| |urt!

As we have shown in the previous section, the initial energy equation can be expressed by the
matrices

(4.7) A© = , BO=0.

N o~ O
N W~ >
NN

Since aé%) = 0, we need to carry out the transferring and get that

oL 1 L 8:4 0
(4.8) AWM = 0 2|, BW 4700
21 0:0 0
Since aﬁ) = 0, we continue the transferring process, and get
0o 8 4:0
(4.9) AP =1 0 |, BP®=|4 40
1 0 0:0
Since agzz) =1 > 0, we stop the transferring and get ( = 2. Also, it is easy to see that p = 2. Then
it follows from Lemma 3.1 that the scheme has the weak(4) stability. |

REMARK 4.1. A similar weak L*>-norm stability result has been implicitly given in [28] that
a stronger condition T = (’)(h4/3) is needed for the stability with higher-order (k > 2) piecewise
polynomials.

4.3. Third-order scheme. The RKDG(3,3,k) scheme is implemented as follows. For any
test function v € V4, there hold the following variational formulas

(4.10a) (™ ) = (u™ v) + TH (U™, v), £=0,1,
1 1 1
(4.100) 0,0 = Lo Lo+ Jart )+ T,

The stability result is shown in the following proposition, same as that in [29].
PROPOSITION 4.3. The RKDG(3,3,k) scheme has the monotonicity stability.

Proof. By some linear combinations of the RKDG(3, 3, k) scheme, it is easy to define the tem-
poral differences in the form

]Dou" 1 u™

D™  |-1 1 u™!
(411) D2un - 1 ) 1 un,2 ’

Dsu™ -3 0 =3 6| |urt!

and get the evolution identity

(4.12) 6u"! = 6Dgu" + 6D u™ + 3Dou™ + Dsu™.
13
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This implies & = (6,6, 3,1) and the initial matrices

0 36 18 6
(0 _ |36 36 18 6 ) _
(4.13) A% = 18 18 9 3|° B*Y =0
6 6 3 1
The first transferring leads to
o 1 72136 12 0
ay _ 10 12 6 _1]36:0 0 0
(4.14) A= 1129 B 12:0 0 0
P63 1 0:0 0 O
The second transferring leads to
0 72 36112 0
0 36 24:12 0
(G HR @ = | .22 2T g
(4.15) A ' =3 3 |’ B 12 1210 O
b3 1 0 0:0 O
Since ag) = —3 < 0, the transferring process is terminated with ¢ = 2. Furthermore, it is easy to
see p = 2, since the two leading principal determinants are respectively equal to 72 and 432. By

applying Lemma 3.1, we complete the proof of this proposition. 0

REMARK 4.2. In the above analysis, it is very important that the term —3||Dou™||* provides an
additional stability mechanism (or dissipative energy) owing to the time-discretization. This result
is the same as that in [21, 29]. In this paper we give a new and simpler analysis process based on
the matriz transferring, which is more natural and is easier to be systematically extended to higher

order time-marching.
4.4. Fourth-order scheme. Let us consider the RKDG(4,4, k) scheme, where the coefficients
are defined by Table 1. For any test function v € Vj, there hold the following variational formulas

(4.16a) (w1 v) = (u™ v) + TH (U™ ), £=0,1,2,
3

1 1
(u™3,v) + ﬁT”H(u"B, v).

1 1
u"v) + S () + (" e) + o

n+1 _
(4.16b) (W) = 3 1

8 (
The stability result is shown in the following proposition, which is similar as and slightly stronger
than the result in [24].

PROPOSITION 4.4. The RKDG(4,4,k) scheme has the strong stability for n > 2.

Proof. Firstly consider one-step time-marching. By induction, we can define the temporal dif-
ferences in the form

]D)()’U,n 1 u"
D;u™ -1 1 ™l
(4.17) Dou™| =1 -2 1 u™?
Dsu™ -1 3 -3 1 w3
Dyu™ -8 —12 0 —4 24| |u™t!

and obtain the evolution identity

(4.18) 24u™ ! = 24Dgu"™ + 24Dy u” + 12Dgu™ + 4Dzu™ + Dyu™,
14
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496

508

513

with @ = (24,24,12,4,1). Limited by the length of the paper, below we will only present the final
matrices in the energy equation

0 i 1152 576 19248 0
0 576 384 144148 0
(4.19) A®) = 0! ., B® =] 192 144 48 124 0
S e e 4877482400
L4 0O 0 00 0
Namely, the termination index is ( = 3, and aé? = —8< 0. It is easy to see p =2 = ( — 1, since the

three leading principal minors in order are 1152,110592, and —884736. As a result of Lemma 3.1,
the RKDG(4, 4, k) scheme with one-step time-marching is of the weak(5) stability.

To prove this proposition, we need to show the monotonicity stability for combining multiple
time steps in the time-marching.

The updating of the solution from t" to t"*2 by using the RKDG(4,4, k) method for two
consecutive time steps is looked upon as an one-step time-marching by the RKDG(8, 4, k) method.
In additional to (4.17), four more temporal differences are recursively defined in the form

Dyu™ 44 36 12 4 —120 24
Deu™| |—80 —24 0 8 216 —144 24 n
(4.20) Doun| = | 8 —120 —72 -8 -24 360 —168 24 u,
Dgu™ 64 192 0 —64 —384 —-576 384 —192 576
where u” = (u",u™!,u™2, ... u™% ™7 u"+2)T and we then obtain the evolution identity
(4.21) apu™t? = Z a;D;u",
0<i<8

—9216 170496 73152 22656 4992 768
170496 147456 55296 15360 3072 384 |,
73152 55296 20736 5760 1152 144
22656 15360 5760 1600 320 40
4992 3072 1152 320 64 8
768 384 144 40 8 1

and
[ 1327104 1327104 884736 | 442368 165888 46080 9216 1152 0 ]
1327104 1769472 1327104 | 718848 285696 82944 17280 2304 0
884736 1327104 1050624 | 599040 248832 74880 16128 2304 0
442368718848 599040 1 0 0 0 0 0 0
B® = | 165888 285696 248832 | 0 0 0 0 0 0
46080 82944 74880 | 0 0 0 0 0 0
9216 17280 16128 | 0 0 0 0 0 0
1152 2304 2304 | 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0|
Since ai()f;) = —9216 < 0, we stop the transferring process and get ( = 3. It is easy to see p = 3, since

the three leading principal minors in order are 1327104, 587068342272 and 10820843684757504. It
15

This manuscript is for review purposes only.



514
515
516
517
518
519
520

ot
[NS)

[\]
N}

NN N NN
D O W

3

o
oo

ot Ot Ot Ot Ot Ot Ot ot

»

ot Ot Ot Ot Ot Ot Ot Ot Ot
W W W W W w W w w
T W

Ut ot

546

547

follows from Lemma 3.1 that the monotonicity stability is proved for combining two steps in the
time-marching.

The updating of the solution from " to ¢"*3 by combining three time steps of the RKDG (4, 4, k)
method is looked upon as an one-step time-marching by an RKDG(12,4, k) method. The analysis
follows the same line as before, but the process is more lengthy. We omit the intermediate steps of
the detailed definitions of temporal differences up to the 12th order. Finally, we have the evolution
identity (3.10) with

(4.22) o = (13824, 41472, 62208, 62208, 46656, 27648, 13248, 5184, 1656, 424, 84, 12, 1).

The matrices A®) and B®) are shown in Tables 2 and 3, respectively. It shows that the termination
index is ( = 3, and ag? = —7962624 < 0. Also, it is easy to see p = 3, since the three leading
principal minors in order are 1146617856, 986049380773527552, and 117773106967986435753246720.
Then it follows from Lemma 3.1 that the monotonicity stability is proved for three steps in the
time-marching.

Starting from n = 0, the above two sequences cover all integers n > 2. By the above results for
combining multiple time steps with both m = 2 and m = 3, we can conclude the strong stability for
n > 2, and hence complete the proof of this proposition. 0

REMARK 4.3. The above performance of the RKDG (4,4, k) method shows the negative effect of
the approximate skew-symmetric property of the spatial discretization. Although the jumps provide
extra L?*-norm stability in the semi-discrete method, they might have negative effect in the fully-
discrete method as the spatial operator is no longer normal. However, owing to a9 < 0, there exists
a good stability mechanism provided by the time discretization, and thus the combination of multiple
steps in the time-marching is able to enrich the contribution of the spatial DG discretization. As
is shown in the above discussion, the contribution index p can catch up with ( when the number
of time steps m increases. Another good example is that the RKDG(10,4,k) method [11] has the
monotonicity stability.

5. Remarks and extensions. In this section we give some remarks and extension for the
above conclusions and/or the technique.

5.1. Discussion on combining multiple steps. We focus on the RKDG(r,r, k) method

when r = 1 (mod 4) and r = 2 (mod 4). Even for combining multiple steps in the time-marching,

the analysis process always shows ( = p and aécc) > 0. For example, when r = 2, for m-steps there

always holds ( = p = 2, and

m-steps | 2 | 3 4 5 6
o) | 848|256 | 1280 | 6144

with oy = 2. Since all numbers are positive, we cannot claim the monotonicity stability by
combining m steps. We conjecture that these RKDG schemes may not be strongly stable, and only
have the the weak stability, for arbitrary polynomial degree k.

5.2. Lower polynomial degrees. Although the monotonicity stability does not hold for ar-
bitrary polynomial degree, it may hold if the degree is small enough when p > 1.

LEMMA 5.1. There exists a constant C > 0 solely depending on 0, i and u, such that
(5.1) 105 (Deu™) | < 781105 (De—ru™)|| + C7IBR ™2 [De—1u™] I,
for any i,¢ and n. Here and below, 0% refers to the spatial derivative of order i.

Proof. Denote & = Dyu™ + 750, (Dp_1u™). Integrating by parts yields

(5.2) (S,0)==78 > [Deauy {0}, VveV
1<5< ’
16
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Taking v = 8§ in (5.2) and using the inverse inequality, we have
1-6 _1 n
(5:3) (8.8)= =76 > Deru"];; 3 {8}y < Crllh 2 [[Pe-su]llr, 151
1<5<J

which implies this lemma for i = 0.
Let i > 1. Taking v = 92'S in (5.2), and integrating by parts for i times to deal with (S, 9%S),
we have

VRIS ; 0
CVNESIP+ D D ()RS T Sy = 78 Y [Demau] o §02 8B
0<i' <i 1<5<J 1<j<J
which implies, by the inverse inequality, that
l0;S12 < Oht Y 110y SIN0L TSI + Crl B2 [De-au
0<i’<i
< Ch |5 S|IIS| + CrlBlh 27| [De—ru]lr,, |10 S]

Substituting the estimate of S, and we complete the proof of this lemma. ]

;S|

As a corollary, we have the following theorem for lower order degrees.

THEOREM 5.1. Let p > 1. Under the condition of Theorem 5.1, the RKDG(s,r, k) method has
the monotonicity stability, for those piecewise polynomials with degree at most p — 1.

Proof. Applying recursively Lemma 5.1, and we have
IDcu™ | < OIS (Dreeu™) P +AQs (N7 D I[Deiu]lF,
1<i<e

here and below Q3()) is a polynomial of CFL number with nonnegative coefficients. Taking x =
¢ = p, we have the following conclusion

Dou™|* < AQs(N)r > [[Diw"]|3,,
0<i<p—1

since the p-th order derivative in each element is zero, for any polynomials of degree at most p — 1.
Note that [|D.u”|| < C||Dyum||, following from Lemma 3.4, since p < ¢ and A is smaller than 1.
Hence, if the CFL number is small enough, we have ); + Vs < 0, which implies the monotonicity
stability, by substituting the above two results into (3.28). ]

REMARK 5.1. For the RKDG(r,r, k) methods with 1 < r < 12, we list the important quantities
related to their stability in the following table:

r 11231456678 910] 11] 12
cllil2l2lslsl 41415 5616 7
p 1121223141414 5| 6|61 6
~ 214 51618 9 107 12 13
0] 1 1123 s 415 5

Here k* is the maximal degree of piecewise polynomials to achieve the monotonicity stability. This
result coincides with that for the RKDG(2,2,1) method in [28]. From this table, we can find out that
¢=1|r/2] +1 and v = ( + p, where

[ ¢—1, ifr=0(mod4),
(5-4) P= { ¢, otherwise,
and |r/2] is the largest integer not greater than /2. In the evolution identity, we can conclude that
1 .
(5.5) o =—=ap, 1<i<r
i

The above statements have been partly proved, and they will be finished in the further work.
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5.3. Stability by combining multiple time steps with different step sizes. The frame-
work presented in this paper can be applied in combining multiple time steps in the time-marching,
even when the time step 77 = t"*! — " is changing. The one-step stability analysis is the same
as before. However, the multi-steps stability analysis becomes a little more complicated. As an
example, in the following we present the multi-steps stability analysis of the RKDG(4, 4, k) scheme,
which implies the strong stability.

LEMMA 5.2. Denote A" = |B3|7"h~t. The RKDG(4,4, k) scheme has the two-steps monotonicity
stability, if A" is small enough and \"*1/\" € (0.44,2.29) holds for every n.

Proof. Denote 7 = 7"*1/7™. The two-steps time-marching can be rewritten in the form

(5.6a) (w1t v) = Z {Cg,.i(u""‘,v)+d¢HT”H(u”’”,v)},
0<K<L

(5.6b) (@ 0y = 37 e 0) + e H T 0)]
0<K<L

where dy,. = dexm and £ = 0,1,2,3. This can be looked upon as one-step time-marching of a new
RKDG(8,4,k) scheme with the time step 7", hence the previous line of analysis still works. After
defining the temporal differences, we can get the final expression

(5.7) u"t? = Z o Dyu™,

0<i<8
with the new definition of temporal differences D;u™ (same for i < 4) and

o = (576, 5761 + 576, 28802 4 5761 + 288, 961> + 288n* + 2881 + 96,
24n* + 961> + 144n% + 961 + 24, 24n* + 481> + 481> + 241,
120" + 160° + 1217, 4n* + 40, *).

The termination index is { = 3, the same as that when using a fixed time step, since the matrix

transferring does not affect this index that solely depends on those lower-order (r < 4) temporal
differences. At this moment, we have ag? = —46081° — 4608 < 0, and three leading principal minors

det B = 6635521 + 663552,

det B = 36691771392;* + 1467670855681° + 2201506283521
+ 1467670855681 + 36691771392,

det B = — 169075682574336n° — 507227047723008n° + 20289081908920327;°
+ 40578163817840647° + 4057816381784064n* + 20289081908920327°
— 5072270477230081 — 169075682574336.

To ensure all numbers are positive, it is sufficient to require 0.44 < n < 2.29. This implies p = 3,
hence the scheme (5.6) has monotonicity stability by Lemma 3.1. |

A similar but more involved discussion leads to the following conclusion.

LEMMA 5.3. The RKDG(4,4,k) scheme has the three-steps monotonicity stability, if N is small
enough and A" /X" € [0.5,2] holds for all n.

As a consequence of the above two lemmas, we can conclude the stability for the RKDG(4, 4, k)
method.

PROPOSITION 5.1. The RKDG(4,4,k) scheme has the strong stability for n > 2, if A" is small
enough and AT /X" € [0.5,2] holds for all n.
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REMARK 5.2. Both the RKDG(8,8,k) method and the RKDG(12,12,k) method are similarly
proved to have the strong stability for n > 2, if \ is small enough, as well as \"*1 /A" € [0.61,1.65]
and \"FL/A™ € [0.70,1.44], respectively, for all n.

5.4. More examples. Along the same line of analysis, we can also obtain the L2-norm stability
for the following RKDG methods that are all cited from [11].
e The RKDG(10, 4, k) method and the RKDG(5, 3, k) methods have the monotonicity stabil-
ity.
e The RKDG(s, 1, k) method has the weak(2) stability, and the RKDG(s, 2, k) method has
the weak(4) stability. These results are proved for s < 7.
e The RKDG(r + 1,7, k) method has the same stability as the RKDG(r, r, k) method. These
results are proved for r < 12.
The detailed proof is omitted to save space.

6. Numerical results. In this section we give some numerical examples to demonstrate our
results. For simplicity, we use uniform meshes with J elements and take § =1 in (1.1).

Ezample 1. Firstly we numerically verify the stability result for the RKDG(4, 4, k) method.
From the previous analysis, this scheme has the monotonicity stability when k£ = 1, and the strong
stability when k = 2,3. Take J = 16, 32,64, and choose the standard orthogonal basis of V},. Then
this scheme can be written in the form

(6.1) a"t = Ka”,

where K is a matrix of order (k 4+ 1)J, and u” is a vector made up of expansion coefficients of
the numerical solution u™. The spectral norm of K™, denoted by ||K™||5, is equal to the L2-norm
amplification of solutions for every m-steps. In Figure 1 we plot ||K™||3 —1 for different CFL number
A, where m = 1,2,3 and k = 1,2,3. For k£ = 1 and m = 1,2,3, this quantity is always close to
the machine precision, which can be looked upon as zero. This shows the monotonicity stability for
linear piecewise polynomials. For k = 2,3 and m = 1, this quantity strongly depends on A, with
slope 5 in the logarithmic coordinates. These two pictures at least imply the weak(5)-stability for
high order piecewise polynomials. For k = 2,3 and m = 2, 3, this quantity is also close to zero, and
shows the m-step monotonicity stability, hence, the strong stability for £ = 2,3. These numerical
results coincide with Proposition 4.4.

We also plot in Figure 2 the L?-norm of solutions, |[u™]|, for 0 < n < 12. Here J = 64 and
A = 0.05, and u° is taken as the unit singular vector with respect to the largest singular value of
K. For k = 1, the monotonicity stability is clearly observed. However, for k > 2, the monotonicity
stability does not hold at n = 1, and the multi-steps monotonicity stability is observed. Hence the
RKDG(4,4,k) method only has the strong stability in general.

Ezample 2. Now we investigate the weak stability of the RKDG(5,5, k) method. As we have
done in the previous example, we plot in Figure 3 the quantity ||K™||2 — 1 for different CFL number
A, where £k = 2,3,4 and m = 1,2,3. For £k = 2 and m = 1,2, 3, this quantity is very close to zero,
which numerically verifies the monotonicity stability for lower-degree piecewise polynomials. For
k = 3 and k = 4, this quantity strongly depends on A, with slope 6 in the logarithmic coordinates,
for m = 1,2, 3. This performance is not the same as the RKDG(4, 4, k) method.

Below we would like to numerically check whether the RKDG(5,5,4) scheme is linearly unstable.
To this end, the initial solution u° is taken as the L2-projection of u(x,0) = v/2sin(:527x) with
J = 16,32,64. The CFL number is taken as A = 0.06,0.08,0.10, since the maximal value listed
in [9] is 0.115 to ensure the L?-norm stability. Notice that the results in [9] are based on Fourier
eigenvalue analysis, and hence are only valid for normal spatial operators, while upwind-biased DG
operators are not normal. The numerical results are shown in Figure 4, where the L2-norm of the
solution exponentially increases after an extremely large number of time steps (for most cases), and
this phenomenon is independent of the mesh size. From the theoretical analysis in this paper, we
know that the increased factor of the L2-norm, at each time-step, is proportional to A®>. When the
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FI1G. 1. The behavior of ||[K™||2 — 1 of the RKDG(4,4,k) method for different CFL number A: k =1,2,3 from
top to bottom, m = 1,2,3 from left to right. Here J = 16,32,64 and 6 = 0.75,1.00,1.25.

CFL number is small, for example, A < 0.1, this increased factor of the L2-norm may be tiny, such
that the instability phenomenon is difficult to be observed numerically. This can be seen from the
pictures with upwind parameters § = 0.75,1.00. Note that the increasing of the L2-norm becomes
more serious when 6 = 1.25, if A > 0.08.

Similar results have been observed for the RKDG(6, 6,4) method. Hence, we conjecture from our
numerical experiments that the RKDG(r, r, k) method is linearly unstable for high-degree piecewise
polynomials with any fixed CFL number, if » = 1 (mod 4) or r = 2 (mod 4).

Ezample 3. Let us numerical verify the strong stability for the RKDG(4,4,3) method without
the same time step. To do that, we take J = 64 and 7° = 0.05/J. For n > 1, we randomly take
the time step 7" € [0.57%,7°]. The initial solution u° is taken the same as that in Example 1. The
numerical result is plotted in Figure 5, which shows the strong stability of the scheme.

7. Concluding remarks. In this paper we have proposed a flexible framework to carry out the
L2-norm stability analysis for the RKDG schemes when solving linear constant-coefficient hyperbolic
equations. Based on this technique, we are able to find out the different stability mechanisms and
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Fic. 2. The evolution of ||u™|| for the RKDG(4,4,k) method: k =1,2,3 from top to bottom, 6§ = 0.75,1.00,1.25
from left to right. Here J = 64 and A = 0.05.

the detailed performances for many popular Runge-Kutta time marching, with order up to the
12th. We believe that this technique can be applied to many algorithms when solving the PDEs
with approximate skew-symmetric spatial discretizations. In future work, we will generalize this
technique to handle multi-steps time-marching, and apply it to hyperbolic equations with variable
coeflicients and nonlinear conservation laws.

REFERENCES

[1] E. BURMAN, A. ERN, AND M. A. FERNANDEZ, Ezplicit Runge-Kutta schemes and finite elements with symmetric
stabilization for first-order linear PDE systems, STAM J. Numer. Anal., 48 (2010), pp. 2019 — 2042.

[2] Y. CHENG, X. MENG, AND Q. ZHANG, Application of generalized Gauss-Radau projections for the local dis-
continuous Galerkin method for linear convection-diffusion equations, Math. Comp., 86 (2017), pp. 1233 —
1267.

[3] B. COCKBURN, An introduction to the discontinuous Galerkin method for convection-dominated problems, in:
Advanced numerical approximation of nonlinear hyperbolic equations (Cetraro, 1997), vol. 1697 of Lecture
Notes in Math., Springer, Berlin, 1998, pp. 15 — 268.

[4] B. COoCKBURN, S. Hou, AND C. -W. SuU, The Runge-Kutta local projection discontinuous Galerkin finite element
method for conservation laws. IV. The multidimensional case, Math. Comp., 54 (1990), pp. 545 — 581.

[5] B. COoCKBURN, S. Y. LiN, AND C. -W. Suu, TVB Runge-Kutta local projection discontinuous Galerkin finite
element method for conservation laws. III. One-dimensional systems, J. Comput. Phys., 84 (1989), pp. 90
- 113.

22

This manuscript is for review purposes only.



-~ i~ -
¢ é ]
o b5 o 5 o 5
- - -
- - -
¢ & ¥
= = 10} = 10}
= = =
% X x
[} (] (]
£ £ £
° o o
o (=2 (=2
o o o

-1,107%}
-1,107%}

-1,107%}
o1

[

sropal

2
2

2
2

2
2

= S =
x x X
© [} [}
E £ £
2 £ Slope =6 e
g 8 15t g

3656 3 25 2 15 A1

log, A
- BES -
o 5f o 5f §— : o 5f
= 10 = 10t = 10t
% % %
] ® (1]
£ £ £
° E Slope = 6 ES
S 15} S 15} S 15}
35 3 25 2 15 A1 35 3 25 2 15 1 35 3 25 2 15 1
log,,A log, A log, A

FIG. 3. The behaviour of |[K™||2 — 1 of the RKDG(5,5, k) method for different CFL number A: k = 2,3,4 from
top to bottom, m = 1,2,3 from left to right. Here J = 16,32,64 and 6 = 0.75,1.00, 1.25.

[6] B. COCKBURN AND C. -W. SHU, TVB Runge-Kutta local projection discontinuous Galerkin finite element method
for conservation laws. II. General framework, Math. Comp., 52 (1989), pp. 411 — 435.
[7] B. CockBURN AND C. -W. SHU, The Runge-Kutta local projection P1-discontinuous-Galerkin finite element
method for scalar conservation laws, RAIRO Modl. Math. Anal. Numr., 25 (1991), pp. 337 — 361.
[8] B. CockBURN AND C. -W. SHU, The Runge-Kutta discontinuous Galerkin method for conservation laws. V.
Multidimensional systems, J. Comput. Phys., 141 (1998), pp. 199 — 224.
[9] B. CockBURN AND C. -W. SHU, Runge-Kutta discontinuous Galerkin methods for convection-dominated prob-
lems, J. Sci. Comput., 16 (2001), pp. 173 — 261.
[10] E. DERIAZ, Stability conditions for the numerical solution of convection-dominated problems with skew-
symmetric discretizations, STAM J. Numer. Anal., 50 (2012), pp. 1058 — 1085.
[11] S. GoTTLIEB, D. I. KETCHESON, AND C. -W. SHU, High order strong stability preserving time discretizations, J.
Sci. Comput., 38 (2009), pp. 251 — 289.
[12] S. GoTTLIEB, AND C. -W. SHu, Total Variation Diminishing Runge-Kutta Schemes, Math. Comp., 1998, 67
(221), pp. 73 — 85.
[13] S. GoTTLIEB, C. -W. SHU, AND E. TADMOR, Strong stability-preserving high-order time discretization methods,
STAM Rev., 43 (2001), pp. 89 — 112.
[14] W. Guo, X. H. ZHONG, AND J. M. Q1u, Superconvergence of discontinuous Galerkin and local discontinuous
Galerkin methods: FEigen-structure analysis based on Fourier approach, J. Comput. Phy., 235 (2013), pp.
458 — 485.

23

This manuscript is for review purposes only.



10 10 10}
8f 8f 8f
Z4 Ze Z 4
o o 4
of of 2t
0 2E+12 0 =% 5%12 1E+13
12r 12r 12
10f 10f 10f
8f 8f 8f
5o 5o Z
4 o 4
of o o
0 0 0
12r 12r 12
10} 10f 10}
8f 8f 8f
Z4 S Z4
o 4 4
ot of o
0 0 ok

Fic. 4. The L?-norm of solution of the RKDG(5,5,4) scheme: A = 0.06,0.08,0.10 from top to bottom, 6 =
0.75,1.00, 1.25 from left to right. Here J = 16,32,64.

[15] I. HARARI AND T. J. R. HUGHES, What are C and h?: inequalities for the analysis and design of finite element
methods, Comput. Methods Appl. Mech. Engrg., 97 (1992), pp. 157 — 192.

[16] G. S. JianG AND C. -W. SHU, On a cell entropy inequality for discontinuous Galerkin methods, Math. Comp.,
62 (1994), pp. 531 — 538.

[17] E. J. KuBaTKO, C. DAWSON, J. J. WESTERINK, Time step restrictions for Runge-Kutta discontinuous Galerkin
methods on triangular grids, J. Comp. Phy., 227 (2008), pp. 9697 — 9710.

[18] D. LEvY AND E. TADMOR, From semi-discrete to fully discrete: stability of Runge-Kutta schemes by the energy
method, SIAM Rev., 40 (1998), pp. 40 — 73.

[19] Y. J. Liu, C. -W. Suu, E. TADMOR, AND M. P. ZHANG, L? stability of the central discontinuous Galerkin
method and a comparison between the central and regular discontinuous Galerkin methods, ESAIM: M2AN
42 (2008), pp. 593 — 607.

[20] X. MENG, C. -W. SHU, AND B. Y. Wu, Optimal error estimates for discontinuous Galerkin methods based on
upwind-biased fluzes for linear hyperbolic equations, Math. Comp., 85 (2016), pp. 1225 — 1261.

[21] J. X. QU AND Q. ZHANG, Stability, error estimate and limiters of discontinuous Galerkin methods, in: Handbook
of Numerical Analysis: Basic and Fundamental Issues, Elsevier, 2016, pp. 147 — 171.

[22] W. H. REED AND T. R. HiLL, Triangular mesh methods for the neutron transport equation, Los Alamos Scientific
Laboratory report LA-UR-73-479, (1973).

[23] C. -W. SHU AND S. OSHER, Efficient implementation of essentially nonoscillatory shock-capturing schemes, J.
Comput. Phys., 77 (1988), pp. 439 — 471.

[24] Z. SuN AND C. -W. SHU, Stability of the fourth order Runge-Kutta method for time dependent partial differential
equations, Ann. Math. Sci. Appl., 2 (2017), pp. 255 — 284.

[25] Z. SuN AND C. -W. SHU, Strong stability of explicit Runge-Kutta time discretizations, arXiv:1811.10680, accepted
by SIAM. J. Numer. Anal.

24

This manuscript is for review purposes only.



1.00f o008 — - — - - - 1.00F o060 — = — - — - 1.00F o-c0- — — - — — -
Fo § o e
0.95
= 090 =090t =
5 ) 5
0.90F
0.80F a0l
0.85
0 ‘1‘0.005‘ — 0 ‘t‘o.oos‘ — 0 ‘t‘o.oos‘

Fic. 5. The development of ||u™|| with variable time step: RKDG(4,4,3), 6 = 0.75,1.00,1.25, J = 64 and
A0 =0.05, A" € [0.025,0.05] randomly taken for n > 1.

[26] E. TADMOR, From semidiscrete to fully discrete: stability of Runge-Kutta schemes by the energy method. II, in:
lectures on the preservation of stability under discretization (Fort Collins, CO, 2001), SIAM, Philadelphia,
PA, 2002, pp. 25 — 49.

[27] Q. ZHANG, Third order explicit Runge-Kutta discontinuous Galerkin method for linear conservation law with
inflow boundary condition, J. Sci. Comput., 46 (2011), pp. 294 — 313.

(28] Q. ZHANG AND C.-W. SHU, Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin methods
for scalar conservation laws, STAM J. Numer. Anal., 42 (2004), pp. 641 — 666.

[29] Q. ZHANG AND C. -W. SHU, Stability analysis and a priori error estimates of the third order explicit Runge-
Kutta discontinuous Galerkin method for scalar conservation laws, SIAM J. Numer. Anal., 48 (2010), pp.
1038 — 1063.

[30] X. X. ZHANG AND C.-W. SHU, On positive-preserving high order discontinuous Galerkin schemes for compress-
ible Buler equations on rectangular meshes, J. Comput. Phys., 229 (2010), pp. 8918 — 8934.

[31] X. H. ZHONG AND C.-W. SHU, Numerical resolution of discontinuous Galerkin methods for time dependent wave
equations, Comput. Methods Appl. Mech. Engrg. 200 (2011), pp. 2814 — 2827.

25

This manuscript is for review purposes only.



	Introduction
	RKDG method and the main result
	Discontinuous finite element space
	Semi-discrete scheme
	Fully-discrete scheme
	Main result

	Stability analysis
	Preliminaries
	 blue Inverse inequity and discrete trace inequity of the finite element space
	Properties of the DG discretization

	Temporal differences of stage solutions
	Transferring of energy equations
	Discussions and statements

	RKDG methods with the same stages and order
	The first-order scheme
	Second-order scheme
	Third-order scheme
	Fourth-order scheme

	Remarks and extensions
	Discussion on combining multiple steps
	Lower polynomial degrees
	Stability by combining multiple time steps with different step sizes
	More examples

	Numerical results
	Concluding remarks
	References

