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ABSTRACT
We consider alternate formulations of recently proposed hierarchical nearest neighbor Gaussian process
(NNGP) models for improved convergence, faster computing time, and more robust and reproducible
Bayesian inference. Algorithms are defined that improve CPU memory management and exploit existing
high-performance numerical linear algebra libraries. Computational and inferential benefits are assessed for
alternate NNGP specifications using simulated datasets and remotely sensed light detection and ranging
data collected over the U.S. Forest Service Tanana Inventory Unit (TIU) in a remote portion of Interior Alaska.
The resulting data product is the first statistically robust map of forest canopy for the TIU. Supplemental
materials for this article are available online.
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1. Introduction

As spatial statisticians confront massive datasets with locations
∼106 and increasingly demanding inferential questions, several
existing approaches that once seemed attractive for locations
in the order of 104 become impractical. Recent methodological
developments within the burgeoning literature on this subject
aim to deliver massively scalable spatial processes. Sun, Li, and
Genton (2011) and Banerjee (2017) provided background and
more current work (also see references therein), respectively, in
this area. A recent contribution by Heaton et al. (2017) is partic-
ularly useful as it provides an overview of modeling approaches
for large spatial data that are under active development, and
a comparison of these approaches based on the analysis of a
common dataset in the form of a “friendly competition.” In
addition to nearest neighbor Gaussian process (NNGP: Datta
et al. 2016a) models, the comparison presented by Heaton et al.
(2017) considered reduced rank predictive processes (Banerjee
et al. 2008; Finley et al. 2009), covariance tapering (Furrer and
Sain 2010; Furrer 2016), gap filling (Gerber 2017), metakriging
(Guhaniyogi and Banerjee 2018), spatial partitioning (Sang,
Jun, and Huang 2011; Barbian and Assunção 2017), fixed rank
kriging (Cressie and Johannesson 2008; Zammit-Mangion and
Cressie 2017), multiresolution approximation (Katzfuss 2017),
stochastic partial differential equations (Rue et al. 2017), lattice
kriging (Nychka et al. 2015), and local approximate Gaussian
processes (Gramacy and Apley 2015; Gramacy 2016). The com-
parison was based on out-of-sampled predictive performance
and, to a lesser extent, computing time for a moderately sized
simulated and real dataset comprising 105,569 observations.
Comparisons showed NNGP models yielded highly competitive
predictive performance and computation time.
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With a few exceptions, for example, Furrer and Sain (2010)
and Gramacy (2016), the literature on scalable spatial pro-
cess models has focused primarily on theoretical and method-
ological developments with little attention to the algorithmic
details needed for effectively applying them. For example, Datta
et al. (2016a) implemented a “sequential” Gibbs sampler that
involves updating a high-dimensional latent random effect vec-
tor and is prone to high autocorrelations and slow conver-
gence. Most of the aforementioned articles do not discuss how
researchers can, in practice, exploit high-performance comput-
ing libraries to obviate expensive numerical linear algebra (e.g.,
expensive matrix multiplications and factorizations) and deliver
full Bayesian inference for massive spatial datasets. We address
this gap for the NNGP models here by outlining three alternate
formulations that are significantly more efficient for practi-
cal implementation than Datta et al. (2016a). Along with the
accompanying code supplied with this manuscript, our intended
contribution is well aligned with recent emphasis on repro-
ducible research for challenging data analysis in the context of
massive spatial datasets.

Our motivating scientific application concerns forest
resource monitoring efforts and, in particular, to create fine
resolution canopy height predictions using remotely sensed data
collected at over 5 million locations. Spatially explicit estimates
of forest canopy height are key inputs to a variety of ecosystem
and Earth system modeling efforts (Finney 2004; Hurtt et al.
2004; Stratton 2006; Lefsky 2010; Klein, Randin, and Korner
2015). These and similar applications seek inference about forest
canopy height model parameters and predictions that can be
propagated through subsequent computer models of ecosystem
function to yield more robust error quantification. Bayesian
inference is attractive here as it supplies full posterior predictive
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distributions for the outcomes and for the latent process at
arbitrary locations in the region of interest.

The remainder of this article proceeds as follows. Section 2
provides a brief overview of NNGP models and their compu-
tational aspects. This is followed by three distinct and efficient
alternate formulations: the collapsed NNGP model, a NNGP
model for the outcomes themselves (with no latent process), and
a conjugate NNGP model that allows MCMC-free inference.
Section 3 offers detailed simulation experiments on model per-
formance and assessment and also presents a detailed analysis
of the U.S. Forest Service Tanana Inventory Unit (TIU) dataset.
Finally, Section 4 concludes the manuscript with a summary and
an eye toward future work.

2. Nearest Neighbor Gaussian Processes

Let y(si) and x(si) denote the response and the predictors
observed at location si, i = 1, 2, . . . , n. A spatial linear mixed
model posits y(si) = x(si)�β +w(si)+ε(si), where the random
effect w(si) sums up the effect of unknown or unobserved spatial
covariates, and ε(si) denotes the independent and identically
observed noise. Gaussian processes (GP) are commonly used
for modeling the unknown surface w(s). In particular, w(s) ∼
GP(0, C(·, · | θ)) implies that w = (w(s1), w(s2), . . . , w(sn))�
is Gaussian with mean zero and covariance C = (cij), where
cij = C(si, sj | θ) and θ denotes the GP covariance parameters.
A popular choice for C(·, · | θ) is the Matérn covariance function
specified as:

C(si, sj; σ 2, φ, ν) = σ 2

2ν−1�(ν)
(||si − sj||φ)νKν(||si − sj||φ);

φ > 0, ν > 0, (1)

where θ = {σ 2, φ, ν} and K denotes the Bessel function of
second kind. Customary Bayesian hierarchical models are con-
structed as

p(β , θ , τ 2) × N(w | 0, C) × N(y | Xβ + w, τ 2I) , (2)

where p(β , θ , τ 2) is specified by assigning priors to β , θ , and
τ 2. When n is very large, implementing (2) poses multiple
computational roadblocks. Firstly, storing the matrix C requires
O(n2) dynamic memory. Furthermore, evaluating N(w | 0, C)

involves factorizations (e.g., Cholesky) that require O(n3) float-
ing point operations (flops) to solve linear systems involving
C and computing det(C). Finally, predicting the response at K
new locations require an additional O(Kn2) flops. Alternative
parameterizations such as integrating w out of (2) shrinks the
size of the parameter space, but does not obviate these computa-
tional bottlenecks. Even for moderately large spatial datasets, say
with ∼ 104–105 locations, these memory and storage demands
become prohibitive. For the TIU dataset with 5 × 106 locations,
implementing (2) is practically impossible.

As mentioned in Section 1, we pursue massive scalability for
full Bayesian inference exploiting the NNGP. The underlying
idea is familiar in graphical models (see, e.g., Lauritzen 1996;
Murphy 2012). The joint distribution for a random vector w
can be looked upon as a directed acyclic graph (DAG). We write
p(w) = p(w1)

∏n
i=2 p(wi | Pa[i]), where wi ≡ w(si) and Pa[i] =

{w1, w2, . . . , wi−1} is the set of parents of wi. We can construct

sparse models for w by shrinking the size of Pa[i]. In spatial
contexts, this can be done by defining Pa[i] to be the set of w(sj)’s
corresponding to a small number m of nearest neighboring
locations of si. Approximations resulting from such shrinkage
were originally proposed by Vecchia (1988) and studied and
exploited by Stein, Chi, and Welty (2004), Stroud, Stein, and
Lysen (2017), Datta et al. (2016a, 2016c), and Huang and Sun
(2018). The NNGP builds upon previous ideas and extends
finite-dimensional likelihood approximations to well-defined
sparsity-inducing Gaussian processes for estimating (2).

Working with multivariate Gaussian densities makes the con-
nection between conditional independence in DAGs and spar-
sity abundantly clear. We can write the multivariate Gaussian
density N(w | 0, C) as a linear model,

w1 = 0 + η1 and
wi = ai1w1 + ai2w2 + · · · + ai,i−1wi−1 + ηi for i = 2, . . . , n ,

or, more compactly, simply as w = Aw + η, where A is n × n
strictly lower-triangular with elements aij = 0, whenever j ≥ i
and η ∼ N(0, D) and D is diagonal with entries d11 = var(w1)
and dii = var(wi | {wj : j < i}) for i = 2, . . . , n.

From the structure of A it is evident that I−A is nonsingular
and C = (I − A)−1D(I − A)−�, where for any matrix M,
M−� refers to the inverse of its transpose. For any matrix M
and set of indices I1, I2 ⊆ {1, 2, . . . , n}, let M[I1, I2] denote the
submatrix of M formed by the rows indexed by I1 and columns
indexed by I2. With the addition of D[1,1] = C[1,1]
and the first row of A = 0, the calculation of A and D is
given in Pseudocode 1, where 1:i denotes the set {1, 2, . . . , i},
solve(B,b) computes the solution x for the linear system
Bx = b, and dot(u,v) denotes the inner-product between
two vectors u and v.

Pseudocode 1. Computation of A and D.

for(i in 1:(n-1)) {
A[i+1,1:i] = solve(C[1:i,1:i],

C[1:i,i+1])
D[i+1,i+1] = C[i+1,i+1]

- dot(C[i+1,1:i],
A[i+1,1:i])

}

While Pseudocode 1 computes the Cholesky decomposition
of C, there is no apparent gain to be had from the preceding
computations since, as the loop runs into higher values of i
closer to n, the dimension of C[1:i,1:i] increases. Conse-
quently, one will need to solve larger and larger linear systems
and the computational complexity remains O(n3). Nevertheless,
it immediately shows how to exploit sparsity, if we set some
elements in the lower triangular part of A to be zero. For
example, suppose, we permit no more than m elements in each
row of A to be nonzero. Let N[i] be the set of indices j < i
such that A[i,j] �= 0. One can then compute the elements of
A and D following Pseudocode 2.

In Pseudocode 2, we solve n-1 linear systems of size at most
m × m, where m = max

i
|N(i)|. This can be performed in
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Figure 1. Structure of the factors making up the sparse C̃−1 matrix for n = 200 and m = 10.

Pseudocode 2. Sparsity inducing computation of A and D.

for(i in 1:(n-1)) {
A[i+1,N[i+1]]
= solve(C[N[i+1],N[i+1]],
C[N[i+1],i+1])

D[i+1,i+1]
= C[i+1,i+1] - dot(C[i+1, N[i+1]],
A[i+1,N[i+1]])

}

O(nm3) flops. Furthermore, these computations can be per-
formed in parallel as each iteration of the loop is independent of
the others. The above discussion provides a very useful strategy
for constructing a sparse precision matrix. Starting with a dense
n × n matrix C, we construct a sparse strictly lower-triangular
matrix A with no more than m(� n) nonzero entries in each
row, and the diagonal matrix D using Pseudocode 2, such that
the matrix C̃ = (I − A)−1D(I − A)−� is a covariance matrix
whose inverse C̃−1 = (I − A)�D−1(I − A) is sparse. Figure 1
presents a visual representation of the sparsity.

The factorization of C̃−1 facilitates cheap computation of
quadratic forms u�C̃−1v in terms A and D. The algorithm to
evaluate such quadratic forms qf(u,v,A,D) is provided in
Pseudocode 3, where ∗ and / denote multiplication and division
by scalars, respectively.

Pseudocode 3. Computation of quadratic form.

qf(u,v,A,D) = u[1] ∗ v[1] / D[1,1]
for(i in 2:n) {

qf(u,v,A,D) = qf(u,v,A,D)
+ (u[i] - dot(A[i,N(i)],
u[N(i)]))

∗(v[i] - dot(A[i,N(i)],
v[N(i)]))/D[i,i]

}

Observe the algorithm in Pseudocode 3 only involves inner
products of m × 1 vectors. So, the entire for loop can be com-
puted using O(nm) flops as compared to O(n2) flops typically
required to evaluate quadratic forms involving an n × n dense

matrix. Also, importantly, the determinant of C̃ is obtained with
almost no additional cost—it is simply

∏n
i=1 D[i,i].

Hence, while C̃ need not be sparse, the density N(w | 0, C̃) is
cheap to compute requiring only O(n) flops. This was exploited
by Datta et al. (2016a), where the neighbor sets were constructed
based on m nearest neighbors and the traditional GP prior for
w in (2) was replaced with an NNGP prior N(w | 0, C̃). The
Markov chain Monte Carlo (MCMC) implementation of the
NNGP model in Datta et al. (2016a) requires updating the n
latent spatial effects w sequentially, in addition to the regression
and covariance parameters. While this ensures substantial com-
putational scalability in terms of evaluating the likelihood, the
behavior of MCMC convergence for such a high-dimensional
model is difficult to study and may well prove unreliable.

We observed that, for very large spatial datasets, sequential
updating of the random effects often leads to very poor mixing
in the MCMC (see Figures S2 and S3). The computational
gains per MCMC iteration is thus offset by a slow converging
MCMC. Liu, Wong, and Kong (1994) showed that MCMC algo-
rithms, where one or more variables are marginalized out tend
to have lower autocorrelation and improved convergence behav-
ior. Here, we explore NNGP models that drastically reduce the
parameter dimensionality of the NNGP models by marginaliz-
ing over the entire vector of spatial random effects. Three differ-
ent variants are developed, including an MCMC free conjugate
model, and their relative merits and demerits are assessed both
in terms of computational burden as well as model prediction
and inference. Simulation experiments using spatial datasets of
up to 10 million locations are conducted to assess the models’
performance. Finally, we use the NNGP models to analyze
the TIU dataset comprising over 5 million locations. To our
knowledge, fully Bayesian analysis of spatial data at such scales
is unprecedented.

2.1. Collapsed NNGP

The hierarchical model (2) or its NNGP analog impart a nice
interpretation to the spatial random effects. The latent surface
w(s) can provide a lot of information about the effect of missing
covariates or unobserved physical processes. Hence, inference
about w is often critical for the researchers to improve the
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understanding of the underlying scientific phenomenon. Here,
we provide a collapsed NNGP model that enjoys the frugality of
a low-dimensional MCMC chain but allows for full recovery of
the latent random effects. We begin with the two-stage hierar-
chical specification N(y | Xβ + w, τ 2I) × N(w | 0, C̃) and avoid
sampling w in the Gibbs’ sampler by integrating out w to obtain
the collapsed NNGP model

y ∼ N(Xβ , �) where � = C̃ + τ 2I. (3)

This model has only p + 4 parameters compared to n + p + 4
parameters in the hierarchical model. We use a conjugate prior
N(μβ , Vβ) for β , inverse gamma priors for the spatial and noise
variances, and uniform priors for the range and smoothness
parameters. We use the u | · notation to denote the full con-
ditional distribution of any random variable u in the Gibbs’
sampler. Let N(i) denote the set of indices corresponding to
neighbor set of si. Observe that, although from Section 2, we
know C̃ = (I − A)−1D(I − A)−�, � does not enjoy any such
convenient factorization. In fact, �−1 is also not guaranteed
to be sparse, but exploiting the Sherman Woodbury Morri-
son (SWM) identity, we can write �−1 = τ−2I − τ−4�−1,
where � = (C̃−1 + τ−2I) enjoys the same sparsity as C̃−1.
Also, using a familiar determinant identity, we have det(�) =
τ 2n det(C̃) det(�).

We exploit these matrix identities in conjunction with sparse
matrix algorithms to obtain posterior distributions of the
parameters {β , θ , τ 2}. In fact, the necessary computations can

be done by entirely avoiding expensive matrix computations
and is described in detail in Algorithm 1. In addition to the
inner product function dot(·, ·) introduced earlier, we require
a fill-reducing permutation matrix and a sparse Cholesky
factorization (sparsechol(·)) for a sparse positive-definite
matrix (note, dot(·, ·), sparsechol(·), and subsequent
functions that share this font are pseudocode). Large matrix–
matrix and matrix–vector multiplications either involve at least
one triangular matrix (trmm(·, ·) or trmv(·, ·), where mm and
mv denote matrix–matrix and matrix–vector operations), or at
least one sparse matrix (sparsemm(·, ·), or sparsemv(·, ·)).
We also use diagsolve(·, ·) and trsolve(·, ·) to solve
linear systems with a diagonal or triangular coefficient matrix,
respectively. We perform Cholesky decompositions, matrix–
vector multiplications and solve linear equations involving
general unstructured matrices using chol(·), gemv(·, ·), and
solve(·, ·), respectively, only for small p×p or m×m matrices,
where both p and m are much less than n. Other utilities used
in Algorithm 1 are diag(·) to extract the diagonal elements
of a matrix, prod(·) to compute the product of the elements
in a vector and rnorm(·) to generate a specified number of
random variables (as an integer argument) from a standard
N(0, 1) distribution.

Observe that the entire Algorithm 1 is devoid of any expen-
sive operations like solve, chol, or gemv on dense n × n
matrices. All such operations are limited to m × m or p × p
matrices, where both m and p are small. The computational costs
in terms of flops of all such steps are listed in the algorithm and

Algorithm 1 Collapsed NNGP: Sampling from the posterior.

MCMC steps for updating {β , θ , τ 2}

1: Metropolis–Hastings (MH) update for {θ , τ 2}:

p(θ , τ 2 | ·) ∝ p(θ , τ 2) × 1√
det(�)

exp
(

− 1
2
(y − Xβ)��−1(y − Xβ)

)

(a) Use Pseudocode 1 to obtain A and D using C and {N(i) | i = 1, 2, . . . , n} O(nm3) flops
(b) 
 = trmm((I− A)�,diagsolve(D,I− A)) + τ−2 ∗ I O(nm2) flops
(c) Find a fill reducing permutation matrix P for 


(d) L = sparsechol(sparsemm(sparsemm(P, 
),P�))

(e) r = y− gemv(X, β) ; u = trsolve(L,sparsemv(P,r)) ; v = trsolve(L�,u) O(np) flops
(f) q = dot(r,r)/τ 2 − dot(r,sparsemv(P,v))/τ 4

(g) d = τ 2∗n ∗ prod(diag(D)) ∗ prod(diag(L))2 O(n) flops

(h) Generate p(θ , τ 2 | ·) ∝ exp(-q/2) ∗ p(θ , τ 2)

sqrt(d)

2: Gibb’s sampler update for β:
β | · ∼ N(B−1b, B−1), where B = X��−1X + V−1

β and b = X��−1y + V−1
β μβ

(a) for (j in 1:n) {
uj = trsolve(L,sparsemv(P,X[,j])) ; vj = trsolve(L�,uj)

}
(b) F = solve(Vβ ,I) ; f = solve(Vβ , μβ) O(p3) flops
(c) Solve for p × p matrix B and p × 1 vector b: O(np2) flops

for (j in 1:p) {
b[j] = dot(y,X[,j])/τ 2 − dot(y,sparsemv(P,vj))/τ 4 + f[j]

for (i in 1:p) {
B[i,j] = dot(X[,i],X[,j])/τ 2 − dot(X[,i],sparsemv(P, vj))/τ 4 + F[i,j]

}
}

(d) β = solve(B,b) + trsolve(chol(B),rnorm(p)) O(p3) flops

3: Repeat Steps (1) and (2) (except Step 1(c)) N times to obtain N MCMC samples for {β , θ , τ 2}
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are linear in n. However, the exact cost of the steps involving
L in Algorithm 1 (Steps 1(d)–(e)) depends on the data design.
Although � is sparse O(nm2) nonzero entries, the sparsity of
its Cholesky factor L actually depends on the location of the
nonzero entries. Hence, we used a fill reducing permutation P
that increases the sparsity of the Cholesky factor. Although P
needs to be evaluated only once before the MCMC, finding the
optimal P yielding the least fill-in is an NP-complete problem.
Hence, algorithms have been proposed to improve sparsity pat-
terns based on a variety of fill-in minimizing heuristics, see, for
example, Amestoy, Davis, and Duff (1996), Karypis and Kumar
(1998), and Hager (2002) (also see Section 3).

When flops per iteration of MCMC are considered, compu-
tational requirements for the collapsed NNGP model is data
dependent and may exceed the exact linear flops usage for the
hierarchical NNGP Algorithm. We also observed this in simula-
tion experiments described in Section 3. However, the improved
MCMC convergence for the collapsed NNGP, as observed in
Figures S2 and S5, implies that substantial computational gains
accrue by truncating the MCMC run. Furthermore, all the for
loops in Algorithm 1 can be evaluated independent of each other
using parallel computing resources.

The collapsed model nicely separates the MCMC sampler for
parameter estimation from posterior estimation of spatial ran-
dom effects and subsequent predictions. Computational bene-
fits accrue from using the quantities L and u already computed
in Steps 1(d)–(e) of Algorithm 1 corresponding to the post-
convergence samples of {β , θ , τ 2}. This is presented in Algo-
rithm 2.

Algorithm 2 Collapsed NNGP: Posterior predictive inference
Post-MCMC steps using L and u from Steps 1(d)–(e) of Algorithm 1 for

post-convergence samples of {β , θ , τ 2}

1: Sample from p(w | ·) one-for-one for each post-convergence sample
of {β , θ , τ 2}
w | · ∼ N(B−1b, B−1), where B = C̃−1 + τ−2I and b = (y − Xβ)/τ 2

(a) z = rnorm(n) O(n) flops
(b) w = sparsemv(P�,trsolve(L�,u/τ 2 + z))

2: Prediction at a new location s0:
y(s0) | · ∼ N(x(s0)�β + w(s0), τ 2)

(a) Find N0 — set of m nearest neighbors of s0 among {s1, s2, . . . , sn}
O(n) flops

(b) c = C(s0,N0; θ) O(m) flops
(c) m = dot(c,solve(C(N0,N0),w[N0])) O(m3) flops

v = C(s0,s0; θ) − dot(c,solve(C(N0,N0),c))
(d) w(s0) = m+ sqrt(v) ∗ rnorm(1) O(p) flops

y(s0) = dot(x(s0), β) + w(s0) + τ ∗ rnorm(1) O(p) flops

Algorithm 2 demonstrates how inference on w(s) and y(s) can
be easily achieved for any spatial location using the post burn-in
samples of {β , θ , τ 2}. We first sample the spatial random effects
p(w | y) for the observed locations, use them to sample from
p(w(s0) | y) and then from p(y(s0) | y).

2.2. NNGP for the Response

Both the sequential NNGP Algorithm in Datta et al. (2016a)
or the collapsed version in Section 2.1 accomplishes prediction

at a new location via recovering the spatial random effects
first, proceeded by kriging at the new location. This differed
from Vecchia’s (1988) original approach, which applied nearest
neighbor approximation directly to the marginal likelihood of
y. The recovery of the spatial random effects becomes necessary
if inference on the latent process is of interest. Although recov-
ering w, as discussed earlier, has its own importance, if spatial
interpolation of the response is the primary objective, this inter-
mediate step is often a computational burden. In this Section,
we propose a NNGP model for the response y that sacrifices the
ability to recover w and directly predicts the response at new
locations.

Datta et al. (2016a) demonstrated that a NNGP model can be
derived from any GP. If w(s) ∼ GP(0, C(·, ·)), then the response
y(s) ∼ GP(x(s)�β , �(·, ·)) is also a GP, where �(si, sj) =
C(si, sj) + τ 2I(si = sj). Hence, we can directly derive an NNGP
for the response process y(s). For finite dimensional realizations
y, likelihood under the response NNGP model is identical to
Vecchia’s composite likelihood. Datta et al. (2016a) extended
this notion to a fully Bayesian setup. The key observation is that
Vecchia’s approximation corresponds to a proper multivariate
Gaussian distribution obtained by simply replacing the covari-
ance matrix � = C + τ 2I with its nearest-neighbor approx-
imation �̃ as described in Section 2. The sparsity properties
documented in Section 2 apply to �̃ as well. MCMC steps for
parameter estimation and prediction using this response NNGP
model are provided in Algorithm 3.

Algorithm 3 Response NNGP model: Sampling from the pos-
terior
MCMC steps for updating {β , θ , τ 2}

1: Metropolis–Hastings (MH) update for {θ , τ 2}:
p(θ , τ 2 | ·) ∝ p(θ , τ 2) × 1√

det(�̃)

exp
(
− 1

2 (y − Xβ)��̃
−1

(y − Xβ)
)

(a) Use Pseudocode 1 to obtain A and D using � and {N(i) | i =
1, 2, . . . , n} O(nm3) flops

(b) e = y − gemv(X, β) ; Using Pseudocode 3, q =
qf(e,e,A,D) O(n(p + m)) flops

(c) d = prod(diag(D)) O(n) flops

(d) Generate p(θ , τ 2 | ·) ∝ exp(-q/2) ∗ p(θ , τ 2)

sqrt(d)
O(1) flops

2: Gibb’s sampler update for β:
β | · ∼ N(B−1b, B−1), where B = X��̃

−1X + V−1
β and b =

X��̃
−1y + V−1

β μβ

(a) F = solve(Vβ ,I) ; f = solve(Vβ , μβ) O(p3) flops
(b) Solve for p × p matrix B and p × 1 vector b using Pseudocode 3:

O(nmp2) flops
for (i in 1:p) {

b[i] = qf(X[,i],y,A,D) + f[i]
for (j in 1:p) {

B[1,j] = qf(X[,i],X[,j],A,D)+ F[1, j]
}

}
(c) β = solve(B,b)+ trsolve(chol(B),rnorm(p)) O(p3)

flops

3: Repeat Steps (1) and (2) N times to obtain N MCMC samples for
{β , θ , τ 2}
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Unlike the collapsed NNGP model, the computational cost for
each step of Algorithm 3 does not depend on the spatial design
of the data and is exactly linear in n. This is a result of the
complete absence of the latent spatial effects w in the model.
Once again, parallel computing can be leveraged to evaluate all
thefor loops. A caveat with the response model is that recovery
of w is not possible as highlighted in Datta et al. (2016a). How-
ever, if that is of peripheral concern, the response model offers a
computationally parsimonious solution for fully Bayesian anal-
ysis of massive spatial datasets. Posterior predictive inference,
therefore, consists only of predicting the outcome y(s) at any
arbitrary location s. This is achieved easily through Algorithm 4,
where yN(s0) represents the subvector of y corresponding to the
points in N(s0), XN(s0) is the corresponding design matrix, and
�0 is the m × m covariance matrix for yN(s0).

Algorithm 4 Response NNGP model: Posterior predictive
inference
Post-MCMC steps using post-convergence samples of {β , θ , τ 2}

1: Sample from p(y(s0) | ·) one-for-one for each post-convergence sam-
ple of {β , θ , τ 2}
y(s0) | · ∼ N(x(s0)

�β + c�
0 �−1

0 (yN(s0) − XN(s0)β), �(s0, s0) −
c�

0 �−1
0 c0)

(a) Find N0 — set of m nearest neighbors of s0 among {s1, s2, . . . , sn}
O(n) flops

(b) c = �(s0,N0; θ) O(m) flops
(c) m = dot(c,solve(�[N0,N0],y[N0] − dot(X[N0, ], β)) O(m3)

flops
v = �(s0,s0) − dot(c,solve(�[N0,N0],c))

(d) y(s0) = dot(x(s0), β) + m+ sqrt(v) ∗ rnorm(1) O(p)

flops

2.3. MCMC-Free Exact Bayesian Inference Using
Conjugate NNGP

The fully Bayesian approaches developed in Datta et al. (2016a)
and in Sections 2.1 and 2.2 provide complete posterior distribu-
tions for all parameters. However, for massive spatial datasets
containing millions of observations, running the Gibbs’ sam-
plers for several thousand iterations may still be prohibitively
slow. One advantage of NNGP over similar scalable statistical
approaches for large spatial data is that it offers a probability
model. Here, we exploit this fact to achieve exact Bayesian
inference.

We define α = τ 2/σ 2 and rewrite the marginal model from
Section 2.2 as N(y | Xβ , σ 2M), where M = G + αI and G
denotes the Matern correlation matrix corresponding to the
covariance matrix C, that is, G[i, j] = C(si, sj, (1, ν, φ)�). Once
again, the analogous NNGP model can be obtained by replacing
the dense matrix M with its nearest-neighbor approximation M̃.
Note that M̃ depends on α, the spatial range φ, and smooth-
ness ν. Empirically, in spatial regression models, the spatial
process parameters φ and ν are often not well estimated due
to multimodality issues. In fixed domain asymptotic settings
(see, e.g., Zhang 2004) it is impossible to jointly identify the
spatial covariance parameters. Consequently, if inference for the
covariance parameters is not of interest, it might be possible to

fix them at reasonable values with minimal effect on prediction
or point estimates of other model parameters. For example, the
smoothness parameter ν could be fixed at 0.5, which reduces
(1) to the exponential covariance function, and φ and α could
be estimated using K-fold cross-validation.

For fixed α and φ, we obtain the familiar conjugate Bayesian
linear regression model IG(σ 2 | aσ , bσ ) × N(β | μβ , σ 2Vβ) ×
N(y | Xβ , σ 2M̃) with joint posterior distribution

p(β , σ 2 | y) ∝ IG(σ 2 | a∗
σ , b∗

σ )︸ ︷︷ ︸
p(σ 2 | y)

× N(β | B−1b, σ 2B−1)︸ ︷︷ ︸
p
(
β | σ 2,y

) ,

where a∗
σ = aσ + n/2, b∗

σ = bσ + 1
2

(
μ�

β V−1
β μβ + y�M̃−1y −

b�B−1b
)

, B = V−1
β + X�M̃−1X and b = V−1

β μβ + X�M̃−1y.
It is easy to directly sample σ 2 ∼ IG(a∗

σ , b∗
σ ) and then sample

β ∼ N(B−1b, σ 2B−1) one-for-one for each drawn σ 2. This pro-
duces samples from the marginal posterior distributions β | y ∼
MVS-t2a∗

σ

(
B−1b,

b∗
σ

a∗
σ

B−1
)

and σ 2 | y ∼ IG(a∗
σ , b∗

σ ), where

MVS-tκ(B−1b, (b/a)B−1) denotes the multivariate noncentral
Student’s t distribution with degrees of freedom κ , mean B−1b
and variance bB−1/(a − 1). The marginal posterior mean and
variance for σ 2 are b∗

σ /(a∗
σ − 1) and b∗2

σ /(a∗
σ − 1)2(a∗

σ − 2),
respectively.

Instead of sampling from the posterior directly, we pre-
fer a fast evaluation of the marginal posterior distributions
to effectively implement the aforementioned cross-validatory
approach. Steps for efficiently evaluating the above is provided
in Algorithm 5. The marginal posterior predictive distribution
at a new location s0 is given by y(s0) | y ∼ t2a∗

σ
(m0, b∗

σ v0/a∗
σ ),

where expressions for m0 and v0 are provided in Step 3 of
Algorithm 5. We deploy hyper-parameter tuning based on K-
fold cross-validation to choose the optimal α and φ from a grid
of possible values. In our data analysis, we have chosen broad
endpoints of the grid using exploratory variograms. However,
as suggested by one reviewer, reparametrizing α∗ = α/(1 +
α) and φ∗ = φ/(1 + φ) would ensure that the new hyper-
parameters are within [0, 1] and can facilitate a more automated
grid-search. In applications, where the exploratory variograms
are inaccurate, the latter parameterization will possibly be more
useful.

We denote the indices and locations corresponding to the kth
fold of the data by I(k) and S(k), respectively, whereas I(−k)
and S(−k), respectively, denote the analogous quantities when
the kth fold is excluded from the data. Also, let N(i, k) denote
the neighbor set for a location si constructed from the locations
in S(−k). Details of the cross-validation procedure are also
provided in Algorithm 5.
Algorithm 5 completely circumvents MCMC based iterative
sampling and only requires at most O(n) flops per step.
Although the calculations need to be replicated for every (φ, α)

combination, unlike the MCMC based algorithms that run
serially, this step can be run in parallel. Moreover, kriging is
often less sensitive to the choice of the covariance parameters so
cross-validation can be done at a moderately crude resolution
on the (φ, α) domain. Hence, the Algorithm remains extremely
fast. This incredible scalability makes the conjugate NNGP
model an attractive choice for ultra high-dimensional spatial
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Algorithm 5 MCMC free posterior sampling for conjugate NNGP model

Hyper parameter tuning

1: Fix α and φ, split the data into K folds.

(a) Find the collection of neighbor sets N = {N(i, k) : i = 1, 2, . . . , n; k = 1, 2, . . . , K}
2: Obtain posterior means for β and σ 2 after removing the kth fold of the data:

(a) Use Pseudocode 1 to obtain A(k) and D(k) from M[S(−k), S(−k)] and N O(nm3) flops
(b) F = solve(Vβ ,I) ; f = solve(Vβ , μβ) O(p3) flops
(c) Solve for p × p matrix B(k) and p × 1 vector b(k) using Pseudocode 3: O(nmp2) flops

for (i in 1:p) {
b(k)[i] = qf(X[S(-k),i],y[S(-k)],A(k),D(k))+ f[i]
for (j in 1:p) {

B(k)[i,j] = qf(X[S(-k),i],X[S(-k),j],A(k),D(k))+ F[i,j]
}

}
(d) V(k) = solve(B(k),I) ; g(k) = gemv(V(k),b(k)) O(p3) flops

a∗
σ(k) = aσ + (n-n/K)/2

b∗
σ(k) = bσ + (dot(μβ ,f) + qf(y[S(-k)],y[S(-k)],A(k),D(k))− dot(g(k),b(k)))/2

(e) β̂ = g(k) ; σ̂ 2 = b∗
σ(k)/(a

∗
σ(k)-1)

3: Predicting posterior means of y[S(k))]: O(nm3/K) flops

for (s in S(k)) {
N(s,k) = m-nearest neighbors of s from S(−k)
z = M(s,N(s,k))
w = solve(M[N(s,k),N(s,k)],z)
m0 = ̂y(s) = dot(x(s), g(k))+ dot(w,(y[N(s,k)] - dot(X[N(s,k),],g(k))))
u = x(s) − dot(X[N(s,k),],w)
v0 = dot(u, gemv(V(k),u))+ 1 + α − dot(w,z)

̂var(y(s)) = b∗
σ(k)v0/(a∗

σ(k)− 1)

}

4: Root Mean Square Predictive Error (RMSPE) over K folds: O(n) flops

(a) Initialize e = 0
for (k in 1:K) for (si in S[k]) {

e= e +(y(si)-̂y(si) )2

}

5: Cross-validation for choosing α and φ

(a) Repeat steps (2) and (3) for G values of α and φ O(GKnm(p2 + m2)) flops
(b) Choose α0 and φ0 as the value that minimizes the average RMSPE O(G) flops

Parameter estimation and prediction

6: Repeat step (2) with (α0, φ0)
� and the full data to get (β , σ 2) | y O(nmp2 + nm3) flops

7: Repeat step (3) with (α0, φ0)
� and the full data to predict at a new location s0 to obtain the mean and variance of y(s0) | y O(m3) flops

data. Although this approach philosophically departs from
the true Bayesian paradigm, often inference about covariance
parameters is of little interest and this hybrid cross-validation
approach offers a pragmatic compromise.

3. Illustrations

3.1. Implementation

This section details two simulation experiments and the analysis
of a large remotely sensed dataset. In the analyses, we consider
the candidate models labeled: Sequential defined in Datta et al.
(2016a), Collapsed defined in Section 2.1, Response defined in
Section 2.2, and Conjugate defined in Section 2.3.

Two additional analyses are provided in the web supple-
ment. First, Section S3, compares full GP and NNGP model
parameter estimates and predictive performance. Second,

Section S4, moves beyond the typical geostatistical setting,
where s indexes data in two-dimensions, for example, latitude
and longitude, to a more general settings, where data are
indexed in N-dimensions. Such data are common in computer
experiments, where s indexes outcomes associated with a
set of values on N computer model inputs. Here too, we
apply a Matérn covariance function. Response and conjugate
model out-of-sample predictive performance is shown to be
comparable with that achieved using a local approximate
Gaussian processes as implemented in the laGP R package
(Gramacy and Sun 2017; Gramacy 2016).

Samplers were programmed in C++ and used openBLAS
(Zhang 2016) and Linear Algebra Package (LAPACK; www.
netlib.org/lapack) for efficient matrix computations.openBLAS
is an implementation of Basic Linear Algebra Subprograms
(BLAS; www.netlib.org/blas) capable of exploiting multiple
processors. Additional multiprocessor parallelization used

www.netlib.org/lapack
www.netlib.org/lapack
www.netlib.org/blas
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openMP (Dagum and Menon 1998) to improve performance
of key steps within the samplers. In particular, substantial gains
were realized by distributing the calculation of NNGP precision
matrix components using the openMP omp for directive.
Updating these matrices is necessary for each MCMC iteration
in the sequential, response, and collapsed models, and for
each conjugate model cross-validation iteration. An omp for
directive with reduction clause was also effectively used to
evaluate the Pseudocode 3 found in all models.

For the collapsed model, SuiteSparse version 4.4.5 (Davis
2016a) provided an interface to: fill-in minimizing algorithms,
for example, AMD (Amestoy, Davis, and Duff 2004), METIS
(Karypis and Kumar 1998), and CHOLMOD (Chen et al. 2008)
version 3.0.6 used for supernodal openBLAS-based Cholesky
factorization to obtain L of P(C̃−1 + τ−2I)P�, and solvers for
sparse triangular systems. Also see the text by Davis (2006).

For each analysis using the collapsed model, nine fill-in
algorithms were considered (for details see Chen et al. 2008;
Davis 2016b, pp. 4 and 16, respectively) for formation of the per-
mutation matrix P. Assessment of the various fill-in algorithms
is based on the resulting pattern of nonzero matrix elements.
This is important for our setting because the initial pattern of
the NNGP precision matrix is determined by the neighbor set
and, hence, discovery of an optimal permutation matrix need
only be done once prior to sampling.

Implementing NNGP models requires a neighbor set for each
observed location. For a given location si, a brute force approach
to finding the neighbor set calculates Euclidean distances to
s1, s2, and si−1, sorts these distances while keeping track of
locations’ indexes, then selects the m minimum distance neigh-
bors. This brute force approach is computationally demanding.
Subsequent analyses use a relatively simple to implement fast
nearest neighbor search algorithm proposed by Ra and Kim
(1993) that provides substantial efficiency gains over the brute
force search (see supplemental material for details).

All subsequent analyses were conducted on a Linux worksta-
tion with two 18-core Intel processors and 512 GB of memory.
Unless otherwise noted, posterior inference used the last 1×104

iterations from each of three chains of 2.5 × 104 iterations.
Chains run for a given model were initiated at different values
and each chain was given a unique random number generator
seed. Following Datta et al. (2016a), all models were fit using
m = 15 neighbors unless noted otherwise.

Code and data needed to reproduce the analyses are provided
in the web supplement.

3.2. Experiment #1

The aim of this experiment was to assess NNGP model run time.
To achieve this, we selected data subsets for a range of n from the
TIU dataset described in Sections 1 and 3.4. The posited model
follows (2) and includes an intercept and slope regression coeffi-
cients, and an exponential covariance function with parameters
σ 2, φ, and residual variance τ 2. A “flat” improper prior distri-
bution was assigned to each regression coefficient, β ’s, which
places equal weight on all possible values of the parameter.
The variance components τ 2 and σ 2 were assigned inverse-
Gamma IG(2, 10) priors, and a uniform U(0.1, 10) prior for the

decay parameter φ. The support on the decay corresponds to
an effective spatial range (i.e., the distance where the spatial
correlation is 0.05) between 0.3 and 30 km (see Section 3.4 for
specifics on the TIU domain and dataset).

Figure 2(a) shows run time for a dataset of n = 5 × 104 and
number of CPUs used to complete one MCMC iteration (not
including the initial nearest neighbor set search time, which is
common across models). Two versions of the collapsed model
are shown, one assumes the permutation matrix P is diagonal
(labeled no perm) and the other allows CHOLMOD to select
an approximately optimal permutation matrix (labeled perm).
Here, and in other experiments, using a fill-in reducing per-
mutation matrix provides substantial time efficiency gains. The
response model provides full posterior inference on all param-
eters, with the exception of w, and dramatically faster run time
compared to the collapsed model. Inference for the conjugate
model, including β̂ and σ̂ 2 (Algorithm 5), requires about the
same amount of time as one response model MCMC iteration.
Explicitly updating w is relatively slow; hence, the sequential
model’s computing time falls somewhere between that of the
collapsed and response models.

For all models, Figure 2(a) show marginal improvement in
run time beyond ∼6 CPUs and negligible improvement beyond
∼12 CPUs. We attribute the slight increase in run time beyond
∼12 CPU seen in some models to communication overhead.
Run time is actual execution time, or “wall clock time,” of the
specified number of MCMC iterations. Points of diminishing
return on number of CPUs used will change with n; however,
exploratory analysis across the range of n considered here sug-
gested 12 CPUs is the bound for substantial gains (clearly this
also depends on computing environment and programming
decisions).

Figure 2(b) shows time required to execute one sampler iter-
ation by n. The response and conjugate models deliver inference
across n in ∼1/3 and ∼1/10 the time required by the Sequential
and Collapsed models, respectively. For n=1×107 the run time is
approximately 28, 13, 13, and 95 sec for the sequential, response,
conjugate, and collapsed, respectively.

3.3. Experiment #2

This experiment compared parameters estimates and predictive
performance among the NNGP models for a large dataset. Also,
the potential to identify optimal values of φ and α via cross-
validation was assessed for the conjugate model. We generated
observations at 6 × 104 locations within a unit square domain
from model (2), the n × n spatial covariance matrix C was
formed using (1) with ν fixed at 0.5, and the mean comprised
an intercept and covariate x1 drawn from independent N(0, 1).
Observations were then generated using the parameter values
given in the column labeled True in Table 1. Observations at
n = 5 × 104 of these locations, selected at random, were used
to estimate model parameters. Observations at the remaining
1 × 104 holdout locations were used to assess model predictive
performance.

Following Section 2.3, five-fold cross-validation aimed at
minimizing RMSPE and continuous rank probability score
(CRPS; Gneiting and Raftery 2007) for the conjugate model
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Figure 2. (a) Run time required for one sampler iteration using n = 5 × 104 by number of CPUs (y-axis is on the log scale). (b) Run time required for one sampler iteration
by number of locations.

Table 1. Simulated dataset, parameter credible intervals 50% (2.5%, 97.5%) and predictive validation.

Parameter True Sequential (metrop) Sequential (slice) Response Collapsed Conjugate

β0 1 0.64 (0.53, 0.75) 0.56 (0.44, 0.79) 0.84 (0.70, 0.99) 1.10 (0.51, 1.79) 0.84
β1 5 5.00 (5.00, 5.01) 5.00 (5.00, 5.01) 5.01 (5.00, 5.01) 5.00 (5.00, 5.01) 5.01
σ 2 1 1.95 (1.44, 2.21) 1.68 (1.11, 2.19) 1.03 (0.91, 1.21) 1.69 (1.16, 2.24) 0.98
τ2 1 1.00 (0.98, 1.01) 1.00 (0.98, 1.01) 1.00 (0.98, 1.01) 1.00 (0.98, 1.01) 1.02
φ 6 3.39 (3.03, 4.54) 3.98 (3.04, 6.05) 6.26 (4.88, 7.78) 3.95 (3.01, 5.83) 4.05

CRPS 0.59 0.59 0.6 0.59 0.59
RMSPE 1.04 1.04 1.05 1.04 1.05

95% PIC 93.13 92.63 93.08 92.77 94.94
95% PIW 3.87 3.85 3.93 3.84 4.11

NOTE: Bold entries indicate where the true value is not within the 95% credible interval.

are given in Figure 3. We observe that a broad range of φ

and α values deliver comparable predictive performance, and
minimization of RMSPE and CRPS yield approximately the
same estimates of φ and α.

In addition to RMSPE and CRPS, percent of holdout obser-
vations covered by their corresponding predictive distribution
95% credible interval (PCI), and mean width of the predic-
tive distributions’ 95% credible interval (PIW) were used to
assess NNGP model predictive performance. Results given in
Table 1 show the NNGP models yield comparable parameter
estimates and prediction. Here, the conjugate model’s φ and α

were selected to minimize RMSPE (results are comparable for
minimization of CRPS).

Candidate models’ Gelman–Rubin (Gelman and Rubin
1992) potential scale reduction factor figures and MCMC chain
trace plots are given in Figures S2–S5 of the web supplement.
These figures show the response and collapsed models provide
faster chain convergence for the intercept and spatial covariance
parameters compared to sequential model. Additional analysis
in Section S3 of the web supplement reveal that for a smaller
dataset generated using the same model, the Sequential model
parameter posteriors do not match well that of the full GP.

3.4. Tanana Inventory Unit Forest Canopy Height

Our goal is to create a high-resolution forest canopy height
data product, with accompanying uncertainty estimates for

prediction and spatial correlation parameters, for the U.S. Forest
Service Tanana Inventory Unit (TIU) that covers a large portion
of Interior Alaska using a sparse sample of light detection
and ranging (LiDAR) data from NASA Goddard’s LiDAR,
hyperspectral, and thermal (G-LiHT) Airborne Imager (Cook
et al. 2013).
For remote forested regions, combining sparse airborne LiDAR
data with a sparse network of forest inventory data provides a
cost-effective means to deliver predictive maps of forest canopy
height. In this study, LiDAR data were acquired across the US
Forest Service TIU in Interior Alaska, approximately 140,000
km2, using the NASA Goddard’s LiDAR, hyperspectral, and
thermal (G-LiHT) Airborne Imager (Cook et al. 2013). The G-
LiHT instrument package simultaneously acquires data from a
suite of remote sensing instruments to collect complementary
information on forest structure (LiDAR), vegetation composi-
tion (hyperspectral), and forest health (hyperspectral and ther-
mal).

Here, we consider G-LiHT LiDAR data collected during a
2014 TIU flight campaign. The campaign collected a system-
atic sample covering ∼8% of the TIU, with 78 parallel flight
lines spaced ∼9 km apart, Figure 4(a), along with incidental
measurements to-and-from the transects. The nominal flying
altitude of data collection in the TIU was 335 m above ground
level, resulting in a sample swath width of ∼180 m (30◦ field of
view) and sample density of three laser pulses m2. Point cloud
data were classified and used to generate bare earth elevation
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Figure 3. Conjugate model cross-validation results for selection of α and φ using the simulated dataset. Parameter combination with minimum scoring rule indicated with
open circle symbol ◦ and true combination used to generate the data indicated with a plus symbol +.

Figure 4. TIU, Alaska, study region. (a) G-LiHT flight lines where canopy height was measured at 5×106 locations and percent tree cover predictor variable. (b) Occurrence
of forest fire within the past 20 years predictor variable and two example areas for prediction illustration.

and canopy height models at 1 m ground sample distance, as
described in Cook et al. (2013). G-LiHT point cloud data and
derived products are available online at http://gliht.gsfc.nasa.gov.
The data was processed following methods in Cook et al. (2013),
such that 28,751,400 LiDAR-based estimates of forest canopy
height were available on a 15 × 15 m grid along the flight lines.
Each grid cell yielded an estimate of canopy height calculated
as the height below, which 95% of the pulse data was recorded.
The subsequent analysis uses a random sample of 5.025 × 106

observations from the larger LiDAR dataset.
Two predictors that completely cover the TIU were consid-

ered. First, a Landsat derived percent tree cover data product
developed by Hansen et al. (2013), shown as the gray scale
surface in Figure 4(a). This product provides percent tree cover
estimates for peak growing season in 2010 (most recent year
available) and was created using a regression tree model applied
to Landsat 7 ETM+ annual composites. These data are pro-
vided by the United States Geological Survey (USGS) on an
approximate 30 m grid covering the entire globe (Hansen et al.
2013). Second, the perimeters of past fire events from 1947

to 2014 were obtained from the Alaska Interagency Coordi-
nation Center Alaska fire history data product (AICC 2016).
Forest recovery/regrowth following fire is very slow in Interior
Alaska. Hence, we discretized the fire history data to 1 if the fire
occurred within the past 20 years and 0 otherwise, Figure 4(b).

We explored the relationship between canopy height, tree
cover, and fire history using a nonspatial regression model and
NNGP response, collapsed, and conjugate models. We did not
consider the sequential model here because of the convergence
issues seen in the preceding experiments. Exploratory analy-
sis using the nonspatial regression suggested both predictors
explain a substantial portion of variability in canopy height
(Table 2), with a positive association between canopy height and
tree cover (TC) and negative association between canopy height
and recent fire occurrence (fire). These results are consistent
with our understanding of the TIU forest system. The tree
cover variable captures forest canopy sparseness—with sparser
canopies resulting in LiDAR height percentiles shifted toward
the ground. Recently, burned areas are typically replaced with
regenerating, shorter stature, forests.

http://gliht.gsfc.nasa.gov
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Table 2. TIU dataset results.
Nonspatial Conjugate

Parameter regression Response Collapsed minimize RMSPE

β0 –2.46 (-2.47,–2.45) 2.37 (2.31,2.42) 2.41 (2.35, 2.47) 2.51
βTC 0.13 (0.13, 0.13) 0.02 (0.02, 0.02) 0.02 (0.02, 0.02) 0.02
βFire –0.13(-0.14, –0.12) 0.43 (0.39, 0.48) 0.39 (0.34, 0.43) 0.35
σ 2 – 17.29 (17.13, 17.41) 18.67 (18.50, 18.81) 23.21
τ2 17.39 (17.37, 17.41) 1.55 (1.54, 1.55) 1.56 (1.55, 1.56) 1.21
φ – 4.15 (4.13, 4.19) 3.73 (3.70, 3.77) 3.83
α – – – 0.052

CRPS 2.3 0.86 0.86 0.84
RMSPE 4.19 1.72 1.73 1.71

95% PIC 93.43 94.29 94.25 94.85
95% PIW 16.27 6.58 6.56 6.73

Run time (hours) – 38.29 318.81 0.002

NOTE: Parameter credible intervals, 50% (2.5%, 97.5%), predictive validation, and run time for 25 × 103 MCMC iterations.

Figure 5. About 95th LiDAR percentile height posterior predictive distribution summary at a 30 m pixel resolution for the two example areas identified in Figure 4(b).
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For all models, the intercept and slope regression parameters
were given flat prior distributions. The variance components
τ 2 and σ 2 were assigned inverse-Gamma IG(2, 10) priors. We
assumed an exponential spatial correlation function with a uni-
form U(0.1, 10) prior on the decay parameter. The support on
the decay corresponds to an effective spatial range between 0.3
and 30 km. Observations at n = 5 × 106 locations, selected
at random, were used to estimate model parameters. Observa-
tions at the remaining 2.5 × 104 holdout locations were used
to assess model predictive performance. Parameter estimates
and prediction performance summaries for candidate models
are given in Table 2. Results for the m = 15 and m = 25
models were indistinguishable, hence, only m = 15 results are
presented. Here, NNGP models provide approximately the same
predictive performance, and a substantial improvement over the
nonspatial regression.

As suggested by Figure 2(b), and seen again here, the col-
lapsed model using a fill reducing permutation and 12 CPU
requires an excessively long run time, that is, about 2 weeks
to generate 25 × 103 MCMC samples. If one is willing to
forgo estimates of spatial random effects, the response model
offers greatly improved run time, that is, about 1.5 days, and
parameter and prediction inference comparable to the collapsed
model. The conjugate model delivers the shortest run time and
predictive inference comparable to the other NNGP models.

Figure 4(b) identifies two example areas selected to illustrate
how LiDAR and the other data inform forest canopy height
prediction. As suggested by the prediction metrics in Table 2, all
three NNGP models delivered nearly identical prediction map
products. Figure 5 shows the posterior predictive distribution
mean and standard deviation from the response model with
m = 15 for the two areas. Here, the left subplots identify LiDAR
data locations as black points along the flight lines. The presence
of strong residual spatial autocorrelation results in fine-scale
prediction within, and adjacent to, the flight lines (Figures 5(a)
and (c)) and more precise posterior predictive distributions as
reflected in the standard deviation maps (Figures 5(b) and (d)).
Predictions more than a km from the flight lines are informed
primarily by tree cover and fire occurrence predictors.

The TIU forest’s vertical and horizontal structure is highly
heterogeneous due, in large part to topography, hydrology,
and disturbance history, for example, fire. This heterogeneity
is reflected in the relatively short estimated effective range of
just over 1 km (Table 2).

These results provide key input needed for planning future
LiDAR campaigns to collect data to inform canopy height mod-
els. Using more informative predictor variables would certainly
improve prediction across the TIU; however, few complete-
coverage high spatial resolution data layers exist, other than
those produced using moderate spatial resolution remote sens-
ing products, for example, the Landsat based tree cover predic-
tor used here.

As seen here, high spatial resolution wall-to-wall map predic-
tions can be achieved with sufficient LiDAR coverage and use of
fine-scale residual spatial structure. The G-LiHT LiDAR data—
spatially dense along the 180 m swath widths—could better
inform canopy height prediction across the TIU if it covered a
larger swath width. This could be accomplished by increasing
the flight altitude. While a higher nominal flying altitude will

increase the swath width, it will also decrease the spatial density
of LiDAR observations. Our results suggest that LiDAR density
is less important than coverage width, given models were fit
using only ∼17% (5 × 106/28,751,400) of available data and
even then it appears we had ample information to inform pre-
diction within flight lines. This observation has implications for
the other LiDAR collection campaigns, for example, ICESat-
2 (Abdalati et al. 2010; ICESat-2 2015) and Global Ecosystem
Dynamics Investigation LiDAR GEDI (2014), when they choose
between pulse density and swath width.

4. Summary

Our aim has been to propose alternate formulations and
derivatives of Bayesian NNGP models developed by Datta
et al. (2016a) to substantially improve computational efficiency
for fully process-based inference. These improvements make
it feasible to bring a rich set of hierarchical spatial Gaussian
process models to bear on data intensive analyses such as the
TIU forest canopy mapping effort. Analysis of simulated data
shows that compared with the sequential specification of Datta
et al. (2016a), the response and collapsed models offer improved
MCMC chain behavior for the intercept and spatial covariance
parameters. If full inference about the spatial random effects
is of interest, then the response or conjugate models are not
appropriate. So while the collapsed model can be computation-
ally intensive, depending on the burden imposed by the sparse
Cholesky decomposition, it is the only fully Bayesian alternative
to the sequential Gibbs sampler developed in Datta et al. (2016a)
and should generally be selected over the latter due to its
significantly improved chain convergence. Furthermore, recent
work by Katzfuss and Guinness (2017) shows that the collapsed
model provides a better approximation of the full GP than the
response model in the sense of Kullback–Leibler divergence
from the full GP model. If model parameter estimation and/or
spatial interpolation of the response is the primary objective, the
response model offers substantial computational gains over the
collapsed model. Finally, relative to the other NNGP models,
the conjugate model delivers massive gains in computational
efficiency and seemingly uncompromised predictive inference,
but requires specification of the models’ spatial decay and α

parameters. However, as demonstrated in the simulation and
TIU analyses, these parameters can be effectively selected via
cross-validation. The response and conjugate NNGP models
are available for public use in the spNNGP package (Finley,
Randin, and Korner 2017) in R.

The response model emerges a viable option for obtaining
full Bayesian inference about spatial covariance parameters and
prediction units. A fully Bayesian kriging model capable of han-
dling 5×106 observations on standard computing architectures
is an exciting advancement and opens the door to using a rich
set of process models to tackle complex problems in big data
settings. For example, the response and collapsed NNGP models
can seamlessly replace GP within multivariate, space-varying
coefficients, and space-time settings (see, e.g., Datta et al. 2016a,
2016c, 2016b). The conjugate model provides a new tool for
delivering fast interpolation with few inferential concessions.
Extension of the conjugate model to some of the more complex
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hierarchical frameworks noted above provides an additional
avenue for development.

The TIU analysis shows the advantage of embedding the
NNGP as a sparsity-inducing prior within a hierarchical model-
ing framework. The proposed NNGP specifications yield com-
plete coverage forest canopy height prediction maps with asso-
ciated uncertainty estimates using sparsely sampled but locally
dense n = 5 × 106 LiDAR data. The resulting data product is
the first statistically robust map of forest canopy for the TIU.
Insight into residual spatial dependence will help guide planning
for upcoming LiDAR data collection campaigns at global and
local scales to improve prediction by leveraging information in
more optimally located canopy height observations.

There remains much to be explored in NNGP models. Recent
investigations by Guinness (2018) suggest that the Kullback–
Leibler divergence between full Gaussian process likelihoods
and Vecchia-type nearest neighbor approximations can be sen-
sitive to topological ordering. Our preliminary explorations
seem to suggest that while the Kullback–Leibler divergence
from the truth may be affected, substantive inference in the
form of parameter estimates and predictive performance (based
upon root-mean-square-predictions) are very robust. Guinness
(2018) also demonstrated empirically that certain carefully cho-
sen orderings of the locations lead to a better approximation of
the full GP by NNGP, than what is achieved by the simple co-
ordinate based ordering. All the algorithms, we propose here are
flexible to the choice of ordering. While, we have continued to
use co-ordinate based ordering for all the data analysis here, we
could as easily use any of the orderings proposed by Guinness
(2018). We are currently conducting further investigations with
the ordering suggested by Guinness (2018) and intend to report
on our findings in a subsequent work.

A limiting factor for the hybrid approach adopted in the
conjugate NNGP model is the cross-validation procedure for
selecting the hyper-parameters. For most spatial applications,
the isotropic Matérn functions are often the preferred choice
for the covariance kernel, and is convenient for implementing
the conjugate model as it only involves two or three unknown
parameters. Hence, cross-validation using a grid search on a
three dimensional space is computationally feasible. However,
as pointed out by one reviewer, many other GP-based appli-
cations use more complex covariance functions involving sev-
eral parameters. For example, in computer model emulations,
separable Gaussian covariance functions are commonly used,
for which there is a co-ordinate specific range parameter. As
with all cross-validation based procedures, the conjugate model
will also suffer from the curse of dimensionality in such richly
parametrized settings, as searching for optimal or near-optimal
points in a high-dimensional space is highly inefficient. Newer
strategies need to be conceived for hyper parameter estimation
in such settings.

Another pertinent matter concerns the performance of
NNGP models for nonstationary processes. Naive implemen-
tations using neighbor selection based on simple Euclidean
metrics may not be desirable. Here, the dynamic neighbor-
finding algorithms proposed by Datta et al. (2016c) in spa-
tiotemporal contexts may offer a better starting point than
finding suitable metrics to choose neighbors. Still, work needs
to be done in developing and analyzing analogous algorithms

for nonstationary processes. Finally, there is scope to explore
NNGP models for high-dimensional multivariate outcomes
using spatial factor models (Taylor-Rodriguez et al. 2018) or
graphical Gaussian models and assessing their efficiency for
highly complex multivariate spatial datasets.

Supplementary Materials

Supplementary information provides additional comparative analyses of
NNGP specifications versus full GP models and alternative GP approxima-
tions.
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