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Abstract: Species distribution models usually attempt to explain the presence—
absence or abundance of a species at a site in terms of the environmental features
(so-called abiotic features) present at the site. Historically, such models have con-
sidered species individually. However, it is well established that species interact to
influence the presence—absence and abundance (envisioned as biotic factors). As a
result, recently joint species distribution models with various types of responses,
such as presence—absence, continuous, and ordinal data have attracted a significant
amount of interest. Such models incorporate the dependence between species’ re-
sponses as a proxy for interaction. We address the accommodation of such modeling
in the context of a large number of species (e.g., order 102) across sites numbering
in the order of 10? or 10® when, in practice, only a few species are found at any
observed site. To do so, we adopt a dimension-reduction approach. The novelty of
our approach is that we add spatial dependence. That is, we consider a collection of
sites over a relatively small spatial region. As such, we anticipate that the species
distribution at a given site will be similar to that at a nearby site. Specifically, we
handle dimension reduction using Dirichlet processes, which enables the clustering
of species, and add spatial dependence across sites using Gaussian processes. We
use simulated data and a plant communities data set for the Cape Floristic Re-
gion (CFR) of South Africa to demonstrate our approach. The latter consists of
presence—absence measurements for 639 tree species at 662 locations. These two
examples demonstrate the improved predictive performance of our method using
the aforementioned specification.

Key words and phrases: Dimension reduction; Gaussian processes; high-dimensional
covariance matrix; spatial factor model; species dependence.

1. Introduction

Understanding the distribution and abundance of species is a primary goal of
ecological research. In this regard, species distribution models (SDMs) are used
to investigate the regressors that affect the presence—absence and abundance
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of species. They are also used to examine the prevalence of a species, predict
biodiversity and richness, quantify species turnover, and assess the response to
climate change (Midgley et al. (2002); Guisan and Thuiller (2005); Gelfand et
al. (2006); Iverson et al. (2008); Botkin et al. (2007); McMahon et al. (2011);
Thuiller et al. (2011)). These models are used to infer a species range in either
a geographic space or a climate space (Midgley et al. (2002)), to identify and
manage conservation areas (Austin and Meyers (1996)), and to provide evidence
of competition among species (Leathwick (2002)). A further key objective is
interpolation, to predict species response at locations that have not been sampled.

SDMs are most commonly fitted to presence—absence data (binary) or abun-
dance data (counts, ordinal classfications, or proportions). Occasionally, continu-
ous responses are used, for example, in biomass research (Dormann et al. (2012)).
Predictions of species over space can be accommodated using a spatially explicit
specification (Gelfand et al. (2005, 2006); Latimer et al. (2006)).

Historically, SDMs have considered species individually (Thuiller (2003); La-
timer et al. (2006); Elith and Leathwick (2009); Chakraborty et al. (2011)). To
make predictions at a community scale, independent models for individual species
are aggregated or stacked (Calabrese et al. (2014)). However, it is well estab-
lished that species interact to influence presence—absence and abundance. As
a result, individual-level models tend to predict too many species per location
(Guisan and Rahbek (2011)), as well as providing other misleading findings (see
Clark et al. (2014), for examples). Modeling species individually does not allow
underlying joint relationships to be captured (Clark et al. (2011); Ovaskainen
and Soininen (2011)). That is, the problem can be viewed as the omission of the
residual dependence between species.

Joint species distribution models (JSDMs) that incorporate species depen-
dence include applications to presence—absence research (Pollock et al. (2014);
Ovaskainen, Hottola and Siitonen (2010); Ovaskainen and Soininen (2011)), con-
tinuous or discrete abundance (Latimer et al. (2009); Thorson et al. (2015)),
abundance with a large number of zeros (Clark et al. (2014)), and discrete, ordi-
nal, and compositional data (Clark et al. (2017)). JSDMs jointly characterize the
presence and/or abundance of multiple species at a set of locations, partitioning
the drivers into two components. The first is associated with environmental suit-
ability, and the second accounts for species dependence through the residuals,
that is, adjusted for the environment. Such models incorporate the dependence
between species’ responses as a proxy for a formal specification of interaction.

JSDMs enhance our understanding of the distributions of species; however,
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their applicability has been limited owing to computational challenges when there
is a large number of species. To appreciate the potential challenge with presence—
absence (binary) responses and S species, we construct an S-way contingency
table with 29 cell probabilities at any given site. With observational data col-
lection over space (and time), as in large ecological databases, the number of
species is of the order of hundreds to thousands, rendering a contingency table
analysis unfeasible. Therefore, there is a need for strategies that fit joint models
in a computationally tractable manner.

To deal with these data challenges, we adopt dimension-reduction techniques,
working within the Bayesian factor model setting (West (2003); Lopes and West
(2004)). For instance, in the spatial case, Ren and Banerjee (2013) introduce
spatial dependence into the factors using Gaussian predictive process models
(Banerjee et al. (2008)). Taylor-Rodriguez et al. (2017) also consider dimension
reduction within a factor modeling framework. They generate each row of the
factor loading matrix from Dirichlet process realizations to enable common labels,
that is, clustering across the species. They assume independent factors because
their plot locations are not close to each other. Their focus is to jointly explain
species’ presence at plots, rather than predict the distribution at new locations.
We add spatial dependence to the explanatory model to enable joint predictions
at arbitrary locations over the study region.

In this regard, Thorson et al. (2015) implement a spatial factor analysis for
species distribution, where they fix the factor loading matrix. Ovaskainen et al.
(2016) implement the multiplicative Gamma shrinkage prior proposed by Bhat-
tacharya and Dunson (2011) for the factor loading matrix, and introduce spatial
dependence into the factors. This work is the most comparable to our approach
in the sense that both are specified through hierarchical models. However, our
specification directly models species dependence at the first (data) stage, whereas
Ovaskainen et al. (2016) incorporate dependence in the second (probabilities)
stage. We clarify this below. Furthermore, our approach enables the data to
inform us about the clustering among species.

We formulate our model in the context of a large number of species (e.g.,
order 10%) across a large number of sites (e.g., order 10? or 10%) when, in practice,
only a few species are found at any observed site. The novelty of our approach is
the addition of spatial dependence. That is, we have a collection of sites over a
relatively small spatial region. Thus, we anticipate that the species distribution
at a given site will be similar to that at a nearby site. As noted above, we
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adopt a dimension-reduction approach, following the model proposed by Taylor-
Rodriguez et al. (2017). Specifically, we handle the dimension reduction using
Dirichlet processes, which enables the joint labeling for species (i.e., clustering),
to which we add spatial dependence using Gaussian processes (GPs).

We use both simulated data and a plant communities data set for the Cape
Floristic Region (CFR) of South Africa to demonstrate our approach. The simu-
lation study serves as a proof of concept for both continuous and binary response
data. The CFR data set consists of presence-absence measurements for 639 tree
species at 662 locations. These two examples demonstrate improved predictive
performance of our method using the aforementioned specification.

The organization of the remainded of this paper is as follows. Section 2 in-
troduces our motivating data and modeling strategy, that is, spatial joint species
distribution models with Dirichlet processes. Section 3 provides the adaptation
to binary responses, along with a discussion on identifying parameters specifically
for probit models. In Section 4, we develop Bayesian inference for our model and
our model comparison strategy. In Section 5, we investigate the proposed models
using simulation studies for continuous and binary responses, and in Section 6 we
analyze the presence-absence data from the CFR. Finally, Section 7 concludes
the paper and discusses potential future work.

2. Spatial Factor Modeling with Dirichlet Processes
2.1. A motivating data example

Our data are extracted from a large database studying the distribution of
plants in the Cape Floristic Region (CFR) of South Africa (Takhtajan (1986)).
The CFR is one of the six floral kingdoms in the world and is located in the
southwestern part of South Africa. Alhough geographically relatively small, it is
extremely diverse (9,000+ species) and highly endemic (70% occur only in the
CFR (Rebelo (2001)). There are more than 40,000 sites with recorded sampling
within the CFR. The database from which our data set was extracted consists
of more than 1,400 plots with more than 2,800 species, spanning six regions.
Our data are from one of these regions and exhibit high spatial clustering, with
n = 662 plots and S = 639 species. The responses are binary: presence—absence
for each species’ and plot (location).

The left panel of Figure 1 shows the 662 locations in the CFR data, and
the right panel shows the distribution of nine selected species: 1) Aridaria noc-
tiflora (ArNo); 2) Asparagus capensis (AsCa); 3) Chrysocoma ciliata (ChCi); 4)
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Figure 1. 662 locations in the CFR (left), and the distribution of the presence of nine
selected species.

Ehrharta calycina (EhCa); 5) Eriocephalus ericoides (ErEr); 6) Galenia africana
(GaAf); 7) Pentzia incana (Peln); 8) Pteronia glomerata (PtGl); and 9) Tenaxia
stricta (TeSt). These species are selected because they are observed at more than
100 locations (plots). Some species reveal strong spatial clustering (e.g., EhCa
and TeSt).

The total number of binary responses is n x S = 662 x 639 = 423,018. The
overall number of presences is 6,980, or 1.65% of the total number of binary
responses. This emphasizes that, although we have many species in our data set,
only a few are present on any given plot. Among the S = 639 species, 351 are
observed in at most five locations. We discard these species and retain S = 288
species across the 662 locations for model fitting.

2.2. Our model

Let D C R? be a bounded study region, S = {s1,...,8,} be a set of plot
locations, where s; € D for i = 1,...,n, and U; := U(s;) € R¥ be an S x 1
latent vector of continuous variables at location s;. Under independence for the
locations, the model for U; is specified as

U, = Bx; + ¢, ei%i/\/g(&E), for 1=1,...,n, (2.1)

where B is an S X p coefficient matrix, x; is a p X 1 covariate vector at location
s;, and X is an S x S covariance matrix for species. This model has O(S?)
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parameters: S(S 4 1)/2 parameters from 3, and pS parameters from B. For
example, for S = 300 species and p = 3 covariates, the model contains 46,050
parameters.

Taylor-Rodriguez et al. (2017) propose a dimension-reduction approxima-
tion to X that allows the number of parameters to grow linearly in S. They
approximate ¥ with ¥* = AAT + 021Ig, and replace the above model with

U, = Bx; + Aw; + €, € ~Ng(0,0Ig), for i=1,...,n, (2.2)

where the random vectors w; are independent and identically distributed (i.i.d).
with w; ~ N;(0,1.) and A is an S X r matrix with »r < S. Now, X* has only
Sr+1 parameters, and the estimation problem of O(S?) parameters is reduced to
that of O(S) parameters. We refer to this specification as the dimension-reduced
nonspatial model.

Although AAT has rank r, including the nugget variance, 021, ensures that
3* is nonsingular. Taylor-Rodriguez et al. (2017) further propose sampling the
rows of A from a Dirichlet process mixture (DPM) using a stick-breaking repre-
sentation (Sethuraman (1994)). This representation is attractive within a Gibbs
sampling setting (see, e.g., Escobar (1994); Escobar and West (1995); MacEach-
ern (1994); Bush and MacEachern (1996); Neal (2000)) owing to a Pdélya urn
scheme representation that enables a straightforward simulation from the needed
full conditional distributions.

Under the stick-breaking construction, we say the random distribution, G,
follows a DP with base measure H and precision parameter o, G ~ DP(aH),
it G(-) = 0%, e, (). Here, p1 = &, p = §[1L4Q = &) (h > 2), with
iid. § ~ Beta(l, ), and dg, () is the Dirac delta function at 6;, where 6; ~ H.
Because it is almost surely a discrete distribution, this approach yields ties when
realizations are drawn; the Pélya urn scheme representation draws from an atomic
distribution with point masses at the already seen values, with the remaining
mass on H. Thus, the DP enables us to perform model clustering. We use this
feature to allow some rows of A to be common, which corresponds to clustering
the species in terms of their residual dependence behavior, as we clarify below.

According to (2.2), the U; are conditionally independent, given B and A;
that is, the w; are independent across locations. However, because the plot loca-
tions in our data set are relatively close together, we introduce spatial dependence
into w;, which enables us to improve the prediction for new plot locations in the
study region.

To provide the hierarchical formulation for this model, let Z = [Z; : -+ :
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Zn)T (with Z; ~ H) denote an N x r matrix the rows of which make up all po-
tential atoms. In this setup, we need a vector of grouping labels k = (k1,..., kg)
(1 < k; < N) such that the I-th row of A is equal to Z,. Note that A can be
represented by A = Q(k)Z, where Q(k) = [ey, : --- : ey.|T is S x N, with ey,
denoting the N-dimensional vector with a one in position k;, and zeros elsewhere.
Letting W = [wy : -+ : wn]T be the n x r spatial factor matrix, our approximate
model is

Uilk,Z, w;,B,0> ~ Ng(Bz; + Q(k)Zw;,0’Ig), for i=1,...,n,
W ~ A, (0, Cy), for h=1,...,r

N
kilp ~ ij5j(kl), for [ =1,...,5,
j=1

Zi|Dz ~N;(0,Dgz), for j=1,...,N, (2.3)
Zip >0, for h=1,...,r
pNgDN(aab)a
. 1 1
DZNIW<2+7“—1,4d1ag<,...,)),
m T
1 1
Nh g<2a104>a or h ) T

where GDy is an N-dimensional generalized Dirichlet distribution. In addi-
tion, W) — (wgh),...,wgh))T is the h-th column of W (n x 1 vector) and
is distributed as an n-variate normal vector with mean 0 and covariance ma-
trix Cy = [exp(—¢||s; — si'||)]i.ir=1,...n, that is, it is a realization of a GP with
an exponential covariance function at the sites in S. We refer to the above
modeling specification as the dimension-reduced spatial model. Again, Taylor-
Rodriguez et al. (2017) consider the entries in W to be independent across i
(i.e., across sites), whereas we introduce spatial dependence across i through a
GP for each column of W. Furthermore, we restrict k; = 1 and all components of
Zy=(Z1a,-.., ZLT)T to be positive in order to identify the covariance structure,
as discussed in Ren and Banerjee (2013). We provide more detail in Section 3.1.

For prior specifications, we assume o2 ~ ZG(a/2,b/2) and B, ~ N(0,cI,)
for{ =1,...,5 where By is [-th row of B. In practice, we suggest using a weakly
informative prior specification, for example, a = 2 or 3, b < 0.1, and ¢ = 100. We
assume a uniform prior for ¢, ¢ ~ U[Pmin, Pmax], With dmax = —10g(0.01)/dmin
and ¢min = —10g(0.05) /dmax, where dpax and dpyi, are the minimum and max-
imum observed intersite distances, respectively, across all locations, following
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Wang and Wall (2003). In our data sets, dmax = 3.292 and dpiy, is set to a very
small number, but within the limits of machine precision to avoid overflow. Thus,
the induced effective range dy, that is, the distance at which spatial correlation is
negligible (falls below 0.05), is about the same as the maximum observed intersite
distance (see, e.g., (Banerjee, Carlin and Gelfand (2014))).

Next, we offer a few clarifying remarks about the roles of A and wy,.

Remark 1. The initial specification in (2.2) is a nonspatial nondimension-reduced
model. The only model comparisons we make are between the dimension-reduced

nonspatial and spatial models because both of these models have the same ap-

proximation form for the covariance, * = AAT +¢2Ig. In this regard, we argue

that A should not be location dependent. Furthermore, AAT is a feature of the

taxonomy and, thus, should not be spatially varying.

Remark 2. We can clarify the interpretation of the clustering resulting from
modeling the rows of A through a Dirichlet process. If we cluster the rows of
A, then we do not cluster the species by their means because each species gets
its own vector of regression coefficients from B. Instead, the residual covariance
structure is clustered. If row A; = Ay, then the row entries for Ui(l) and Ui(l/) in
3* are identical. That is, when species are clustered at an iteration of the Markov
chain Monte Carlo (MCMC) fitting, they have the same dependence structure
as those of all other species.

Therefore, posterior clustering is interpreted for a pair of species having a
similar dependence to that of all of the other species, adjusted for the regressors.
This may make a useful ecological interpretation of the clustering difficult. Alter-
natively, because attempting to formally model species interactions is challeng-
ing, we instead view the modeling of the residual dependence as a proxy. Then,
we might attach an interpretation of similar dependence with other species as a

similar interaction with other species.

Remark 3. With regard to modeling the spatial dependence structure, in prin-
ciple, each species might have its own spatial range/decay parameter. However,
under the dimension reduction, we can include at most r < S decay parameters.
Thus, an issue is whether incorporating a common decay parameter for the la-
tent GPs, (i.e., a separable model) will sacrifice much compared with employing
r decay parameters when r is, say, 3 to 5. The implications for the species-level
spatial dependence behavior are expected to be negligible. Moreover, with r
decay parameters ordered (as, e.g., in Ren and Banerjee (2013)) to obtain well-
behaved MCMC, the chain may not move well over this constrained space for the
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parameters. Lastly, if we have an S x 1 binary vector at each location, we would
not expect the data to carry much information about a set of r decay parameters.

2.3. Interpretation

Here, we provide a technical elaboration of the foregoing remarks. Given w;,
the conditional expectations for the [-th and I’-th rows of U; are

EUY w;) = Bi; + Aw;  E[U" |wi] = Bya; + Apw;. (2.4)

We see that the random effect provides an additional component in the mean
explanation. This is usually interpreted as capturing the effects of unmea-
sured /unobserved predictors at location s;. Thus, Ajw; and Apw; inform us
about the residual variance adjusted for the fixed effects in the model. In ad-
dition, we can study two features associated with the pair A;w; and Ay w;.
The first is the covariance between them, which specifies the (I,1’)-th entry in
AAT. The second is the expected distance between them, F(||Ayw; — Apw;|?) =
(Ar— Ap) (A — Ap)".

If (A; — Ap)(A; — Ap)T is small, this implies that we have multiple ties
for the two species in their row selection in A. Therefore, the residual random
effects are similar for the two species, providing a similar residual adjustment.
This is not related to their mean contribution. However, more importantly, this
means that the pair have a similar dependence structure to that of all remaining
species. Evidently, when the [-th and I’-th rows of A share the same cluster,
(A; — Ap)(A; — Ap)T = O (the matrix of zeros). More generally, the labels
do not change much across iterations in the model fitting (see below). Thus,
(A; — Ap)(A; — Ap)T takes a discrete set of values for many pairs.

A different perspective makes the spatial random effects orthogonal to the
fixed effects (e.g., Hodges and Reich (2010); Hughes and Haran (2013); Hanks
et al. (2015)). Let X = [x1 : --- : @,) and U = [Uy : --- : U,]7, and let
P = X(XTX)~!XT be the projection matrix associated with M (X), the column
space of X. Then, we can write

E[UW] = XBT + PWAT + (I, - P)WAT. (2.5)

Thus, we can rewrite this conditional mean as
E[UW] = XB*T + W*AT, (2.6)
where B*T = BT + (XTX)"'XT"WAT and W* = (I,, — P)W. This approach

deals with spatial confounding which describes multicollinearity among spatial
covariates X and spatial random effects W. Paciorek (2010) demonstrated that
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this confounding can lead to bias in estimation, especially when the spatial ran-
dom effects W are spatially smooth and have a large effective range of spatial
autocorrelation. Hanks et al. (2015) consider spatial confounding in a geostatis-
tical (continuous spatial support) setting. They demonstrate that the orthogo-
nalization above provides computational benefits, but that its resulting Bayesian
credible intervals can be inappropriately narrow under model misspecification.

In conclusion, confounding is only a problem while interpretating rather than
predicting the coefficient matrix, B. In particular, in our application below,
Figures 7 and 8 reveal the difference in estimation between B and B*. We
anticipate that the ecological reader will consider the regressors and the role
they play when random effects are introduced,that is how much confounding
there is in the data and model.

3. Adaptation to Binary Response, (i.e., Presence—-Absence Data)

For binary presence—absence response data, a logit or probit model speci-
fication is often assumed. To work with binary responses, we adapt the data-
augmentation algorithm proposed by Chib and Greenberg (1998) for a multi-
variate probit regression, which improves the mixing of the MCMC algorithm.
Taylor-Rodriguez et al. (2017) consider the probit model specification,

1 vP >0
}/;(l):{o Uz(l) O’ for lzla"-vs; izl:"'?”’ (31>
<

where Ui(l) is an auxiliary variable. We model Ui(l) as presented in Section 2.2.

)

The form in (3.1) implies that we sample the latent Ui(l from a truncated normal
distribution within the MCMC iteration.

Note that we specify that Yi(l) = g(UZ-(l)) = I(Ui(l) > 0). The latent Us are
part of the first stage model specification, that is, Yi(l) is a function of Ui(l). The
latent process driving the binary responses is specified at the data stage. This
contrasts with specifying a conditional distribution, [Yi(l)]Ui(l)] (e.g., P(Yi(l) =
1) = p(Ui(l))), where p(-) would be a regression in Ui(l) (e.g., ®(ap + quZ-(l))).
This moves the Us to a second-stage model specification and yields a probit
regression.

0

To clarify, the former states that Y, arises deterministically from the Ui(l)
surface. The latter states that we have a Bernoulli trial with a probit link function
at each 4. It is not clear whether the former is better than the latter. It may

be preferred because we are directly modeling the dependence, joint and spatial,
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between Ui(l) and Ui(,l,), and hence between Y;(l) and Yigl,), rather than deferring
the dependence to the second stage, that is, to the presence—absence surface
with conditionally independent Bernoulli trials at each location, given the surface.
This is the distinction between our approach and that of Ovaskainen et al. (2016).

3.1. Identifiability issues

We aim to learn the dependence structure between species using £* = AAT +
02Ig, and to extract the clustering behavior for the rows of A. However, it is well
known that, with random W, the entries in A and o2 are not identified. Thus,
we briefly review the identifiability problems in factor and probit models. The
identifiability problems for each of these specifications are mutually connected.

First, consider the loading matrices and factors under dimension-reduction.
For posterior inference, we identify Aw, but not A and w. Some restriction on
the factor loading matrices is required (Geweke and Singleton (1980); Lopes and
West (2004)). A widely used approach is to fix certain elements of A, usually to
zero, such as restricting A to be upper or lower triangular matrices with strictly
positive diagonal elements (Geweke and Zhou (1996)). This restriction enables
a direct interpretation of the latent factors and loading matrices.

Alternatively, Ren and Banerjee (2013) discuss the difference related to iden-
tifiability according to whether the elements in the factors across locations (W(h)
for h =1,...,r) are independent or are spatially structured across locations. In
the former case, the dependence structure is invariant to any orthogonal trans-
formation of A. We can have an infinite number of equivalent matrices of factor
loadings. However, in the second case, they argue that only two types of linear
transformations, namely reflections and permutations, lead to nonidentifiability.
To avoid these types of nonidentifiability, Ren and Banerjee (2013) put a posi-
tivity restriction on the elements of the first row of A. This is available for our
modeling as well, but does not impose constant constraints on A. Therefore, the
elements of A and w still cannot be identified. However, the restrictions sug-
gested by Ren and Banerjee (2013) enable us to identify the covariance structure
of the latent process (i.e., Cov|vec(U)]), which is one of our goals.

4. Bayesian Inference
4.1. Model fitting
The full joint likelihood is
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L o (¢2)ms/2+D) Hexp( = 2||UiBaziQ(k)Zwi||2>
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e lag<m’ m))H g<nh
(4.1)

Our sampling algorithm is similar to that of Taylor-Rodriguez et al. (2017),

4 b)H/\/ B,[0, cI,))

[\3

1

xIW(DZ > 1o

except for the sampling of W and ¢. In our case, the elements of W are spatially
correlated, but Gibbs sampling is still available. We describe the full sampling
steps, including sampling of W and ¢, in the Appendix.

4.2. Model comparison

Our model comparison focuses on the improvement of predictive performance
at held-out locations. We implement out-of-sample predictive performance checks
with respect to held-out samples of entire plots, rather than holding out samples
of species within plots. This is in accord with our spatial modeling objective,
which is to improve the predictive performance for held-out locations.

For the continuous-response case, the predictive performance is assessed by
calculating the Euclidean distances between the true values and the conditional
predictions, predicting 100p% of the plots, conditional on the remaining 100(1 —
p)% plots. We denote the number of plots of test data by m and the out-of-
sample response matrix (test data) by Upreqd = (Ut preds - - - » Um prea) at locations
Spred = {Sil’ sy Sim}'

The criterion used to assess the predictive ability of the algorithm is the
predictive mean squared error (PMSE), given by

m

PMSE = Silp Z(Ui,pmd - Ui,pred)T(Ui,pred - ﬁi,pred)v (4'2)
=1
where ﬁi,pred is the posterior mean estimate of U; preq-
For binary responses, we use the Tjur R? coefficient of determination (Tjur
(2009)), which compares the estimated probabilities of the presence between the
observed ones and the observed zeros. For species j, this quantity is given by
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TR; = (7j(1) —7;(0)), where 7;(1) and 7;(0) are the average probabilities of the
presence for the observed ones and zeros, respectively, of the j-th species across
the locations. The larger the T'R;, the better the discrimination is. We calculate
an average TR measure across species, that is, TR = (1/5) Z;-gzl TR;.

5. A Simulation Study
5.1. Continuous responses

We investigate the parameter recovery of our proposed model for continuous
responses. We use the same locations (n = 662) and covariate information as in
the CFR data. As covariate information, we include the following: (1) elevation,
(2) mean annual precipitation, and (3) mean annual temperature. These values
are standardized. The setting for the simulated data is

¢q=5 p=3, S=2300, Kpy =10, o>=1,
U; ~ N(Bx; + Qurue(k)Zipyew;, 021g), i=1,...,n,
B, ~N(0,1,), 1=1,...,5, (5.1)
WM~ N(0,Cy), h=1,...,q,
Zirue = (Z1grues - - > ZK,y o true) -

Here, g denotes the fixed number of factors under the simulation. W® is the h-
th column of W, an n-variate normal vector with mean 0 and covariance matrix
Cy = [exp(—9||si — sir||)]i,ir=1,....n. Here, we set ¢ = 2. The label k; is uniformly
sampled from Ky labels for [ = 1,...,5. Quue(k) and Zyye are S X Kipye
and Kirue X ¢ matrices, respectively. Each component of Zj, ;e is uniformly
selected from {—1,—0.5,0,0.5,1}; for example, a realization might be Zj, 4 =
(0.5,-0.5,0,0, 1), such that Z sue # Zis true for k < k' =1,..., Kipye, and we
set Z1 true = 0.514. We forced Zj, irye to be quite different from each other in
order to facilitate the recovery of the number of clusters, especially for the binary
case. We set Z1 4rye = 0.51, to keep all components of Z1 44 positive in order
to meet the identifiability condition discussed in Section 3.1.

We estimate the posterior distributions for the objects in {B, Z,W,k, 02, ¢}
using the algorithms described in appendix A. The prior specification is

02 ~TG(2,0.1), ¢~ U[pmin, bmax); Bi ~N(0,1001,), for 1=1,...,5,
(5.2)

where ¢min = 0.909 and ¢p.x = 46,052. We implement dimension reduction,
selecting r = 5 and N = 150 (> Kypye and < S). We run the MCMC, discarding
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Table 1. Estimation results for continuous responses.

True Mean Stdev 95% Int
¢ 2 2095 0226 [1.600, 2.585]
o2 1 1.000 0.003 [0.993, 1.006]

B1 B2 B3

value

1 100 200 300 1 100 200 300 1 100 200 300
ID

Figure 2. Estimated 95% CIs of B with continuous responses for 30 selected species.
Black dots denote the true values.

the first 20,000 samples as a burn-in period, preserving the subsequent 20,000
samples as posterior samples.

Table 1 provides the estimation results for our model fitting. Both the decay
parameter ¢ and the nugget variance o2 are well recovered.

Figure 2 shows the 95% credible intervals (CIs) for B for 30 selected species
(chosen every 10 species) by our model. With B identified in the case of con-
tinuous responses, the true parameter values are well recovered for both cases.
Figure 3 reveals the sampled k of our spatial model for all species with a max-
imum posterior probability. Indeed, in this simulation study, the ks for both
models are completely recovered. In other words, the number of components of
k is 10 (= Kypyue) with posterior probability one for both the independence and
the spatial models. The sampled ks for both models are also the same as the
simulated k with posterior probability one.

In addition, we compare the true covariance ¥* = AAT + 0215 with the esti-
mated covariance 3* = AAT + 62Ig, where A and &2 are the posterior means of
A and o? under the spatial and independent models, respectively. This compar-
ison is motivated by the possibility that, with dependence in the spatial factors,
the estimated covariance structure might be distorted by assuming independent
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~—

Figure 3. For continuous responses, the 0-1 map (0: white, 1: black) of the sampled k
for the spatial model with a maximum posterior probability. Each species has only one
label.

factors. We calculate the Frobenius norm (i.e., ||Alr = \/Zle 2521 lay:|?),

for the difference X* — 33*. The values are 161.8 for the independent model and
31.13 for the spatial model. Hence, when factors have spatial dependence, the
independence model appears to provide a less precise estimation of >

Finally, we investigate the predictive performance of our spatial model. As
discussed in Section 4.2, the predictive performance is assessed by calculating
the Euclidean distances between the true values and the conditional predictions,
predicting 20% of the plots, conditional on observing the remaining 80% of the
plots. The estimated PMSE for our spatial model is 1.144 and that for the
independence model is 2.069. Thus, the spatial model reveals an approximately
45% improvement over the independent model.

5.2. Binary responses

In addition to the continuous case, we investigate the parameter recovery
and estimated covariance structure for binary responses. In the binary case, all
parameter settings are the same as those in the continuous case, except for the
observed response,

0
1, U7 >0
v — i , i=1,...,n, 1=1,...,8. (5.3)
' 0, u<o
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BD1 BD2 BD3

1 100 200 300 1 100 200 300 1 100 200 300
ID

Figure 4. Estimated 95% ClIs of D;/QB with binary response for 30 selected species.

Black dots denote the true values.

We sample U as auxiliary responses within MCMC iterations. Again, we discard
the first 20,000 samples as a burn-in period and preserve the subsequent 20,000
samples as posterior samples. The same prior specification is assumed for ¢ and
B and we fix 02 = 1. The posterior mean of ¢ is 1.687 (95% CI [1.237, 2.422])
so the true value is well recovered.

For the binary case, B is not identifiable. Taylor-Rodriguez et al. (2017)
estimate B using a scaled correlation matrix, R = D;/ 22*D;/ 2, that is, B =
D;/ ’B, following the discussion in Lawrence et al. (2008). We adopt this choice
as well, because applying the change of variables (B,X*) to (B,R) does not
affect the probabilities for Y;, but identifies B as unaffected by the change of
the scale matrix, Dx«. Figure 4 shows the 95% CIs for D;/QB for 30 selected
species (chosen every 10 species) under our model. The true parameter values
are well recovered.

Figure 5 shows the 0-1 map of the sampled k for the spatial model with
a maximum posterior probability. As in the continuous case, k is completely
recovered. That is, the estimated number of clusters is 10 with posterior proba-
bility one, and k is the same as the true k with posterior probability one after a
sufficiently long burn-in period.

Again, we compare the true covariance ¥* = AAT +1g and the estimated co-
variance 3* = AAT 4+ Ig for the spatial and independent models. The calculated
Frobenius norms are 156.1 for the independent model and 73.09 for the spatial
model. The value for the spatial model is smaller than that of the independent
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50-

Figure 5. For binary responses, the 0-1 map (0: white, 1: black) of sampled k for the
spatial model with a maximum posterior probability. Each species has only one label.

model, but larger than that of the spatial model with continuous responses. Fi-
nally, we investigate the predictive performance of our spatial model using the
TR measures introduced in Section 4.2. The values are 0.5603 for the spatial
model and 0.415 for the independent model; thus, the spatial model outperforms
the independent model.

6. Real Data Application

From Section 2.1, the total number of binary responses is n xS = 662 x 639 =
423,018. The number of Y;; = 1 is 6,980, or 1.65% of all binary responses.
Discarding the 351 species that are observed at at most five locations, we preserve
S = 288 species for the model fitting. Longitude and latitude are transformed
into easting and northing scales. Then, these scales are normalized by 100 km;

thus, ||s; — si/|| = 1 means the distance between s; and s; is 100 km. Again, as

covariate information, we include the following: (1) elevation, (2) mean annual
precipitation, (3) mean annual temperature. These values are standardized.

In the analysis below, we set = 5 (following Taylor-Rodriguez et al. (2017)).
(We also conducted a sensitivity analysis for the choice of 7; see below.) The prior
specification is

¢ ~ U[bmin, Pmax], Bi ~N(0,1001,), for 1=1,...,85, (6.1)
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Figure 6. The distribution of ReGa (left) and SeCa (right).

where ¢min = 0.909 and Guax = 46,052 and we fix 02 = 1. We discard the
first 20,000 samples as a burn-in and preserve the subsequent 20,000 samples as
posterior samples.

The estimated value of ¢ is 2.314 (95% CI [1.614, 3.589]), which reflects
the spatial dependence for the factors. Among 288 species, the labels for 280
species are fixed with a posterior probability of one; that is, the same labels are
selected for each of the 280 species for every posterior sample. The number of
distinct labels, that is, associated with at least one species, is 22 with a posterior
probability of one.

We also calculated the inefficiency factor (IF) which is the ratio of the nu-
merical variance of the estimate from the MCMC samples relative to that from
hypothetically uncorrelated samples. The IF is defined as 142 7, ps, where
ps is the sample autocorrelation at lag s. It suggests that the relative num-
ber of correlated draws necessary to attain the same variance of the posterior
mean from the uncorrelated draws (Chib (2001)). The IFs for the parameters
are b3 ~ 140. Because we retain 20,000 samples as posterior draws, we pre-
serve at least 20,000/140 ~ 142 samples from the stationary distribution. The
computational time for 40,000 iterations with five factors is 3,211 minutes.

We pick up two species, as discussed in Section 1, that share the same label
arising from a large negative, and, hence, influential WA”. The first species is
Restio gaudichaudianus (ReGa), which shows large absolute values of XB/. The
second is Senecio cardaminifolius (SeCa), which shows small absolute values.
Figure 6 shows the distribution of ReGa and SeCa. Both species show very
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Figure 7. Estimated XBY and WA for ReGa (high, top) and Seca (low, bottom).

different distribution patterns, with ReGa concentrated in a small southwest
area.

Figure 7 shows the estimation results for XBZT and WAlT. Because they
share the same label, WAlT is the same for both species. For ReGa, XBlT reveals
larger variation than that of SeCa. In addition, WA;‘F shows relatively negative
values that exert a significant influence on the presence probability of SeCa.
Figure 8 demonstrates the estimation results for the orthogonalized versions,
XB;‘T and W*AZT, as defined in Section 2.3. Although the difference is small,
the surface of W*A;‘F has larger positive values than those of WA;‘F. However,
the figure suggests that spatial confounding effects are relatively small.

Next, we investigate the predictive performance of our model. As a sensitiv-
ity check with respect to the number of factors, Figure 9 shows the TR measure
for the independence model with five factors (first boxplot) and for spatial models
with different numbers of factors. The figure suggests that the spatial model with
r = 3 factors performs best, while the spatial model with five factors is similar.
Both models show better predictive performance than that of the independence
model with five factors. In addition, having a greater number of factors does not
improve the performance of the models.

Lastly, we compare the predictive performance between our models and the
stacked “independence” model. Here, the independence model means that spatial
random effects are introduced independently across species. Hence, the stacked
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Figure 8. Estimated orthogonalized XB;7 and W*AT for ReGa (high, top) and SeCa
(low, bottom).
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Figure 9. TR measure for each number of factors.

independence model incorporates spatial dependence, but not dependence among
species. We calculate the conditional TR measure, denoted by T'Ryjyw—; and
T'Ryjyw—o if we condition on species [ being present or absent, respectively, as
investigated in Taylor-Rodriguez et al. (2017). We illustrate this conditional TR
measure at 134 held-out locations by conditioning on the presence—absence state
of Aridaria noctiflora (ArNo) and obtain the posterior probability of the presence
of Pteronia glomerata (PtGl). These species share the same label, with poste-
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Table 2. Tjur R for PtGl conditional on ArNo at 134 held-out locations.

PtGl T'RpicijarNo
0 1 Independent  Joint
0 noo = 100 no1 = 12 0.2263 0.2523
AtNo 0 =17 niy =5 0.2574 0.2874

rior probability one. Furthermore, the posterior mean correlation between the
two species is 0.4011, which is relatively high. We calculate T Rpiqy)y,,, v,—1 and
TRpici|ya,n,—0 under both the joint model with » =5 and the stacked indepen-
dence model (Table 2). The joint model shows better validation performance.

7. Summary and Future Work

We have proposed a spatial joint species distribution model with a Dirichlet
process dimension reduction for the factor loading matrix. The former enables
dependence across spatial locations, and the latter enables dependence across
species. We show that introducing spatial dependence into the factors improves
the out-of-sample predictive performance over the study region under both con-
tinuous and binary species responses using both simulated and real data.

In future work, we will extend our model to handle more challenging re-
sponses. For instance, we often observe a compositional data response vector,
that is, a response that lies on a simplex in R®, but that allows for point masses
at zeros. Another challenge is the case of a large number of spatial locations,
for instance, at continental scales, resulting in perhaps n ~ 10°. In this case,
we will explore recently developed sparse GP approximations such as the nearest
neighbor Gaussian processes (NNGP, Datta et al. (2016)) or the multiresolution
Gaussian processes (MGP, Katzfuss (2017)). Another direction is a more detailed
investigation of the effects of additional decay parameters with regard to the co-
variance matrices of the spatial factors. Ren and Banerjee (2013) allow different
decay parameters for spatial factor models, ¢y, for h = 1,...,r using the Gaus-
sian predictive process approximation by Banerjee et al. (2008). Without some
approximation of the GPs, inferences with different decay parameters require
computing matrix factorizations r times when sampling ¢y, for h = 1,...,r. This
is computationally demanding, even when the number of locations is moderate.
The NNGP or MGP may be useful in such situations.
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Appendix A. Details of Model Fitting

Sampling B

Let x; be a p x 1 location dependent covariate vector, which is assumed
common for the [ =1,...,S species. For B;, we have B; ~ N (up,, ¥B) where

T —1
pn, = Zn X (U0 - wzlQw)), = - (25 0) )
C

2
o’ o’
with U is the I-th column of matrix U and (Z'Q(k)")® the I-th column of
matrix ZTQ(k)7.

Sampling Z

Sampling Z employs almost the same algorithm as in Taylor-Rodriguez et
al. (2017). In our case, the first row of A is positive, we set Z; as the first row
of A. For j =1,

o let S;={l=1,...,5 s.t.k; = 1} and let |S1| denote the cardinality of Sj.
Using these definitions the full conditional distribution for Z; is given by
Zy ~ TN, (pz,,Xz, ) where TN, is multivariate truncated normal distri-
bution defined on (0, 00)" and

1 S A\
'U,ZIZZZIWTﬁz:(U(l)_XBIT), 2Z1:<‘01‘WTW+DZ1> :

2
€les, €

(A.2)

The full conditional for other rows of Z depends on whether or not the row
considered was chosen to be at least one row from A, For j =2,..., N

1. If j ¢ k, sample Z; ~ N;(0,Dg).

2. Otherwise, let S; = {l =1,...,8,s.t.k; = j} and let |S;| denote the cardi-
nality of S;. Using these definitions the full conditional distribution for Z;
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is given by Z; ~ N, (pz,,Xz,) where

1
pz, =3z, W'~ ;> _(UY -XB]), Ezj_<
o¢ les;
with B; the [-th row of matrix B.
Sampling W

Sampling W requires the matrix factorization for n-dimensional covariance
matrices. For h=1,...,r,

x Hexp(—z;HUZ-—Bwi—Q(k)Z’LUzW) X exp (—2W(h)TC 1W(h)>
i=1 €

(A4)

Although Gibbs sampling is available, O(n3) computational time is required.
Let Z(" be h-th column vector of Z, Z(—") and WM be remaining matrices
after deleting Z" and W) respectively. The full conditional is

(WL ocexp ( 202 (UXBTWZTQ(k)T> ' (U ~XB” - WZTQ(k)T>>

X exp <—;W(h)TC¢1W(")>

T
~ exp(_g; (U _XBT - WM ZNT Q)T — W(h)Z(h)TQ(k)T>
x <U—XBT WERZENTQE)T — WM ZWT Q(k) ))

X exp <—;W(h)TC;1W(h))

= N(H’wh? 2wh,)? (A5)
where
s, = S, (U -XB" - W<-h>z<—h>TQ<k>T> Q(k)Z™, (A.6)
0—6
o, IZWTQR) T\
S, = <C¢ + p L, . (A.7)
Sampling ¢

The full conditional distribution for ¢ is
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. 1 —
|Cy| 712 eXp<—2W(h)TC ¢1W<h>>1(¢mm < ¢ < Pmax)- (A.8)
We implement a Metropolis-Hastings algorithm.
Sampling k

For the vector of labels k, the full conditional distribution is [k|| =
S .
T (020 prydy (Rr)) with

1
s oy % 030 ~ 55 U0 - XBY - w2z ?). (4.9)
€

Sampling p

The full conditional distribution for p, given conjugacy of the GD distribution
with multinomial sampling, the draws of p are

=&, (A.10)

p; = (1—51)...(1—@‘_1){]‘, for j:2,3,...,N—1, (A.ll)
N-1

pN =1- Z Pj (A.12)
j=1

with & ~ Beta(a/N + 371 Iig—j), (N = 1)/Na+ S0 S22 T y)) for j =
1,...,N—1.

Sampling o2

By conjugacy of the prior for o2 with the normal likelihood, the full condi-
tional distribution is

i i — Ba; — Zw;|*
2 2
Sampling Dz
. A 1
Dz ~IW(Dz]2+r+ N —1,Z"Z + 4diag| —,...,— | |. (A.14)
m Mr
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