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Abstract: Species distribution models usually attempt to explain the presence–

absence or abundance of a species at a site in terms of the environmental features

(so-called abiotic features) present at the site. Historically, such models have con-

sidered species individually. However, it is well established that species interact to

influence the presence–absence and abundance (envisioned as biotic factors). As a

result, recently joint species distribution models with various types of responses,

such as presence–absence, continuous, and ordinal data have attracted a significant

amount of interest. Such models incorporate the dependence between species’ re-

sponses as a proxy for interaction. We address the accommodation of such modeling

in the context of a large number of species (e.g., order 102) across sites numbering

in the order of 102 or 103 when, in practice, only a few species are found at any

observed site. To do so, we adopt a dimension-reduction approach. The novelty of

our approach is that we add spatial dependence. That is, we consider a collection of

sites over a relatively small spatial region. As such, we anticipate that the species

distribution at a given site will be similar to that at a nearby site. Specifically, we

handle dimension reduction using Dirichlet processes, which enables the clustering

of species, and add spatial dependence across sites using Gaussian processes. We

use simulated data and a plant communities data set for the Cape Floristic Re-

gion (CFR) of South Africa to demonstrate our approach. The latter consists of

presence–absence measurements for 639 tree species at 662 locations. These two

examples demonstrate the improved predictive performance of our method using

the aforementioned specification.

Key words and phrases: Dimension reduction; Gaussian processes; high-dimensional

covariance matrix; spatial factor model; species dependence.

1. Introduction

Understanding the distribution and abundance of species is a primary goal of

ecological research. In this regard, species distribution models (SDMs) are used

to investigate the regressors that affect the presence–absence and abundance
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of species. They are also used to examine the prevalence of a species, predict

biodiversity and richness, quantify species turnover, and assess the response to

climate change (Midgley et al. (2002); Guisan and Thuiller (2005); Gelfand et

al. (2006); Iverson et al. (2008); Botkin et al. (2007); McMahon et al. (2011);

Thuiller et al. (2011)). These models are used to infer a species range in either

a geographic space or a climate space (Midgley et al. (2002)), to identify and

manage conservation areas (Austin and Meyers (1996)), and to provide evidence

of competition among species (Leathwick (2002)). A further key objective is

interpolation, to predict species response at locations that have not been sampled.

SDMs are most commonly fitted to presence–absence data (binary) or abun-

dance data (counts, ordinal classfications, or proportions). Occasionally, continu-

ous responses are used, for example, in biomass research (Dormann et al. (2012)).

Predictions of species over space can be accommodated using a spatially explicit

specification (Gelfand et al. (2005, 2006); Latimer et al. (2006)).

Historically, SDMs have considered species individually (Thuiller (2003); La-

timer et al. (2006); Elith and Leathwick (2009); Chakraborty et al. (2011)). To

make predictions at a community scale, independent models for individual species

are aggregated or stacked (Calabrese et al. (2014)). However, it is well estab-

lished that species interact to influence presence–absence and abundance. As

a result, individual-level models tend to predict too many species per location

(Guisan and Rahbek (2011)), as well as providing other misleading findings (see

Clark et al. (2014), for examples). Modeling species individually does not allow

underlying joint relationships to be captured (Clark et al. (2011); Ovaskainen

and Soininen (2011)). That is, the problem can be viewed as the omission of the

residual dependence between species.

Joint species distribution models (JSDMs) that incorporate species depen-

dence include applications to presence–absence research (Pollock et al. (2014);

Ovaskainen, Hottola and Siitonen (2010); Ovaskainen and Soininen (2011)), con-

tinuous or discrete abundance (Latimer et al. (2009); Thorson et al. (2015)),

abundance with a large number of zeros (Clark et al. (2014)), and discrete, ordi-

nal, and compositional data (Clark et al. (2017)). JSDMs jointly characterize the

presence and/or abundance of multiple species at a set of locations, partitioning

the drivers into two components. The first is associated with environmental suit-

ability, and the second accounts for species dependence through the residuals,

that is, adjusted for the environment. Such models incorporate the dependence

between species’ responses as a proxy for a formal specification of interaction.

JSDMs enhance our understanding of the distributions of species; however,
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their applicability has been limited owing to computational challenges when there

is a large number of species. To appreciate the potential challenge with presence–

absence (binary) responses and S species, we construct an S-way contingency

table with 2S cell probabilities at any given site. With observational data col-

lection over space (and time), as in large ecological databases, the number of

species is of the order of hundreds to thousands, rendering a contingency table

analysis unfeasible. Therefore, there is a need for strategies that fit joint models

in a computationally tractable manner.

To deal with these data challenges, we adopt dimension-reduction techniques,

working within the Bayesian factor model setting (West (2003); Lopes and West

(2004)). For instance, in the spatial case, Ren and Banerjee (2013) introduce

spatial dependence into the factors using Gaussian predictive process models

(Banerjee et al. (2008)). Taylor-Rodŕıguez et al. (2017) also consider dimension

reduction within a factor modeling framework. They generate each row of the

factor loading matrix from Dirichlet process realizations to enable common labels,

that is, clustering across the species. They assume independent factors because

their plot locations are not close to each other. Their focus is to jointly explain

species’ presence at plots, rather than predict the distribution at new locations.

We add spatial dependence to the explanatory model to enable joint predictions

at arbitrary locations over the study region.

In this regard, Thorson et al. (2015) implement a spatial factor analysis for

species distribution, where they fix the factor loading matrix. Ovaskainen et al.

(2016) implement the multiplicative Gamma shrinkage prior proposed by Bhat-

tacharya and Dunson (2011) for the factor loading matrix, and introduce spatial

dependence into the factors. This work is the most comparable to our approach

in the sense that both are specified through hierarchical models. However, our

specification directly models species dependence at the first (data) stage, whereas

Ovaskainen et al. (2016) incorporate dependence in the second (probabilities)

stage. We clarify this below. Furthermore, our approach enables the data to

inform us about the clustering among species.

We formulate our model in the context of a large number of species (e.g.,

order 102) across a large number of sites (e.g., order 102 or 103) when, in practice,

only a few species are found at any observed site. The novelty of our approach is

the addition of spatial dependence. That is, we have a collection of sites over a

relatively small spatial region. Thus, we anticipate that the species distribution

at a given site will be similar to that at a nearby site. As noted above, we
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adopt a dimension-reduction approach, following the model proposed by Taylor-

Rodŕıguez et al. (2017). Specifically, we handle the dimension reduction using

Dirichlet processes, which enables the joint labeling for species (i.e., clustering),

to which we add spatial dependence using Gaussian processes (GPs).

We use both simulated data and a plant communities data set for the Cape

Floristic Region (CFR) of South Africa to demonstrate our approach. The simu-

lation study serves as a proof of concept for both continuous and binary response

data. The CFR data set consists of presence–absence measurements for 639 tree

species at 662 locations. These two examples demonstrate improved predictive

performance of our method using the aforementioned specification.

The organization of the remainded of this paper is as follows. Section 2 in-

troduces our motivating data and modeling strategy, that is, spatial joint species

distribution models with Dirichlet processes. Section 3 provides the adaptation

to binary responses, along with a discussion on identifying parameters specifically

for probit models. In Section 4, we develop Bayesian inference for our model and

our model comparison strategy. In Section 5, we investigate the proposed models

using simulation studies for continuous and binary responses, and in Section 6 we

analyze the presence–absence data from the CFR. Finally, Section 7 concludes

the paper and discusses potential future work.

2. Spatial Factor Modeling with Dirichlet Processes

2.1. A motivating data example

Our data are extracted from a large database studying the distribution of

plants in the Cape Floristic Region (CFR) of South Africa (Takhtajan (1986)).

The CFR is one of the six floral kingdoms in the world and is located in the

southwestern part of South Africa. Alhough geographically relatively small, it is

extremely diverse (9,000+ species) and highly endemic (70% occur only in the

CFR (Rebelo (2001)). There are more than 40,000 sites with recorded sampling

within the CFR. The database from which our data set was extracted consists

of more than 1,400 plots with more than 2,800 species, spanning six regions.

Our data are from one of these regions and exhibit high spatial clustering, with

n = 662 plots and S = 639 species. The responses are binary: presence–absence

for each species’ and plot (location).

The left panel of Figure 1 shows the 662 locations in the CFR data, and

the right panel shows the distribution of nine selected species: 1) Aridaria noc-

tiflora (ArNo); 2) Asparagus capensis (AsCa); 3) Chrysocoma ciliata (ChCi); 4)
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Figure 1. 662 locations in the CFR (left), and the distribution of the presence of nine
selected species.

Ehrharta calycina (EhCa); 5) Eriocephalus ericoides (ErEr); 6) Galenia africana

(GaAf); 7) Pentzia incana (PeIn); 8) Pteronia glomerata (PtGl); and 9) Tenaxia

stricta (TeSt). These species are selected because they are observed at more than

100 locations (plots). Some species reveal strong spatial clustering (e.g., EhCa

and TeSt).

The total number of binary responses is n× S = 662× 639 = 423, 018. The

overall number of presences is 6,980, or 1.65% of the total number of binary

responses. This emphasizes that, although we have many species in our data set,

only a few are present on any given plot. Among the S = 639 species, 351 are

observed in at most five locations. We discard these species and retain S = 288

species across the 662 locations for model fitting.

2.2. Our model

Let D ⊂ R2 be a bounded study region, S = {s1, . . . , sn} be a set of plot

locations, where si ∈ D for i = 1, . . . , n, and Ui := U(si) ∈ RS be an S × 1

latent vector of continuous variables at location si. Under independence for the

locations, the model for Ui is specified as

Ui = Bxi + εi, εi
iid∼ NS(0,Σ), for i = 1, . . . , n, (2.1)

where B is an S × p coefficient matrix, xi is a p× 1 covariate vector at location

si, and Σ is an S × S covariance matrix for species. This model has O(S2)
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parameters: S(S + 1)/2 parameters from Σ, and pS parameters from B. For

example, for S = 300 species and p = 3 covariates, the model contains 46,050

parameters.

Taylor-Rodŕıguez et al. (2017) propose a dimension-reduction approxima-

tion to Σ that allows the number of parameters to grow linearly in S. They

approximate Σ with Σ∗ = ΛΛT + σ2ε IS , and replace the above model with

Ui = Bxi + Λwi + εi, εi ∼ NS(0, σ2ε IS), for i = 1, . . . , n, (2.2)

where the random vectors wi are independent and identically distributed (i.i.d).

with wi ∼ Nr(0, Ir) and Λ is an S × r matrix with r � S. Now, Σ∗ has only

Sr+1 parameters, and the estimation problem of O(S2) parameters is reduced to

that of O(S) parameters. We refer to this specification as the dimension-reduced

nonspatial model.

Although ΛΛT has rank r, including the nugget variance, σ2ε I, ensures that

Σ∗ is nonsingular. Taylor-Rodŕıguez et al. (2017) further propose sampling the

rows of Λ from a Dirichlet process mixture (DPM) using a stick-breaking repre-

sentation (Sethuraman (1994)). This representation is attractive within a Gibbs

sampling setting (see, e.g., Escobar (1994); Escobar and West (1995); MacEach-

ern (1994); Bush and MacEachern (1996); Neal (2000)) owing to a Pólya urn

scheme representation that enables a straightforward simulation from the needed

full conditional distributions.

Under the stick-breaking construction, we say the random distribution, G,

follows a DP with base measure H and precision parameter α, G ∼ DP (αH),

if G(·) =
∑∞

l=1 plδθl(·). Here, p1 = ξ1, pl = ξl
∏l−1
h=1(1 − ξh) (h ≥ 2), with

i.i.d. ξl ∼ Beta(1, α), and δθl(·) is the Dirac delta function at θl, where θl ∼ H.

Because it is almost surely a discrete distribution, this approach yields ties when

realizations are drawn; the Pólya urn scheme representation draws from an atomic

distribution with point masses at the already seen values, with the remaining

mass on H. Thus, the DP enables us to perform model clustering. We use this

feature to allow some rows of Λ to be common, which corresponds to clustering

the species in terms of their residual dependence behavior, as we clarify below.

According to (2.2), the Ui are conditionally independent, given B and Λ;

that is, the wi are independent across locations. However, because the plot loca-

tions in our data set are relatively close together, we introduce spatial dependence

into wi, which enables us to improve the prediction for new plot locations in the

study region.

To provide the hierarchical formulation for this model, let Z = [Z1 : · · · :
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ZN ]T (with Zj ∼ H) denote an N × r matrix the rows of which make up all po-

tential atoms. In this setup, we need a vector of grouping labels k = (k1, . . . , kS)

(1 ≤ kl ≤ N) such that the l-th row of Λ is equal to Zkl . Note that Λ can be

represented by Λ = Q(k)Z, where Q(k) = [ek1 : · · · : ekS ]T is S × N , with ekl
denoting the N -dimensional vector with a one in position kl, and zeros elsewhere.

Letting W = [w1 : · · · : wn]T be the n×r spatial factor matrix, our approximate

model is

Ui|k,Z,wi,B, σ
2
ε ∼ NS(Bxi + Q(k)Zwi, σ

2
ε IS), for i = 1, . . . , n,

W(h) ∼ Nn(0,Cφ), for h = 1, . . . , r,

kl|p ∼
N∑
j=1

pjδj(kl), for l = 1, . . . , S,

Zj |DZ ∼ Nr(0,DZ), for j = 1, . . . , N, (2.3)

Z1,h > 0, for h = 1, . . . , r,

p ∼ GDN (a, b),

DZ ∼ IW
(

2 + r − 1, 4diag

(
1

η1
, . . . ,

1

ηr

))
,

ηh ∼ IG
(

1

2
,

1

104

)
, for h = 1, . . . , r,

where GDN is an N -dimensional generalized Dirichlet distribution. In addi-

tion, W(h) = (w
(h)
1 , . . . , w

(h)
n )T is the h-th column of W (n × 1 vector) and

is distributed as an n-variate normal vector with mean 0 and covariance ma-

trix Cφ = [exp(−φ‖si − si′‖)]i,i′=1,...,n, that is, it is a realization of a GP with

an exponential covariance function at the sites in S. We refer to the above

modeling specification as the dimension-reduced spatial model. Again, Taylor-

Rodŕıguez et al. (2017) consider the entries in W(h) to be independent across i

(i.e., across sites), whereas we introduce spatial dependence across i through a

GP for each column of W. Furthermore, we restrict k1 = 1 and all components of

Z1 = (Z1,1, . . . , Z1,r)
T to be positive in order to identify the covariance structure,

as discussed in Ren and Banerjee (2013). We provide more detail in Section 3.1.

For prior specifications, we assume σ2ε ∼ IG(a/2, b/2) and Bl ∼ N (0, cIp)

for l = 1, . . . , S where Bl is l-th row of B. In practice, we suggest using a weakly

informative prior specification, for example, a = 2 or 3, b ≤ 0.1, and c = 100. We

assume a uniform prior for φ, φ ∼ U [φmin, φmax], with φmax = − log(0.01)/dmin

and φmin = − log(0.05)/dmax, where dmax and dmin are the minimum and max-

imum observed intersite distances, respectively, across all locations, following
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Wang and Wall (2003). In our data sets, dmax = 3.292 and dmin is set to a very

small number, but within the limits of machine precision to avoid overflow. Thus,

the induced effective range d0, that is, the distance at which spatial correlation is

negligible (falls below 0.05), is about the same as the maximum observed intersite

distance (see, e.g., (Banerjee, Carlin and Gelfand (2014))).

Next, we offer a few clarifying remarks about the roles of Λ and wh.

Remark 1. The initial specification in (2.2) is a nonspatial nondimension-reduced

model. The only model comparisons we make are between the dimension-reduced

nonspatial and spatial models because both of these models have the same ap-

proximation form for the covariance, Σ∗ = ΛΛT +σ2ε IS . In this regard, we argue

that Λ should not be location dependent. Furthermore, ΛΛT is a feature of the

taxonomy and, thus, should not be spatially varying.

Remark 2. We can clarify the interpretation of the clustering resulting from

modeling the rows of Λ through a Dirichlet process. If we cluster the rows of

Λ, then we do not cluster the species by their means because each species gets

its own vector of regression coefficients from B. Instead, the residual covariance

structure is clustered. If row Λl = Λl′ , then the row entries for U
(l)
i and U

(l′)
i in

Σ∗ are identical. That is, when species are clustered at an iteration of the Markov

chain Monte Carlo (MCMC) fitting, they have the same dependence structure

as those of all other species.

Therefore, posterior clustering is interpreted for a pair of species having a

similar dependence to that of all of the other species, adjusted for the regressors.

This may make a useful ecological interpretation of the clustering difficult. Alter-

natively, because attempting to formally model species interactions is challeng-

ing, we instead view the modeling of the residual dependence as a proxy. Then,

we might attach an interpretation of similar dependence with other species as a

similar interaction with other species.

Remark 3. With regard to modeling the spatial dependence structure, in prin-

ciple, each species might have its own spatial range/decay parameter. However,

under the dimension reduction, we can include at most r � S decay parameters.

Thus, an issue is whether incorporating a common decay parameter for the la-

tent GPs, (i.e., a separable model) will sacrifice much compared with employing

r decay parameters when r is, say, 3 to 5. The implications for the species-level

spatial dependence behavior are expected to be negligible. Moreover, with r

decay parameters ordered (as, e.g., in Ren and Banerjee (2013)) to obtain well-

behaved MCMC, the chain may not move well over this constrained space for the
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parameters. Lastly, if we have an S× 1 binary vector at each location, we would

not expect the data to carry much information about a set of r decay parameters.

2.3. Interpretation

Here, we provide a technical elaboration of the foregoing remarks. Given wi,

the conditional expectations for the l-th and l′-th rows of Ui are

E[U
(l)
i |wi] = Blxi + Λlwi E[U

(l′)
i |wi] = Bl′xi + Λl′wi. (2.4)

We see that the random effect provides an additional component in the mean

explanation. This is usually interpreted as capturing the effects of unmea-

sured/unobserved predictors at location si. Thus, Λlwi and Λl′wi inform us

about the residual variance adjusted for the fixed effects in the model. In ad-

dition, we can study two features associated with the pair Λlwi and Λl′wi.

The first is the covariance between them, which specifies the (l, l′)-th entry in

ΛΛT . The second is the expected distance between them, E(‖Λlwi−Λl′wi‖2) =

(Λl −Λl′)(Λl −Λl′)
T .

If (Λl − Λl′)(Λl − Λl′)
T is small, this implies that we have multiple ties

for the two species in their row selection in Λ. Therefore, the residual random

effects are similar for the two species, providing a similar residual adjustment.

This is not related to their mean contribution. However, more importantly, this

means that the pair have a similar dependence structure to that of all remaining

species. Evidently, when the l-th and l′-th rows of Λ share the same cluster,

(Λl − Λl′)(Λl − Λl′)
T = O (the matrix of zeros). More generally, the labels

do not change much across iterations in the model fitting (see below). Thus,

(Λl −Λl′)(Λl −Λl′)
T takes a discrete set of values for many pairs.

A different perspective makes the spatial random effects orthogonal to the

fixed effects (e.g., Hodges and Reich (2010); Hughes and Haran (2013); Hanks

et al. (2015)). Let X = [x1 : · · · : xn]T and U = [U1 : · · · : Un]T , and let

P = X(XTX)−1XT be the projection matrix associated with M(X), the column

space of X. Then, we can write

E[U|W] = XBT + PWΛT + (In −P)WΛT . (2.5)

Thus, we can rewrite this conditional mean as

E[U|W] = XB∗T + W∗ΛT , (2.6)

where B∗T = BT + (XTX)−1XTWΛT and W∗ = (In −P)W. This approach

deals with spatial confounding which describes multicollinearity among spatial

covariates X and spatial random effects W. Paciorek (2010) demonstrated that
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this confounding can lead to bias in estimation, especially when the spatial ran-

dom effects W are spatially smooth and have a large effective range of spatial

autocorrelation. Hanks et al. (2015) consider spatial confounding in a geostatis-

tical (continuous spatial support) setting. They demonstrate that the orthogo-

nalization above provides computational benefits, but that its resulting Bayesian

credible intervals can be inappropriately narrow under model misspecification.

In conclusion, confounding is only a problem while interpretating rather than

predicting the coefficient matrix, B. In particular, in our application below,

Figures 7 and 8 reveal the difference in estimation between B and B∗. We

anticipate that the ecological reader will consider the regressors and the role

they play when random effects are introduced,that is how much confounding

there is in the data and model.

3. Adaptation to Binary Response, (i.e., Presence–Absence Data)

For binary presence–absence response data, a logit or probit model speci-

fication is often assumed. To work with binary responses, we adapt the data-

augmentation algorithm proposed by Chib and Greenberg (1998) for a multi-

variate probit regression, which improves the mixing of the MCMC algorithm.

Taylor-Rodŕıguez et al. (2017) consider the probit model specification,

Y
(l)
i =

{
1 U

(l)
i > 0

0 U
(l)
i ≤ 0

, for l = 1, . . . , S, i = 1, . . . , n, (3.1)

where U
(l)
i is an auxiliary variable. We model U

(l)
i as presented in Section 2.2.

The form in (3.1) implies that we sample the latent U
(l)
i from a truncated normal

distribution within the MCMC iteration.

Note that we specify that Y
(l)
i = g(U

(l)
i ) = I(U

(l)
i > 0). The latent Us are

part of the first stage model specification, that is, Y
(l)
i is a function of U

(l)
i . The

latent process driving the binary responses is specified at the data stage. This

contrasts with specifying a conditional distribution, [Y
(l)
i |U

(l)
i ] (e.g., P (Y

(l)
i =

1) = p(U
(l)
i )), where p(·) would be a regression in U

(l)
i (e.g., Φ(α0 + α1U

(l)
i )).

This moves the Us to a second-stage model specification and yields a probit

regression.

To clarify, the former states that Y
(l)
i arises deterministically from the U

(l)
i

surface. The latter states that we have a Bernoulli trial with a probit link function

at each i. It is not clear whether the former is better than the latter. It may

be preferred because we are directly modeling the dependence, joint and spatial,
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between U
(l)
i and U

(l′)
i′ , and hence between Y

(l)
i and Y

(l′)
i′ , rather than deferring

the dependence to the second stage, that is, to the presence–absence surface

with conditionally independent Bernoulli trials at each location, given the surface.

This is the distinction between our approach and that of Ovaskainen et al. (2016).

3.1. Identifiability issues

We aim to learn the dependence structure between species using Σ∗ = ΛΛT+

σ2ε IS , and to extract the clustering behavior for the rows of Λ. However, it is well

known that, with random W, the entries in Λ and σ2ε are not identified. Thus,

we briefly review the identifiability problems in factor and probit models. The

identifiability problems for each of these specifications are mutually connected.

First, consider the loading matrices and factors under dimension-reduction.

For posterior inference, we identify Λw, but not Λ and w. Some restriction on

the factor loading matrices is required (Geweke and Singleton (1980); Lopes and

West (2004)). A widely used approach is to fix certain elements of Λ, usually to

zero, such as restricting Λ to be upper or lower triangular matrices with strictly

positive diagonal elements (Geweke and Zhou (1996)). This restriction enables

a direct interpretation of the latent factors and loading matrices.

Alternatively, Ren and Banerjee (2013) discuss the difference related to iden-

tifiability according to whether the elements in the factors across locations (W(h)

for h = 1, . . . , r) are independent or are spatially structured across locations. In

the former case, the dependence structure is invariant to any orthogonal trans-

formation of Λ. We can have an infinite number of equivalent matrices of factor

loadings. However, in the second case, they argue that only two types of linear

transformations, namely reflections and permutations, lead to nonidentifiability.

To avoid these types of nonidentifiability, Ren and Banerjee (2013) put a posi-

tivity restriction on the elements of the first row of Λ. This is available for our

modeling as well, but does not impose constant constraints on Λ. Therefore, the

elements of Λ and w still cannot be identified. However, the restrictions sug-

gested by Ren and Banerjee (2013) enable us to identify the covariance structure

of the latent process (i.e., Cov[vec(U)]), which is one of our goals.

4. Bayesian Inference

4.1. Model fitting

The full joint likelihood is
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L ∝ (σ2ε )
(nS/2+1)

n∏
i=1

exp

(
− 1

2σ2ε
‖Ui −Bxi −Q(k)Zwi‖2

)

× |Cφ|−1/2
r∏

h=1

exp

(
−1

2
W(h)TC−1φ W(h)

)
IG
(
σ2ε

∣∣∣∣a2 , b2
) S∏
l=1

N (Bl|0, cIp)

× |DZ |−1/2
N∏
j=1

exp

(
−1

2
ZT
j D−1Z Zj

)
×

S∏
l=1

N∑
j=1

pjδj(kl)π(p|0,α)

× IW
(

DZ

∣∣∣∣2 + r − 1, 4diag

(
1

η1
, . . . ,

1

ηr

)) r∏
h=1

IG
(
ηh

∣∣∣∣12 , 1

104

)
U(φ|φmin, φmax).

(4.1)

Our sampling algorithm is similar to that of Taylor-Rodŕıguez et al. (2017),

except for the sampling of W and φ. In our case, the elements of W are spatially

correlated, but Gibbs sampling is still available. We describe the full sampling

steps, including sampling of W and φ, in the Appendix.

4.2. Model comparison

Our model comparison focuses on the improvement of predictive performance

at held-out locations. We implement out-of-sample predictive performance checks

with respect to held-out samples of entire plots, rather than holding out samples

of species within plots. This is in accord with our spatial modeling objective,

which is to improve the predictive performance for held-out locations.

For the continuous-response case, the predictive performance is assessed by

calculating the Euclidean distances between the true values and the conditional

predictions, predicting 100p% of the plots, conditional on the remaining 100(1−
p)% plots. We denote the number of plots of test data by m and the out-of-

sample response matrix (test data) by Upred = (U1,pred, . . . ,Um,pred) at locations

Spred = {si1 , . . . , sim}.
The criterion used to assess the predictive ability of the algorithm is the

predictive mean squared error (PMSE), given by

PMSE =
1

Snp

m∑
i=1

(Ui,pred − Ûi,pred)T (Ui,pred − Ûi,pred), (4.2)

where Ûi,pred is the posterior mean estimate of Ui,pred.

For binary responses, we use the Tjur R2 coefficient of determination (Tjur

(2009)), which compares the estimated probabilities of the presence between the

observed ones and the observed zeros. For species j, this quantity is given by
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TRj = (π̂j(1)− π̂j(0)), where π̂j(1) and π̂j(0) are the average probabilities of the

presence for the observed ones and zeros, respectively, of the j-th species across

the locations. The larger the TRj , the better the discrimination is. We calculate

an average TR measure across species, that is, TR = (1/S)
∑S

j=1 TRj .

5. A Simulation Study

5.1. Continuous responses

We investigate the parameter recovery of our proposed model for continuous

responses. We use the same locations (n = 662) and covariate information as in

the CFR data. As covariate information, we include the following: (1) elevation,

(2) mean annual precipitation, and (3) mean annual temperature. These values

are standardized. The setting for the simulated data is

q = 5, p = 3, S = 300, Ktrue = 10, σ2ε = 1,

Ui ∼ N (B̃xi + Qtrue(k)Ztruewi, σ
2
ε IS), i = 1, . . . , n,

B̃l ∼ N (0, Ip), l = 1, . . . , S, (5.1)

W(h) ∼ N (0,Cφ), h = 1, . . . , q,

Ztrue = (Z1,true, . . . ,ZKtrue,true)
T .

Here, q denotes the fixed number of factors under the simulation. W(h) is the h-

th column of W, an n-variate normal vector with mean 0 and covariance matrix

Cφ = [exp(−φ‖si − si′‖)]i,i′=1,...,n. Here, we set φ = 2. The label kl is uniformly

sampled from Ktrue labels for l = 1, . . . , S. Qtrue(k) and Ztrue are S × Ktrue

and Ktrue × q matrices, respectively. Each component of Zk,true is uniformly

selected from {−1,−0.5, 0, 0.5, 1}; for example, a realization might be Zk,true =

(0.5,−0.5, 0, 0, 1)T , such that Zk,true 6= Zk′,true for k < k′ = 1, . . . ,Ktrue, and we

set Z1,true = 0.51q. We forced Zk,true to be quite different from each other in

order to facilitate the recovery of the number of clusters, especially for the binary

case. We set Z1,true = 0.51q to keep all components of Z1,true positive in order

to meet the identifiability condition discussed in Section 3.1.

We estimate the posterior distributions for the objects in {B̃,Z,W,k, σ2ε , φ}
using the algorithms described in appendix A. The prior specification is

σ2ε ∼ IG(2, 0.1), φ ∼ U [φmin, φmax], B̃l ∼ N (0, 100Ip), for l = 1, . . . , S,

(5.2)

where φmin = 0.909 and φmax = 46, 052. We implement dimension reduction,

selecting r = 5 and N = 150 (> Ktrue and < S). We run the MCMC, discarding
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Table 1. Estimation results for continuous responses.

True Mean Stdev 95% Int
φ 2 2.095 0.226 [1.600, 2.585]
σ2
ε 1 1.000 0.003 [0.993, 1.006]
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Figure 2. Estimated 95% CIs of B̃ with continuous responses for 30 selected species.
Black dots denote the true values.

the first 20,000 samples as a burn-in period, preserving the subsequent 20,000

samples as posterior samples.

Table 1 provides the estimation results for our model fitting. Both the decay

parameter φ and the nugget variance σ2ε are well recovered.

Figure 2 shows the 95% credible intervals (CIs) for B̃ for 30 selected species

(chosen every 10 species) by our model. With B̃ identified in the case of con-

tinuous responses, the true parameter values are well recovered for both cases.

Figure 3 reveals the sampled k of our spatial model for all species with a max-

imum posterior probability. Indeed, in this simulation study, the ks for both

models are completely recovered. In other words, the number of components of

k is 10 (= Ktrue) with posterior probability one for both the independence and

the spatial models. The sampled ks for both models are also the same as the

simulated k with posterior probability one.

In addition, we compare the true covariance Σ∗ = ΛΛT +σ2ε IS with the esti-

mated covariance Σ̂∗ = Λ̂Λ̂T + σ̂2ε IS , where Λ̂ and σ̂2ε are the posterior means of

Λ and σ2ε under the spatial and independent models, respectively. This compar-

ison is motivated by the possibility that, with dependence in the spatial factors,

the estimated covariance structure might be distorted by assuming independent
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Figure 3. For continuous responses, the 0-1 map (0: white, 1: black) of the sampled k
for the spatial model with a maximum posterior probability. Each species has only one
label.

factors. We calculate the Frobenius norm (i.e., ‖A‖F =
√∑S

l=1

∑S
l′=1 |all′ |2),

for the difference Σ∗ − Σ̂∗. The values are 161.8 for the independent model and

31.13 for the spatial model. Hence, when factors have spatial dependence, the

independence model appears to provide a less precise estimation of Σ̂∗.

Finally, we investigate the predictive performance of our spatial model. As

discussed in Section 4.2, the predictive performance is assessed by calculating

the Euclidean distances between the true values and the conditional predictions,

predicting 20% of the plots, conditional on observing the remaining 80% of the

plots. The estimated PMSE for our spatial model is 1.144 and that for the

independence model is 2.069. Thus, the spatial model reveals an approximately

45% improvement over the independent model.

5.2. Binary responses

In addition to the continuous case, we investigate the parameter recovery

and estimated covariance structure for binary responses. In the binary case, all

parameter settings are the same as those in the continuous case, except for the

observed response,

Y
(l)
i =

{
1, U

(l)
i > 0

0, U
(l)
i ≤ 0

, i = 1, . . . , n, l = 1, . . . , S. (5.3)
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Figure 4. Estimated 95% CIs of D
−1/2
Σ B̃ with binary response for 30 selected species.

Black dots denote the true values.

We sample U as auxiliary responses within MCMC iterations. Again, we discard

the first 20,000 samples as a burn-in period and preserve the subsequent 20,000

samples as posterior samples. The same prior specification is assumed for φ and

B̃ and we fix σ2ε = 1. The posterior mean of φ is 1.687 (95% CI [1.237, 2.422])

so the true value is well recovered.

For the binary case, B̃ is not identifiable. Taylor-Rodŕıguez et al. (2017)

estimate B using a scaled correlation matrix, R = D
−1/2
Σ∗ Σ∗D

−1/2
Σ∗ , that is, B =

D
−1/2
Σ∗ B̃, following the discussion in Lawrence et al. (2008). We adopt this choice

as well, because applying the change of variables (B̃,Σ∗) to (B,R) does not

affect the probabilities for Yi, but identifies B as unaffected by the change of

the scale matrix, DΣ∗ . Figure 4 shows the 95% CIs for D
−1/2
Σ B̃ for 30 selected

species (chosen every 10 species) under our model. The true parameter values

are well recovered.

Figure 5 shows the 0-1 map of the sampled k for the spatial model with

a maximum posterior probability. As in the continuous case, k is completely

recovered. That is, the estimated number of clusters is 10 with posterior proba-

bility one, and k is the same as the true k with posterior probability one after a

sufficiently long burn-in period.

Again, we compare the true covariance Σ∗ = ΛΛT +IS and the estimated co-

variance Σ̂∗ = Λ̂Λ̂T +IS for the spatial and independent models. The calculated

Frobenius norms are 156.1 for the independent model and 73.09 for the spatial

model. The value for the spatial model is smaller than that of the independent
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Figure 5. For binary responses, the 0-1 map (0: white, 1: black) of sampled k for the
spatial model with a maximum posterior probability. Each species has only one label.

model, but larger than that of the spatial model with continuous responses. Fi-

nally, we investigate the predictive performance of our spatial model using the

TR measures introduced in Section 4.2. The values are 0.5603 for the spatial

model and 0.415 for the independent model; thus, the spatial model outperforms

the independent model.

6. Real Data Application

From Section 2.1, the total number of binary responses is n×S = 662×639 =

423, 018. The number of Yl,i = 1 is 6,980, or 1.65% of all binary responses.

Discarding the 351 species that are observed at at most five locations, we preserve

S = 288 species for the model fitting. Longitude and latitude are transformed

into easting and northing scales. Then, these scales are normalized by 100 km;

thus, ‖si − si′‖ = 1 means the distance between si and si′ is 100 km. Again, as

covariate information, we include the following: (1) elevation, (2) mean annual

precipitation, (3) mean annual temperature. These values are standardized.

In the analysis below, we set r = 5 (following Taylor-Rodŕıguez et al. (2017)).

(We also conducted a sensitivity analysis for the choice of r; see below.) The prior

specification is

φ ∼ U [φmin, φmax], Bl ∼ N (0, 100Ip), for l = 1, . . . , S, (6.1)
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Figure 6. The distribution of ReGa (left) and SeCa (right).

where φmin = 0.909 and φmax = 46, 052 and we fix σ2ε = 1. We discard the

first 20,000 samples as a burn-in and preserve the subsequent 20,000 samples as

posterior samples.

The estimated value of φ is 2.314 (95% CI [1.614, 3.589]), which reflects

the spatial dependence for the factors. Among 288 species, the labels for 280

species are fixed with a posterior probability of one; that is, the same labels are

selected for each of the 280 species for every posterior sample. The number of

distinct labels, that is, associated with at least one species, is 22 with a posterior

probability of one.

We also calculated the inefficiency factor (IF) which is the ratio of the nu-

merical variance of the estimate from the MCMC samples relative to that from

hypothetically uncorrelated samples. The IF is defined as 1 + 2
∑∞

s=1 ρs, where

ρs is the sample autocorrelation at lag s. It suggests that the relative num-

ber of correlated draws necessary to attain the same variance of the posterior

mean from the uncorrelated draws (Chib (2001)). The IFs for the parameters

are 53 ∼ 140. Because we retain 20,000 samples as posterior draws, we pre-

serve at least 20,000/140 ≈ 142 samples from the stationary distribution. The

computational time for 40,000 iterations with five factors is 3,211 minutes.

We pick up two species, as discussed in Section 1, that share the same label

arising from a large negative, and, hence, influential WΛT . The first species is

Restio gaudichaudianus (ReGa), which shows large absolute values of XBT
l . The

second is Senecio cardaminifolius (SeCa), which shows small absolute values.

Figure 6 shows the distribution of ReGa and SeCa. Both species show very
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Figure 7. Estimated XBT
l and WΛT

l for ReGa (high, top) and Seca (low, bottom).

different distribution patterns, with ReGa concentrated in a small southwest

area.

Figure 7 shows the estimation results for XBT
l and WΛT

l . Because they

share the same label, WΛT
l is the same for both species. For ReGa, XBT

l reveals

larger variation than that of SeCa. In addition, WΛT
l shows relatively negative

values that exert a significant influence on the presence probability of SeCa.

Figure 8 demonstrates the estimation results for the orthogonalized versions,

XB∗Tl and W∗ΛT
l , as defined in Section 2.3. Although the difference is small,

the surface of W∗ΛT
l has larger positive values than those of WΛT

l . However,

the figure suggests that spatial confounding effects are relatively small.

Next, we investigate the predictive performance of our model. As a sensitiv-

ity check with respect to the number of factors, Figure 9 shows the TR measure

for the independence model with five factors (first boxplot) and for spatial models

with different numbers of factors. The figure suggests that the spatial model with

r = 3 factors performs best, while the spatial model with five factors is similar.

Both models show better predictive performance than that of the independence

model with five factors. In addition, having a greater number of factors does not

improve the performance of the models.

Lastly, we compare the predictive performance between our models and the

stacked “independence” model. Here, the independence model means that spatial

random effects are introduced independently across species. Hence, the stacked
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Figure 8. Estimated orthogonalized XB∗Tl and W∗ΛT
l for ReGa (high, top) and SeCa

(low, bottom).
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Figure 9. TR measure for each number of factors.

independence model incorporates spatial dependence, but not dependence among

species. We calculate the conditional TR measure, denoted by TRk|Y (l)=1 and

TRk|Y (l)=0 if we condition on species l being present or absent, respectively, as

investigated in Taylor-Rodŕıguez et al. (2017). We illustrate this conditional TR

measure at 134 held-out locations by conditioning on the presence–absence state

of Aridaria noctiflora (ArNo) and obtain the posterior probability of the presence

of Pteronia glomerata (PtGl). These species share the same label, with poste-
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Table 2. Tjur R for PtGl conditional on ArNo at 134 held-out locations.

PtGl TRPtGl|ArNo
0 1 Independent Joint

ArNo
0 n00 = 100 n01 = 12 0.2263 0.2523
1 n10 = 17 n11 = 5 0.2574 0.2874

rior probability one. Furthermore, the posterior mean correlation between the

two species is 0.4011, which is relatively high. We calculate TRPtGl|YArNo=1 and

TRPtGl|YArNo=0 under both the joint model with r = 5 and the stacked indepen-

dence model (Table 2). The joint model shows better validation performance.

7. Summary and Future Work

We have proposed a spatial joint species distribution model with a Dirichlet

process dimension reduction for the factor loading matrix. The former enables

dependence across spatial locations, and the latter enables dependence across

species. We show that introducing spatial dependence into the factors improves

the out-of-sample predictive performance over the study region under both con-

tinuous and binary species responses using both simulated and real data.

In future work, we will extend our model to handle more challenging re-

sponses. For instance, we often observe a compositional data response vector,

that is, a response that lies on a simplex in RS , but that allows for point masses

at zeros. Another challenge is the case of a large number of spatial locations,

for instance, at continental scales, resulting in perhaps n ≈ 106. In this case,

we will explore recently developed sparse GP approximations such as the nearest

neighbor Gaussian processes (NNGP, Datta et al. (2016)) or the multiresolution

Gaussian processes (MGP, Katzfuss (2017)). Another direction is a more detailed

investigation of the effects of additional decay parameters with regard to the co-

variance matrices of the spatial factors. Ren and Banerjee (2013) allow different

decay parameters for spatial factor models, φh, for h = 1, . . . , r using the Gaus-

sian predictive process approximation by Banerjee et al. (2008). Without some

approximation of the GPs, inferences with different decay parameters require

computing matrix factorizations r times when sampling φh for h = 1, . . . , r. This

is computationally demanding, even when the number of locations is moderate.

The NNGP or MGP may be useful in such situations.
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Appendix A. Details of Model Fitting

Sampling B

Let xi be a p × 1 location dependent covariate vector, which is assumed

common for the l = 1, . . . , S species. For Bl, we have Bl ∼ N (µBl
,ΣB) where

µBl
= ΣB

1

σ2ε
XT (U(l) −W(ZTQ(k)T )(l)), ΣB =

(
XTX

σ2ε
+

1

c
IS

)−1
(A.1)

with U(l) is the l-th column of matrix U and (ZTQ(k)T )(l) the l-th column of

matrix ZTQ(k)T .

Sampling Z

Sampling Z employs almost the same algorithm as in Taylor-Rodŕıguez et

al. (2017). In our case, the first row of Λ is positive, we set Z1 as the first row

of Λ. For j = 1,

• let S1 = {l = 1, . . . , S, s.t.kl = 1} and let |S1| denote the cardinality of S1.

Using these definitions the full conditional distribution for Z1 is given by

Z1 ∼ T N r(µZ1
,ΣZ1

) where T N r is multivariate truncated normal distri-

bution defined on (0,∞)r and

µZ1
= ΣZ1

WT 1

σ2ε

∑
l∈S1

(U(l) −XBT
l ), ΣZ1

=

(
|S1|
σ2ε

WTW + D−1Z

)−1
.

(A.2)

The full conditional for other rows of Z depends on whether or not the row

considered was chosen to be at least one row from Λ, For j = 2, . . . , N

1. If j /∈ k, sample Zj ∼ Nr(0,DZ).

2. Otherwise, let Sj = {l = 1, . . . , S, s.t.kl = j} and let |Sj | denote the cardi-

nality of Sj . Using these definitions the full conditional distribution for Zj
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is given by Zj ∼ Nr(µZj
,ΣZj

) where

µZj
= ΣZj

WT 1

σ2ε

∑
l∈Sj

(U(l) −XBT
l ), ΣZj

=

(
|Sj |
σ2ε

WTW + D−1Z

)−1
(A.3)

with Bl the l-th row of matrix B.

Sampling W

Sampling W requires the matrix factorization for n-dimensional covariance

matrices. For h = 1, . . . , r,

[W(h)|·] ∝
n∏
i=1

exp

(
− 1

2σ2ε
‖Ui−Bxi−Q(k)Zwi‖2

)
× exp

(
−1

2
W(h)TC−1φ W(h)

)
.

(A.4)

Although Gibbs sampling is available, O(n3) computational time is required.

Let Z(h) be h-th column vector of Z, Z(−h) and W(−h) be remaining matrices

after deleting Z(h) and W(h), respectively. The full conditional is

[W(h)|·] ∝ exp

(
− 1

2σ2ε

(
U−XBT−WZTQ(k)T

)T(
U−XBT −WZTQ(k)T

))
× exp

(
−1

2
W(h)TC−1φ W(h)

)
∝ exp

(
− 1

2σ2ε

(
U−XBT −W(−h)Z(−h)TQ(k)T −W(h)Z(h)TQ(k)T

)T
×
(

U−XBT −W(−h)Z(−h)TQ(k)T −W(h)Z(h)TQ(k)T
))

× exp

(
−1

2
W(h)TC−1φ W(h)

)
= N (µwh

,Σwh
), (A.5)

where

µwh
= Σwh

1

σ2ε

(
U−XBT −W(−h)Z(−h)TQ(k)T

)
Q(k)Z(h), (A.6)

Σwh
=

(
C−1φ +

‖Z(h)TQ(k)T ‖2

σ2ε
In

)−1
. (A.7)

Sampling φ

The full conditional distribution for φ is
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|Cφ|−1/2 exp

(
−1

2
W(h)TC−1φ W(h)

)
I(φmin < φ < φmax). (A.8)

We implement a Metropolis-Hastings algorithm.

Sampling k

For the vector of labels k, the full conditional distribution is [k|·] =∏S
l=1(

∑N
j=1 pl,jδj(kl)) with

pl,j ∝ pj × exp

(
− 1

2σ2ε
‖U(l) −XBT

l −WZj‖2
)
. (A.9)

Sampling p

The full conditional distribution for p, given conjugacy of the GD distribution

with multinomial sampling, the draws of p are

p1 = ξ1, (A.10)

pj = (1− ξ1) . . . (1− ξj−1)ξj , for j = 2, 3, . . . , N − 1, (A.11)

pN = 1−
N−1∑
j=1

pj , (A.12)

with ξj ∼ Beta(α/N +
∑S

l=1 I(kl=j), (N − 1)/Nα+
∑N

s=j+1

∑S
l=1 I(kl=s)) for j =

1, . . . , N − 1.

Sampling σ2ε

By conjugacy of the prior for σ2ε with the normal likelihood, the full condi-

tional distribution is

σ2ε ∼ IG
(
nS + a

2
,

∑n
i=1 ‖Ui −Bxi −Q(k)Zwi‖2 + b

2

)
. (A.13)

Sampling DZ

DZ ∼ IW
(

DZ |2 + r +N − 1,ZTZ + 4diag

(
1

η1
, . . . ,

1

ηr

))
. (A.14)
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