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Abstract

Two new classes of compact weighted essentially nonoscillatory (WENQO) polynomial limiters are
presented for second-, third-, fourth-, and fifth-order discontinuous Galerkin (DG) schemes on
purely irregular simplex elements. The presented WENO-DG procedures are extensions of the high-
order WENO finite-volume and finite-difference schemes of Zhu and Shu [JCP 349 (2017), pp. 80—
96; Shock Waves (2018)] to high-order unstructured DG schemes. A compact positivity preserving
limiter is applied to the solutions to ensure pressure and density remain within physical ranges at
all time. It is then verified that the bounded WENO-DG maintains the formal order of accuracy of
the underlying DG schemes in the smooth regions. The performance of the proposed WENO-DG is
also demonstrated with a few inviscid test cases including the classical Riemann problems, Shock-
turbulence interaction, Scramjet, blunt body flows, and the double Mach Reflection problems.
Keywords: CWENO, Unstructured Meshes, High-Order DG, Positivity-Preserving, Riemann
Problem, Shu-Osher

1. Introduction

Consider the unsteady compressible Euler equations for a perfect gas flow

w+V-f(w) =0, w(x,t=0)=wy(x), (1)
where
p pu
w= [ pu |, fw) = | pual +pl |, H=B+", (2)
pE puH

*Corresponding author. Tel.: +1 757 864 7013
Email addresses: alireza.mazaheri@nasa.gov (Alireza Mazaheri ), shu@dam.brown.edu (Chi-Wang Shu ),

vincent.perrier@inria.fr (Vincent Perrier )

! Aerothermodynamics Branch, Research Directorate, NASA Langley Research Center, Hampton, VA 23681, USA.
Research supported by the NASA Langley CIF/IRAD project, and the NASA STMD ESM/GCD program.

Division of Applied Mathematics, Brown University, Providence, RI 02912, USA. Research supported by ARO
grant W911NF-15-1-0226 and NSF grant DMS-1719410.

3INRIA Bordeaux Sud-Ouest, Laboratoire de Mathématiques et de leurs applications Batiment IPRA, Universite
de Pau et des Pays de I’Adour, 64013 Pau Cedex, France. Research supported by NASA Langley CIF/IRAD project
while visiting NASA Langley from January — March 2017.

Preprint submitted to Journal of Computational Physics March 22, 2019



p is density, u is the velocity vector in x directions, I is an identity matrix, and the total energy,

pE, is defined as
p

E =
p ~—1

1
+ Sollal? 3)

where p is the pressure and + is the specific heat ratio.

In the present work, Eq. (1) may be spatially discretized with high-order discontinuous Galerkin
(DG) schemes on triangular elements, and applied to continuous and discontinuous flows. The
temporal term may be discretized with either the three stage, third-order strong stability preserving
SSP(3,3) Runge-Kutta (RK) [1, 2], or the backward Euler time discretization method.

As with many nonlinear partial differential equations, the solution of Eq. (1) may contain a
strong discontinuity with abrupt changes in physical quantities, such as density, pressure, and
temperature. The DG method produces accurate results if the solution is smooth and/or contains
(relatively) weak discontinuities, otherwise significant oscillations and/or nonlinear instabilities
may occur. To avoid such difficulties with numerical oscillations, the DG method needs to be
accompanied by, for example, a limiter strategy such as minmod [3, 4, 5, 6], artificial viscosity
[7, 8,9, 10], total variation diminishing [11, 12, 13], or weighted essentially nonoscillatory (WENO)
[14, 15, 16, 17, 18, 19] techniques. The advantage of WENO type limiters is that they can be
compact, of high order, and more importantly do not affect the expected order of accuracy of the
underlying DG scheme if applied to smooth regions. Available WENO schemes are either non-
compact [20, 21, 14, 22, 16, 15, 23, 24], which is undesirable for DG methods, or have difficulties in
reducing the residuals [20, 21, 24]. The proposed WENO-FV and WENO-FD schemes of Zhu and
Shu [25, 26] address the convergence difficulties that are observed in the earlier WENO procedures
[27, 28].

Advancement in limiting procedures have also been reported for unstructured simplex elements.
For instance, Dumbser and Loubere [29] proposed a posteriori subcell finite volume limiter for DG
schemes on simplex elements, while a compact WENO limiter for ADER-FV schemes on fixed and
moving simplex elements is proposed by Dumbser et. al [30].

Here, two classes of compact WENO polynomial limiters are presented for DG methods on
simplex elements that may be considered extensions of the WENO-FV [25] and WENO-FD [31]
schemes. Although the original compact WENO limiters for finite volume and the finite difference
schemes rely on an extended stencil for polynomial reconstruction, the main idea behind the com-
pact WENO for DG schemes is to construct a limited polynomial directly from the underlying DG
scheme. The compact WENO-DG limiters presented here, therefore, require a stencil only as large
as (nfaces)®) + 1 number of elements, where (nfaces)®) corresponds to the number of faces of

the elements in which the limiter is being applied. For example, for triangles, the compact WENO



stencil has only up to 4 elements (see also Fig. 1). In the first proposed approach, the compact
stencil is considered, and a series of linear polynomials is constructed by solving a (dof x dof)
linear system, where dof denotes degrees of freedom. In the second approach, a linear polynomial
is constructed by solving a series of constraint least-squares (LSQ) minimization problems within
the compact stencil. In both approaches, a WENO polynomial limiter is obtained with a convex
combination of the original polynomial and the constructed linear polynomials that are added using
nonlinear weights. The numerical fluxes are evaluated with the Local Lax-Friedrichs (LLxF) flux,
and a compact positivity preserving limiter [32] is also applied to the solutions to ensure pressure
and density remain bounded and physical at all time.

The paper is organized as follows. Section 2 describes in detail the proposed compact WENO
polynomial limiters for unstructured DG schemes with simplex elements. The positivity preserving
limiter for the Euler equations is briefly discussed in Section 3. A few sample problems, ranging
from the classical Sod and Lax problems to blunt body flows and double Mach reflection test case,

are presented in Section 4. The concluding remarks are given in Section 5.

2. Proposed WENO-DG polynomial limiters

Two new classes of compact WENO polynomial limiters are proposed here for unstructured
DG schemes. These schemes are in part inspired by the recent successful WENO finite difference
and finite volume procedures of Zhu and Shu [25, 26], which are extensions and steady state
computations of the earlier works reported by Zhu and Qiu [28, 33, 34, 25| and Levy et al. [27].
The proposed WENO procedures are designed for simplex elements, and are compact, requiring
information only from the immediate neighbors. For each presented approach, a detailed step-by-
step procedure is outlined that may be used for implementation of the WENO as a post-processing
step to the DG solution after each time iteration.

Consider a compact triangular stencil {0,1,2,3} as shown in Fig. 1, where the element 0 is
the target element for which the limiter is applied. The goal is to reconstruct a new candidate
polynomial for the target element, pOnew that is nonoscillatory in the presence of discontinuities,
and dependent only on the available information within the compact stencil. We remark that the
polynomials defined throughout this document are defined with a set of basis functions expressed
in a reference element.

The original polynomial on the target element, p(®), may be expressed in the following identity

relation as

- 1 i (i ~(i
P = p =5 <%p(0) - %p( )> +> i, 4)
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Figure 1: The compact WENO-DG stencil for triangular elements.

which holds for arbitrary positive coefficients v; satisfying E;’:O v = 1, where, v;, are the linear
weights defined as
Yo = 0.997, v; = 0.001 (j # 0),

and the p( are the to-be-reconstructed polynomials for the elements i = 1,2, 3 (i.e., the immediate
neighbors of the target element). The () reconstruction procedures are discussed in detail later.
The linear weights are then replaced with the nonlinear weights, w, and the following reconstructed

candidate polynomial is sought for the target element *

1 . .
Onew _ o [ L0 _ ST Vim0 ) L §7 50 5
p o(,mp E@ ol ) % Y, (5)

where the nonlinear weights are computed by adopting the high-order WENO-FD [25] and WENO-
FV [26] techniques of Zhu and Shu for the present WENO-DG schemes. These techniques are based
on the WENO-Z strategy given in Refs. [35, 36, 37]. The nonlinear weights are then defined as

Wi —— T (3180 = Bil?
Wi—mv WJ—77(1+W>» T—(ﬂ)» (6)

where n is the total number of reconstructed polynomials used in constructing the WENO polyno-
mial p(97¢ as given in Eq. (5) (i.e., maximum integer value of i) plus the polynomial of the target
element A. Here ¢ = 1072 is a small number to avoid zero demoninator, and /3 is the classical

smoothness indicator defined as (see e.g., Jiang and Shu [20] and Kolb [38])

k 2
alil A
—S A <1|—1>/ BN )R R
B § |Ao| n, \ 92t oyt P : (l1,12), (7)

ll|=1

where k denotes the polynomial order, and |Ag| is the volume of the target element.

4(Classical trouble cell indicators are not employed in the presented examples and therefore, the proposed WENO
is applied to all the computational elements. Hence, all the elements in the computational domain are considered as
target elements. This approach is beneficial in ensuring that the proposed WENO does not affect the desired order

of accuracy of the DG scheme even if it is applied to smooth region.



The above procedure is complete with reconstruction of the polynomials p(. This is discussed

next where two compact reconstruction approaches are presented in details.

2.1. Polynomial reconstruction approach 1

In this section, a procedure to reconstruct a set of polynomials, 59 is described in details. The
reconstructed polynomials are used for the WENO polynomial limiter given by Eq. (5). First, a

procedure for a scalar case is given followed by a system case.

2.1.1. Scalar case

1. Compute the means of the polynomials on the compact WENO stencil {0, 1,2, 3}:

. 1 j
W= [ n0 =02 ®)

where A; denotes neighboring elements with corresponding volume of |A;|. For boundary
elements, first obtain the right values u* by applying the boundary condition along the
boundary face, and then integrate u® to get the mean values. If the boundary is an outflow,

L

for example a supersonic outflow, on which we do nothing, integrate the left values u” on the

boundary face to get the corresponding mean values.

2. Construct a set of linear polynomials, pU), such that

1 ~(j) _ (i
\A-I/A.pu) =7, (9)

where i corresponds to the element number in the compact WENO stencil (see Fig. 1), and
j refers to the candidate linear polynomial number. For a triangle, we have three such
candidates, and for each candidate, we use the elements in the ith set to construct a linear
polynomial p@):

(1) = (1,40, 1,2}); (2, {0,1,3}); (3.{0.2,3}). (10)

REMARK: All the reconstructed linear polynomials are defined within the target element,
with the basis functions, ¢, also defined on the target element. Such basis functions are

denoted as 4,51(0). For example, consider the j = 1 polynomial, p(!). This is defined as

2
50 =Y aip. (11)
i=0

This polynomial is then used for evaluation of the integral given in Eq. (9) with appropriate
quadrature rules. The elements in the ith set {0,1,2} are needed in the construction of

the polynomial p(!). Therefore, a 3x3 linear system is solved to obtain the three coefficients



(degrees of freedom) of the reconstructed linear polynomial. Thus, for the j and ith set used

in this example, the following linear system is solved:

1 (0) 1 (0) 1 (0) - _
Ao] 2q Wag g m 2q Wa1 g m 2q Was g Uo u®
1 (0—1) (0—1) (0—1) ~ _ | =
m Z wq%po ’q \A1| Z wq% ’q |A1| Z Wq Py lg i | =|a® ], 12)
(0—2) (0—2) (0—2) ~ _
\A2| > wquo |q @ D g We# lq @ dqWaPs g u2 at?)

where subscript ¢ denotes summation over the element quadrature points, w, corresponds to
the quadrature weights, and the arrow indicates the extrapolation of the basis onto the neigh-
bor elements 1 and 2. The above system is valid for interior elements as shown in Fig. la. For
elements that have faces on physical boundaries, the above system (12) takes a different form.
For instance, consider ith set {1,09Q;,92} where 99 denotes the corresponding boundary

face of the target element that is on a boundary. In this case, the system (12) reduces to

1 (0) 1 (0) 1 (0) ~ (0
Yy >_q Way g Ao] >qWep1 g Aol >q Waps g uo a®
1 (0) 1 (0) 1 (0) N [
190 Zaq Waqpy  9g 1001 Zaq WagPy  |og (001 Zaq Woqpy  |og ur | = | Yo
1 (0) 1 (0) 1 (0) ~ =
[0Q2] Zé‘q Waq¥o |8‘1 [0Q2] Zaq WoqP1 |8q 093] Zaq WoqPa |8q U2 U,

(13)
where 0€) denotes the length of the corresponding boundary face, dq indicates summation
over the corresponding boundary face quadratures, and %pq, is the mean value evaluated
on the corresponding boundary face of the target element after the boundary condition is

applied.

The same process is repeated to construct the other two linear polynomials ) and p®).

3. Project the three basis functions of the constructed linear polynomials onto the basis space of
the original polynomial of the target element, p(9); i.e., the (k + d)!/d! basis functions, where

k is the polynomial order, and d is the dimension.

4. Reconstruct the new WENO limiter as given in Eq. (5) with ¢ = 1,2, 3.

2.1.2. System case

1. Follow steps 1 and 2 given for the scalar case.
2. Project ]5(7), 7 =0,1,2,3 onto the characteristic fields
P = L9, (14)

where L; are the left eigenvectors based on the mean values of the target cell and the normal
direction 7. For a triangle, there are three normal directions corresponding to each face of the

element. Note: p(©) := p(®),



(O)new

3. Use ﬁ‘z , and follow steps 3 and 4 given for the scalar case, and evaluate p, for each

direction 1; i.e.,

PO =050 (wj - w(ﬂj) Y, j=1,23 i=123. (15)
70 7 70
4. Project ﬁgo)new back into the physical space
O new - O new

where R; are the right eigenvectors based on the mean values of the target cell and the normal

direction 1.

5. Obtain the final reconstructed WENO polynomial for the target cell with weighted averaging:

0 new
2 Al
where |A;| corresponds to the volume of the neighboring element for face i of the target

element. If the face is a boundary face, use the volume of the target element, |Ag|.

2.2. Polynomial reconstruction approach 2

In this section, a second approach in constructing the polynomials p(*) is presented. In this
approach, a constraint minimization problem is solved using the least squares (lsq) approach.
The proposed [sq linear polynomial reconstruction procedure for unstructured DG schemes is also
compact, and its implementation is nonintrusive similar to the first presented approach.

The aim here is to construct a set of linear polynomials, $5**7, on the target cell such that

2
argmmz <|Al /Al P59, x) dx—u(l)) . §=1{1,2,3}, (18)

where [ corresponds to the immediate neighbors of the target element, is satisfied subject to a
constraint that the means of the constructed polynomials remain the same as the means of the

original polynomials on the target element; i.e.,

/ P dx = . (19)
Ap

Thus, the following minimization problem is sought by employing a penalization parameter (called

Lagrange multiplier) A:

2
E(a;,\) = argmin Z P ag, 2)dx —uV ) + N ! (0, 2)dx —u® ) |,
Uj s l’ Al |AO‘ AO
(20)



where @; are the coefficients of the to-be-constructed linear polynomial for ith degrees of freedom,
dof, and |A;| is the volume of the neighbor [. The constraint minimization problem may be

expanded and expressed with employing proper quadrature rules as

E(t;, \) =
? 1
7.5020) a® .50 ,(0) (0)
ar mln Ui p; det J + A u;p; o wy | det J
o |5 (37 STl s - (5 35wl Pl
(21)
where wc(ll) is the weight of the quadrature for the ¢th quadrature point of the [th neighbor,
|det J|© = |Ag|® is the determinant of the Jacobian of the transformation from the reference

to the physical element of neighbor [, and %(271)

is the ¢th basis function in the reference element
of the target element extrapolated to the [th neighbor, and evaluated at the corresponding gth
quadrature point.

The minimization problem is solved by setting the derivatives of E w.r.t. the jth dof coefficient

u; and A to zero; i.e.,

OF Oﬁ\l l l ~ ~Oel 1 1 (1
aﬂj:?( Zq: g)]detJ|() |A|ZZ iPin g)]detJ|()—u()
”(m 2% 50)"16“'@)) =0 2

70 — 9
m |AO‘ZZUZ(‘01€I 0| det J|© 0. (23)

This may be expressed in a matrix form as

(01 (01 (0
Zl(ﬁfm‘ﬁg_})fm@g—})) ﬁbwﬁ)

~ a® ~(0—=1)
il _ 2 \uAl| I\Az| Y (24)
sym. 0 A a©
~~ S—— ~~
Aj; U; B;

where Aj; is a symmetric matrix, and X\ = \/2.
It is important to note that whenever the integration is performed on the neighbor element [, the

linear polynomial basis defined on the target element, »(©), must be extrapolated to the neighboring

element. This is emphasized in Eq. (24) by employing the notation cpg-o_ﬂ). For convenience and
simplicity in the discussion, however, this notation is removed in the subsequent text, and such
extrapolation is therefore assumed to be understood whenever the integration is performed on the
neighboring elements.

For interior triangular elements similar to one shown in Fig. la, the matrix Aj; is a symmetric

4x4 matrix, and U; and Bj are vectors of length four (three for dof + one for the constraint).

_ u(0>) ,



They take the following forms

Aji =
~(0))? ~(0) ~(0) ~(0) ~(0)
2 ﬁ (fAl %o ) 2 ﬁ fAz %o fIAzl DY \All2 fAl flﬁz\ |Ao| on %0
2
~(0
Sym. > ﬁ (fAl @g )) > W fAl ‘P1 fAl ‘P2 |A0| fAO g :
~(0)\2 ’
Sym. Sym. > aE (fAl 25 )> a7 Ja 2y
Sym. Sym. Sym. 0
(25)
N ~(0)
o 2z |Az| fAz
_ a®
vi= ", B = 2 A NG 2 . (26)
U2 Zz |UAZ| fAl ¥
A )

For triangular elements whose faces may be on boundaries, such as the one depicted in Fig. 1b,
where two of the target element faces are on the boundary, the set of neighbors in the linear
reconstruction is therefore | = {1,9Q, 002}, where 992 denotes the corresponding boundary face
of the target element that is on a boundary. For instance, consider the triangle shown in Fig. 1b, for

which the following expressions for the Aj; and its corresponding right-hand-side B; are obtained

1 o), 1 o), 1 o)
an=iap (L A7) + e (L) tome ([, 47) @
" 1A1|2<Aﬁ”0 002 \Uno, 0 ) T 1002 \ Uy, 70 (27)

—(1) _ _
u _0) . Uao, _(0) . Upn, _(0)

T~ Yy + vy + ©p 28
AL Jiay 70 10 Joa, 70 1090 Joq, T° (28)

By =

where ugg, is the mean value evaluated on the corresponding boundary face of the target element
after the boundary condition is applied. Note that 0€2; denotes that the integration is performed
on the corresponding boundary face of the target element and thus, no extrapolation is needed for
the last two terms of the expression (27); extrapolation must be applied to the first term of the
expression.

The complete step-by-step procedure with the second presented approach is outlined below:

2.2.1. Scalar case
1. Compute the means of the polynomials on the compact WENO stencil {0,1,2,3}. This is

the same as the step 1 of the approach 1.

2. Construct the p**? polynomial as outlined above.

w

3. Use p'%9, and follow steps 3 and 4 of approach 1, and evaluate p(@"™: i.e.,

new lsq
p(O) — @p(ﬂ) + (wlsq _ wO7> ﬁlsq7 (29)
Y0 Y0

9



2.2.2. System case

1.

Follow steps 1 and 2 given for the scaler case.

. Project (9 and $**? onto the characteristic field by multiplying them with the left eigenvectors

B = Li- 5, (30)
Pl = L - p, (31)
where L; are the left eigenvectors based on the mean values of the target cell and the normal

direction . For triangle, there are three normal directions corresponding to each face of the

element. Note: p(©) := p(®),

. Evaluate ﬁgo)mw for each direction i using 550) and ﬁisq; ie.,
SO _ G050 (wlsq o e ) jloa, (32)
o Yo
. Project ﬁgo)new back into the physical space
PO = Ry g0, (33)

where R; are the right eigenvectors based on the mean values of the target cell and the normal

direction 1.

. Obtain the final reconstructed WENO polynomial for the target cell with weighted averaging:

0 new
PO S
Sl

where |A;| corresponds to the volume of the neighboring element for face i of the target

(34)

element. If the face is a boundary face, use the volume of the target element, |Ag|.

3. Positivity Preserving Limiter (PPL) for Euler

The proposed WENO-DG does not necessary bound the density and pressure within their

physical values and thus, a proper bound preserving strategy must be adopted to avoid occurrences

of unphysical quantities in time and/or space. The bound preserving limiter must also preserve

the formal order of accuracy of the underlying DG scheme. Here, a positivity preserving algorithm

of Wang et al. [32] is adopted and applied to the polynomials in conjunction with the WENO

polynomial limiters. The presented PPL limiter for Euler equations, Eq. (1), is completely local

requiring only information within each element, and therefore, enabling an extremely efficient

parallel implementation. Similar to the presented WENO-DG, the given PPL procedure is also

nonintrusive and may be applied as a postprocessing step to the polynomials after each time

iteration. The step-by-step PPL procedure for DG methods is :

10



. Compute the means of the polynomials w = (p, pu, pE)7 on each element A

_ 1 '
wZ—A/Aw,, (35)

where, i = 0...(d 4+ 1) denotes the indices of the vector of conservative variables w, and d

refers to the dimension.

. Construct a new polynomial for density as following

5 =00 (p—7) + 7, 9(1):min{1,p_€}, 36
p (p—p)+p s R e (36)

where € is a small number, which is taken as 10~ in this study, and subscript ¢ denotes

values defined on Gauss-Lobatto quadrature points. This step enforces positivity for density.

. Create a new vector of conservative variables w with the new density polynomial p obtained

in the previous step

. Compute the following scaling factor for every quadrature point, ¢

0,(z) = 17 - ;p(W)%o . (38)
p(W)/ (p(W) — p(¥y(a))) : otherwise

. Limit the w polynomials to obtain w

w=02w-w)+w, 02= min (0 (). (39)
z€Eq

. Replace w with the limited polynomials w after each time iteration. For explicit time schemes

such as SSP RK, this procedure is applied after each RK stage.

4. Numerical Results

The limiters’” ability to achieve the desired order of accuracy is verified first using an inhomo-

geneous Euler system. A few sample examples are then presented to assess the performance of the

proposed limiters. These include the classical Riemann problems (Sod and Lax), the Shu-Osher

shock-density interactions, the Mach 3 wind tunnel case of Woodward and Colella [41], a Mach

3 two-strut scramjet, Mach 3 and Mach 10 blunt body problems, and the Mach 10 double Mach

reflection problem. In all the test cases presented here, the corresponding domains are discretized

11



with irregular triangular elements and simulations are carried with a CFL condition that is formally

proven to be stable [39] under the following condition

1

22k + 1) (40)

dt
AM— <
WS <

where ||A|| is the magnitude of the largest characteristic quantity of the hyperbolic system, dt is
the time step, h is the element size, and k is the polynomial order.

For each test case, the proposed WENO-DG schemes are applied and the predicted results
are shown for second-, third-, fourth-, and fifth-order solutions. The computed nonlinear weights

profiles are also presented.

4.1. Verification — Inhomogeneous FEuler

Consider the two-dimensional Euler equations
w,+ V- -f(w)=S, w(x,t=0)=wyx), (41)

with the vector of conservative variables w and the source S,

0.4 cos(z + y)
0.6 cos(x +
g ( Y) ’ (42)
0.6 cos(z + y)
1.8 cos(z + y)
in domain (z,y) € [0,27]. This system has the following exact steady state solution
p=1+02sin(zx+y), u=1, v=1, p=1+02sin(x+y), (43)

which is imposed on the domain boundaries. A series of randomly generated irregular triangular
grids is considered (see Fig. 2), and steady state solutions of the DG (Pk), k = 1,2, 3,4, scheme
with and without the presented WENO and PPL limiters are obtained. The convergence history
plots for third-, fourth-, and fifth-order cases shown in Figures 3 and 4 indicate that the residuals
have settled down to 107!2-1071% values (machine zero) for both presented WENO approaches.
Figure 5 shows the difference in residuals history for both explicit SSP (3,3) RK and implicit Euler
backward time discretization schemes.

The predicted high-order DG (Pk) solutions are also compared with the exact solution on the
given grids by computing the Lo error. The resulting Lo errors are tabulated in Tables 1-4 and
shown in Fig. 6. The Ly errors for both WENO limiters are identical to the decimal point shown
and therefore only one set of values are given. The WENO and positivity preserving limiters are

both applied to all the elements within the domain. The (k + 1)th order of accuracy for both

12
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Figure 2: A sample of randomly generated irregular triangular elements.
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Figure 3: Verification — Residual history for the coarsest mesh.
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Figure 4: Verification — Residual history for the finest mesh.
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DG and the WENO-DG schemes are verified, confirming that the proposed WENO maintains the
expected order of accuracy of the underlying DG (Pk) scheme. It is also interesting to note that the

presented error magnitudes are order of magnitude smaller than the corresponding results reported

with the third-, fourth-, and fifth-order WENO-FV schemes in Ref. [31].

Table 1: Verification — Order of accuracy verification for the second-order DG with and without WENO on irregular

triangular elements.

L Error: DG (P1) Order: DG (P1)

Grid h size
p pu pu pE p pu  pv  pE

20x20  2.66E-1 6.015E-3 6.323E-3 6.328E-3 2.056E-2 - - -
40x40  1.40E-1 1.452E-3 1.520E-3 1.524E-3 4.960E-3 221 222 221 222
60x60  8.93E-2 5.950E-4 6.279E-4 6.270E-4 2.056E-3 1.99 197 198 1.96
80x80  6.93E-2 3.422E-4 3.602E-4 3.595E-4 1.176E-3 218 219 219 220
100x100 5.61E-2 2.170E-4 2.255E-4 2.260E-4 7.449E-4 217 223 221 217

Ly Error: WENO-DG (P1) Order: WENO-DG (P1)
Grid h size

P pu pv pE p o pu  pv  pE
20x20  2.66E-1 6.015E-3 6.323E-3 6.328E-3 2.056E-2 - - -
40x40  1.40E-1 1.452E-3 1.520E-3 1.524E-3 4.960E-3  2.21 2.22 221 2.22
60x60 8.93E-2 5.950E-4 6.279E-4 6.270E-4 2.056E-3  1.99 1.97 198 1.96
80x80  6.93E-2 3.422E-4 3.602E-4 3.595E-4 1.176E-3 218 2.19 219 2.20
100x100 5.61E-2 2.170E-4 2.255E-4 2.260E-4 7.449E-4 217 223 221 2.17

4.2. Riemann problems

Here, a two-dimensional irregular triangular domain is considered to test the WENO scheme
against the classical one-dimensional Sod and Lax problems. The computational domain (z,y) €
(—0.5,—0.05) x (0.5,0.05) is discretized with triangular elements with a characteristic mesh size of
h/100; see Fig. 7. The two sates of the gas (7 = 1.4) are separated at x4 with the initial left and
right values given in Table 5. The proposed WENO-DG is then applied to these problems, and the
simulations are continued until the ;4 is reached.

Figures 8-13 show the predicted solutions, (p,u,p), against the exact Sod and Lax values.

The predicted fifth-order WENO-DG results are comparable with the fifth-order ADER-CWENO

scheme of Dumbser et. al [30].
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Table 2: Verification — Order of accuracy verification for the third-order DG with and without WENO on irregular

triangular elements.

Ly Error: DG (P2) Order: DG (P2)

Grid h size
p pu pv pE ppu  pv  pE

20%x20  2.66E-1 3.679E-4 2.752E-4 2.795E-4 1.153E-3 - - - -
40x40  1.40E-1 4.803E-5 3.425E-5 3.455E-5 1.497E-4 3.17 334 3.25 3.18
60x60  8.93E-2 1.438E-5 9.911E-6 9.873E-6 4.455E-5 269 276 279 2.70
80x80  6.93E-2 6.079E-6 4.237E-6 4.238E-6 1.885E-5 339 335 334 3.39
100x100 5.61E-2 3.123E-6 2.114E-6 2.120E-6 9.690E-6 3.17 331 329 3.16

Ly Error: WENO-DG (P2) Order: WENO-DG (P2)

Grid h size
p pu pv pE ppu pv  pE

20x20  2.66E-1 3.679E-4 2.752E-4 2.795E-4 1.153E-3 - - - -
40x40  1.40E-1 4.803E-5 3.425E-5 3.455E-5 1.497E-4 3.17 334 3.25 3.18
60x60  8.93E-2 1.438E-5 9.911E-6 9.873E-6 4.455E-5 269 276 279 2.70
80x80  6.93E-2 6.079E-6 4.237E-6 4.238E-6 1.885E-5 339 335 334 3.39
100x100 5.61E-2 3.123E-6 2.114E-6 2.120E-6 9.690E-6 3.17 331 329 3.16

Table 3: Verification — Order of accuracy verification for the fourth-order DG with and without WENO on irregular

triangular elements.

Ly Error: DG (P3) Order: DG (P3)

Grid h size
p pu pv pE p pu  pv  pE

20x20  2.66E-1 7.134E-6 7.199E-6 7.190E-6 2.358E-5 - - - -
40x40  1.40E-1 4.448E-7 4.377TE-7 4.385E-7 1.459E-6 4.32 436 435 4.33
60x60  8.93E-2 T7.258E-8 T7.195E-8 7.213E-8 2.418E-7 4.04 4.02 4.02 4.00
80x80  6.93E-2 2.374E-8 2.373E-8 2.365E-8 7.874E-8 4.41 437 440 4.42
100x100 5.61E-2 9.509E-9 9.330E-9 9.303E-9 3.145E-8 4.35 4.44 444 4.36

Ly Error: WENO-DG (P3) Order: WENO-DG (P3)

Grid h size
p pu pU pE p pu  pv  pE

20x20  2.66E-1 T7.176E-6 7.212E-6 7.221E-6 2.371E-5 - - - -
40x40  1.40E-1 4.426E-7 4.369E-7 4.374E-7 1.455E-6 4.33 4.36 435 4.34
60x60  8.93E-2 T7.273E-8 T7.206E-8 7.22TE-8 2.423E-7 4.02 4.01 4.01 3.99
80x80  6.93E-2 2373E-8 2.374E-8 2.367E-8 7.880E-8 4.42 438 440 4.43
100x100 5.61E-2 9.455E-9 9.326E-9 9.301E-9 3.137E-8 4.37 4.44 444 4.38
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Table 4: Verification — Order of accuracy verification for the fifth-order DG with and without WENO on irregular

triangular elements.

Ly Error: DG (P4) Order: DG (P4)
Grid h size

p pu pU pE p pu pv  pE
20x20 2.66E-1 2.285E-7  1.849E-7 1.879E-7  7.260E-7 -
40x40 1.40E-1 7.790E-9  5.853E-9  5.993E-7  2.455E-8 526 5.37 536 5.27
60x60 8.93E-2 9.745E-10 7.319E-10 7.275E-10  3.050E-9 4.63 4.63 4.70 4.65
80x80 6.93E-2 1.362E-10 1.779E-10 1.766E-10 7.412E-10  5.59 5.58 5.58 5.58

Ly Error: WENO-DG (P4) Order: WENO-DG (P4)

Grid h size
p pu pu pE p pu pv  pE

20x20 2.66E-1 2.285E-7 1.849E-7  1.879E-7  7.260E-7 -
40x40 1.40E-1 7.890E-9  5.853E-9  5.996E-7  2.455E-8 9.26 537 5.36 5.27
60x60 8.93E-2 1.034E-9 7.604E-10 7.532E-10 3.185E-9 4.50 4.55 4.62 4.55
80x80 6.93E-2 2.363E-10 1.780E-10 1.767E-10 7.413E-10 5.82 573 573 5.75

Table 5: Initial left (L) and right (R) states used for the Sod and Lax test cases. The position of the initial

discontinuity, 4 and final simulation times, tfinq are also given. See Fig. 7 for geometry information.

Test case  pr, ur, pL PR UR PR  Td tfinal
Sod 1.0 0.0 1.0 0.125 0.0 0.1 0.0 0.2
Lax 0.445 0.698 3.528 0.5 0.0 0.571 0.0 0.14
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comparison against the exact solution.
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4.8. Shu-Osher problem

The one-dimensional idealization of the shock-turbulence interaction suggested by Shu-Osher
[40] is considered in a two-dimensional framework. The goal of this test is to asses the proposed
limiters in capturing the shock wave and its interactions with the unsteady low frequency density
fluctuations and its waves propagations downstream of the shock. The computational domain
(x,y) € (—=5.0,—0.1) x (5.0,0.1) is discretized with triangular elements and a characteristic mesh
size of h/40. The domain is initialized as

(3.857143,2.629369, 0., 10.33333), = < 4.0,
(p,u, v, p)|t=0 = (44)

(1. 4+ 0.2sin(5z),0.,0.,1.), x > 4.0.
This corresponds to a Mach 3 shock (v = 1.4) interacting with the sine waves density field. The
results at ¢ = 1.8 are presented in Figs. 14-16. The fine structured of the shock-density wave

interactions are clearly captured by the proposed limiter.

4.4. Mach 8 forward facing step

Consider the forward facing step problem that was originally proposed by Woodward and Colella
[41]. This test is often referred to as the Mach 3 wind tunnel test. The computational domain is
shown in Fig. 17. The initial conditions corresponds to a uniform flow moving to the right with
Mach 3, (p,u,v,p) = (1.4,3.0,0.0,1.0). The inflow condition is imposed to the left boundary while
a do-nothing boundary condition is set to the right boundary. A reflecting boundary condition is
applied to other surfaces, and the flow is initialized with the left boundary values. The domain
(see Fig. 17) is discretized using irregular triangular elements with characteristic element size of
h/160. The high-order solutions at t = 4.0 are presented in Fig. 18. Note that no modification,
neither to the scheme nor to the grid resolution, is applied to the corner singularity. The corner
step singularity is known to produce an erroneous entropy layer in addition to spurious Mach stem
at the bottom wall. These artifacts are clearly present in the presented second-order result; the

predicted higher order solutions are almost free from these artifacts.

4.5. Scramjet

Consider a two-strut scramjet (see Fig. 19 and Table 6) with a Mach 3 inflow imposed on the
left surface boundary. For this test, the second proposed approach produced nearly machine zero
residuals as illustrated in Fig. 20. The corresponding density contours in the range of 1.5 and
8.0 are shown in Figure 21. These results are in agreement with the previously published results
[42, 43, 44] on a similar configuration; the exact geometrical information used in generating the

previously published articles was not known to the authors.
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(a) second-order (b) third-order

(c¢) fourth-order (d) fifth-order

Figure 18: High-order DG with proposed WENO and positivity preserving with irregular triangular elements (h =
1/160) for the forward facing step problem. Shown are 30 equidistance density contour lines at ¢ = 4.0 from 0.32 to
6.15. The corner step singularity neither in the scheme nor by the grid is treated to remove the known artifacts that

is present in the second-order result. These artifacts are largely removed in the higher-order results.

Table 6: The coordinates of the lower half portion of the two-strut scramjet geometry shown in Fig. 19.

Points 1 2 3 7 8 9 10 11

(z,y) (0,-3.5) (0.4,-3.5) (16.9,-1.74) (4.9-1.4) (12.6/-1.4) (14.25-1.2) (9.4,-0.5) (8.9,-0.5)

4.6. Mach 3 and 10 Blunt body flows

Consider a bluff body in an inviscid compressible flow traveling at Mach 3 and Mach 10. The
free stream condition is set to (p, u,v) = (1.4,3,0) with v = 1.4, and a reflecting boundary condition
is imposed on the solid surface. The bluff body (see Fig. 23) consists of a flat face with a unit
length [, and two curved shoulders with /2 radii.

Density contour lines are shown in Fig. 24 for both Mach 3 and Mach 10 flows. The plots of the
nonlinear weights along the stagnation line for each of the governing equations are shown in Fig. 25.

The strong shocks are correctly captured but there exists some waviness in the density contour
lines, particularly when the polynomial order and the intensity of the shock are increased. However,
these striation-like patterns, which are due to irregularity of the grid elements in the vicinity of the
shock, appear to have minimal effects on the surface quantities as illustrated in Fig. 26.  Further
improvement to the proposed WENO is needed to reduce these striation-like patterns in the post

shock regions. This will be reported in future studies.
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Figure 19: The geometry of the two-strut scramjet test case with a sample irregular grid with 10,000 vertices.

Coordinates of the lower half portion of the geometry is given in Table 6.
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Figure 20: Absolute value of the elemental residuals obtained with the second proposed WENO approach for the

Mach 3 two-strut scramjet test case.

(¢) fourth-order (d) fifth-order

Figure 21: Hundred equally spaced density contours in the range of 1.5 and 8.0 using the second presented WENO

approach for the Mach 3 two-strut scramjet test case with 10,000 unadapted irregular triangular elements.
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Figure 22: Nonlinear weights along the centerline of the Mach 3 two-strut scramjet problem.



Bow Shock

Figure 23: Schematic of the blunt body geometry and a sample irregular grid.

4.7. Double Mach refiection test case

The double Mach reflection problem is originally proposed by Woodward and Colella [41] as
a benchmark test for Euler solvers. The problem consists of a Mach 10 shock front that meets a
30-deg inclined ramp. The shock front initially sits at o = 1/6, and makes a 60-deg angle with
the reflecting wall (x-axis). The properties of the undisturbed air (y=1.4) ahead of the shock are
p =14 and p = 1. Hence, the shock speed is |us| = 10. As it is a customary, this problem is solved
in a computational domain (z,y) € [0,4] x [0, 1] with a coordinate system that is aligned with the
ramp; see Fig. 28. The domain is discretized with irregular triangular elements and a mesh size of
h = 1/200.

Considering the ramp-aligned coordinate system, the problem is therefore setup with the fol-
lowing initial condition:

(8.0,+8.25 cos(m/6), —8.25sin(7/6), 116.5), x < x4,

(pv u,'U,p)|t:0 - (45)
(1.4,0.0,0.0,1.0), z > x,,

where the shock position is computed as,
zs(y) = xo + y tan(mw/6). (46)

For the boundary conditions, the post-shock values are imposed for the short region from z = 0 to
xs along the lower boundary at y = 0, while for the rest of the lower boundary, a reflecting boundary
condition is imposed. This ensures that the reflecting shock is attached to the wall. The initial
post-shock condition is also assigned at the left boundary along the z = 0 axis. The boundary

condition on the upper boundary along the y = 1 axis consists of both pre- and post-shock values.
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(a) second-order (b) third-order (c) fourth-order (d) fifth-order
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(e) second-order (f) third-order (g) fourth-order (h) fifth-order

Figure 24: Thirty equally spaced density contours in the range of 1 and 8 for the Mech 3 (top row) and Mach 10

(bottom row) blunt body test cases.
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Figure 25: Nonlinear weights along the stagnation line of the Mach 10 blunt body problem.
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Figure 26: Top row: Mach 3. Bottom row: Mach 10; a,d) density profile along a line normal to the stagnation point,

b,e) surface density, and c,f) surface temperature. Data are extracted from a low-order visualization.

0 XZoh
0

Figure 27: Schematic of the double Mach reflection, and the computational domain (z,y) € [0,4] x [0,1] with the

ramp-aligned coordinate system.
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This boundary condition is imposed based on the exact positioning of the traveling Mach 10 shock;
i.e., xs|y=1 + |us|/cos(n/6)t. The readers are referred to Ref. [45] for discussions on the effects
of the upper boundary condition and the computational domain size on numerical artifacts in the
predicted solutions; such effects are not investigated in this study.

The density contours for a truncated domain (x,y) = [0, 3.2] x [0, 1] (the computational domain
extends to z = 4) with 41 equally spaced isolines from 1.5 to 22.5 at t = 0.2 are shown in Fig. 28
for the second-, third-, fourth-, and fifth-order WENO-DG. The closeup views of the triple Mach
points region, (z,y) € [2,2.9] x [0, 0.6], are shown in Fig. 29. The computed nonlinear weights along
the y = 0.3 is plotted in Fig. 30. Clearly, the complexity of the triple Mach points is captured by
the proposed limiters on the irregular triangular mesh. The quality of the solution improves with
increasing the polynomial order on the same identical irregular triangular mesh. The resolution
of the curled flow structures along the primary slip line, which is caused by its interactions with
the secondary reflected shock emanating from the secondary triple point, is often used for judging
the quality of the numerical scheme (see Ref. [45] for definitions of the primary and the secondary
triple points and slip lines). The presented results provide a remarkable curled flow structures
compared to solutions reported by Hu and Shu [21], Zhu et al. [46], and Dumbser et al. [30].
Further improvement in the WENO could reduce the noise in the predicted contour lines. Grid

adaptation could also enhance the results further.

5. Concluding Remarks

Two compact WENO limiters were proposed for DG schemes for irregular triangular elements,
and detailed step-by-step construction procedures were outlined. The WENO-DG limiters were
bounded with a compact bound-preserving limiter for the Euler equations. It was verified that
the proposed bounded WENO-DG polynomial limiters preserve the expected order of accuracy of
the underlying DG schemes when they are applied to smooth regions. A few test cases, including
the classical Riemann problems, Shu-Osher shock-turbulence interaction, scramjet, blunt body,
and double Mach reflection problems, involving strong shocks were performed, and the results
for second-, third-, fourth-, and fifth-order compact and bounded WENO-DG are presented. It
was shown that the second proposed WENO-DG is more effective for some problems in reducing
the elemental residual to machine zero than the first proposed limiter. Both limiters however
showed similar end results. The proposed limiter performed well in the Sod and the Lax problems.
The limiter also performed remarkably well capturing the high-frequency oscillations generated
by the shock-turbulence interactions in the Shu-Osher problem, as well as the complexity of the

triple Mack point and the curled flow structures in the double Mach reflection problem. Practical
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Figure 28: High-order DG with proposed WENO and positivity preserving with irregular triangular elements (h =
1/200) in (z,y) € [0,4] x [0, 1]. Shown are 41 equidistance density contour lines at ¢ = 0.2 from 1.5 to 22.5
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(a) second-order (b) third-order

29

(¢) fourth-order (d) fifth-order

Figure 29: High-order DG with proposed WENO and positivity preserving with irregular triangular elements (h =
1/200) in (z,y) € [0,4] x [0,1]. Shown are zoom-in views around the Mach stems at ¢ = 0.2 with 41 equidistance

density contour lines from 1.5 to 22.5.
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problems such as the two-strut scramjet and blunt body problems were reasonably predicted by

the proposed limiter. Blunt body surface quantiles showed nearly smooth solution predictions even

in the presence of striation-like patterns in the post shock regions due to irregularities of the grid

elements in the shock regions, and misalignment of the element faces with the bow shock. Further

improvement to the WENO polynomial limiter, and extensions to three-dimensional tetrahedral

elements will be reported in future studies.
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