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Abstract

Two new classes of compact weighted essentially nonoscillatory (WENO) polynomial limiters are

presented for second-, third-, fourth-, and fifth-order discontinuous Galerkin (DG) schemes on

purely irregular simplex elements. The presented WENO-DG procedures are extensions of the high-

order WENO finite-volume and finite-difference schemes of Zhu and Shu [JCP 349 (2017), pp. 80–

96; Shock Waves (2018)] to high-order unstructured DG schemes. A compact positivity preserving

limiter is applied to the solutions to ensure pressure and density remain within physical ranges at

all time. It is then verified that the bounded WENO-DG maintains the formal order of accuracy of

the underlying DG schemes in the smooth regions. The performance of the proposed WENO-DG is

also demonstrated with a few inviscid test cases including the classical Riemann problems, Shock-

turbulence interaction, Scramjet, blunt body flows, and the double Mach Reflection problems.

Keywords: CWENO, Unstructured Meshes, High-Order DG, Positivity-Preserving, Riemann

Problem, Shu-Osher

1. Introduction

Consider the unsteady compressible Euler equations for a perfect gas flow

wt +∇ · f(w) = 0, w(x, t = 0) = w0(x), (1)

where

w =


ρ

ρu

ρE

 , f(w) =


ρu

ρuuT + pI

ρuH

 , H = E +
p

ρ
, (2)
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ρ is density, u is the velocity vector in x directions, I is an identity matrix, and the total energy,

ρE, is defined as

ρE =
p

γ − 1
+

1

2
ρ||u||2, (3)

where p is the pressure and γ is the specific heat ratio.

In the present work, Eq. (1) may be spatially discretized with high-order discontinuous Galerkin

(DG) schemes on triangular elements, and applied to continuous and discontinuous flows. The

temporal term may be discretized with either the three stage, third-order strong stability preserving

SSP(3,3) Runge-Kutta (RK) [1, 2], or the backward Euler time discretization method.

As with many nonlinear partial differential equations, the solution of Eq. (1) may contain a

strong discontinuity with abrupt changes in physical quantities, such as density, pressure, and

temperature. The DG method produces accurate results if the solution is smooth and/or contains

(relatively) weak discontinuities, otherwise significant oscillations and/or nonlinear instabilities

may occur. To avoid such difficulties with numerical oscillations, the DG method needs to be

accompanied by, for example, a limiter strategy such as minmod [3, 4, 5, 6], artificial viscosity

[7, 8, 9, 10], total variation diminishing [11, 12, 13], or weighted essentially nonoscillatory (WENO)

[14, 15, 16, 17, 18, 19] techniques. The advantage of WENO type limiters is that they can be

compact, of high order, and more importantly do not affect the expected order of accuracy of the

underlying DG scheme if applied to smooth regions. Available WENO schemes are either non-

compact [20, 21, 14, 22, 16, 15, 23, 24], which is undesirable for DG methods, or have difficulties in

reducing the residuals [20, 21, 24]. The proposed WENO-FV and WENO-FD schemes of Zhu and

Shu [25, 26] address the convergence difficulties that are observed in the earlier WENO procedures

[27, 28].

Advancement in limiting procedures have also been reported for unstructured simplex elements.

For instance, Dumbser and Loubère [29] proposed a posteriori subcell finite volume limiter for DG

schemes on simplex elements, while a compact WENO limiter for ADER-FV schemes on fixed and

moving simplex elements is proposed by Dumbser et. al [30].

Here, two classes of compact WENO polynomial limiters are presented for DG methods on

simplex elements that may be considered extensions of the WENO-FV [25] and WENO-FD [31]

schemes. Although the original compact WENO limiters for finite volume and the finite difference

schemes rely on an extended stencil for polynomial reconstruction, the main idea behind the com-

pact WENO for DG schemes is to construct a limited polynomial directly from the underlying DG

scheme. The compact WENO-DG limiters presented here, therefore, require a stencil only as large

as (nfaces)(0) + 1 number of elements, where (nfaces)(0) corresponds to the number of faces of

the elements in which the limiter is being applied. For example, for triangles, the compact WENO
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stencil has only up to 4 elements (see also Fig. 1). In the first proposed approach, the compact

stencil is considered, and a series of linear polynomials is constructed by solving a (dof × dof)

linear system, where dof denotes degrees of freedom. In the second approach, a linear polynomial

is constructed by solving a series of constraint least-squares (LSQ) minimization problems within

the compact stencil. In both approaches, a WENO polynomial limiter is obtained with a convex

combination of the original polynomial and the constructed linear polynomials that are added using

nonlinear weights. The numerical fluxes are evaluated with the Local Lax-Friedrichs (LLxF) flux,

and a compact positivity preserving limiter [32] is also applied to the solutions to ensure pressure

and density remain bounded and physical at all time.

The paper is organized as follows. Section 2 describes in detail the proposed compact WENO

polynomial limiters for unstructured DG schemes with simplex elements. The positivity preserving

limiter for the Euler equations is briefly discussed in Section 3. A few sample problems, ranging

from the classical Sod and Lax problems to blunt body flows and double Mach reflection test case,

are presented in Section 4. The concluding remarks are given in Section 5.

2. Proposed WENO-DG polynomial limiters

Two new classes of compact WENO polynomial limiters are proposed here for unstructured

DG schemes. These schemes are in part inspired by the recent successful WENO finite difference

and finite volume procedures of Zhu and Shu [25, 26], which are extensions and steady state

computations of the earlier works reported by Zhu and Qiu [28, 33, 34, 25] and Levy et al. [27].

The proposed WENO procedures are designed for simplex elements, and are compact, requiring

information only from the immediate neighbors. For each presented approach, a detailed step-by-

step procedure is outlined that may be used for implementation of the WENO as a post-processing

step to the DG solution after each time iteration.

Consider a compact triangular stencil {0, 1, 2, 3} as shown in Fig. 1, where the element 0 is

the target element for which the limiter is applied. The goal is to reconstruct a new candidate

polynomial for the target element, p(0)new, that is nonoscillatory in the presence of discontinuities,

and dependent only on the available information within the compact stencil. We remark that the

polynomials defined throughout this document are defined with a set of basis functions expressed

in a reference element.

The original polynomial on the target element, p(0), may be expressed in the following identity

relation as

p̃(0) := p(0) = γ0

(
1

γ0
p(0) −

∑
i

γi
γ0
p̃(i)

)
+
∑
i

γi p̃
(i), (4)
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Figure 1: The compact WENO-DG stencil for triangular elements.

which holds for arbitrary positive coefficients γj satisfying
∑3

j=0 γj = 1, where, γj , are the linear

weights defined as

γ0 = 0.997, γj = 0.001 (j 6= 0),

and the p̃(i) are the to-be-reconstructed polynomials for the elements i = 1, 2, 3 (i.e., the immediate

neighbors of the target element). The p̃(i) reconstruction procedures are discussed in detail later.

The linear weights are then replaced with the nonlinear weights, ω, and the following reconstructed

candidate polynomial is sought for the target element 4

p(0)new = ω0

(
1

γ0
p(0) −

∑
i

γi
γ0
p̃(i)

)
+
∑
i

ωi p̃
(i), (5)

where the nonlinear weights are computed by adopting the high-order WENO-FD [25] and WENO-

FV [26] techniques of Zhu and Shu for the present WENO-DG schemes. These techniques are based

on the WENO-Z strategy given in Refs. [35, 36, 37]. The nonlinear weights are then defined as

ωi =
ωi∑
j ωj

, ωj = γj

(
1 +

τ

(ε+ βj)2

)
, τ =

(∑
i |β0 − βi|
n

)2

, (6)

where n is the total number of reconstructed polynomials used in constructing the WENO polyno-

mial p(0)new as given in Eq. (5) (i.e., maximum integer value of i) plus the polynomial of the target

element ∆0. Here ε = 10−12 is a small number to avoid zero demoninator, and β is the classical

smoothness indicator defined as (see e.g., Jiang and Shu [20] and Kolb [38])

βi =

k∑
|l|=1

|∆0|(|l|−1)

∫
∆0

(
∂|l|

∂xl1 ∂yl2
p̃(i)

)2

, l = (l1, l2), (7)

where k denotes the polynomial order, and |∆0| is the volume of the target element.

4Classical trouble cell indicators are not employed in the presented examples and therefore, the proposed WENO

is applied to all the computational elements. Hence, all the elements in the computational domain are considered as

target elements. This approach is beneficial in ensuring that the proposed WENO does not affect the desired order

of accuracy of the DG scheme even if it is applied to smooth region.
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The above procedure is complete with reconstruction of the polynomials p̃(i). This is discussed

next where two compact reconstruction approaches are presented in details.

2.1. Polynomial reconstruction approach 1

In this section, a procedure to reconstruct a set of polynomials, p̃(i), is described in details. The

reconstructed polynomials are used for the WENO polynomial limiter given by Eq. (5). First, a

procedure for a scalar case is given followed by a system case.

2.1.1. Scalar case

1. Compute the means of the polynomials on the compact WENO stencil {0, 1, 2, 3}:

u(i) =
1

|∆i|

∫
∆i

p(i), i = 0, 1, 2, 3, (8)

where ∆i denotes neighboring elements with corresponding volume of |∆i|. For boundary

elements, first obtain the right values uR by applying the boundary condition along the

boundary face, and then integrate uR to get the mean values. If the boundary is an outflow,

for example a supersonic outflow, on which we do nothing, integrate the left values uL on the

boundary face to get the corresponding mean values.

2. Construct a set of linear polynomials, p̃(j), such that

1

|∆i|

∫
∆i

p̃(j) = u(i), (9)

where i corresponds to the element number in the compact WENO stencil (see Fig. 1), and

j refers to the candidate linear polynomial number. For a triangle, we have three such

candidates, and for each candidate, we use the elements in the ith set to construct a linear

polynomial p̃(j):

(j, i) := (1, {0, 1, 2}); (2, {0, 1, 3}); (3, {0, 2, 3}). (10)

Remark: All the reconstructed linear polynomials are defined within the target element,

with the basis functions, ϕ̃, also defined on the target element. Such basis functions are

denoted as ϕ̃
(0)
i . For example, consider the j = 1 polynomial, p̃(1). This is defined as

p̃(1) =

2∑
i=0

ũiϕ̃
(0)
i . (11)

This polynomial is then used for evaluation of the integral given in Eq. (9) with appropriate

quadrature rules. The elements in the ith set {0, 1, 2} are needed in the construction of

the polynomial p̃(1). Therefore, a 3x3 linear system is solved to obtain the three coefficients
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(degrees of freedom) of the reconstructed linear polynomial. Thus, for the j and ith set used

in this example, the following linear system is solved:
1
|∆0|

∑
q wqϕ

(0)
0 |q 1

|∆0|
∑

q wqϕ
(0)
1 |q 1

|∆0|
∑

q wqϕ
(0)
2 |q

1
|∆1|

∑
q wqϕ

(0→1)
0 |q 1

|∆1|
∑

q wqϕ
(0→1)
1 |q 1

|∆1|
∑

q wqϕ
(0→1)
2 |q

1
|∆2|

∑
q wqϕ

(0→2)
0 |q 1

|∆2|
∑

q wqϕ
(0→2)
1 |q 1

|∆2|
∑

q wqϕ
(0→2)
2 |q



ũ0

ũ1

ũ2

 =


u(0)

u(1)

u(2)

 , (12)

where subscript q denotes summation over the element quadrature points, wq corresponds to

the quadrature weights, and the arrow indicates the extrapolation of the basis onto the neigh-

bor elements 1 and 2. The above system is valid for interior elements as shown in Fig. 1a. For

elements that have faces on physical boundaries, the above system (12) takes a different form.

For instance, consider ith set {1, ∂Ω1, ∂Ω2} where ∂Ω denotes the corresponding boundary

face of the target element that is on a boundary. In this case, the system (12) reduces to
1
|∆0|

∑
q wqϕ

(0)
0 |q 1

|∆0|
∑

q wqϕ
(0)
1 |q 1

|∆0|
∑

q wqϕ
(0)
2 |q

1
|∂Ω1|

∑
∂q w∂qϕ

(0)
0 |∂q 1

|∂Ω1|
∑

∂q w∂qϕ
(0)
1 |∂q 1

|∂Ω1|
∑

∂q w∂qϕ
(0)
2 |∂q

1
|∂Ω2|

∑
∂q w∂qϕ

(0)
0 |∂q 1

|∂Ω2|
∑

∂q w∂qϕ
(0)
1 |∂q 1

|∂Ω2|
∑

∂q w∂qϕ
(0)
2 |∂q



ũ0

ũ1

ũ2

 =


u(0)

u∂Ω1

u∂Ω2

 .

(13)

where ∂Ω denotes the length of the corresponding boundary face, ∂q indicates summation

over the corresponding boundary face quadratures, and u∂Ωl is the mean value evaluated

on the corresponding boundary face of the target element after the boundary condition is

applied.

The same process is repeated to construct the other two linear polynomials p̃(2) and p̃(3).

3. Project the three basis functions of the constructed linear polynomials onto the basis space of

the original polynomial of the target element, p(0); i.e., the (k + d)!/d! basis functions, where

k is the polynomial order, and d is the dimension.

4. Reconstruct the new WENO limiter as given in Eq. (5) with i = 1, 2, 3.

2.1.2. System case

1. Follow steps 1 and 2 given for the scalar case.

2. Project p̃(j), j = 0, 1, 2, 3 onto the characteristic fields

˜̃p
(j)
i = Li · p̃(j), (14)

where Li are the left eigenvectors based on the mean values of the target cell and the normal

direction i. For a triangle, there are three normal directions corresponding to each face of the

element. Note: p̃(0) := p(0).
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3. Use ˜̃pji , and follow steps 3 and 4 given for the scalar case, and evaluate p̃
(0)new

i for each

direction i; i.e.,

p̃
(0)new

i =
ω0

γ0

˜̃p
(0)
i +

∑
j

(
ωj − ω0

γj
γ0

)
˜̃p
(j)
i , j = 1, 2, 3, i = 1, 2, 3 . (15)

4. Project p̃
(0)new

i back into the physical space

p
(0)new

i = Ri · p̃(0)new

i , (16)

where Ri are the right eigenvectors based on the mean values of the target cell and the normal

direction i.

5. Obtain the final reconstructed WENO polynomial for the target cell with weighted averaging:

p(0)new =

∑
i p

(0)new

i |∆i|∑
i |∆i|

, (17)

where |∆i| corresponds to the volume of the neighboring element for face i of the target

element. If the face is a boundary face, use the volume of the target element, |∆0|.

2.2. Polynomial reconstruction approach 2

In this section, a second approach in constructing the polynomials p̃(i) is presented. In this

approach, a constraint minimization problem is solved using the least squares (lsq) approach.

The proposed lsq linear polynomial reconstruction procedure for unstructured DG schemes is also

compact, and its implementation is nonintrusive similar to the first presented approach.

The aim here is to construct a set of linear polynomials, p̃lsq, on the target cell such that

argmin
ũ

∑
l∈S

(
1

|∆l|

∫
∆l

p̃lsq(ũ, x) dx− u(l)

)2

, S = {1, 2, 3} , (18)

where l corresponds to the immediate neighbors of the target element, is satisfied subject to a

constraint that the means of the constructed polynomials remain the same as the means of the

original polynomials on the target element; i.e.,∫
∆0

p̃lsq dx = u(0). (19)

Thus, the following minimization problem is sought by employing a penalization parameter (called

Lagrange multiplier) λ:

E(ũi, λ) = argmin
ũi

[∑
l∈S

(
1

|∆l|

∫
∆l

p̃lsq(ũi, x) dx− u(l)

)2

+ λ

(
1

|∆0|

∫
∆0

p̃lsq(ũi, x) dx− u(0)

)]
,

(20)
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where ũi are the coefficients of the to-be-constructed linear polynomial for ith degrees of freedom,

dof , and |∆l| is the volume of the neighbor l. The constraint minimization problem may be

expanded and expressed with employing proper quadrature rules as

E(ũi, λ) =

argmin
ũi

∑
l∈S

(
1

|∆l|
∑
i

∑
q

ũiϕ̃
(0→l)
i,q ω(l)

q | det J |(l) − u(l)

)2

+ λ

(
1

|∆0|
∑
i

∑
q

ũiϕ̃
(0)
i,q ω

(0)
q | det J |(0) − u(0)

) ,
(21)

where ω
(l)
q is the weight of the quadrature for the qth quadrature point of the lth neighbor,

| det J |(l) = |∆0|(l) is the determinant of the Jacobian of the transformation from the reference

to the physical element of neighbor l, and ϕ
(0→l)
i,q is the ith basis function in the reference element

of the target element extrapolated to the lth neighbor, and evaluated at the corresponding qth

quadrature point.

The minimization problem is solved by setting the derivatives of E w.r.t. the jth dof coefficient

ũj and λ to zero; i.e.,

∂E

∂ũj
=
∑
l

(
1

|∆l|
∑
q

ϕ̃
(0→l)
j,q ω(l)

q | det J |(l)
)(

1

|∆l|
∑
i

∑
q

ũiϕ̃
(0→l)
i,q ω(l)

q | det J |(l) − u(l)

)

+ λ̃

(
1

|∆0|
∑
q

ϕ̃
(0)
j,q ω

(0)
q | det J |(0)

)
= 0, (22)

∂E

∂λ
=

1

|∆0|
∑
i

∑
q

ũiϕ̃
(0)
i,q ω

(0)
q | det J |(0) − u(0) = 0. (23)

This may be expressed in a matrix form as∑l

(
1
|∆l|2

∫
∆l
ϕ̃

(0→l)
j

∫
∆l
ϕ̃

(0→l)
i

)
1
|∆0|

∫
∆0
ϕ̃

(0)
j

sym. 0


︸ ︷︷ ︸

Aji

ũi
λ̃


︸ ︷︷ ︸

Ui

=

∑l
u(l)

|∆l|
∫
|∆l| ϕ̃

(0→l)
j

u(0)


︸ ︷︷ ︸

Bj

, (24)

where Aji is a symmetric matrix, and λ̃ = λ/2.

It is important to note that whenever the integration is performed on the neighbor element l, the

linear polynomial basis defined on the target element, ϕ̃(0), must be extrapolated to the neighboring

element. This is emphasized in Eq. (24) by employing the notation ϕ
(0→l)
j . For convenience and

simplicity in the discussion, however, this notation is removed in the subsequent text, and such

extrapolation is therefore assumed to be understood whenever the integration is performed on the

neighboring elements.

For interior triangular elements similar to one shown in Fig. 1a, the matrix Aji is a symmetric

4×4 matrix, and Ui and Bj are vectors of length four (three for dof + one for the constraint).
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They take the following forms

Aji =

∑
l

1
|∆l|2

(∫
∆l
ϕ̃

(0)
0

)2 ∑
l

1
|∆l|2

∫
∆l
ϕ̃

(0)
0

∫
|∆l| ϕ̃

(0)
1

∑
l

1
|∆l|2

∫
∆l
ϕ̃

(0)
0

∫
|∆l| ϕ̃

(0)
2

1
|∆0|

∫
∆0
ϕ̃

(0)
0

Sym.
∑

l
1
|∆l|2

(∫
∆l
ϕ̃

(0)
1

)2 ∑
l

1
|∆l|2

∫
∆l
ϕ̃

(0)
1

∫
∆l
ϕ̃

(0)
2

1
|∆0|

∫
∆0
ϕ̃

(0)
1

Sym. Sym.
∑

l
1
|∆l|2

(∫
∆l
ϕ̃

(0)
2

)2
1
|∆0|

∫
∆0
ϕ̃

(0)
2

Sym. Sym. Sym. 0


,

(25)

Ui =


ũ0

ũ1

ũ2

λ̃

 , Bj =



∑
l
u(l)

|∆l|
∫

∆l
ϕ̃

(0)
0∑

l
u(l)

|∆l|
∫

∆l
ϕ̃

(0)
1∑

l
u(l)

|∆l|
∫

∆l
ϕ̃

(0)
2

u(0)

 . (26)

For triangular elements whose faces may be on boundaries, such as the one depicted in Fig. 1b,

where two of the target element faces are on the boundary, the set of neighbors in the linear

reconstruction is therefore l = {1, ∂Ω1, ∂Ω2}, where ∂Ω denotes the corresponding boundary face

of the target element that is on a boundary. For instance, consider the triangle shown in Fig. 1b, for

which the following expressions for the A11 and its corresponding right-hand-side B1 are obtained

A11 =
1

|∆1|2

(∫
∆1

ϕ̃
(0)
0

)2

+
1

|∂Ω1|2

(∫
∂Ω1

ϕ̃
(0)
0

)2

+
1

|∂Ω2|2

(∫
∂Ω2

ϕ̃
(0)
0

)2

, (27)

B1 =
u(1)

|∆1|

∫
|∆1|

ϕ̃
(0)
0 +

u∂Ω1

|∂Ω1|

∫
∂Ω1

ϕ̃
(0)
0 +

u∂Ω2

|∂Ω2|

∫
∂Ω2

ϕ̃
(0)
0 , (28)

where u∂Ωl is the mean value evaluated on the corresponding boundary face of the target element

after the boundary condition is applied. Note that ∂Ωl denotes that the integration is performed

on the corresponding boundary face of the target element and thus, no extrapolation is needed for

the last two terms of the expression (27); extrapolation must be applied to the first term of the

expression.

The complete step-by-step procedure with the second presented approach is outlined below:

2.2.1. Scalar case

1. Compute the means of the polynomials on the compact WENO stencil {0, 1, 2, 3}. This is

the same as the step 1 of the approach 1.

2. Construct the p̃lsq polynomial as outlined above.

3. Use p̃lsq, and follow steps 3 and 4 of approach 1, and evaluate p̃(0)new ; i.e.,

p(0)new =
ω0

γ0
p(0) +

(
ωlsq − ω0

γlsq

γ0

)
p̃lsq, (29)
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2.2.2. System case

1. Follow steps 1 and 2 given for the scaler case.

2. Project p̃(0) and p̃lsq onto the characteristic field by multiplying them with the left eigenvectors

˜̃p
(0)
i = Li · p̃(0), (30)

˜̃plsqi = Li · p̃lsq, (31)

where Li are the left eigenvectors based on the mean values of the target cell and the normal

direction i. For triangle, there are three normal directions corresponding to each face of the

element. Note: p̃(0) := p(0).

3. Evaluate p̃
(0)new

i for each direction i using ˜̃p
(0)
i and ˜̃plsqi ; i.e.,

p̃
(0)new

i =
ω0

γ0

˜̃p
(0)
i +

(
ωlsq − ω0

γlsq

γ0

)
˜̃plsqi . (32)

4. Project p̃
(0)new

i back into the physical space

p
(0)new

i = Ri · p̃(0)new

i , (33)

where Ri are the right eigenvectors based on the mean values of the target cell and the normal

direction i.

5. Obtain the final reconstructed WENO polynomial for the target cell with weighted averaging:

p(0)new =

∑
i p

(0)new

i |∆i|∑
i |∆i|

, (34)

where |∆i| corresponds to the volume of the neighboring element for face i of the target

element. If the face is a boundary face, use the volume of the target element, |∆0|.

3. Positivity Preserving Limiter (PPL) for Euler

The proposed WENO-DG does not necessary bound the density and pressure within their

physical values and thus, a proper bound preserving strategy must be adopted to avoid occurrences

of unphysical quantities in time and/or space. The bound preserving limiter must also preserve

the formal order of accuracy of the underlying DG scheme. Here, a positivity preserving algorithm

of Wang et al. [32] is adopted and applied to the polynomials in conjunction with the WENO

polynomial limiters. The presented PPL limiter for Euler equations, Eq. (1), is completely local

requiring only information within each element, and therefore, enabling an extremely efficient

parallel implementation. Similar to the presented WENO-DG, the given PPL procedure is also

nonintrusive and may be applied as a postprocessing step to the polynomials after each time

iteration. The step-by-step PPL procedure for DG methods is :
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1. Compute the means of the polynomials w = (ρ, ρu, ρE)T on each element ∆

wi =
1

∆

∫
∆
wi, (35)

where, i = 0 . . . (d + 1) denotes the indices of the vector of conservative variables w, and d

refers to the dimension.

2. Construct a new polynomial for density as following

ρ̂ = θ(1) (ρ− ρ) + ρ, θ(1) = min
x∈q

{
1,

ρ− ε
ρ− ρq(x)

}
, (36)

where ε is a small number, which is taken as 10−13 in this study, and subscript q denotes

values defined on Gauss-Lobatto quadrature points. This step enforces positivity for density.

3. Create a new vector of conservative variables ŵ with the new density polynomial ρ̂ obtained

in the previous step

ŵ =


ρ̂

ρu

ρE

 , (37)

4. Compute the following scaling factor for every quadrature point, q

θq(x) =

 1 : p(ŵ) ≥ 0

p(w)/ (p(w)− p(ŵq(x))) : otherwise
. (38)

5. Limit the ŵ polynomials to obtain w̃

w̃ = θ(2) (ŵ −w) + w, θ(2) = min
x∈q

(θq(x)) . (39)

6. Replace w with the limited polynomials w̃ after each time iteration. For explicit time schemes

such as SSP RK, this procedure is applied after each RK stage.

4. Numerical Results

The limiters’ ability to achieve the desired order of accuracy is verified first using an inhomo-

geneous Euler system. A few sample examples are then presented to assess the performance of the

proposed limiters. These include the classical Riemann problems (Sod and Lax), the Shu-Osher

shock-density interactions, the Mach 3 wind tunnel case of Woodward and Colella [41], a Mach

3 two-strut scramjet, Mach 3 and Mach 10 blunt body problems, and the Mach 10 double Mach

reflection problem. In all the test cases presented here, the corresponding domains are discretized
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with irregular triangular elements and simulations are carried with a CFL condition that is formally

proven to be stable [39] under the following condition

||λ||dt
h
≤ 1

2(2k + 1)
, (40)

where ||λ|| is the magnitude of the largest characteristic quantity of the hyperbolic system, dt is

the time step, h is the element size, and k is the polynomial order.

For each test case, the proposed WENO-DG schemes are applied and the predicted results

are shown for second-, third-, fourth-, and fifth-order solutions. The computed nonlinear weights

profiles are also presented.

4.1. Verification – Inhomogeneous Euler

Consider the two-dimensional Euler equations

wt +∇ · f(w) = S, w(x, t = 0) = w0(x), (41)

with the vector of conservative variables w and the source S,

S =


0.4 cos(x+ y)

0.6 cos(x+ y)

0.6 cos(x+ y)

1.8 cos(x+ y)

 , (42)

in domain (x, y) ∈ [0, 2π]. This system has the following exact steady state solution

ρ = 1 + 0.2 sin(x+ y), u = 1, v = 1, p = 1 + 0.2 sin(x+ y), (43)

which is imposed on the domain boundaries. A series of randomly generated irregular triangular

grids is considered (see Fig. 2), and steady state solutions of the DG (Pk), k = 1, 2, 3, 4, scheme

with and without the presented WENO and PPL limiters are obtained. The convergence history

plots for third-, fourth-, and fifth-order cases shown in Figures 3 and 4 indicate that the residuals

have settled down to 10−12–10−15 values (machine zero) for both presented WENO approaches.

Figure 5 shows the difference in residuals history for both explicit SSP (3,3) RK and implicit Euler

backward time discretization schemes.

The predicted high-order DG (Pk) solutions are also compared with the exact solution on the

given grids by computing the L2 error. The resulting L2 errors are tabulated in Tables 1–4 and

shown in Fig. 6. The L2 errors for both WENO limiters are identical to the decimal point shown

and therefore only one set of values are given. The WENO and positivity preserving limiters are

both applied to all the elements within the domain. The (k + 1)th order of accuracy for both

12



Figure 2: A sample of randomly generated irregular triangular elements.

(a) DG(P2) (b) DG(P3) (c) DG(P4)

(d) WENO-DG(P2) (approach 1) (e) WENO-DG(P3) (approach 1) (f) WENO-DG(P4) (approach 1)

(g) WENO-DG(P2) (approach 2) (h) WENO-DG(P3) (approach 2) (i) WENO-DG(P4) (approach 2)

Figure 3: Verification – Residual history for the coarsest mesh.
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(a) DG(P2) (b) DG(P3) (c) DG(P4)

(d) WENO-DG(P2) (approach 1) (e) WENO-DG(P3) (approach 1) (f) WENO-DG(P4) (approach 1)

(g) WENO-DG(P2) (approach 2) (h) WENO-DG(P3) (approach 2) (i) WENO-DG(P4) (approach 2)

Figure 4: Verification – Residual history for the finest mesh.

(a) Explicit; SSP(3,3) RK (b) Implicit; Backward Euler

Figure 5: Example 1 – Residual history for a) third-order strong stability preserving (SSP) Runge-Kutta time scheme,

and b) Backward Euler time scheme.
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DG and the WENO-DG schemes are verified, confirming that the proposed WENO maintains the

expected order of accuracy of the underlying DG (Pk) scheme. It is also interesting to note that the

presented error magnitudes are order of magnitude smaller than the corresponding results reported

with the third-, fourth-, and fifth-order WENO-FV schemes in Ref. [31].

Table 1: Verification – Order of accuracy verification for the second-order DG with and without WENO on irregular

triangular elements.

Grid h size
L2 Error: DG (P1) Order: DG (P1)

ρ ρu ρv ρE ρ ρu ρv ρE

20×20 2.66E-1 6.015E-3 6.323E-3 6.328E-3 2.056E-2 – – – –

40×40 1.40E-1 1.452E-3 1.520E-3 1.524E-3 4.960E-3 2.21 2.22 2.21 2.22

60×60 8.93E-2 5.950E-4 6.279E-4 6.270E-4 2.056E-3 1.99 1.97 1.98 1.96

80×80 6.93E-2 3.422E-4 3.602E-4 3.595E-4 1.176E-3 2.18 2.19 2.19 2.20

100×100 5.61E-2 2.170E-4 2.255E-4 2.260E-4 7.449E-4 2.17 2.23 2.21 2.17

Grid h size
L2 Error: WENO-DG (P1) Order: WENO-DG (P1)

ρ ρu ρv ρE ρ ρu ρv ρE

20×20 2.66E-1 6.015E-3 6.323E-3 6.328E-3 2.056E-2 – – – –

40×40 1.40E-1 1.452E-3 1.520E-3 1.524E-3 4.960E-3 2.21 2.22 2.21 2.22

60×60 8.93E-2 5.950E-4 6.279E-4 6.270E-4 2.056E-3 1.99 1.97 1.98 1.96

80×80 6.93E-2 3.422E-4 3.602E-4 3.595E-4 1.176E-3 2.18 2.19 2.19 2.20

100×100 5.61E-2 2.170E-4 2.255E-4 2.260E-4 7.449E-4 2.17 2.23 2.21 2.17

4.2. Riemann problems

Here, a two-dimensional irregular triangular domain is considered to test the WENO scheme

against the classical one-dimensional Sod and Lax problems. The computational domain (x, y) ∈

(−0.5,−0.05)× (0.5, 0.05) is discretized with triangular elements with a characteristic mesh size of

h/100; see Fig. 7. The two sates of the gas (γ = 1.4) are separated at xd with the initial left and

right values given in Table 5. The proposed WENO-DG is then applied to these problems, and the

simulations are continued until the tfinal is reached.

Figures 8–13 show the predicted solutions, (ρ, u, p), against the exact Sod and Lax values.

The predicted fifth-order WENO-DG results are comparable with the fifth-order ADER-CWENO

scheme of Dumbser et. al [30].
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Table 2: Verification – Order of accuracy verification for the third-order DG with and without WENO on irregular

triangular elements.

Grid h size
L2 Error: DG (P2) Order: DG (P2)

ρ ρu ρv ρE ρ ρu ρv ρE

20×20 2.66E-1 3.679E-4 2.752E-4 2.795E-4 1.153E-3 – – – –

40×40 1.40E-1 4.803E-5 3.425E-5 3.455E-5 1.497E-4 3.17 3.34 3.25 3.18

60×60 8.93E-2 1.438E-5 9.911E-6 9.873E-6 4.455E-5 2.69 2.76 2.79 2.70

80×80 6.93E-2 6.079E-6 4.237E-6 4.238E-6 1.885E-5 3.39 3.35 3.34 3.39

100×100 5.61E-2 3.123E-6 2.114E-6 2.120E-6 9.690E-6 3.17 3.31 3.29 3.16

Grid h size
L2 Error: WENO-DG (P2) Order: WENO-DG (P2)

ρ ρu ρv ρE ρ ρu ρv ρE

20×20 2.66E-1 3.679E-4 2.752E-4 2.795E-4 1.153E-3 – – – –

40×40 1.40E-1 4.803E-5 3.425E-5 3.455E-5 1.497E-4 3.17 3.34 3.25 3.18

60×60 8.93E-2 1.438E-5 9.911E-6 9.873E-6 4.455E-5 2.69 2.76 2.79 2.70

80×80 6.93E-2 6.079E-6 4.237E-6 4.238E-6 1.885E-5 3.39 3.35 3.34 3.39

100×100 5.61E-2 3.123E-6 2.114E-6 2.120E-6 9.690E-6 3.17 3.31 3.29 3.16

Table 3: Verification – Order of accuracy verification for the fourth-order DG with and without WENO on irregular

triangular elements.

Grid h size
L2 Error: DG (P3) Order: DG (P3)

ρ ρu ρv ρE ρ ρu ρv ρE

20×20 2.66E-1 7.134E-6 7.199E-6 7.190E-6 2.358E-5 – – – –

40×40 1.40E-1 4.448E-7 4.377E-7 4.385E-7 1.459E-6 4.32 4.36 4.35 4.33

60×60 8.93E-2 7.258E-8 7.195E-8 7.213E-8 2.418E-7 4.04 4.02 4.02 4.00

80×80 6.93E-2 2.374E-8 2.373E-8 2.365E-8 7.874E-8 4.41 4.37 4.40 4.42

100×100 5.61E-2 9.509E-9 9.330E-9 9.303E-9 3.145E-8 4.35 4.44 4.44 4.36

Grid h size
L2 Error: WENO-DG (P3) Order: WENO-DG (P3)

ρ ρu ρv ρE ρ ρu ρv ρE

20×20 2.66E-1 7.176E-6 7.212E-6 7.221E-6 2.371E-5 – – – –

40×40 1.40E-1 4.426E-7 4.369E-7 4.374E-7 1.455E-6 4.33 4.36 4.35 4.34

60×60 8.93E-2 7.273E-8 7.206E-8 7.227E-8 2.423E-7 4.02 4.01 4.01 3.99

80×80 6.93E-2 2.373E-8 2.374E-8 2.367E-8 7.880E-8 4.42 4.38 4.40 4.43

100×100 5.61E-2 9.455E-9 9.326E-9 9.301E-9 3.137E-8 4.37 4.44 4.44 4.38
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Table 4: Verification – Order of accuracy verification for the fifth-order DG with and without WENO on irregular

triangular elements.

Grid h size
L2 Error: DG (P4) Order: DG (P4)

ρ ρu ρv ρE ρ ρu ρv ρE

20×20 2.66E-1 2.285E-7 1.849E-7 1.879E-7 7.260E-7 – – – –

40×40 1.40E-1 7.790E-9 5.853E-9 5.993E-7 2.455E-8 5.26 5.37 5.36 5.27

60×60 8.93E-2 9.745E-10 7.319E-10 7.275E-10 3.050E-9 4.63 4.63 4.70 4.65

80×80 6.93E-2 1.362E-10 1.779E-10 1.766E-10 7.412E-10 5.59 5.58 5.58 5.58

Grid h size
L2 Error: WENO-DG (P4) Order: WENO-DG (P4)

ρ ρu ρv ρE ρ ρu ρv ρE

20×20 2.66E-1 2.285E-7 1.849E-7 1.879E-7 7.260E-7 – – – –

40×40 1.40E-1 7.890E-9 5.853E-9 5.996E-7 2.455E-8 5.26 5.37 5.36 5.27

60×60 8.93E-2 1.034E-9 7.604E-10 7.532E-10 3.185E-9 4.50 4.55 4.62 4.55

80×80 6.93E-2 2.363E-10 1.780E-10 1.767E-10 7.413E-10 5.82 5.73 5.73 5.75

Table 5: Initial left (L) and right (R) states used for the Sod and Lax test cases. The position of the initial

discontinuity, xd and final simulation times, tfinal are also given. See Fig. 7 for geometry information.

Test case ρL uL pL ρR uR pR xd tfinal

Sod 1.0 0.0 1.0 0.125 0.0 0.1 0.0 0.2

Lax 0.445 0.698 3.528 0.5 0.0 0.571 0.0 0.14
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Figure 6: Verification – Order of accuracy plots for the conserved density, x and y momentums, and energy for DG

and the proposed WENO-DG on irregular triangular elements.
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Figure 7: Schematic of the Riemann problem, and the irregular triangular grid with h = 1/100. The two states of

the gas are separated at xd = 0.
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(a) second-order (b) third-order

(c) fourth-order (d) fifth-order

Figure 8: Predicted density profile for the Sod problem with h/100 irregular triangular elements at t = 0.2, and

comparison against the exact solution.
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(a) second-order (b) third-order

(c) fourth-order (d) fifth-order

Figure 9: Predicted velocity profile for the Sod problem with h/100 irregular triangular elements at t = 0.2, and

comparison against the exact solution.
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(a) second-order (b) third-order

(c) fourth-order (d) fifth-order

Figure 10: Predicted pressure profile for the Sod problem with h/100 irregular triangular elements at t = 0.2, and

comparison against the exact solution.
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(a) second-order (b) third-order

(c) fourth-order (d) fifth-order

Figure 11: Predicted density profile for the Lax problem with h/100 irregular triangular elements at t = 0.14, and

comparison against the exact solution.
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(a) second-order (b) third-order

(c) fourth-order (d) fifth-order

Figure 12: Predicted velocity profile for the Lax problem with h/100 irregular triangular elements at t = 0.14, and

comparison against the exact solution.
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(a) second-order (b) third-order

(c) fourth-order (d) fifth-order

Figure 13: Predicted pressure profile for the Lax problem with h/100 irregular triangular elements at t = 0.14, and

comparison against the exact solution.
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4.3. Shu-Osher problem

The one-dimensional idealization of the shock-turbulence interaction suggested by Shu-Osher

[40] is considered in a two-dimensional framework. The goal of this test is to asses the proposed

limiters in capturing the shock wave and its interactions with the unsteady low frequency density

fluctuations and its waves propagations downstream of the shock. The computational domain

(x, y) ∈ (−5.0,−0.1) × (5.0, 0.1) is discretized with triangular elements and a characteristic mesh

size of h/40. The domain is initialized as

(ρ, u, v, p)|t=0 =


(3.857143, 2.629369, 0., 10.33333), x < 4.0,

(1.+ 0.2 sin(5x), 0., 0., 1.), x ≥ 4.0.

(44)

This corresponds to a Mach 3 shock (γ = 1.4) interacting with the sine waves density field. The

results at t = 1.8 are presented in Figs. 14–16. The fine structured of the shock-density wave

interactions are clearly captured by the proposed limiter.

4.4. Mach 3 forward facing step

Consider the forward facing step problem that was originally proposed by Woodward and Colella

[41]. This test is often referred to as the Mach 3 wind tunnel test. The computational domain is

shown in Fig. 17. The initial conditions corresponds to a uniform flow moving to the right with

Mach 3, (ρ, u, v, p) = (1.4, 3.0, 0.0, 1.0). The inflow condition is imposed to the left boundary while

a do-nothing boundary condition is set to the right boundary. A reflecting boundary condition is

applied to other surfaces, and the flow is initialized with the left boundary values. The domain

(see Fig. 17) is discretized using irregular triangular elements with characteristic element size of

h/160. The high-order solutions at t = 4.0 are presented in Fig. 18. Note that no modification,

neither to the scheme nor to the grid resolution, is applied to the corner singularity. The corner

step singularity is known to produce an erroneous entropy layer in addition to spurious Mach stem

at the bottom wall. These artifacts are clearly present in the presented second-order result; the

predicted higher order solutions are almost free from these artifacts.

4.5. Scramjet

Consider a two-strut scramjet (see Fig. 19 and Table 6) with a Mach 3 inflow imposed on the

left surface boundary. For this test, the second proposed approach produced nearly machine zero

residuals as illustrated in Fig. 20. The corresponding density contours in the range of 1.5 and

8.0 are shown in Figure 21. These results are in agreement with the previously published results

[42, 43, 44] on a similar configuration; the exact geometrical information used in generating the

previously published articles was not known to the authors.
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(a) second-order (b) third-order

(c) fourth-order (d) fifth-order

Figure 14: Predicted density profile for the Shu-Osher problem with h/40 irregular triangular elements at t = 1.8.
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(a) second-order (b) third-order

(c) fourth-order (d) fifth-order

Figure 15: Predicted velocity profile for the Shu-Osher problem with h/40 irregular triangular elements at t = 1.8.
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(a) second-order (b) third-order

(c) fourth-order (d) fifth-order

Figure 16: Predicted entropy profile, ln(p/ργ), for the Shu-Osher problem with h/40 irregular triangular elements at

t = 1.8.

Figure 17: The geometry of the Mach 3 wind tunnel forward facing step with a sample irregular grid.
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(a) second-order (b) third-order

(c) fourth-order (d) fifth-order

Figure 18: High-order DG with proposed WENO and positivity preserving with irregular triangular elements (h =

1/160) for the forward facing step problem. Shown are 30 equidistance density contour lines at t = 4.0 from 0.32 to

6.15. The corner step singularity neither in the scheme nor by the grid is treated to remove the known artifacts that

is present in the second-order result. These artifacts are largely removed in the higher-order results.

Table 6: The coordinates of the lower half portion of the two-strut scramjet geometry shown in Fig. 19.

Points 1 2 3 7 8 9 10 11

(x, y) (0,-3.5) (0.4,-3.5) (16.9,-1.74) (4.9,-1.4) (12.6,-1.4) (14.25,-1.2) (9.4,-0.5) (8.9,-0.5)

4.6. Mach 3 and 10 Blunt body flows

Consider a bluff body in an inviscid compressible flow traveling at Mach 3 and Mach 10. The

free stream condition is set to (ρ, u, v) = (1.4, 3, 0) with γ = 1.4, and a reflecting boundary condition

is imposed on the solid surface. The bluff body (see Fig. 23) consists of a flat face with a unit

length l, and two curved shoulders with l/2 radii.

Density contour lines are shown in Fig. 24 for both Mach 3 and Mach 10 flows. The plots of the

nonlinear weights along the stagnation line for each of the governing equations are shown in Fig. 25.

The strong shocks are correctly captured but there exists some waviness in the density contour

lines, particularly when the polynomial order and the intensity of the shock are increased. However,

these striation-like patterns, which are due to irregularity of the grid elements in the vicinity of the

shock, appear to have minimal effects on the surface quantities as illustrated in Fig. 26. Further

improvement to the proposed WENO is needed to reduce these striation-like patterns in the post

shock regions. This will be reported in future studies.
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(a) Geometry (see Table 6)

(b) Mesh

Figure 19: The geometry of the two-strut scramjet test case with a sample irregular grid with 10,000 vertices.

Coordinates of the lower half portion of the geometry is given in Table 6.
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(a) second-order (b) third-order

(c) fourth-order (d) fifth-order

Figure 20: Absolute value of the elemental residuals obtained with the second proposed WENO approach for the

Mach 3 two-strut scramjet test case.

(a) second-order (b) third-order

(c) fourth-order (d) fifth-order

Figure 21: Hundred equally spaced density contours in the range of 1.5 and 8.0 using the second presented WENO

approach for the Mach 3 two-strut scramjet test case with 10,000 unadapted irregular triangular elements.
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(a) Density (b) x-momentum

(c) y-momentum (d) Energy

Figure 22: Nonlinear weights along the centerline of the Mach 3 two-strut scramjet problem.
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Figure 23: Schematic of the blunt body geometry and a sample irregular grid.

4.7. Double Mach reflection test case

The double Mach reflection problem is originally proposed by Woodward and Colella [41] as

a benchmark test for Euler solvers. The problem consists of a Mach 10 shock front that meets a

30-deg inclined ramp. The shock front initially sits at x0 = 1/6, and makes a 60-deg angle with

the reflecting wall (x-axis). The properties of the undisturbed air (γ=1.4) ahead of the shock are

ρ = 1.4 and p = 1. Hence, the shock speed is |us| = 10. As it is a customary, this problem is solved

in a computational domain (x, y) ∈ [0, 4]× [0, 1] with a coordinate system that is aligned with the

ramp; see Fig. 28. The domain is discretized with irregular triangular elements and a mesh size of

h = 1/200.

Considering the ramp-aligned coordinate system, the problem is therefore setup with the fol-

lowing initial condition:

(ρ, u, v, p)|t=0 =


(8.0,+8.25 cos(π/6),−8.25 sin(π/6), 116.5), x < xs,

(1.4, 0.0, 0.0, 1.0), x ≥ xs,
(45)

where the shock position is computed as,

xs(y) = x0 + y tan(π/6). (46)

For the boundary conditions, the post-shock values are imposed for the short region from x = 0 to

xs along the lower boundary at y = 0, while for the rest of the lower boundary, a reflecting boundary

condition is imposed. This ensures that the reflecting shock is attached to the wall. The initial

post-shock condition is also assigned at the left boundary along the x = 0 axis. The boundary

condition on the upper boundary along the y = 1 axis consists of both pre- and post-shock values.
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(a) second-order (b) third-order (c) fourth-order (d) fifth-order

(e) second-order (f) third-order (g) fourth-order (h) fifth-order

Figure 24: Thirty equally spaced density contours in the range of 1 and 8 for the Mech 3 (top row) and Mach 10

(bottom row) blunt body test cases.
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(a) Density (b) x-Momentum

(c) y-Momentum (d) Energy

Figure 25: Nonlinear weights along the stagnation line of the Mach 10 blunt body problem.
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(a) Density (b) Surface density (c) Surface temperature

(d) Density (e) Surface density (f) Surface temperature

Figure 26: Top row: Mach 3. Bottom row: Mach 10; a,d) density profile along a line normal to the stagnation point,

b,e) surface density, and c,f) surface temperature. Data are extracted from a low-order visualization.
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Figure 27: Schematic of the double Mach reflection, and the computational domain (x, y) ∈ [0, 4] × [0, 1] with the

ramp-aligned coordinate system.
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This boundary condition is imposed based on the exact positioning of the traveling Mach 10 shock;

i.e., xs|y=1 + |us|/ cos(π/6) t. The readers are referred to Ref. [45] for discussions on the effects

of the upper boundary condition and the computational domain size on numerical artifacts in the

predicted solutions; such effects are not investigated in this study.

The density contours for a truncated domain (x, y) = [0, 3.2]× [0, 1] (the computational domain

extends to x = 4) with 41 equally spaced isolines from 1.5 to 22.5 at t = 0.2 are shown in Fig. 28

for the second-, third-, fourth-, and fifth-order WENO-DG. The closeup views of the triple Mach

points region, (x, y) ∈ [2, 2.9]× [0, 0.6], are shown in Fig. 29. The computed nonlinear weights along

the y = 0.3 is plotted in Fig. 30. Clearly, the complexity of the triple Mach points is captured by

the proposed limiters on the irregular triangular mesh. The quality of the solution improves with

increasing the polynomial order on the same identical irregular triangular mesh. The resolution

of the curled flow structures along the primary slip line, which is caused by its interactions with

the secondary reflected shock emanating from the secondary triple point, is often used for judging

the quality of the numerical scheme (see Ref. [45] for definitions of the primary and the secondary

triple points and slip lines). The presented results provide a remarkable curled flow structures

compared to solutions reported by Hu and Shu [21], Zhu et al. [46], and Dumbser et al. [30].

Further improvement in the WENO could reduce the noise in the predicted contour lines. Grid

adaptation could also enhance the results further.

5. Concluding Remarks

Two compact WENO limiters were proposed for DG schemes for irregular triangular elements,

and detailed step-by-step construction procedures were outlined. The WENO-DG limiters were

bounded with a compact bound-preserving limiter for the Euler equations. It was verified that

the proposed bounded WENO-DG polynomial limiters preserve the expected order of accuracy of

the underlying DG schemes when they are applied to smooth regions. A few test cases, including

the classical Riemann problems, Shu-Osher shock-turbulence interaction, scramjet, blunt body,

and double Mach reflection problems, involving strong shocks were performed, and the results

for second-, third-, fourth-, and fifth-order compact and bounded WENO-DG are presented. It

was shown that the second proposed WENO-DG is more effective for some problems in reducing

the elemental residual to machine zero than the first proposed limiter. Both limiters however

showed similar end results. The proposed limiter performed well in the Sod and the Lax problems.

The limiter also performed remarkably well capturing the high-frequency oscillations generated

by the shock-turbulence interactions in the Shu-Osher problem, as well as the complexity of the

triple Mack point and the curled flow structures in the double Mach reflection problem. Practical
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(a) second-order

(b) third-order

(c) fourth-order

(d) fifth-order

Figure 28: High-order DG with proposed WENO and positivity preserving with irregular triangular elements (h =

1/200) in (x, y) ∈ [0, 4]× [0, 1]. Shown are 41 equidistance density contour lines at t = 0.2 from 1.5 to 22.5
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(a) second-order (b) third-order

(c) fourth-order (d) fifth-order

Figure 29: High-order DG with proposed WENO and positivity preserving with irregular triangular elements (h =

1/200) in (x, y) ∈ [0, 4] × [0, 1]. Shown are zoom-in views around the Mach stems at t = 0.2 with 41 equidistance

density contour lines from 1.5 to 22.5.
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(a) Density (b) x-momentum

(c) y-momentum (d) Energy

Figure 30: Nonlinear WENO weights, ωj , along the y = 0.3 for the double Mach reflection case.
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problems such as the two-strut scramjet and blunt body problems were reasonably predicted by

the proposed limiter. Blunt body surface quantiles showed nearly smooth solution predictions even

in the presence of striation-like patterns in the post shock regions due to irregularities of the grid

elements in the shock regions, and misalignment of the element faces with the bow shock. Further

improvement to the WENO polynomial limiter, and extensions to three-dimensional tetrahedral

elements will be reported in future studies.
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