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We show that Hamiltonian nonlinear dispersive wave systems with cubic nonlinearity and random initial

data develop, during their evolution, anomalous correlators. These are responsible for the appearance of

“ghost” excitations, i.e., those characterized by negative frequencies, in addition to the positive ones

predicted by the linear dispersion relation. We use generalization of the Wick’s decomposition and the wave

turbulence theory to explain theoretically the existence of anomalous correlators. We test our theory on the

celebrated β-Fermi-Pasta-Ulam-Tsingou chain and show that numerically measured values of the

anomalous correlators agree, in the weakly nonlinear regime, with our analytical predictions. We also

predict that similar phenomena will occur in other nonlinear systems dominated by nonlinear interactions,

including surface gravity waves. Our results pave the road to study phase correlations in the Fourier space

for weakly nonlinear dispersive wave systems.
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I. INTRODUCTION

Wave turbulence theory has led to successful predictions

on the wave spectrum in many fields of physics [1,2]. In this

framework the system is represented as a superposition of a

large number of weakly interacting waves with the complex

normal variables ak ¼ aðk; tÞ. In its essence, the classical

wave turbulence theory is a perturbation expansion in the

amplitude ak of the nonlinearity, yielding, at the leading

order, to a system of quasilinear waves whose amplitudes are

slowly modulated by resonant nonlinear interactions [1–6].

This modulation leads to a redistribution of the spectral

energy density among length scales, and is described by a

wave kinetic equation. One way to derive the wave kinetic

equation is to use the random phase and amplitude approach

developed in Refs. [2,7,8]. The initial state of the system can

always be prepared so that the assumption of random phases

and amplitudes is true. Whether the phases remain random in

the evolution of the system has been an issue of intense

discussions. In wave turbulence theory, the standard object to

look at is the second-order correlator, hakðtÞa�l ðtÞi, where
h� � �i is an average over an ensemble of initial conditions

with different random phases and amplitudes. As will be

clear later on, under the homogeneity assumption, the
second-order correlator is related to the wave action spectral
density function, i.e., the wave spectrum, nk ¼ nðk; tÞ.
However, one should note that the complex normal variable,
as defined in the wave turbulence theory, is a complex
function also in physical space. Therefore, the second-order
statistics are not fully determined by the above correlator.
The so-called “anomalous correlator,” hakðtÞalðtÞi, see

Refs. [9,10], needs also to be computed. Under the hypoth-
esis of homogeneity, this will give the anomalous spectrum,
mk ¼ mðk; tÞ, to be defined in the next section. Indeed, if
phases are totally random, this quantity would be zero. We
show that, in the nonlinear evolution of the system, this is not
the case. Far from it, this quantity is strongly nonzero and, in
the limit of weak nonlinearity, we predict analytically and
verify numerically its value.

Our ideas are based on the extension of the wave

turbulence theory to include these anomalous correlators.

Notably, conventional wave turbulence theory has been

successful in the understanding of the spectral energy

transfer in complex wave systems such as the ocean [11],

optics [12] and Bose-Einstein condensates [13], one-

dimensional chains [14], and magnets [15]. Analogously,

anomalous correlators first appeared in the well-known

Bardeen-Cooper-Schriffer theory of superconductivity [16].

Subsequently, anomalous correlators have been studied in

S theory [9,10].

Recently, anomalous correlations were shown to play

an important role in explaining numerical observations

of nondecaying oscillations around a steady state in a

turbulence-condensate system modeled by the nonlinear
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Schrödinger equation [17–19]. Such oscillations, corre-

sponding to a fraction of the wave action being periodically

converted from the condensate to the turbulent part of the

spectrum, were shown to be directly due to phase coherence

[17]. In Ref. [20], a system of coupled nonlinear

Schrödinger equations has been considered and specific

attention was focused on the phenomena of recurrence of

incoherent waves observed in the early stages of the

dynamics. The authors derived a variant of the kinetic

equation which includes anomalous correlators; the pecu-

liarity of such an equation is that it is capable of describ-

ing properly the recurrence phenomena observed in the

simulations.

One of the main tools used to derive the theory is the

Wick’s contraction rule that allows one to split higher-

order correlators as a sum of products of second-order

correlators, plus cumulants. To explain analytically the

existence of the anomalous correlators, it is necessary to

use the more general form of the Wick’s decomposition,

namely the form that allows anomalous correlators. We

then demonstrate that the anomalous correlators are

responsible for creating the “ghost waves,” i.e., the waves

with the frequency equal to the negative of the frequency

predicted by the linear dispersion relationship. These

ideas are tested on a simple, but nontrivial, system, i.e.,

the β-Fermi-Pasta-Ulam-Tsingou (FPUT) chain. The

chain model was introduced in the 1950s to study the

thermal equipartition in crystals [21]: it consists of N
identical masses, each one connected by a nonlinear

string; the elastic force can be expressed as a power

series in the displacement from equilibrium. Fermi, Pasta,

Ulam, and Tsingou integrated numerically the equations

of motion and conjectured that, after many iterations, the

system would exhibit a thermalization, i.e., a state in

which the influence of the initial modes disappears and the

system becomes random, with all modes excited equally

(equipartition of energy) on average. Successful predic-

tions on the timescale of equipartition have been recently

obtained in Refs. [14,22,23] using the wave turbulence

approach. In this paper, we perform extensive numerical

simulations with initial random data and look at all the

possible excitations, once a thermalized state has been

reached. This is all done by analyzing the spatial-temporal

ðk −ΩÞ spectrum, i.e., the square of the space-time

Fourier transform of the wave amplitudes. Analyses of

the effective dispersion relation in the nonlinear system is

a well-known and widely used theoretical and numerical

tool; see, e.g., Ref. [24].

We give numerical evidence that in addition to the

“normal” waves with frequency ω predicted by the linear

dispersion relation for wave number k, there are the “ghost”
excitations with the negative frequencies. Our theoretical

analysis reveals that the origin of those ghost excitations

resides on the nonzero values of the second-order anoma-

lous correlator.

II. MODEL

The theory that we develop hereafter applies to any

system with cubic nonlinearity. Examples of such systems,

among others, include deep water surface gravity waves

[25], nonlinear Klein-Gordon [22], and the β-Fermi-

Pasta-Ulam-Tsingou chain. In normal variables ak the

Hamiltonian of these systems assumes the canonical form:

H ¼
X

k

ωkjakj2 þ
X

k1;k2;k3;k4

�

ðTð1Þ
1234

a�
1
a2a3a4 þ c:c:Þδ234

1

þ 1

2
T
ð2Þ
1234

a�
1
a�
2
a3a4δ

34

12

þ 1

4
T
ð4Þ
1234

ða�
1
a�
2
a�
3
a�
4
þ c:c:Þδ1234

�

; ð1Þ

where ωk ¼ ωðkÞ are the positive frequencies associated

to the wave numbers via the dispersion relation, T
ðiÞ
1234

are coefficients that depend on the problem considered

and satisfy specific symmetries for the system to be

Hamiltonian, c.c. implies complex conjugation, aj ¼
aðkj; tÞ are the complex normal variables, and δlmij ¼ δðki þ
kj − kl − kmÞ is the Kronecker delta. We assume that the

only resonant interactions possible are the ones for which

the following two relations are satisfied for a set of wave

numbers:

k1 þ k2 ¼ k3 þ k4; ωðk1Þ þ ωðk2Þ ¼ ωðk3Þ þ ωðk4Þ:
ð2Þ

With the objective of presenting some comparison with

numerical simulations, out of many physical systems

described by the above Hamiltonian, we select a simple

one-dimensional system, the β-Fermi-Pasta-Ulam-Tsingou

chain. Modeling a vibrating string, this problem consists of

a system of N identical particles connected locally to each

other by a nonlinear oscillator. In physical space in terms of

the displacements with respect to the equilibrium position

qjðtÞ and their momenta pjðtÞ, the Hamiltonian takes the

following form:

H ¼ H2 þH4; ð3Þ

with

H2 ¼
X

N

j¼1

�

1

2
p2
j þ

1

2
ðqj − qjþ1Þ2

�

;

H4 ¼
β

4

X

N

j¼1

ðqj − qjþ1Þ4: ð4Þ

β is the nonlinear spring coefficient (without loss of

generality, we have set the masses and the linear spring
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constant equal to 1). Newton’s law in physical space is

given by

q̈j ¼ ðqjþ1 þ qj−1 − 2qjÞ þ β½ðqjþ1 − qjÞ3 − ðqj − qj−1Þ3�:
ð5Þ

We assume periodic boundary condition; our approach is

developed in Fourier space and the following definitions of

the direct and inverse discrete Fourier transforms are

adopted:

Qk ¼
1

N

X

N−1

j¼0

qje
−i2πkj=N ; qj ¼

X

N=2

k¼−N=2þ1

Qke
i2πjk=N ;

ð6Þ

where k are discrete wave numbers and Qk are the Fourier

amplitudes. The displacement qj and momentum pj of the

j particle are linked by canonically conjugated Hamilton

equations:

_pj ¼ −
∂H

∂qj
; _qj ¼

∂H

∂pj

:

We then perform the Fourier transformation to Fourier

images of position and momenta, and then additional

canonical transformation to complex amplitude ak given by

ak ¼
1
ffiffiffiffiffiffiffiffi

2ωk

p ðωkQk þ iPkÞ; ð7Þ

where ωk ¼ 2j sinðπk=NÞj > 0 and Qk and Pk are the

Fourier amplitudes of qj and pj, respectively. In terms of ak
the equation of motion reads, see Ref. [26],

i
da1

dt
¼ ωk1

a1 þ
X

k2;k3;k4

ðTð1Þ
1234

a2a3a4δ
234

1
þ T

ð2Þ
1234

a�
2
a3a4δ

34

12

þ T
ð3Þ
1234

a�
2
a�
3
a4δ

4
123

þ T
ð4Þ
1234

a�
2
a�
3
a�
4
δ1234Þ; ð8Þ

where all wave numbers k2, k3, and k4 are summed from 0

toN − 1 and δcd::ab:: ¼ δðka þ kb þ � � � − kc − kd − � � �Þ is the
generalized Kronecker delta that accounts for a periodic

Fourier space; i.e., its value is one when the argument is

equal to 0 (mod N). The matrix elements T
ð1Þ
1234

, T
ð2Þ
1234

, T
ð3Þ
1234

prescribe the strength interactions of wave numbers k1, k2,
k3, and k4. Their values are given in the Appendix A.

A. ðk−ΩÞ spectrum
The main statistical object discussed in this paper is the

wave number-frequency ðk −ΩÞ spectrum. Starting from

the complex amplitude aðk; tÞ we take the Fourier trans-

form in time so that we get aðk;ΩÞ; under the hypothesis of

homogeneous and stationary conditions, the second-order

ðk −ΩÞ correlator takes the following form,

haðki;ΩpÞaðkj;ΩqÞ�i ¼ Nðki;ΩpÞδðki − kjÞδðΩp − ΩqÞ;
ð9Þ

where h� � �i implies averages over initial conditions with

different random phases. Nðk;ΩÞ is the ðk −ΩÞ spectrum
defined as follows:

NðaÞðk;ΩÞ ¼ 1

2π

1

N

Z þ∞

−∞

X

N

l¼1

Rðl; τÞe−i2πkl=Ne−iΩτdτ;

ð10Þ

where Rðl; τÞ ¼ hajðtÞ�ajþlðtþ τÞi is the space-time auto-

correlation function.

Linear ðk − ΩÞ spectrum.—Before diving into the non-

linear dynamics, we discuss the predictions in the linear

regime. Therefore, we start by neglecting the nonlinearity

in Eq. (8) and find the solution in the form

akðtÞ ¼ akðt0Þe−iωkt; ð11Þ

where t0 is a time at which the solution is known or an

initial condition. We then take the Fourier transform in

time:

aðk;ΩÞ ¼ aðk; t0ÞδðΩ − ωkÞ: ð12Þ

After multiplication by its complex conjugate and taking

averages over different realizations with the same statistics,

we get

NðaÞðk;ΩÞ ¼ nðaÞðk; t0ÞδðΩ − ωkÞ; ð13Þ

where nðaÞðk; t0Þ is the standard wave spectrum at time t0
related to the second-order correlator as

haðki; t0Þaðki; t0Þ�i ¼ nðaÞðki; t0Þδðki − kjÞ; ð14Þ

and defined via the autocorrelation function as

nðaÞðki; t0Þ ¼
1

N

X

l

hajðt0Þajþlðt0Þ�ie−i2πkl=N : ð15Þ

In the linear regime nðaÞðki; t0Þ does not evolve in time.

Equation (13) implies that in the linear case the ðk −ΩÞ
spectrum is different from zero only for those values of Ω

and k for which the dispersion relation is satisfied. Note that
in this formulation ωk is defined as a positive quantity;

therefore, only the positive branch of the dispersion relation

curve appears in the linear regime.
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B. Numerical results for the ðk −ΩÞ spectrum
We now test the predictions from Eq. (13) in both the

linear and nonlinear regimes. We perform numerical

simulations of Eq. (5) using a symplectic algorithm; see

Ref. [27]. We use 32 particles in the simulations; such a

choice is completely uninfluential for the results presented

below. In the linear regime, we just prescribe a thermalized

spectrum with some initial random phases of the wave

amplitudes ak and evolve the system in time up to a desired

final time; a Fourier transform in time is then taken to build

the ðk −ΩÞ spectrum. In the nonlinear regime we perform

long simulations up to a thermalized spectrum. For a given

nonlinearity, 1000 realizations characterized by different

random phases are made and ensemble averages are

considered to compute the ðk −ΩÞ spectrum. All simu-

lations have the same initial linear energy and, from an

operative point of view, the only difference between them is

the value of β. To characterize the strength of the non-

linearity, we use the following ratio between nonlinear and

linear Hamiltonians at the beginning of each simulation:

ϵ ¼ H4

H2

∝ β: ð16Þ

Results are shown in Fig. 1, where, for different values of

the nonlinear parameter ϵ, the spectrum NðaÞðk;ΩÞ is

plotted using a colored logarithmic scale. We first focus

our attention on the linear regime, ϵ ¼ 0. Results are shown

in Fig. 1(a). As well predicted by the theory, the plot shows

dots in the positive frequency plane, where the frequencies

Ω and wave numbers k satisfy the linear dispersion curve

ωk. Increasing the nonlinearity, Figs. 1(b)–1(d), two well-

known effects appear. The first one is a shift of the

frequencies, due to nonlinearity [this is more evident in
Figs. 1(c) and 1(d) where the frequency scale in the vertical

axes has been changed]. The second one is the broadening

of the frequencies. This is related to the fact that the

amplitude for each wave number is not constant in time;

therefore, the amplitude-dependent frequencies are not

constant in time and they oscillate around a mean value

with some fluctuations. Those results are well understood,

at least in the weakly nonlinear regime, and can be

predicted using wave turbulence tools; see Refs. [2,23].

Besides these two effects, starting from Fig. 1(b), the
presence of a lower branch, whose intensity is much less

than the upper one, starts to be visible. The lower curve

becomes more important and, when the nonlinearity is of

order one, is of the same order of magnitude as the upper

one. The total number of waves in the simulation Ntot is

given by the integral over Ω and the sum over all k of the

function NðaÞðk;ΩÞ. In the weakly nonlinear regime, Ntot is

an adiabatic invariant of the equation of motion (5); the

FIG. 1. ðk −ΩÞ spectrum, NðaÞðk;ΩÞ, for different values of ϵ: (a) ϵ ¼ 0, (b) ϵ ¼ 0.0089 (c) ϵ ¼ 0.089 (d) ϵ ¼ 1.12. In the linear case,

(a), the NðaÞðk;ΩÞ is different from 0 only when the frequencyΩmatches the linear dispersion relation. As the nonlinearity is increased,

(b)–(d), a frequency shift, a broadening of the frequencies, and a lower branch less intense than the upper one are visible. Waves with

negative frequencies are named “ghost” excitations.

ZALESKI, ONORATO, and LVOV PHYS. REV. X 10, 021043 (2020)

021043-4



plot highlights the existence of waves with negative
frequencies, which will be named “ghost” excitations.
One of the scopes of the present paper is the understanding
of the origin of such waves. Before entering into the
discussion, we show in Fig. 2 the ratio of ghost excitations

Nghost, i.e., N
ðaÞðk;ΩÞ integrated over negative frequencies

and summed over all wave numbers, divided by the total
number of waves Ntot. As can be seen from the plot, there is
a monotonic growth of the ghost waves that, for very large
nonlinearity, can reach values up to 25% of the total
number.

III. ANOMALOUS CORRELATORS

To explain the presence of ghost excitations, we introduce

the so-called second-order anomalous correlator [9,10,20]:

hakðtÞajðtÞi ¼ mkðtÞδðkþ jÞ; ð17Þ

with the anomalous spectrum defined as

m
ðaÞ
k ðtÞ ¼ 1

N

X

l

hajajþlie−i2πkl=N : ð18Þ

Similarly, we also introduce the second-order ðk −ΩÞ
anomalous correlator:

haðki;ΩlÞaðkj;ΩmÞi ¼ MðaÞðki;ΩlÞδðki þ kjÞδðΩl þ ΩmÞ;
ð19Þ

where

MðaÞðk;ΩÞ ¼ 1

2π

1

N

Z þ∞

−∞

X

N

l¼1

Sðl; τÞe−i2πkl=Ne−iΩτdτ

ð20Þ

and Sðl; τÞ ¼ hajðtÞajþlðtþ τÞi. The presence in Eqs. (17)

and (19) of the Kronecker δ over wave numbers and the

Dirac δ over frequency are related to the hypothesis of

statistical homogeneity and stationarity, respectively. Note

that MðaÞðk;ΩÞ is not the Fourier transform in time of

m
ðaÞ
k ðtÞ and, in general, both can be complex functions. To

verify numerically that the anomalous correlator is indeed

nonzero, we measure numerically the real part of the

second-order correlator hakiðtÞakjðtÞi as a function of k1
and k2. Results are plotted in Fig. 3 where we show the

results of two numerical simulations characterized by two

different values of the nonlinear parameter: Fig. 3(a) ϵ ¼
0.0089 and Fig. 3(b) ϵ ¼ 1.12. In both cases, a diagonal

contribution is visible, pointing out the existence of

anomalous correlators in the β-FPUT model.

Generalization of the Wick’s decomposition.—Using

Eq. (17), it is straightforward to extend the Wick’s

decomposition by taking into account the anomalous

correlators, as done in Ref. [15]:

ha�ka�l apani ¼ nknlðδkpδln þ δknδ
l
pÞ þm�

kmpδklδpn;

ha�kalapani ¼ nkmpðδlkδpn þ δnkδlpÞ þ nkδ
p
kmlδnl;

hakalapani ¼ mkmlðδkpδln þ δklδpn þ δklδpnÞ: ð21Þ

FIG. 2. Ratio between the number of ghost excitations Nghost

over the total number of waves Ntot as a function of the

nonlinearity.

FIG. 3. The real part of the second-order anomalous correlator, Re½hak1ak2i�, for (a) ϵ ¼ 0.0089, (b) ϵ ¼ 1.12. A diagonal contribution

corresponding to k2 ¼ −k1 is evident in both panels. As the nonlinearity is increased, the contribution becomes larger.

ANOMALOUS CORRELATORS IN NONLINEAR DISPERSIVE … PHYS. REV. X 10, 021043 (2020)

021043-5



The above relations will be fundamental for making a

natural closure of the moments when calculating analyti-

cally the ðk −ΩÞ spectrum.

In Fig. 4, we find further evidence justifying this

decomposition by plotting the real part of the fourth-order

correlator hak1ak2a�k3a
�
k1þk2−k3

i with k3 ¼ 20, computed

from numerical simulations for Fig. 4(a) ϵ ¼ 0.0089 and

Fig. 4(b) ϵ ¼ 1.12. The diagonal lines in both figures,

highlighting the contribution from the second-order anoma-

lous correlator, are noticeable. The vertical and horizontal

lines correspond to the trivial resonances in which two

wave numbers are equal (mod N).

A. Theoretical prediction for the anomalous

correlator in the weakly nonlinear regime

A key step for the development of a theory for the

anomalous correlator is the change of variable (near

identity transformation) which allows one to remove bound

modes, i.e., those modes that are phase locked to free

modes and do not obey the linear dispersion relation. The

procedure is well known in Hamiltonian mechanics and

well documented, e.g., in Ref. [1]. We accomplish this via

the following canonical transformation from variable akðtÞ
to bkðtÞ:

a1 ¼ b1 þ
X

k2;k3;k4

½Bð1Þ
1234

b2b3b4δ
234

1
þ B

ð3Þ
1234

b�
2
b�
3
b4δ

4

123

þ B
ð4Þ
1234

b�
2
b�
3
b�
4
δ1234�; ð22Þ

with the coefficients B
ðiÞ
1234

selected in such a way as to

remove nonresonant terms in the original Hamiltonian [28].

Their values are given in Appendix A.

The transformation is asymptotic in the sense that the

small amplitude approximation is made and the terms in

the sums on the right-hand side are much smaller than the

leading-order term b1. The evolution equation for variable

bkðtÞ contains resonant interactions and takes the following
standard form:

i
db1

∂t
¼ω1b1þ

X

k2;k3;k4

T
ð2Þ
1234

b�
2
b3b4δ

34

12
þ higher-order terms;

where higher-order terms arising from the transformation

have been neglected.

Using the transformation (22) and the generalized

Wick’s decomposition (21), we can now build the

time-averaged anomalous spectrum (for details, see

Appendix B):

hmðaÞ
k ðtÞit ¼ 2ðnðaÞk þ n

ðaÞ
−k Þ

X

j

B
ð3Þ
k;−k;j;jn

ðaÞ
j ; ð23Þ

where h� � �it implies averaging over time. For the β-FPUT

system in thermal equilibrium, where n
ðaÞ
k ¼ T=ωk with T

constant, Eq. (23) reduces to

ωkjhmðaÞ
k ðtÞitj ¼

3NT2β

2
: ð24Þ

In Fig. 5, we compare this prediction for ωkjhmðaÞ
k ðtÞitj in

thermal equilibrium to the values given by numerical

simulations for varying values of nonlinearity: the results

are in good agreement in the weakly nonlinear regime,

ϵ < 0.1. Here 500 ensembles were used to build the

correlator mkðtÞ; the subsequent time-averaging window

used was 105 with a sample spacing of Δt ¼ 0.1. For larger

nonlinearity, it is expected that higher-order terms play a

role in the evolution of the anomalous correlator.

In Fig. 6, we show the time evolution of the first five

modes of jhωkm
ðaÞ
k ðtaÞita<tj, where ensemble averaging is

used to build m
ðaÞ
k ðtÞ and time averaging is used over

the window 0 < ta < t to remove fast oscillations

FIG. 4. Fourth-order correlator jRe½hak1ak2a�k3a
�
k1þk2−k3

i�j with k3 ¼ 20. (a) ϵ ¼ 0.0089, (b) ϵ ¼ 1.12. Different horizontal, vertical,

and diagonal lines are visible. Horizontal and vertical lines correspond to trivial resonances: k1 ¼ k3, vertical line; k2 ¼ k3, horizontal
line; k2 ¼ −k1 þ N, diagonal line. The latter line corresponds to the presence of an anomalous second-order correlator. The intensity of

the lines is larger for larger nonlinearity.
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[see Eq. (B5)]. We verify that this quantity is indeed

initially zero due to the randomness of phases. Here we

use a larger value of nonlinearity ϵ ¼ 10 to show the

development of the anomalous correlator in a shorter time

window. The amplitudes were initialized so that jakðt ¼
0Þj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ðN − kÞ=2�
p

for k ¼ �1, �2, �3, with higher

modes zero. The phases were initially normally distributed.

We observe that the anomalous correlator grows with time,

reaching a peak in modes 1, 2, and 3, before it eventually

saturates between all modes equally, withωkjhmðaÞ
k ðtaÞit<ta

j
being constant for large times, as expected from our

prediction Eq. (23).

IV. THEORETICAL PREDICTION FOR

GHOST EXCITATIONS

We have now developed all the tools for predicting

analytically the ðk −ΩÞ spectrum as defined in Eq. (9).

Taking the Fourier transform in time of the canonical

transformation (see Appendix C), using the generalized

Wick’s decomposition and the hypothesis of statistical

stationarity and homogeneity, we get at leading order:

NðaÞðk;ΩÞ ¼ nðbÞðk; t0ÞδðΩ − ωkÞ
þ FðkÞRe½mðbÞðk; t0Þ�δðΩþ ωkÞ; ð25Þ

with

FðkÞ ¼ 4

Z

X

l

B
ð3Þ
klklN

ðbÞðl;ΩpÞdΩp; ð26Þ

where we have used the fact that at the leading

order, mðbÞðk; tÞ ≃mðaÞðk; tÞ and nðbÞðk; t0Þ ≃ nðaÞðk; t0Þ.
Equation (25) predicts the presence of the upper and lower

branch in the ðk −ΩÞ plane. The presence of ghost

excitations is clearly related to the second-order anomalous

correlator. We can now predict the percentage of ghost

excitations as

Nghost

Ntot

¼
P

kRe½mðaÞðk; t0Þ�FðkÞ
P

kfnðaÞðk; t0Þ þ Re½mðaÞðk; t0Þ�FðkÞg
: ð27Þ

In Fig. 7, we plot the ratio as determined by Eq. (27)

compared with the ratio observed in our simulations for

several values of nonlinearity. We find that the results agree

for small values of nonlinearity ϵ < 0.03; for larger non-

linearity, the theoretical prediction is considerably larger.

V. NONLINEAR STANDING WAVES

The development of a regime characterized by an

anomalous spectrum corresponds to a tendency for the

system to develop standing waves in the original displace-

ment variable qjðtÞ. Indeed, the existence of an anomalous

spectrum implies a correlation between positive and neg-

ative wave numbers. The connection between the anoma-

lous correlator and standing waves can be seen in the

following illustrative example. Consider the restrictive

ensemble of realizations of the linear system where

amplitudes and phases are initiated in Fourier space with

FIG. 6. Time evolution of the first five modes of the averaged

quantity jhωkm
ðaÞ
k ðtaÞita<tj from t ¼ 0 to t ¼ 1000, with ϵ ¼ 10.

FIG. 7. The ratio between the number of ghost excitations

Nghost over the total number of waves Ntot as a function of the

nonlinearity. Values given by numerical simulations (blue) are

compared with the theoretical predictions (red) given by Eq. (27).

FIG. 5. Comparison of anomalous spectrum ωkjhmðaÞ
k ðtÞitj as

observed in numerical simulations (dots) with theoretical pre-

dictions given by Eq. (24) (dashed lines) for ϵ ¼ 0.065, 0.072,

0.086, and 0.101.
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a correlation between wave numbers k ¼ 1 and k ¼ −1.

Namely, let us initialize the system with equal amplitudes

and opposing phases:

akðt ¼ 0Þ ¼

8

<

:

A1e
−iϕ1 if k ¼ 1

A1e
iϕ1 if k ¼ −1

0 otherwise;

ð28Þ

with the random phase ϕ1. In terms of the displacement

variables, this would correspond to the system being

initially at rest and displaced from equilibrium as a single

wave:

qjðt ¼ 0Þ ¼ 2A1

ffiffiffiffiffiffi

2

ω1

s

cos

�

2πj

N
− ϕ1

�

:

Since the system is assumed to be linear, the time

evolution of complex amplitudes a1 and a−1 will be

given by

a�1ðtÞ ≃ A1e
−iðω1t�ϕiÞ:

Averaging over random phase ϕ1, the anomalous correlator

becomes

m1 ¼ ha1a−1i ¼ A2

1
e−2iω1t;

analogous to the oscillating term of Eq. (B5) for the

anomalous correlator in the nonlinear case with amplitudes

and phases being initially completely random. In terms of

displacement, such initial conditions give

qjðtÞ ¼ 2A1

ffiffiffiffiffiffi

2

ω1

s

cos

�

2πj

N
− ϕ1

�

cosðω1tÞ;

which corresponds to the standing wave pattern. Thus, we

see that the phase and amplitude correlations which result

in a nonzero anomalous correlator are directly linked to the

formation of standing waves in this particular example.

This consideration can be generalized for the case of

weakly nonlinear systems and more general initial con-

ditions. Indeed, for weakly nonlinear systems the ampli-

tudes ja1j and ja−1j will be changing slowly over many

oscillations, thus maintaining strongly nonzero anomalous

correlations and standing waves.

In Fig. 8(a), we numerically solve the equations of

motion with initial conditions given by Eq. (28). Here we

plot a color map of the displacement qjðtÞ for all masses

as a function of time as the system reaches the timescale

required for statistical thermal equilibrium. The nonlinear-

ity parameter ϵ ¼ 4.74, in the regime of strong non-

linearity and outside the regime of validity of our theory.

Nevertheless, we initially consider this example to display

how the system behaves when the phase correlations

develop rapidly. The existence of several regions of

standing wave behavior are clearly visible as darker regions

in the image, as the inset of Fig. 8(b) shows.

It is important to emphasize that Fig. 8 shows a single

realization of the system, while correlators mkðtÞ, nkðtÞ
describe statistical ensemble-averaged quantities. Thus the

existence of the standing wave patterns is not in violation of

the presumed assumption of spatial homogeneity.

Below we give numerical evidence that such coherent

structures can also be observed for smaller values of non-

linearity that are within the regime of validity of our theory.

In Fig. 9(a), we plot the displacement as a function of

time for the system with ϵ ¼ 0.02, a value of nonlinearity

well within the regime of agreement of our theory, as shown

in Figs. 7 and 5. Here, we prescribe initial conditions so that

the total energy is initially in the first wave number, i.e.,

akðt ¼ 0Þ ¼ 0 for all k ≠ 1, and plot a single realization.

This corresponds to a pure traveling wave solution in the

linear system; indeed, as seen in Fig. 9(a), the system is

initially a traveling wave, represented by series of slanted

parallel lines in the color map of qjðtÞ. Conversely, in
Fig. 9(b), we show that by the time the system has reached

the timescale required for statistical thermal equilibrium, a

prominent standing wave has developed, due to the phase

correlations between positive and negative lowest wave

numbers. Notably, phase correlations are not restricted to

only the lowest wave numbers. To emphasize this, we

consider the following spatial frequency filter applied to the

displacement,

q̃jðtÞ ¼
X

N=2

k¼−N=2þ1

HkQke
i2πjk=N ; ð29Þ

where

Hk ¼
�

1 if k ¼ 5; 6

0 otherwise

is selected to only show the waves with frequencies

corresponding to k ¼ 5, 6.

We plot the resulting color map of q̃jðtÞ in Fig. 9(c),

with Fig. 9(d) showing a closer look at the boxed region

in Fig. 9(c). Here we clearly still observe these standing

FIG. 8. Color map of the displacement qjðtÞ for the system with

ϵ ¼ 4.74 initialized with particles at rest with initial positions as a

single sine wave. A nonlinear standing wave pattern is visible.
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waves in the selected unfiltered wave numbers, meaning

that the coherent structures are not limited to the lowest

wave number. Our choice of displaying wave numbers

5,6 is arbitrary; we also verified that similar structures

exist over all the wave numbers.

Similarly, in Fig. 10 we obtain similar results for a

moderate value of nonlinearity ϵ ¼ 0.54 just outside the

range of applicability of our theory. We plot the initial time

evolution of the displacements in Fig. 10(a), the time

evolution of the displacements in thermal equilibrium in

FIG. 9. Color map of the displacement qjðtÞ for ϵ ¼ 0.02: (a) initial traveling wave, 0 < t < 1000, (b) standing wave structure in

thermal equilibrium, 106 < t < 106 þ 1000, (c) q̃jðtÞ, displacement after removing wave numbers k ¼ 1;…; 4; 7;…; N, (d) closer look

at the boxed region in (c).

FIG. 10. Color map of the displacement qjðtÞ for ϵ ¼ 0.54: (a) initial traveling wave, 0 < t < 1000, (b) standing wave structure in

thermal equilibrium, 106 < t < 106 þ 1000, (c) q̃jðtÞ, displacement after removing wave numbers k ¼ 1;…; 3; 5;…; N, (d) closer look

at the boxed region in (c).
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Fig. 10(b), and the displacements after applying a spatial

frequency filter to emphasize wave number k ¼ 4 in

Fig. 10(c). We note the arbitrary fluctuations between

the coherent standing waves and between traveling waves

in Figs. 10(b) and 10(c).

VI. CONCLUSION

In this paper we have given the numerical evidence

that anomalous correlators develop spontaneously in a

classical system. From a theoretical point of view it is

possible to develop a theory for weakly nonlinear dis-

persive waves that accounts for the presence of such an

anomalous correlator. The framework in which the theory

has been developed is the wave turbulence one. In such a

theory, one usually is interested in the second-order

correlator hakia�kji, which is strictly related to the wave

action spectrum. However, what is clear from numerical

simulations of the β-FPUT system is that also the correlator

hakiakji can assume values that are different from zero. This

finding has consequences on the standard wave turbulence

theory that is based on the Wick’s selection rule, i.e., the

splitting of higher-order correlators as a sum of products of

second-order correlators. Following Refs. [1,15], we have

generalized the Wick’s rule by including the anomalous

correlators. We note that we differ from the case described

in the S theory [9,10] in that there, the existence of

anomalous correlators was connected with coherent pump-

ing in the system, with the anomalous correlator being a

measure of partial coherence for exiting waves. In our

observations and predictions, waves with random initial

conditions form phase correlations with each other, result-

ing in an anomalous correlator which is initially zero but

then saturates to a nonzero value as it evolves with time.

One of the most striking manifestations of those corre-

lators is the appearance of “ghost excitations,” i.e., those

characterized by negative frequencies. A formula for the

energy content of such excitations as a function of the wave

spectrum is obtained—the results compare favorably with

numerical simulations for the weakly nonlinear regime.

Moreover, we have shown that the spontaneous emergence

of the anomalous correlator is strongly connected with the

formation of nonlinear standing waves; indeed, the pres-

ence of those waves implies a strong correlation between

the phases of positive and negative wave numbers.

Our approach paves a new road to investigate dispersive

nonlinear systems by taking into account not only ampli-

tudes of the waves, as in traditional wave turbulence, but

also the phases of the waves. We conjecture that the

anomalous correlators play an important role in the theory

of extreme events, such as rogue waves, which form via a

mechanism related to phase locking between different wave

numbers [29]. Phase locking also leads to the existence of

solitons in nonlinear media.

As was discussed in Sec. I, anomalous phase correlations

have been observed to play a role in causing shifts of wave

action from turbulence and condensate in the nonlinear

Schrödinger equation [17]. Our approach of extending

wave turbulence theory to include the anomalous corre-

lator could be generalized to address the role these

correlations play in the statistical properties of the nonlinear

Schrödinger equation and other integrable systems. On a

similar note, recurrences in a nonlinear Schrödinger-like

model were shown to be directly related to the formation of

anomalous phase correlations [20]; further investigating the

potential ties between FPUT recurrences and the anoma-

lous correlator is a subject of current work.

Finally, we emphasize that the Hamiltonian we consid-

ered is of the same family as the one for surface gravity

waves (after removing by a canonical transformation

nonresonant three-wave interactions). We predict that also

the anomalous correlators will play an important role in the

understanding of statistical properties of ocean waves.
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APPENDIX A: MATRIX ELEMENTS

Matrix element in Eq. (8).—The matrix elements

governing four-wave interactions for the variable akðtÞ are

T
ð1Þ
1234

¼ −
1

4
βeiπð−k1þk2þk3þk4Þ=N

Y

4

i¼1

2 sinðπki=NÞ
ffiffiffiffiffi

ωi

p ;

T
ð2Þ
1234

¼ −3T
ð1Þ
1−234; T

ð3Þ
1234

¼ 3T
ð1Þ
4231

; T
ð4Þ
1234

¼ −T
ð1Þ
−1234:

ðA1Þ

Matrix elements in the canonical transformation,

Eq. (22).—The coefficients in Eq. (8) suitable for removing

nonresonant terms are given by

B
ð1Þ
1234

¼ T
ð1Þ
1234

ω4 þ ω3 þ ω2 − ω1

;

B
ð3Þ
1234

¼ T
ð3Þ
1234

ω4 − ω1 − ω2 − ω3

;

B
ð4Þ
1234

¼ T
ð4Þ
1234

−ω1 − ω2 − ω3 − ω4

: ðA2Þ
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APPENDIX B: EVOLUTION EQUATIONS FOR

ANOMALOUS SPECTRUM

Starting from the transformation in Eq. (22) and the

generalized Wick’s decomposition in Eq. (21), we obtain

m
ðaÞ
k ðtÞ ¼ m

ðbÞ
k ðtÞ þ 2½nðbÞk ðtÞ þ n

ðbÞ
−k ðtÞ�

×
X

j

B
ð3Þ
k;−k;j;jn

ðbÞ
j ðtÞ; ðB1Þ

where higher-order terms in mk have been neglected. The

next step consists in building the evolution equation for

m
ðbÞ
k ðtÞ from Eq. (23). Interestingly, the evolution equation

for m
ðbÞ
k ðtÞ appears as a deterministic dispersive nonho-

mogeneous wave evolution equation [15],

i
dm

ðbÞ
k

dt
¼ 2ω̃km

ðbÞ
k þ

�

ðnðbÞk þ n
ðbÞ
−k Þ

X

j

Tk−kj−jm
ðbÞ
j

�

;

ðB2Þ

with ω̃k ¼ ωk þ 2
P

j Tkjkjn
ðbÞ
j . Such equations have been

derived in the theory of Bose-Einstein condensates and

superconductivity.

The equation for the spectrum, see Ref. [15], is given by

dn
ðbÞ
k

dt
¼ −2Im

�

m
ðbÞ
k

X

Tk;−k;j;−jm
ðbÞ�
j

�

: ðB3Þ

From Eqs. (B2) and (B3), after some algebra, it is possible

to show that the following interesting relations hold:

d½jmðbÞðkÞj2�
dt

¼ d½nðbÞk n
ðbÞ
−k �

dt
;

d½nðbÞk − n
ðbÞ
−k �

dt
¼ 0: ðB4Þ

If n
ðbÞ
k has reached energy equipartition such that

n
ðbÞ
k ¼ n

ðbÞ
−k ¼ const=ωk, then jmðbÞ

k j ¼ n
ðbÞ
k ; therefore, we

expect to observe equipartition also for ωkjmðbÞ
k j.

We now consider the leading-order solution of Eq. (B2),

m
ðbÞ
k ðtÞ ¼ m

ðbÞ
k ðt0Þe−i2ω̃kt þ higher-order terms;

and plug it into Eq. (B1), and assuming that the spectrum nk
is in stationary conditions, we get

m
ðaÞ
k ðtÞ ¼ m

ðbÞ
k ðt0Þe−i2ω̃kt þ 2½nðaÞk ðt0Þ þ n

ðaÞ
−k ðt0Þ�

×
X

j

B
ð3Þ
k;−k;j;jn

ðaÞ
j ðt0Þ: ðB5Þ

Note that we have used the fact that at the leading

order n
ðbÞ
k ðt0Þ ≃ n

ðaÞ
k ðt0Þ.

APPENDIX C: DERIVATION OF ðk −ΩÞ
SPECTRUM

We consider Eq. (22) and take the Fourier transform in

time to get

aki;Ωp
¼ bki;Ωp

þ
Z

X

j;k;l

B
ð1Þ
ijklbj;Ωq

bk;Ωr
bl;Ωs

δklijδ
ΩqΩrΩs

Ωp
dΩqrs

þ
Z

X

j;k;l

B
ð3Þ
ijklb

�
j;Ωq

b�k;Ωr
bl;Ωs

δlijkδ
ΩrΩs

ΩpΩq
dΩqrs

þ
Z

X

j;k;l

B
ð4Þ
ijklb

�
j;Ωq

b�k;Ωr
b�l;Ωs

δijklδΩpΩqΩrΩs
dΩqrs:

ðC1Þ
The next step is to build the second-order correlator

haðki;ΩlÞaðkj;ΩmÞ�i assuming stationarity.

We use the generalized Wick’s decomposition in

Eq. (21), i.e., including the anomalous correlators. The

leading-order result is contained in Eq. (25).
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