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Abstract: Gathering information about forest variables is an expensive and arduous

activity. Therefore, directly collecting the data required to produce high-resolution

maps over large spatial domains is infeasible. Next-generation collection initiatives

for remotely sensed light detection and ranging (LiDAR) data are specifically aimed

at producing complete-coverage maps over large spatial domains. Given that Li-

DAR data and forest characteristics are often strongly correlated, it is possible to

use the former to model, predict, and map forest variables over regions of inter-

est. This entails dealing with high-dimensional (∼102) spatially dependent LiDAR

outcomes over a large number of locations (∼105 − 106). With this in mind, we

develop the spatial factor nearest neighbor Gaussian process (SF-NNGP) model,

which we embed in a two-stage approach that connects the spatial structure found

in LiDAR signals with forest variables. We provide a simulation experiment that

demonstrates the inferential and predictive performance of the SF-NNGP, and use

the two-stage modeling strategy to generate complete-coverage maps of the for-

est variables, with associated uncertainty, over a large region of boreal forests in
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interior Alaska.

Key words and phrases: LiDAR data, forest outcomes, nearest neighbor Gaussian

processes, spatial prediction.

1. Introduction

Strong relationships between remotely sensed light detection and ranging (Li-

DAR) data and forest variables have been documented in the literature (As-

ner et al., 2009; Babcock et al., 2013; Næsset, 2011). When used in forested

settings, LiDAR data provide a high-dimensional signal that characterizes

the vertical structure of the forest canopy at point-referenced locations. Tra-

ditionally, LiDAR data acquisition campaigns have sought complete-coverage

at a high spatial resolution over relatively small spatial domains, resulting in a

fine grid of point-referenced LiDAR signals. In such settings, the link between

the LiDAR data and the forest variable measurements on sparsely sampled

forest inventory plots has been exploited to create high-resolution complete-

coverage predictive maps of the forest variables. Commonly, this link is

established by first extracting the relevant features of the high-dimensional

LiDAR signals using a dimension-reduction step (Babcock et al., 2015; Junt-

tila and Laine, 2017). Then the LiDAR features are used as predictors in a

regression model to explain the variability in the spatially coinciding forest

variable outcomes. Lastly, the model is applied to predict the forest outcomes

at all locations across the domain where LiDAR signals have been observed.

Considerably more ambitious next-generation LiDAR collection initia-
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tives, such as ICESAT-2 (ICESat-2, 2015), Global Ecosystem Dynamics In-

vestigation LiDAR (GEDI) (GEDI, 2014), and NASA Goddard’s LiDAR,

Hyper-Spectral, and Thermal imager (G-LiHT) (G-LiHT, 2016), seek to

quantify and map forest variables over vast spatial extents. To fulfill their

goals in a cost-effective manner, these data-gathering programs do not col-

lect LiDAR data over the entire domain. Instead they sparsely sample lo-

cations across the domain extent and over forest inventory plots (i.e., where

forest variables have been measured). While generating complete-coverage

high-resolution maps of forest outcomes remains the primary intended use of

these data, there is also interest in creating maps of LiDAR data over non-

sampled locations and assessing the spatial dependence within and among

LiDAR signals.

Our motivating application focuses on forest variable prediction and map-

ping in the boreal forests of interior Alaska using sparsely sampled LiDAR

and forest variable measurements. Within these regions, acquiring complete-

coverage LiDAR data is prohibitive from a cost perspective (Andersen et al.,

2011; Bolton et al., 2013; Nelson et al., 2012). Because generating complete-

coverage maps of forest variables (and perhaps LiDAR signals) is still the

goal, the sparsely sampled LiDAR must be leveraged to inform the forest

variable predictions. One attractive solution is to move the LiDAR pre-

dictor variables to the left-hand side of the regression and then to model

them jointly with the forest outcomes. When the number of LiDAR and

forest variables is small, such joint models are possible via linear models of

coregionalization; for example, see, Babcock et al. (2017) and Finley et al.
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(2014a). Alternatively, if the LiDAR signal is high-dimensional, but observed

at a small number of locations, reduced-rank models can be employed. For

example, Banerjee et al. (2008), Ren and Banerjee (2013), and Finley et al.

(2017) applied a reduced-rank predictive process modeling strategy to ana-

lyze similar high-dimensional data. However, such approaches cannot scale

to data sets with tens of thousands of locations and can yield poor predictive

performance (Stein, 2014).

Models able to handle high-dimensional signals observed over a large num-

ber of locations and capable of estimating within and among location depen-

dence structures are needed. Recent modeling developments reviewed in

Heaton et al. (2017) and Banerjee (2017) highlight several options for robust

and practical approximation of univariate Gaussian process (GP) models.

A subset of these models can be easily extended to accommodate relatively

small multivariate response vectors (five or less) for example, see (Datta et al.,

2016a). Nevertheless, for our particular application, we require an approach

that can cope with both the high-dimensional LiDAR measurements, ∼50

outcomes at a location, and use the large collection of observed locations.

The nearest neighbor Gaussian process (NNGP) developed in Datta et al.

(2016a), Datta et al. (2016b), and Datta et al. (2016c) can be used with a

large number of locations, because its scalability is not mediated by the

number of observed locations, but rather by the size of the nearest neighbor

sets considered—a quality that yields minimal storage and computational

requirements. These models belong to the class of methods that induce spar-

sity on the spatial precision matrix, and exploit the natural representation
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of sparsity provided by graphical models (Lauritzen, 1996; Murphy, 2012) to

build a sparse GP that accurately approximates the original dense GP.

To tackle the high-dimensional LiDAR data set, we develop a Bayesian

NNGP spatial factor model (SFM), referred to as the SF-NNGP. Follow-

ing Christensen and Amemiya (2002), Hogan and Tchernis (2004), and Ren

and Banerjee (2013), the SFM structure enables approximating the depen-

dence between multivariate (spatially dependent) outcomes through a lower-

dimensional set of spatial factors, alleviating the difficulty of dealing directly

with high-dimensional outcomes. The SF-NNGP allows us to model and

map the LiDAR signals on both observed and unobserved locations, and,

conditioning on the LiDAR spatial signatures, we can similarly map the for-

est variables over the entire spatial domain of interest. Furthermore, using a

Bayesian approach for model fitting enables us to equip the derived estimates

and predictions with associated measures of uncertainty, an essential require-

ment of many high-profile initiatives. Our methods are fully implemented in

C++, using BLAS (Blackford et al., 2001; Zhang, 2016) to leverage efficient

multiprocessor matrix operations and openMP (Dagum and Menon, 1998) to

improve key steps of the algorithm through parallelization.

The structure of the remainder of this paper is as follows. Section 2 intro-

duces the Bonanza Creek data set. In Section 3, we formulate the proposed

hierarchical Bayesian modeling strategy. Section 4 presents an analysis of a

synthetic data set to validate the performance of the SF-NNGP model. Using

the available LiDAR and forest inventory data, in Section 5, we develop and

validate a predictive model for the forest variables. We close by providing
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insights, recommendations, and directions for future in Section 6.

2. Data Description

The Bonanza Creek Experimental Forest (BCEF) is a Long-Term Ecolog-

ical Research (LTER) site consisting of vegetation and landforms typical

of interior Alaska. The BCEF is 21,000 ha and includes a section of the

Tanana River floodplain along the southeastern borders (Bonanza Creek

LTER, 2016). Figure 1 shows the location and extent of the BCEF data

detailed in this section.

Forest variables were collected on 197 plots in 2014 using the USDA

Forest Service Forest Inventory and Analysis Program protocol (Bechtold and

Patterson, 2005). We consider three forest variables commonly used by forest

professionals to make management decisions: above-ground biomass (AGB);

tree density (TD); and basal area (BA). The AGB for individual trees was

estimated using the Component Ratio Method described in Woodall et al.

(2015). The TD for a plot is expressed in thousands of trees per hectare.

The BA for a plot is the sum of the individual trees’ cross-sectional areas in

m2 at breast height, scaled to a per hectare basis.
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Figure 1: Bonanza Creek Experimental Forest extent with color enhanced
Landsat image and locations where the LiDAR signals were measured (Li-
DAR in the legend) and locations where both LiDAR signals and forest
variables were measured (LiDAR & inventory in the legend).

In the summer of 2014, LiDAR data were collected using a flight-line

strip sampling approach using NASA Goddard’s G-LiHT sensor (Cook et al.,

2013), which is a portable multisensor system that accurately characterizes

complex terrain and the vertical distribution of canopy elements (Jakubowski

et al., 2013; White et al., 2013). Point cloud information was summarized to

a 13×13 m grid cell size to approximate field plot areas. Over each grid cell,

psuedo-waveforms were generated by calculating the LiDAR return count

densities for .5 m height bins between 0 and 28.5 m (i.e., 57 LiDAR outcomes

per location). The LiDAR return count density for height bin l is defined

as the number of returns in height bin l divided by the total number of
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LiDAR returns over the grid cell. Identical LiDAR psuedo-waveforms were

obtained using point clouds extracted over each field plot. G-LiHT data for

the study area are available online at https://gliht.gsfc.nasa.gov. For

this analysis, 50,197 LiDAR observations were used for model-fitting.

A Landsat 8 top of atmosphere (TOA) reflectance product was procured

for the BCEF area for June of 2015. The June 2015 image was preferred

to the June 2014 image owing to the excessive cloud cover in the 2014 im-

age. A tasseled cap transformation was applied to the raw Landsat 8 TOA

reflectance bands to obtain brightness, greenness, and wetness tasseled cap

indices (Baig et al., 2014). These indices are used as covariates in the subse-

quent analysis.

Further details on the data set and our analysis are provided in Section 5.

3. Modeling Strategy

Our goal is to model and generate uncertainty-equipped predictions of forest

variables using information contained in LiDAR signals. Consider a LiDAR

signal, z(·), observed at a finite collection of locations, Tz = {s1, . . . , snz},

and a set of forest outcomes, y(·), observed at locations in the set Ty ={
r1, . . . , rny

}
⊂ Tz. Furthermore, let T∅ =

{
t1, . . . , tn∅

}
denote a set of lo-

cations where neither LiDAR signals nor forest outcomes are available, but

where predictions are of interest. Thus, the set of locations where both Li-

DAR and forest outcomes are mapped corresponds to T = (Tz ∪ T∅), with

T ⊂ D ⊂ R2, where D is the spatial domain of interest. Note that although

8
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z(·) and y(·) are “observed” at locations in Tz and Ty, respectively, we al-

low for missing values that are to be imputed in these sets. We make this

distinction because locations where imputation is performed are part of the

model fitting, whereas for locations in T∅, predictions are drawn ex post facto

from the posterior predictive distribution; see Section 3.4.

The LiDAR signals are high-dimensional vectors of measurements in Rhz ,

whereas the forest outcomes are relatively small-dimensional vectors (i.e.,

hy << hz), assumed to have support on Rhy . The forest outcomes and LiDAR

signals are strongly dependent on each other; LiDAR signals vary with the

composition of a forest, and, as a plethora of examples in the literature have

demonstrated (Ene et al., 2018; Finley et al., 2014b; Nelson et al., 2017),

variability in forest outcome variables can be partially explained by LiDAR

characteristics.

3.1 Linking the LiDAR and Forest Inventory Data

We seek to connect the forest outcomes and LiDAR signals as a two-step pro-

cess. First, we formulate a generative model to extract the spatial signature

from the LiDAR data at locations in Tz, which can also be used to interpolate

LiDAR signals in T∅. Along with other spatially referenced predictors, the

LiDAR spatial signatures for locations in Ty are used as predictors to build

the model for the forest outcomes. Moreover, a component that captures

the spatial variation exclusive to the forest outcomes can also be specified, if

9
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required. For s ∈ D, this two-stage model is given by

Stage 1: z(s) = Xz(s)′βz + w?(s) + εz(s), (3.1)

Stage 2: y(s) = Xy(s)′βy + Υw?(s) + v?(s) + εy(s). (3.2)

Note that the influence of z(s) over y(s) in (3.2) is exerted solely through

its spatial component, w?(s). There are several arguments in favor of this

approach, as opposed to substituting z(s) or µz(s) = Xz(s)′βz + w?(s) as

covariates directly into (3.2). Among these, and most importantly for our

setting, z(s), µz(s) and w?(s) are all high-dimensional objects. Using w?(s)

reduces the dimensionality of the problem by casting it under the factor

model structure, as shown in Section 3.2. In addition, the elements within

z(s) are strongly correlated, hence, multicollinearity issues would arise if it

was included directly in (3.2).

In (3.1) and (3.2), the terms Xz(s)′βz and Xy(s)′βy capture large-scale

variation. For κ ∈ {z, y}, Xκ(s)′ represents a fixed hκ × pκ block-diagonal

matrix of spatially referenced predictors, where pκ =
∑hκ

j=1 pκ,j, having as

its jth diagonal block the length-pκ,j vector xκj (s)′. The length-pκ vector βκ

corresponds to the regression coefficients associated with Xκ(s)′. The vectors

w?(s) and v?(s) are hz- and hy-dimensional zero-centered stochastic processes

over D, respectively. The process w?(s) captures the spatial variation of z(s),

and v?(s) synthesizes additional spatial variation in the forest outcomes. The

hy×hz matrix Υ connects the spatial information extracted from the LiDAR

model into the forest outcomes model. The vectors εz(s) ∼ Nhz(0,Ψz) and
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εy(s) ∼ Nhy(0,Ψy) represent uncorrelated random errors (i.e., Ψz and Ψy

are diagonal) at finer scales.

Implementing this modeling strategy directly is challenging owing to the

high-dimensionality of the LiDAR signals (hz ∼ 50) and the massive number

of spatially dependent observations (n ∼ 105). Thus, it is impossible to

attempt using common computing resources. In the following section, we

formulate a viable alternative to models (3.1) and (3.2).

3.2 The Spatial Factor NNGP Model

To make models (3.1) and (3.2) tractable with limited computing power, we

combine a dimension-reduction approach and a sparsity-inducing technique.

In particular, we introduce the SF-NNGP model, which brings together the

SFM structure (Schmidt and Gelfand, 2003; Finley et al., 2008; Zhang, 2007;

Ren and Banerjee, 2013) with NNGPs (Datta et al., 2016b,c,a).

While the SFM structure enables the analysis of high-dimensional re-

sponse vectors by using linear combinations of a relatively small number of

independent stochastic processes, NNGPs make it possible to fit spatial pro-

cess models when the number of spatial observations is particularly large.

NNGPs approximate the parent (dense) GP using the natural representation

of sparsity provided by graphical models (Lauritzen, 1996; Murphy, 2012),

by assuming conditional independence—where conditioning is on the nearest

neighbors—with locations outside of the neighbor set. The result is a proper

(but sparse) GP that accurately approximates the original dense GP. In con-

trast to other sparsity-inducing approaches, NNGPs allow for interpolation
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at unobserved locations and can be used to make full inference on model

parameters, including the latent processes. Combining the SFM structure

with NNGPs provides a methodology capable of coping simultaneously with

high-dimensional response vectors and a large number of spatially dependent

observations.

Under the traditional SFM structure, spatial dependence is introduced by

defining the spatial process as w?(s) = Λw(s) ∼ GP(0,H(· |φ)), where Λ

is a factor loadings matrix (commonly tall and skinny) and w(s) is a small-

dimensional vector of independent spatial GPs, providing the nonseparable

multivariate cross-covariance function given by

H(h |φ) = cov(Λ w(s),Λ w(s + h))

=

qw∑
k=1

Ck(h |φk)λkλ′k, (3.3)

for locations s, s + h ∈ D. Here, Ck(h|φk) denotes a univariate parametric

correlation function, and λk is the kth column of Λ. This cross-covariance

matrix is induced by q-variate (q ≤ l) spatial factors w(s) with independent

components wk(s) ∼ GP(0, Ck(· |φk)).

As such, models (3.1) and (3.2) can be reformulated as SF-NNGPs by

characterizing the spatial processes w?(s) and v?(s) as

w?(s) = Λzw(s) and v?(s) = Γ v(s), (3.4)

where the matrices Λz = ((λ
(z)
hk ))hz×qw and Γ = ((γlr))hy×qv correspond to the
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factor loadings matrices, and the new spatial factors for s ∈ D are given by

w(s) ∼
qw∏
k=1

NNGP
(

0, C̃(· |φwk )
)
, and

v(s) ∼
qv∏
r=1

NNGP
(

0, C̃(· |φvr)
)
.

The expressions NNGP
(

0, C̃(· |φwk )
)

and NNGP
(

0, C̃(· |φvr)
)

denote the NNGPs

derived from the parent processes GP(0, C(· |φwk )) and GP(0, C(· |φvr)), re-

spectively. Here, C(· |φ) represents the spatial correlation function with spa-

tial decay parameter φ. The factor model representation in (3.4) leads to a

significant reduction in the dimensionality of the problem because the spatial

factors w(s) = (wk(s) : 1 ≤ k ≤ qw) and v(s) = (vr(s) : 1 ≤ r ≤ qv) have

dimensions qw << hz and qv ≤ hy, respectively.

Combining these elements, and letting Λy = ΥΛz = ((λ
(y)
lk ))hy×qw , a

computationally viable version of (3.1) and (3.2) is

Stage 1: z(s) = Xz(s)′βz + Λzw(s) + εz(s) (3.5)

Stage 2: y(s) = Xy(s)′βy + Λyw(s) + Γv(s) + εy(s). (3.6)

In general, additional constraints are required for factor models to be

identifiable (Anderson, 2003). Identifiability for SFMs can be achieved either

by making the upper triangle of the loadings matrix equal to zero and its

diagonal elements all equal to one (Geweke and Zhou, 1996; Lopes and West,

2004; Aguilar and West, 2010), or, as in Ren and Banerjee (2013), by fixing

13

Statistica Sinica: Preprint 
doi:10.5705/ss.202018.0005



the sign of one element in each column of the factor loadings matrix, while

enforcing an ordering constraint among the spatial decay parameters of the

univariate correlation functions. We choose to ensure rotation and scale

identifiability by using the former approach.

With the SFM structure in place, introducing the NNGP reduces the

expensive (∼n3
zqw and ∼ n3

yqv) calculation required to invert the dense co-

variance matrices from the parent GPs by nzqw and nyqv parallel operations,

each of order m3. Here, m is the number of neighbors considered for the

NNGP, with m << ny ≤ nz. In simulations, Datta et al. (2016b) found

that, in most cases, 10 ≤ m ≤ 20 provides an excellent approximation to the

parent process; thus, the number of operations required is nearly linear in n.

For completeness, additional details on SFMs, NNGPs, and the sampling

algorithm are included in the online supplement. For a more thorough treat-

ment of SFM’s, refer to Ren and Banerjee (2013) and Genton and Kleiber

(2015), and for NNGPs, refer to Datta et al. (2016c).

3.3 Prior Specification and Hierarchical Formulation

Importantly, models (3.5) and (3.6) are fitted separately such that w(s)

exclusively captures the spatial signal present in the LiDAR signals. However,

using plug-in estimates for w(s) (e.g., the posterior means) in (3.6) disregards

the uncertainty present in the LiDAR spatial signal. Thus, to propagate this

uncertainty through the forest outcome predictions, at each iteration of the

Markov Chain Monte Carlo (MCMC) algorithm for y(s), we draw a sample

for w(s) (s ∈ Ty) MCMC samples obtained when fitting model (3.5).
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As mentioned in the previous section, the stochastic processes that cap-

ture the spatial structure are assumed to follow NNGPs. Given that an

NNGP is a proper GP, at a finite collection of locations, the NNGPs induce

zero-centered multivariate normal priors, with covariance matrices given by

C̃(w) and C̃(v), respectively. Additionally, we use suitably noninformative

priors for all other parameters, thus providing a direct sampling strategy.

In particular, we assume that β is either flat or conjugate normal. The

matrices Γ and Λz are constrained as described above, with elements below

the diagonal assumed to be standard normal. All elements in Λy are also

assumed to follow a standard normal distribution. The diagonal entries in

Ψz and Ψy are assigned half-t priors. Lastly, we assume uniform priors for

the elements of the spatial decay vectors φw = (φw,k : 1 ≤ k ≤ qw) and

φv = (φv,r : 1 ≤ r ≤ qv) in the interval (− log 0.05/ζmax,− log 0.01/ζmin),

where ζmin and ζmax are the minimum and maximum distances, respectively,

across all locations. Given that φz and φy are not conjugate with their

corresponding likelihood, these are sampled using random walk Metropolis

steps.

The joint posterior densities for the first and second stages of the algo-
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rithm are proportional to

Stage 1:

π(φw) Nnzqw(wTz |0, C̃(w))

 qw∏
k=1

hz∏
j>k

N(λ
(z)
jk |0, 1)


× π(βz)

 hz∏
j=1

IG(ψzj |ν/2, ν/az,j)IG(az,j |1/2, 1/A2)


×

 ∏
si∈Tz

Nhz(z(si)|Xz(si)
′βz + Λzw(si),Ψz)

 , (3.7)

Stage 2:

π(φv) Nnyqv(vTy |0, C̃(v))

 qw∏
k=1

hy∏
j=1

N(λ
(y)
jk |0, 1)

  qv∏
r=1

hy∏
j>r

N(γjr|0, 1)


× π(βy)

 hy∏
j=1

IG(ψyj |ν/2, ν/ay,j)IG(ay,j |1/2, 1/A
2)


×

 ∏
si∈Ty

Nhy(y(si)|Xy(si)
′βy + Λyw(si) + Γv(si),Ψy)

 , (3.8)

where wTz = (w(si)
′ : si ∈ Tz)′ and vT = (v(si)

′ : si ∈ Ty)′, such that

Nnzqw(wT |0, C̃(w)) =
∏
si∈Tz

Nqw(w(si) |B(w)
i wN(i),F

(w)
i ), and

Nnyqv(vT |0, C̃(v)) =
∏
si∈Ty

Nqv(v(si) |B(v)
i vN(i),F

(v)
i ). (3.9)

The expressions on the right-hand side of (3.9) result from the construc-

tion of the NNGP (see online supplement). For an m-neighbor NNGP, let
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mi = min {m, i− 1} denote the number of neighbors for location si. The

index set N(i) for location si ∈ Tz contains its mi nearest neighbors; thus,

wN(i) corresponds to the vector (w(sj)
′ : sj ∈ N(i) ⊂ Tz)′. The neighbor set

for v(si) is defined analogously. Letting u ∈ {w, v}, B
(u)
i denotes a qu×miqu

block matrix, with the qu× qu diagonal blocks containing the kriging weights

for the qu spatial factors for each neighbor. In addition, F
(u)
i corresponds to

the qu×qu diagonal matrix with the variances for the qu spatial factors condi-

tioned on the neighbor set N(i) (see Section S2 in the supplement for details

on B
(u)
i and F

(u)
i ). Lastly, the parameters {ay,j}hyj=1 and {az,k}hzk=1 complete

the hierarchical representation of the half-t prior distribution assumed for ψyj

and ψzk, respectively, and the hyperparameter A is simply chosen to be some

large value (say, 100).

Owing to prior conjugacy, the full conditional densities for all parameters

except φw and φv can be sampled using simple Gibbs steps. Further details

on the sampling algorithm are deferred to the online supplement.

3.4 Imputation and Prediction

As mentioned before, LiDAR signals are collected over the large spatial region

Tz, whereas forest outcome observations are confined to the smaller subset

of locations in Ty. Additionally, there are relevant out-of-sample locations

where neither LiDAR nor forest outcomes are observed, T∅. Finally, there

are some locations within the corresponding reference sets Tz and Ty that

have some or all missing outcomes. It is thus essential for this modeling

effort to provide the means to accurately impute the missing values in Tz or
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Ty. This enables us to generate LiDAR predictions in T∅ and forest outcome

predictions within T∅ ∪ (Tz \ Ty). Given the NNGP formulation, both the

imputation and the out-of-sample prediction are remarkably inexpensive.

Imputation is straightforward. Let s• ∈ Tz be a location where z(s•)

is missing. Then, z(s•) is drawn as part of the sampling algorithm from

Nhz(Xz(s•)
′βz + Λzw(s•),Ψz), where w(s•) is sampled from the full condi-

tional posterior density in Equation (S3.1) of the online supplement. For a

missing value y(s•), where s• ∈ Ty, the procedure is analogous using the full

conditional posterior for v(s•) and the likelihood for y(s•).

The procedure to predict a new LiDAR observation z(s◦), s◦ ∈ T∅, be-

gins by sampling the spatial factor w(s◦) from Nqw(B
(w)
◦ wN(s◦),F

(w)
◦ ), with

B
(w)
◦ and F

(w)
◦ defined as before. Note that the nearest neighbor set N(s◦)

is assumed to be in Tz. Then, we draw z(s◦) | zTz from Nhz(Xz(s◦)
′βz +

Λzw(s◦),Ψz). This is done by conditioning on the posterior samples of

{βz,Λz,Ψz,φw} obtained from the fitting algorithm.

To predict the forest outcomes y(s◦) at s◦ ∈ T∅∪(Tz\Ty), we first generate

samples of v(s◦) ∼ Nqv(B
(v)
◦ vN(s◦),F

(v)
◦ ). Given that y(s◦) depends on w(s◦),

we combine the posterior draws of
{
βy,Λy,Γ,Ψy,φv

}
with those of w(s◦),

obtained when predicting z(s◦), and draw predicted values for y(s◦) |yTy
from Nhy(Xy(s◦)

′βy + Λyw(s◦) + Γv(s◦),Ψy).
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4. Simulation: Recovering Low-dimensional Structure

In the following simulation exercise we focus exclusively on the high-dimensional

component (i.e., the first stage) of the model described above. The simula-

tion below was devised to illustrate the ability of our approach to recover

the true low-dimensional structure when the data are generated from a low-

dimensional SFM with dense spatial factors.

We generate a synthetic data set for hz = 50 outcomes in nz = 10, 000 lo-

cations from the spatial factor model z(s) = Xz(s)′β̃z+Λ̃zw̃(s)+ε̃z(s). Here,

Xz(s)′ is a 50× 150 block-diagonal matrix of predictors, and β̃z is the vector

of regression coefficients, both defined as before. We consider the same three

predictors for all outcomes. The spatial factors w̃(s) ∼
∏8

k=1 GP(0, C(· | φ̃zk),

where C(· | φ̃zk) is an exponential correlation function with decay parameter

φ̃zk. Additionally, for identifiability, we assume that the 50 × 8 factor load-

ings matrix Λ̃z has zeros in the upper triangle and ones along the diagonal.

Finally, ε̃z ∼ Nhz

(
0, Ψ̃z

)
, with Ψ̃z = diag(ψ̃zk : k = 1, . . . , 8).

We assess the ability of model (3.5) to recover the model parameters from

the true data-generating process, impute missing outcomes, and predict at

out-of-sample locations. The SF-NNGP model was fitted for qw ∈ {3, 5, 8, 10}

spatial factors and m = 10 neighbors. Of the 10, 000 locations, we assume

all 50 outcomes to be missing in 200 locations chosen at random. These

outcomes are to be imputed. Additionally, we use n0 = 500 locations for

out-of-sample prediction and model validation.

The first result worth highlighting is the gains in computational efficiency
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provided by the SF-NNGP. For this simulation exercise—a relatively com-

putationally challenging problem—fitting the largest model considered (i.e.,

qw = 10) with 50,000 MCMC iterations on a Linux server with an Intel i7

processor (two eight-core) and 16 GB of memory, the runtime was 4.88 hours.

As shown below, the proposed approach is able to recover the true model pa-

rameters, accurately impute missing data, and generate precise predictions,

all with suitable uncertainty estimates.

For all values of qw, the SF-NNGP accurately recovered the regression

coefficients β̃z for all predictors and responses (Figure 1 in the online supple-

ment). In contrast, the quality of the estimates for the small-scale variance

components ψ̃zk’s was compromised when qw was lower than the true number

of spatial factors. This behavior is expected. For lower values of qw, the ψzk’s

attempt to compensate for the additional signal that the spatial component

with too few spatial factors is unable to capture (Figure 2 in the supplemen-

tary material). For qw = 8 and qw = 10, the coverage for ψ̃z was 88% and

84%, respectively, with all ψzk close to ψ̃zk with tight 95% credible sets.

When qw 6= 8, the dimensions of the fitted Λz, φw, and w(s) do not match

those of their analogs in the true model. Therefore, to assess the quality of

the fit for the spatial signal for all values of qw considered, we instead compare

the fitted spatial component w?(s) = Λzw(s), for s ∈ Tz, to that of the true

model, given by w̃?(s) = Λ̃zw̃(s).

For all locations in Tz, we calculate ∆(s) = w?(s) − w̃?(s) (fitted minus

true spatial signal) for each MCMC draw of the parameters. For all s ∈ Tz,

we obtained the median and 95% credible set for ∆(s). To facilitate visu-
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alization, in Figure 2, we show the results for only three responses, selected

at random, from the 50 considered. The columns of each panel map the

quantiles 2.5, 50, and 97.5 for ∆(s), with three locations (13, 23, and 48)

plotted by row. The fitted spatial signal when qw ∈ {3, 5} only partially

recovers the true signal, with coverages of 26.13% and 42.06%, respectively,

for qw = 3 and qw = 5. When qw ∈ {8, 10}, the recovery of the spatial signal

is extremely accurate: over all responses, the coverage is 94.78% with qw = 8,

and 94.18% with qw = 10.
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Figure 2: Fitted minus true spatial signal, ∆(s) = w?(s)−w̃?(s), for locations
s13, s23, s48. From left to right, the columns in each panel show percentiles
2.5, 50, and 97.5 for ∆(s), respectively.

In addition to the previous results, it is also encouraging to find that

when the dimension of the SF-NNGP model matches that of the true model,
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both the factor loadings (Λ̃z) and the spatial decay parameters (φ̃z) from

the true spatial process can be recovered accurately (Figures 3 and 4).
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Figure 3: Fitted vs. true factor loadings matrix parameters (95% credible
sets and medians) for qw = 8.
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Figure 4: Fitted vs. true spatial decay parameters (95% credible sets and
medians) for qw = 8.

Model performance in terms of the accuracy of imputation and prediction

improves drastically as the number of factors approaches that of the true

model; see Figures 5 and 6 in the online supplement.

Table 1 compares qw in the SF-NNGP using different measures of out-

of-sample predictive performance. In particular, the continuous rank proba-

bility score (CRPS) (Equation (21) in Gneiting and Raftery, 2007) and the

root mean squared prediction error (RMSPE) (Yeniay and Goktas, 2002)

favor the model with qw = 8. The coverage of the 95% credible intervals of

the predictions was close to the nominal value for all qw; however, the width

of the interval rapidly decreases as qw approaches the true number of spatial

factors.

Both the fitted values for the spatial signals and the out-of-sample pre-
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Table 1: Out-of-sample prediction comparison across models with different
numbers of spatial factors.

qw CRSP RMSPE 95% Coverage 95% CI Width

3 0.85 1.61 95.82 6.14
5 0.67 1.28 95.43 4.79
8 0.45 0.83 94.78 3.10

10 0.45 0.83 94.84 3.10

dictions with qw = 8 and qw = 10 are practically indistinguishable from each

other. Furthermore, the model with qw = 8 accurately recovers all of the true

factor loadings (Figure 3). Interestingly, with qw = 10, a visual inspection of

the estimates for columns 1 through 6 in Λz indicates that this model accu-

rately estimates the corresponding true parameter values (see Figure 4 in the

online supplement). However, in this same model, the estimated parameter

values in columns 7 and 8 of Λz display departures from their true values.

Furthermore, the 95% credible sets for all unconstrained elements in the 9th

and 10th columns of Λz contain zero (see Figure 3 in the online supplement).

These results provide guidance on the number of factors qw to use. Because

there is no gain in using the model with qw = 10 over that with qw = 8

in terms of predictive accuracy or parameter fit, the results favor the more

parsimonious model of the two.
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5. Modeling LiDAR Signals and Forest Structure

Our focus in the subsequent analysis is to assess and interpret the utility of

SF-NNGP spatial factors to explain the variability in the three forest out-

comes defined in Section 2, measured on the BCEF. Following the two-stage

model developed in Section 3.2, we fit (3.5) using qw ∈ {1, 2, 3, 4, 5, 6, 7, 8}

spatial factors and m = 10 neighbors to the BCEF LiDAR data comprising

nz=50,197 signals, each of length hz=57. The model mean included only

an intercept. The specification for the priors follows Section 3.3, with the

support for elements in φw adjusted to match the BCEF spatial extent.

The ny=197 locations with hy=3 forest outcomes were used in the second-

stage model (3.6). To more clearly interpret the spatial factors’ ability to

explain the variability in forest outcomes, we decided to avoid potential issues

with spatial confounding (Hanks et al., 2015) and set v(s) to zero. In practice,

however, if our main objective is to maximize predictive performance, then

this residual spatial random effect should likely be included in the model.

In addition to the spatial factors, the second-stage model was informed by

the three Landsat 8 tasseled cap predictor variables defined in Section 2,

which, along with an intercept, were included in Xy(s). Importantly, these

predictor variables are available across the entire BCEF; hence, given the

predicted values of the spatial factors at unobserved locations, we can create

complete-coverage forest outcome maps.

Posterior inference for all candidate models was based on three chains of

50,000 post-burn-in MCMC samples. Chains converged by 20,000 MCMC
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iterations. Using the same computer configuration detailed in Section 4, the

total runtime for the most demanding model, qw = 8, was ∼36 hours.

The eight candidate models, specified by qw, were assessed based on their

ability to inform the forest outcome predictions. This was done by fitting

each of the first-stage models, then fitting their corresponding second-stage

models using data from 99 of the 197 available locations in Ty. The three

forest outcomes were then predicted for the remaining 98 out-of-sample lo-

cations. The scoring rules and other summaries of the posterior predictive

distributions for the 98 out-of-sample locations are presented in Table 2.

Increasing the number of spatial factors improves the CRPS and RMSPE

for each forest outcome shown in Table 2. Exploratory analysis showed that

the gains in predictive performance were negligible beyond qw = 4 for AGB

and qw = 5 for TD and BA. Given that the qw=5 model generally yielded

the “best” predictions, it was selected for exposition below.
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Table 2: Cross-validation prediction summary for forest outcomes given in-
creasing number of spatial factors qw. Bold values identify lowest CRPS and
RMSPE.

qw CRSP RMSPE 95% Coverage 95% CI Width

AGB

1 26.21 51.37 91.88 161.24
2 26.36 52.02 92.39 162.14
3 23.64 46.95 95.94 155.71
4 23.53 46.93 93.91 155.66
5 24 47.54 96.45 157.75
6 24.47 47.8 94.92 172.64
7 24.75 47.84 95.43 174.44
8 24.76 48.02 96.45 182.12

TD

1 1017.7 1980.62 92.39 6010.6
2 1006.02 1957.54 93.4 5944.81
3 1007.72 1954.87 93.4 6068.29
4 997.32 1955.2 93.4 6040.06
5 989.31 1930.76 94.92 6182.2
6 998.3 1944.22 94.42 6223.73
7 1005.26 1965.81 95.43 6450.5
8 1004.36 1955.08 96.95 6503.17

BA

1 5.53 10.29 91.88 36.34
2 5.4 10.01 94.42 36.85
3 5.13 9.54 93.91 35.16
4 5.17 9.62 93.4 36.21
5 5.16 9.58 93.4 36.51
6 5.2 9.59 96.45 38.62
7 5.24 9.73 95.43 38.34
8 5.27 9.72 94.42 37.93
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Table 3: Elements of Λy median and 95% credible intervals for the qw = 5
model. Bold entries indicate where the 95% credible interval excludes zero.

Parameter 50% (2.5%, 97.5%)

λ
(y)
AGB,1 -6.65 (-8.89, -4.23)

λ
(y)
AGB,2 27.20 (-14.11, 65.14)

λ
(y)
AGB,3 -278.29 (-324.52, -232.28)

λ
(y)
AGB,4 -46.15 (-162.56, 75.91)

λ
(y)
AGB,5 -308.81 (-524.42, -90.45)

λ
(y)
TD,1 -1.77 (-21.35, 17.60)

λ
(y)
TD,2 -357.49 (-718.82, -7.86)

λ
(y)
TD,3 269.03 (-137.51, 667.62)

λ
(y)
TD,4 -1777.21 (-2696.67, -708.08)

λ
(y)
TD,5 2457.52 (681.18, 4337.97)

λ
(y)
BA,1 -2.93 (-3.94, -1.75)

λ
(y)
BA,2 -2.07 (-19.02, 15.79)

λ
(y)
BA,3 -98.64 (-119.79, -76.24)

λ
(y)
BA,4 -72.00 (-120.60, -23.00)

λ
(y)
BA,5 -80.55 (-177.44, 20.51)

Table 3 provides estimates for the second-stage model’s spatial factor

regression coefficients, that is, the elements in Λy. These results show that

several of the spatial factors explain a substantial portion of the variability

in the forest outcomes. It is, however, difficult to interpret the different

λ(y) without a sense of what characteristic of z(s) the spatial factors are

capturing. When considered with the estimates in Table 3, Figure 5 provides

a biological interpretation of the spatial factors. Specifically, each panel in
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Figure 5 represents a spatial factor. The 50 lines in each panel are observed

LiDAR signals, with the lines corresponding to the 25 largest (lighter colored

lines) and 25 smallest (darker lines) estimated spatial factor values.

There are some general biological relationships between the forest canopy

structure and AGB, TD, and BA. A very low maximum canopy height is

indicative of a young regenerating forest (e.g., regrowth after a fire), which

would be characterized by low AGB, high TD, and low BA. If the majority

of trees in a forest have a high canopy height, then we expect high AGB, low

TD, and high BA (i.e., a few large-diameter mature trees dominate the area).

When the forest is characterized by trees of many different heights (i.e., tree

crowns in several vertical strata), then we might expect moderate/high AGB,

moderate TD, and moderate/high BA. Some of these expected relationships

are observed when comparing Table 3 and Figure 5. For example, the top

left panel in Figure 5 differentiates between regenerating forests and all other

forest structures, that is, the lighter lines show a spike of energy returned at

or near ground level versus red lines which show the majority of the energy

is returned at or above a height of several meters. Hence, we have negative

regression coefficients λ
(y)
AGB,1 and λ

(y)
BA,1 in Table 3. The LiDAR signals shown

in the top right panel in Figure 5 differentiate between young and old single-

cohort forests (i.e., all trees were regenerated around the same time and there

is little vertical variation in canopy height); hence, we have negative λ
(y)
AGB,3

and λ
(y)
BA,3 in Table 3. The top middle and bottom left panels in Figure 5

generally separate the signal for mature 20+ and ∼20 meter canopy heights

(lighter lines), respectively, from the lower stature ∼10 meter canopy height
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forest (darker lines). Consistent with the biological expectation, the negative

λ
(y)
TD,2 and λ

(y)
TD,4 suggest that forests associated with red LiDAR signals have

higher tree density relative to the older taller forests.
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Figure 5: Observed LiDAR signals with the 25 largest (High in the legend)
and 25 smallest (Low in the legend) values of w(s) from the qw = 5 model.

As detailed in Section 1, complete-coverage maps of the forest outcomes

with associated uncertainty estimates are important data products that can

be delivered by the proposed two-stage model. Following Section 3.4 and

using the full data set depicted in Figure 1, we predicted the forest outcomes
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on a 30×30 m grid over the BCEF. Figure 6 provides the median and 95%

credible interval width maps for each outcome. Nonforested areas are omit-

ted (white regions on the maps). The posterior predictive point estimates

match well with the distribution of the forest outcomes across the BCEF

and are clearly informed by the LiDAR factors, which are capturing key for-

est structure characteristics. Most importantly, the prediction uncertainty

maps, displayed in the right column of Figure 6, accurately reflect our lack

of information for prediction units that are far from the flight lines where

LiDAR data are available, that is, we achieve more precise posterior pre-

dictive distributions along and adjacent to locations where LiDAR data are

available. Far from the LiDAR flight lines, prediction is only informed by

the Landsat 8 tassel cap predictor variables, which in this study explained

very little variability in the forest outcomes.
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Figure 6: Model qw = 5 posterior predictive distribution median and 95%
CI width for AGB, TD, and BA forest variables over Bonanza Creek Exper-
imental Forest.
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6. Concluding Remarks

We formulated an approach to model high-dimensional spatial data over a

large set of locations, and developed an efficient implementation in C++.

The SF-NNGP enables the analysis of multivariate spatially referenced data

sets that, due to their magnitude, could not be rigorously explored before.

It does so by combining the ability of SFMs to compress the signal from

high-dimensional structures into a few dimensions with the computational

scalability of NNGPs.

The algorithm was used to exploit the information from the high-dimensional

LiDAR signals to jointly model and generate LiDAR-based maps of multiple

forest variables. Importantly, the proposed two-stage model provides a vi-

able approach to producing spatially continuous maps from sparsely sampled

LiDAR and forest measurements. Furthermore, the model delivers spatially

explicit uncertainty quantification that captures the irregular distribution

of information across the domain of interest. Such frameworks will become

increasingly important as sampling LiDAR systems, such as GEDI, come on-

line in the near future. These approaches can also be extended to help guide

LiDAR and field data acquisition to minimize prediction uncertainty.

Importantly, when fitting a spatial factor model, one must choose the

number of factors qw to use in the model; there are different strategies to

address this issue. Here, we consider out-of-sample evaluation metrics for dif-

ferent choices of qw and select the one where the curves flatten out. This is a

pragmatic solution, similar in spirit to cross-validation approaches commonly
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used to tune hyper-parameters in richly parametrized models. Like any other

cross-validation approach, this leads to additional computation, but paral-

lel computing opens the possibility of conducting simultaneous MCMC runs

for different values of qw. As shown, both in the simulation experiment and

in the BCEF data analysis, this heuristic provides sufficiently good results.

Other automated rank selection schemes are available in the literature, such

as those proposed in Lopes and West (2004) and in Ren and Banerjee (2013);

however, these drastically increase the computational burden of an already

computationally costly problem.

In future research, we would like to explore an extension for spatio-

temporal data. For this type of data, it is necessary to posit a strategy to

select the neighbors in the spatio-temporal domain, following the discussion

presented in Datta et al. (2016a).

Although our method presents a substantial improvement in terms of

scalability over existing approaches, further efforts are required to scale mul-

tivariate spatial methods to truly massive data sets. For instance, the ulti-

mate goal for forest variable mapping assisted by sampled LiDAR in interior

Alaska is a complete-coverage map of the entire domain (e.g., 46 million ha),

which could easily require models capable of assimilating LiDAR signals in

more than 108 locations.

Supplementary Materials

The supplementary materials include (1) background information on NNGPs

and spatial factor models, (2) the sampling algorithm for the SF-NNGP, and
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(3) additional simulation results.
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