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maps ove@large spatial do

for remotely sensed light

spatial factor nearest neighbor Gaussian process (SF-NNGP) model,
ed in a two-stage approach that connects the spatial structure found
znals with forest variables. We provide a simulation experiment that
emonstrates the inferential and predictive performance of the SF-NNGP, and use
the two-stage modeling strategy to generate complete-coverage maps of the for-

est variables, with associated uncertainty, over a large region of boreal forests in
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interior Alaska.
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1. Introduction

the vertical structure of the forest canopy at point-refi poions. Tra-

ditionally, LIDAR data_acquisition camp s have sought complete-coverage

at a high spatial resoluthl over relatively 1l domains, resulting in a

fine grid of point-referenogd Li ich settings, the link between
the LIDAR dgfa and the casurements on sparsely sampled
forest inventory plotg ha; slo1Ml to create high-resolution complete-
coverage predi . forest variables. Commonly, this link is
o the relevant features of the high-dimensional

nension-reduction step (Babcock et al., 2015; Junt-

es. Lastly, the model is applied to predict the forest outcomes
ocations across the domain where LiDAR signals have been observed.

Considerably more ambitious next-generation LiDAR collection initia-
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tives, such as ICESAT-2 (ICESat-2, 2015), Global Ecosystem Dynamics In-
vestigation LiDAR (GEDI) (GEDI, 2014), and NASA Goddard’s LiDAR,
Hyper-Spectral, and Thermal imager (G-LiHT) (G-LiHT, 2016), seek to
quantify and map forest variables over vast spatial extent\ To fulfill their

goals in a cost-effective manner, these data-gatherige programs dqQ negmcol-

sampled locations and assessing the spataal dependence within and among
LiDAR signals. \

Our motivating application foc variable prediction and map-
ping in the Rpreal forest i ¢ using sparsely sampled LiDAR

and forest variable measu

One attractive solution is to move the LiDAR pre-
to the left-hand side of the regression and then to model
with the forest outcomes. When the number of LiDAR and
forest variables is small, such joint models are possible via linear models of

coregionalization; for example, see, Babcock et al. (2017) and Finley et al.
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(2014a). Alternatively, if the LiDAR signal is high-dimensional, but observed
at a small number of locations, reduced-rank models can be employed. For

example, Banerjee et al. (2008), Ren and Banerjee (2013), and Finley et al.

(2017) applied a reduced-rank predictive process modeling\crategy to ana-

cale

lyze similar high-dimensional data. However, such ‘proaches canno
to data sets with tens of thousands of locatio,

performance (Stein, 2014).

dence structures are needed. Recent modeling de

Heaton et al. (2017) and Banerjee (2017
and practical approxir\tion of univarial
A subset of these models can he
small multiv‘ate responsSae o 4l ss) for example, see (Datta et al.,
2016a). Nevertheless, for g i pplication, we require an approach
that can cope\Qu \ imensional LiDAR measurements, ~50

outcomes at

red—a quality that yields minimal storage and computational
requirements. These models belong to the class of methods that induce spar-

sity on the spatial precision matrix, and exploit the natural representation
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of sparsity provided by graphical models (Lauritzen, 1996; Murphy, 2012) to
build a sparse GP that accurately approximates the original dense GP.

To tackle the high-dimensional LiDAR data set, we develop a Bayesian

NNGP spatial factor model (SFM), referred to as the S\NNGP. Follow-
ing Christensen and Amemiya (2002), Hogan and T\hernis (2004), angmRen
and Banerjee (2013), the SFM structure en

dence between multivariate (spatially depen
dimensional set of spatial factors, alleviating
with high-dimensional outcomes. The SF-NNGP allows us to

map the LiDAR signals on both observed and uno Ins, and,

conditioning on the LiDAR spatial signatgres, we can similarly map the for-
est variables over the e\re spatial doma gl st. Furthermore, using a

Bayesian approach for model fit{in

va set to validate the performance of the SF-NNGP model. Using
the available LIDAR and forest inventory data, in Section 5, we develop and

validate a predictive model for the forest variables. We close by providing
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insights, recommendations, and directions for future in Section 6.

2. Data Description

The Bonanza Creek Experimental Forest (BCEF) is a LoMg-Term Ecolog-

of interior Alaska. The BCEF is 21,000 h
Tanana River floodplain along the southeMern borders
LTER, 2016). Figure 1 shows the location
detailed in this section.

vne USDA

Forest variables were collected on 197 plots in

Forest Service Forest Inventory and Anal Program protocol (Bechtold and

Patterson, 2005). We coMsider three fores commonly used by forest
professionals to make managenmnt\cisi ove-ground biomass (AGB);
tree density \“D); and ba he AGB for individual trees was
estimated using the Co Method described in Woodall et al.
(2015). The

The BA for

;pressed in thousands of trees per hectare.

T the individual trees’ cross-sectional areas in

m? al@ae Md to a per hectare basis.
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Figure 1: Bonanza Cr§k Experimental st extent with color enhanced
Landsat image and locMions where the nals were measured (Li-
DAR in the legend) and locatio iDAR signals and forest

variables were measured \W.iDA ) the legend).

\

.5 m height bins between 0 and 28.5 m (i.e., 57 LiDAR outcomes
per location). The LiDAR return count density for height bin [ is defined

as the number of returns in height bin [ divided by the total number of

7
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LiDAR returns over the grid cell. Identical LiDAR psuedo-waveforms were
obtained using point clouds extracted over each field plot. G-LiHT data for

the study area are available online at https://gliht.gsfc.nasa.gov. For

this analysis, 50,197 LiDAR observations were used for mofl-fitting.

r\product was progm
image was DY

A Landsat 8 top of atmosphere (TOA) reflectan
for the BCEF area for June of 2015. The

—

indices (Baig et al., 2014). These indices are used as

quent analysis.

3. Modeli‘g Strateg

Our goal is to model and tainty-equipped predictions of forest
variables using : vned in LiDAR signals. Consider a LiDAR
lte collection of locations, T, = {s1,...,sn.},
mes, y(-), observed at locations in the set 7, =
Furthermore, let 7y = {tl, e 7tn@} denote a set of lo-
»ither LIDAR signals nor forest outcomes are available, but
1s are of interest. Thus, the set of locations where both Li-

orest outcomes are mapped corresponds to T = (7, U7Ty), with

T C D C R?, where D is the spatial domain of interest. Note that although


https://gliht.gsfc.nasa.gov
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z(-) and y(-) are “observed” at locations in 7, and 7, respectively, we al-

low for missing values that are to be imputed in these sets. We make this

distinction because locations where imputation is performed are part of the
model fitting, whereas for locations in 7y, predictions are dr\vn ex post facto
from the posterior predictive distribution; see Sectiog 3.4.

The LiDAR signals are high-dimensional O‘measurement
whereas the forest outcomes are relatively

h, << h), assumed to have support on Rh.

ariation exclusive to the forest outcomes can also be specified, if
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required. For s € D, this two-stage model is given by

Stage 1: z(s) = X.,(s)8,+ w*(s) + e.(s), (3.1)

Stage 2: y(s) = X,(s)'8, + YTw*(s) +v*(s) —|—\y(s).

Note that the influence of z(s) over y(s) in '\xerted solely

its spatial component, w*(s). There are se
approach, as opposed to substituting z(s) o
setting, z(s), w.(s) and w*(s) are all high-dimension

reduces the dimensionality of the problegm by casting it under the factor

model structure, as sh\n in Section 3. ition, the elements within

z(s) are strongly correlated, hencgmulti carity issues would arise if it
was includecVirectly in
In (3.1) and (3.2), the and X, (s)'8, capture large-scale

variation. Fo presents a fixed h, X p, block-diagonal

redictors, where p, = > 5" pyj, having as

aren,- and h,-dimensional zero-centered stochastic processes
ely. The process w*(s) captures the spatial variation of z(s),
Prnesizes additional spatial variation in the forest outcomes. The
hy x h, matrix Y connects the spatial information extracted from the LiDAR

model into the forest outcomes model. The vectors €,(s) ~ N, (0, ¥,) and

10
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ey(s) ~ Ny, (0, ¥,) represent uncorrelated random errors (i.e., ¥, and ¥,
are diagonal) at finer scales.

Implementing this modeling strategy directly is challenging owing to the

high-dimensionality of the LiDAR signals (h, ~ 50) and thégnassive number
of spatially dependent observations (n ~ 10°). T&s, it is imp

attempt using common computing resource

formulate a viable alternative to models (3.

3.2 The Spatial Factor NNGP Model

To make models (3.1) and (3.2) tractable with limite

combine a dimension-reduction approachsand a sparsity-inducing technique.

SFM structure (Schmidt and Gglf ley et al., 2008; Zhang, 2007;
Ren and Bal\rjee, 2013) ‘ta et al., 2016b,c,a).
While the SFM stru b , e analysis of high-dimensional re-

with locations outside of the neighbor set. The result is a proper
(but sparse) GP that accurately approximates the original dense GP. In con-

trast to other sparsity-inducing approaches, NNGPs allow for interpolation

11
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at unobserved locations and can be used to make full inference on model
parameters, including the latent processes. Combining the SFM structure

with NNGPs provides a methodology capable of coping simultaneously with

high-dimensional response vectors and a large number of sp&ially dependent

observations.
Under the traditional SFM structure, spajg \Jenee is intro

H(\p) +h)
(3.3)
for locations s,s + h € T \ ) denotes a univariate parametric
correlation furfi \ h®&th column of A. This cross-covariance

matrix is induce
ompmnents /0, k( \ ¢k))

As 1) and (3.2) can be reformulated as SF-NNGPs by

he spatial processes w*(s) and v*(s) as
w*(s) = A,w(s) and v*(s) =T v(s), (3.4)
where the matrices A, = (()\;fk)))hzxqw and I' = ((71r) )h, xq. correspond to the

12
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factor loadings matrices, and the new spatial factors for s € D are given by

w(s) ~ ﬁNNGP(O,@(-W}:)), and

k=1

v(s) ~ lq'[ NNGP (o,é(. | ¢§)).

r=1

spectively. Here, C(-| ¢) represents the spatial correlation

tial decay parameter ¢. The factor model representaf

factors w(s) = (wg(s) \1 < k < ) an
dimensions ¢,, << h, and ¢, < hy.gespec
Combiniz\gthese elei{m \ ' = TA, = (()\I(Z)))hquw, a

computationaWy viable verst

s)'B, + A.w(s) +e.(s) (3.5)

X,(s)B, + A,w(s) +Tv(s) +&,(s).  (3.6)

fional constraints are required for factor models to be

identifiable

erson, 2003). Identifiability for SEMs can be achieved either
upper triangle of the loadings matrix equal to zero and its
diagonal elements all equal to one (Geweke and Zhou, 1996; Lopes and West,
2004; Aguilar and West, 2010), or, as in Ren and Banerjee (2013), by fixing

13
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the sign of one element in each column of the factor loadings matrix, while
enforcing an ordering constraint among the spatial decay parameters of the

univariate correlation functions. We choose to ensure rotation and scale

identifiability by using the former approach. \
With the SFM structure in place, introducing \hJe NNGP reduc

expensive (~n?q, and ~ niqv) calculation

variance matrices from the parent GPs by n

3

each of order m?®. Here, m is the number

ment of SFNKs, refer to ® (2013) and Genton and Kleiber
(2015), and for NNGPs, 1

chrough the forest outcome predictions, at each iteration of the
Markov Chain Monte Carlo (MCMC) algorithm for y(s), we draw a sample
for w(s) (s € T,) MCMC samples obtained when fitting model (3.5).

14
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As mentioned in the previous section, the stochastic processes that cap-

ture the spatial structure are assumed to follow NNGPs. Given that an

NNGP is a proper GP, at a finite collection of locations, the NNGPs induce
zero-centered multivariate normal priors, with covariance \Ltrices given by
C®) and C®), respectively. Additionally, we use \ntably noninfor

priors for all other parameters, thus providi

In particular, we assume that 3 is eithe

matrices I and A, are constrained as descri

W, and ¥, are assigned half-¢ priors. tly, we assume uniform priors for

the elements of the sp&ial decay vecto

15
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rithm are proportional to

Stage 1:
B quw h;
() Niogo (w70, C) | TT TI N 10.§
k=1j5>k
he X
=(8.) | [[Z6w;51v/2 as,4]1/2,1/A°
H No. (z(s:)| X (s
s;€T-
Stage 2:

(s |B )WN(l),F(w)), and

= [ Na(w

si€T

= ]I No(v(s) IBI v, FY). (3.9)

s; €Ty

The expressions on the right-hand side of (3.9) result from the construc-

tion of the NNGP (see online supplement). For an m-neighbor NNGP, let

16
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m; = min {m,i — 1} denote the number of neighbors for location s;. The
index set N(i) for location s; € T, contains its m; nearest neighbors; thus,

W (i) corresponds to the vector (w(s;)':s; € N(i) C T.)". The neighbor set

for v(s;) is defined analogously. Letting u € {w, v}, BE“) de\tes a qy X My

-hts

block matrix, with the g, x g, diagonal blocks contaiging the krigin
Xl, F

7

for the ¢, spatial factors for each neighbor.

the q, x ¢, diagonal matrix with the varianc

tioned on the neighbor set N (i) (see Section

and 17, respectively, and the hyperparaigater A is simply chosen to be some
large value (say, 100). \

Owing to prior conjugacy, the ik \l densities for all parameters
except @, af§l ¢, can be 1ple Gibbs steps. Further details

on the sampling algorithrggm g fe the online supplement.

3.4 Imputati rc@¥ ion

s AR signals are collected over the large spatial region
butcome observations are confined to the smaller subset
. Additionally, there are relevant out-of-sample locations
iIDAR nor forest outcomes are observed, 7y. Finally, there
Cations within the corresponding reference sets 7. and 7, that
have some or all missing outcomes. It is thus essential for this modeling

effort to provide the means to accurately impute the missing values in 7, or

17



Statistica Sinica: Preprint

doi:10.5705/s5.202018.0005

7,. This enables us to generate LiDAR predictions in 7y and forest outcome
predictions within 7y U (7, \ 7,). Given the NNGP formulation, both the
imputation and the out-of-sample prediction are remarkably inexpensive.

Imputation is straightforward. Let s, € 7. be a loc&on where z(s,)

conditional posterior for v(s,) and the likelihood for y(s.).

The procedure to predict a new LiDAR observat

gins by sampling the spatial factor w(safrom qu(ng)WN(so), FE}")), with
B! and F!" deﬁned\ before. Note t
is assumed to be in 7,. Then,
A.w(so), ¥\ This is . it g on the posterior samples of
{B,,A,, ¥, ¢,} obtaine
o) at s, € TgU(T:\T,), we first generate

F(()U)). Given that y(s.) depends on w(s,),

18
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4. Simulation: Recovering Low-dimensional Structure

In the following simulation exercise we focus exclusively on the high-dimensional

component (i.e., the first stage) of the model described ahgve. The simula-
tion below was devised to illustrate the ability of our a;&,ach to recover
the true low-dimensional structure when the data ar\generated frogs
dimensional SFM with dense spatial factors

We generate a synthetic data set for h, = 1tcomes in
cations from the spatial factor model z(s) = X, (s)'B;

X.(s) is a 50 x 150 block-diagonal matrix of predictors, and

of regression coefficients, both defined as before. We ¢ ¢ same three

LS w(s) ~ [I5_, GP(0,C(-| 62),

)n with decay parameter

predictors for all outco‘fs. The spatial
p

where C(-|¢7) is an exponential correlati

¢7. Additionally, for ide that the 50 x 8 factor load-

ings matrix X has zeros in

We assess th (3.5) to recover the model parameters from
cess, impute missing outcomes, and predict at
'he SF-NNGP model was fitted for ¢, € {3,5,8,10}
m = 10 neighbors. Of the 10,000 locations, we assume
all 50 outc to be missing in 200 locations chosen at random. These
b be imputed. Additionally, we use ny = 500 locations for

out-of-sample prediction and model validation.

The first result worth highlighting is the gains in computational efficiency

19
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provided by the SF-NNGP. For this simulation exercise—a relatively com-
putationally challenging problem—fitting the largest model considered (i.e.,

¢w = 10) with 50,000 MCMC iterations on a Linux server with an Intel i7

processor (two eight-core) and 16 GB of memory, the runtin\was 4.88 hours.

As shown below, the proposed approach is able to reg/er the true

ment). In contrast, the quality of the estimates for t

components 1@2’5 was compromised whe
of spatial factors. This\éhavior is expec
attempt to compensate for the ad
with too feu/‘aatial facto g \ ture (Figure 2 in the supplemen-

tary material). For ¢, =4 , the coverage for zﬁz was 88% and

Cations in T, we calculate A(s) = w*(s) — w*(s) (fitted minus
true spatial signal) for each MCMC draw of the parameters. For all s € T,

we obtained the median and 95% credible set for A(s). To facilitate visu-

20
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alization, in Figure 2, we show the results for only three responses, selected

at random, from the 50 considered. The columns of each panel map the

quantiles 2.5, 50, and 97.5 for A(s), with three locations (13, 23, and 48)
plotted by row. The fitted spatial signal when ¢, € {3,\ only partially
recovers the true signal, with coverages of 26.13% agd 42.06%, respecf@

for ¢, = 3 and ¢, = 5. When ¢, € {8,10}, t \

is extremely accurate: over all responses, th

and 94.18% with ¢, = 10.

21
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| minus true spatial signal, A(s) = w*(s)—w*(s), for locations
1 left to right, the columns in each panel show percentiles
» for A(s), respectively.

In addition to the previous results, it is also encouraging to find that

when the dimension of the SF-NNGP model matches that of the true model,

22
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both the factor loadings (A.) and the spatial decay parameters (¢,) from

the true spatial process can be recovered accurately (Figures 3 and 4).

A Ao A3 Ag
5 96% coverage ’,-' 96% coverage ,‘," 80% coverage /*\ 64% coverage I
;‘, - "/, /,(
1 /' {«‘, ’/ ’r'
0 i Py S
l el
-1 / L
x -~
a_, " ,"
q} . .
> . .
©
% As As
b=} 88% coverage ral 82% coverage L
[ o ”
1 - ."1
0 e
/ s
_1 '.,‘ I.,
-2 -~ /}"
2 1 0 1 2 2 -1 0 1 2
Figure 3: Fitted vs. true factor 1 ix parameters (95% credible

sets and medians) for ¢, 8.

\
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6 ’
75% coverage ,,”

Fitted Values
—

True Values

Figure 4: Fitted vs. true spatial decay parameters ble sets and
medians) for ¢, = 8.

\

Model performance in terms of of imputation and prediction

improves drstjically as ors approaches that of the true

model; see Figures 5 and

diction error (RMSPE) (Yeniay and Goktas, 2002)
n q, = 8. The coverage of the 95% credible intervals of
the predicti vas close to the nominal value for all ¢,,; however, the width

Wrapidly decreases as ¢, approaches the true number of spatial

factors.

Both the fitted values for the spatial signals and the out-of-sample pre-

24
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Table 1: Out-of-sample prediction comparison across models with different
numbers of spatial factors.

¢w CRSP RMSPE 95% Coverage 95% CIWidth

3 0.85 1.61 95.82 6.14
5 0.67 1.28 95.43 4.79
8 045 0.83 94.78 3.10
10 0.45 0.83 94.8 3.10

dictions with ¢, = 8 and ¢,, = 10 are practica
other. Furthermore, the model with ¢, = 8 accurately recovers ‘he true

factor loadings (Figure 3). Interestingly, with ¢, = 1 Phection of

the estimates for columns 1 through 6 i indicates that this model accu-

rately estimates the coAsponding true p alues (see Figure 4 in the
online supplement). However, ¥ lel, the estimated parameter

values in col@nns 7 and

Furthermore, the 95% cr ‘ : 1l unconstrained elements in the 9th

25
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5. Modeling LiDAR Signals and Forest Structure

Our focus in the subsequent analysis is to assess and interpret the utility of

SF-NNGP spatial factors to explain the variability in the‘héree forest out-

comes defined in Section 2, measured on the BCEF. Followity the two-stage

model developed in Section 3.2, we fit (3.5) usin
spatial factors and m = 10 neighbors to th
n,=50,197 signals, each of length h,=57.
an intercept. The specification for the priors follo
support for elements in ¢,, adjusted to match the BCEF sp

The n,=197 locations with h,=3 forest outcomes w the second-

stage model (3.6). To‘nore clearly int ¢ the spatial factors’ ability to

explain the variability inTorest outcomes, . to avoid potential issues

. set v(s) to zero. In practice,

tercept, were included in X, (s). Importantly, these
are available across the entire BCEF; hence, given the
predicted v. of the spatial factors at unobserved locations, we can create
.ge forest outcome maps.

Posterior inference for all candidate models was based on three chains of

50,000 post-burn-in MCMC samples. Chains converged by 20,000 MCMC

26



Statistica Sinica: Preprint

doi:10.5705/s5.202018.0005

iterations. Using the same computer configuration detailed in Section 4, the
total runtime for the most demanding model, ¢, = 8, was ~36 hours.
The eight candidate models, specified by g,,, were assessed based on their

ability to inform the forest outcome predictions. This wafgdone by fitting

the gains in predictive\rformance were B beyond ¢, = 4 for AGB
and ¢, = 5 for TD and BA.

the “best” p\dictions, it s xposition below.

27
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Table 2: Cross-validation prediction summary for forest outcomes given in-
creasing number of spatial factors ¢,. Bold values identify lowest CRPS and

RMSPE.

gw CRSP RMSPE 95% Coverage 95%\ Width

1 26.21 51.37

2 26.36 52.02

AGB 3 23.64 46.95

4 23.53 46.93

5 24 47.54

6 24.47 47.8

7 24.75 47.84

8 24.76 48.02

1 1017.7  1980.62

D 2 1006.02 1957.54 93.4 .81

3 1007.72  1954.87 6068.29

4 997‘i 1955.2 6040.06

5  989. 1930.76 6182.2

6 998.3 1944. , 6223.73

7 6450.5

8 6503.17

1 36.34

2 36.85
35.16
36.21
36.51
38.62
38.34
37.93

28
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Table 3: Elements of A, median and 95% credible intervals for the ¢, = 5
model. Bold entries indicate where the 95% credible interval excludes zero.

Parameter 50% (2.5%, 97.5%)
A -6.65 (-8.89, -4.23)
A, 27.20 (-14.11, 65,14
Mg,  -278.29 (-32
A 4 ~46.15 (-

M s -308.81 (-52

A -1.77 (-21.35, 17.60
A -357.49 (-718.82, -7.86)

(-177.44, 20.51)

os for the second-stage model’s spatial factor
hat is, the elements in A,. These results show that
1 factors explain a substantial portion of the variability

in the fore It is, however, difficult to interpret the different

sense of what characteristic of z(s) the spatial factors are
capturing. When considered with the estimates in Table 3, Figure 5 provides

a biological interpretation of the spatial factors. Specifically, each panel in
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Figure 5 represents a spatial factor. The 50 lines in each panel are observed

LiDAR signals, with the lines corresponding to the 25 largest (lighter colored

lines) and 25 smallest (darker lines) estimated spatial factor values.
There are some general biological relationships between\e forest canopy

structure and AGB, TD, and BA. A very low ma)grjum canopy heig

left panel in ‘gure 5 diffeNgat] \ N\ regenerating forests and all other

forest structures, that is, : Sshow a spike of energy returned at

e., all trees were regenerated around the same time and there

variation in canopy height); hence, we have negative )\(j’é B3

generally separate the signal for mature 204 and ~20 meter canopy heights

(lighter lines), respectively, from the lower stature ~10 meter canopy height
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forest (darker lines). Consistent with the biological expectation, the negative

)\g'%g and )\%%’ 4 suggest that forests associated with red LiDAR signals have

higher tree density relative to the older taller forests.

z's for w, z's for w,

20+ 201
104 104
00 01 0

O- T T T T 0-
0.00 025 050 0.75

Z's for wy Z's fi
20
Lidar signals
High
— Low

=

O_

P

Forest Canopy Height (m)

204

00 01 02 03 04
LiDAR Energy Returned

AR signals with the 25 largest (High in the legend)
w in the legend) values of w(s) from the g, = 5 model.

n Section 1, complete-coverage maps of the forest outcomes
w1 ated uncertainty estimates are important data products that can
be delivered by the proposed two-stage model. Following Section 3.4 and

using the full data set depicted in Figure 1, we predicted the forest outcomes
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on a 30x30 m grid over the BCEF. Figure 6 provides the median and 95%
credible interval width maps for each outcome. Nonforested areas are omit-

ted (white regions on the maps). The posterior predictive point estimates

match well with the distribution of the forest outcomes \ross the BCEF
for-

and are clearly informed by the LiDAR factors, whigh are capturing k
rediction unc

est structure characteristics. Most importa

maps, displayed in the right column of Figl@@ 6. accurately

of information for prediction units that are

dictive distributions along and adjacent to locations

available. Far from the LiDAR flight li
the Landsat 8 tassel CA predictor varia

very little variability in the for

\
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1 ¢, = b posterior predictive distribution median and 95%
B, TD, and BA forest variables over Bonanza Creek Exper-
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6. Concluding Remarks

We formulated an approach to model high-dimensional spatial data over a

large set of locations, and developed an efficient implem‘tation in C4++.

The SF-NNGP enables the analysis of multivariate spatially®eferenced data

\)usly exploreQab

compress ¢

sets that, due to their magnitude, could not be ri
It does so by combining the ability of SF
high-dimensional structures into a few dim s with the
scalability of NNGPs.

The algorithm was used to exploit the information from th imensional

LiDAR signals to jointly model and generate LIDAR-D s of multiple

forest variables. Impo‘intly, the prop Lwo-stage model provides a vi-

able approach to producihg spatially conti ))s from sparsely sampled
LiDAR and forest meas the model delivers spatially
explicit uncAain‘cy quant1

of information, acrosath f interest. Such frameworks will become

.e. Here, we consider out-of-sample evaluation metrics for dif-
ferent choices of ¢, and select the one where the curves flatten out. This is a

pragmatic solution, similar in spirit to cross-validation approaches commonly
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used to tune hyper-parameters in richly parametrized models. Like any other
cross-validation approach, this leads to additional computation, but paral-

lel computing opens the possibility of conducting simultaneous MCMC runs

for different values of ¢,. As shown, both in the simulatio\éxperiment and

in the BCEF data analysis, this heuristic provides

‘fﬁciently good r

Other automated rank selection schemes are *n the literatu

as those proposed in Lopes and West (2004)
however, these drastically increase the comp
computationally costly problem.

In future research, we would like to explore a I spatio-

temporal data. For this type of data, i

select the neighbors in\e spatio-tempo

presented in Datta et al. (2016g).
Althouglyour metho antial improvement in terms of

scalability over existing a

Joary Materials

The supplementary materials include (1) background information on NNGPs

and spatial factor models, (2) the sampling algorithm for the SF-NNGP, and
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(3) additional simulation results.
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