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Abstract

We discuss the aeroacoustic resolution properties of the discontinuous Galerkin (DG)

schemes in detail and compare their performance with the state of the art finite differ-

ence (FD) schemes, including the classical dispersion-relation-preserving (DRP) schemes.

Analysis shows that, even though the DG schemes are slightly dissipative, their over-

all dispersion and dissipation properties are comparable with the corresponding DRP

schemes on the same stencil. For the convenience of a direct comparison with FD

schemes, we write the DG schemes in the form of block finite difference schemes. Ample

numerical tests, including the tests on nozzle flow problems, are performed and we ob-

serve that the DG schemes and DRP schemes with the same stencil produce comparable

numerical results. Since the DG schemes are flexible on non-uniform meshes and general

unstructured meshes, they should be good candidates for computational aeroacoustics,

especially those on complex geometry.
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1 Introduction

Computational aeroacoustics (CAA), a relatively young research area, is an interdisci-

plinary subject involving fluid mechanics, acoustics, computational geometry, numerical

analysis, computer science and mathematical theory of partial differential equations. It

not only uses numerical methods to study the mechanism of noise caused by flow and

its interaction with objects, but also uses these methods to study practical engineering

problems in aeroacoustics, providing a tool to control and reduce aeroacoustic noise.

Due to the special features of acoustic problems, CAA requires, in some sense, much

higher standard for numerical algorithms than the general computational fluid dynamics

(CFD) does. The main challenges CAA faces are as follows. (1) Since the frequencies

of aeroacoustic problems usually fall within a wide range, successful simulation of high

frequency waves with short wavelengths is important. (2) The amplitude of the aeroa-

coustic fluctuation is very small. Compared with the mainstream energy in the flow field,

it is usually smaller by 3-5 orders of magnitude. The numerical error can easily conceal

the aeroacoustic fluctuation. Therefore, numerical schemes must have a small numerical

error in order to accurately calculate the aeroacoustic characteristics. (3) In CAA, we

are often interested in sound waves radiated far away. The numerical scheme should

have good dispersion and dissipation properties, so that it has better accuracy over a

long distance. (4) Artificial truncated boundary is formed in the process of truncating

infinite domain into finite domain in numerical calculation. It is necessary to construct

boundary conditions which allow all pulses to exit smoothly. Due to so many challenges,

it is not easy to design good numerical methods for CAA problems.

One class of the most widely used and successful methods in CAA is Tam’s dispersion-

relation-preserving (DRP) scheme, which was first presented by Tam and Webb in [36].

These schemes select the difference coefficients by minimizing an integral error E, re-

sulting in better propagation properties than the traditional difference schemes on the

same stencils in both theoretical analysis (for linear hyperbolic equations) and many nu-

2



merical experiments. Tam also developed DRP schemes to compute nonlinear acoustic

pulses [35] and studied non-reflecting boundary conditions [36] and short wave compo-

nents in computational acoustics [37]. According to these studies, it is necessary to add

artificial selective damping (ASD) terms to the numerical scheme when the error caused

by short waves seriously pollutes the computed solution. Based on the idea of dispersion

preservation, a large number of high resolution numerical schemes have been proposed

by many researchers [2,6,16,18,24]. We could mention, in particular, optimized compact

finite difference schemes proposed by Kim and Lee [22,23], optimized upwind dispersion-

relation-preserving schemes proposed by Zhuang and Chen [42, 43], and low dissipation

and low dispersion explicit schemes proposed by Bogey and Bailly [5]. However, most

of these methods are based on the finite difference framework, making them less flexible

for non-uniform and especially unstructured meshes.

The discontinuous Galerkin (DG) methods are a class of finite element methods using

discontinuous piecewise polynomials as basis functions and test functions. It was first

developed by Reed and Hill [26] in 1973 to study steady-state linear neutron transport,

and significant progress was made by Cockburn et al in a series of work [7, 8, 10, 11]

for numerically solving hyperbolic conservation laws. Discontinuous Galerkin methods

have many advantages, such as high order accuracy, flexibility in h-p adaptivity, high

parallel efficiency, and flexibility for arbitrary geometry and meshes, which make DG

very popular in many applications.

For wave propagations, work has been done in the literature to analyze the dispersion

and dissipation behavior of DG schemes. Sherwin [27] analyzed the dispersion and dissi-

pation relation of the semi-discrete continuous and discontinuous Galerkin formulations

for the linear advection equation and found that the discontinuous Galerkin scheme is

more diffusive. Zhong and Shu [40] made a quantitative error analysis and superconver-

gence analysis of the semi-discrete DG scheme for the linear convection equation. For

the fully discrete scheme, the number of points needed for each wavelength to obtain a
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specific error was computed. Guo et al [14] used Fourier method to analyze the error

properties of DG and LDG methods and observed that the error can be divided into

three parts. Ainsworth [1] studied dispersive properties of the h-p version discontinuous

Galerkin schemes in three different limits and gave the decay behavior of the dispersion

and dissipation errors of DG schemes in each case. Hu et al [20] investigated dispersion

and dissipation properties of the discontinuous Galerkin method designed on triangu-

lar and rectangular meshes for one and two dimensional advection equations. Hu and

Atkins [19] extended this analysis to non-uniform grids and to systems of linear hyper-

bolic equations. However, a detailed evaluation of the propagation properties of DG

schemes, when compared with other state of the art schemes in CAA, seems to be still

missing. In this paper, we fill this gap and present a simple method to analyze the prop-

agation properties of DG schemes for linear convection equation in detail, including the

dispersion properties of physical and virtual waves, the dissipative properties and the

relationship between the two waves and initial values. By comparing the dispersion prop-

erties of the DG schemes with those of various finite difference (FD) schemes, including

the DRP schemes, we find the excellent performance of DG schemes in simulating wave

propagation, comparable with the state of the art DRP schemes on the same stencils.

In addition, we also study the performance of DG schemes on classical CAA problems,

following earlier work in the literature, including Atkins and Shu [4] which applied a

quadrature-free form of the DG method to solve the linear Euler equations prescribed

as part of the ICASE/LaRC Workshop [17] on Benchmark Problems in Computational

Aeroacoustics. Atkins [3] studied on how to reasonably select boundary conditions when

applying DG schemes to CAA problems in detail. Here, we apply DG schemes to a

series of standard 1D test problems and the nozzle flow. By comparing different DG

schemes and finite difference schemes, it is shown that the DG schemes are compatible

(sometimes better, sometimes a bit worse) with DRP schemes using the same number of

degrees of freedom per wave, for standard 1D test problems and for the nozzle problem.
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We mainly focus on linear problems, but also consider some nonlinear cases. Since the

DG schemes are flexible on non-uniform meshes and general unstructured meshes, they

should be good candidates for CAA problems, especially those on complex geometry.

The remainder of this paper is organized as follows. In section 2, we introduce and

analyze the dispersion properties of DG schemes for linear scalar equation in detail and

take the P 1 element as an example to show the main ideas. In section 3, we compare

the dispersion properties of different schemes and write the DG schemes in the form of

block finite difference schemes for easier comparison with other finite difference schemes.

Section 4 studies group velocities, and section 5 briefly discusses numerical stability. In

section 6, a series of numerical examples are presented to demonstrate the performance

of DG schemes and the comparison with other FD schemes. Finally, concluding remarks

are given in section 7.

2 Dispersion properties of the discontinuous Galerkin

method

Following the idea of Fourier analysis in [15], we consider the following linear advec-

tion equation:

ut + ux = 0 (2.1a)

u(x, 0) = eikx (2.1b)

The exact solution is given by u(x, t) = ei(kx−ωt) with ω = k. This is the physical

dispersion relation. Now we would like to find a numerical dispersion relation for the

discontinuous Galerkin (DG) method. We first define the following mesh and finite

element space:

xj =

(

j − 1

2

)

h, Ij = [xj−1/2, xj+1/2], V q
h = {v : v|Ij

∈ D
q(Ij)}

where Dq denotes the space of polynomials of degree at most q. Using the L2 projection

of the initial condition on V q
h as the initial value of the DG solution, the semi-discrete
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DG scheme is: find the unique function uh = uh(t) ∈ V q
h , such that for all test functions

vh ∈ V q
h and all j, the following equations hold:

∫

Ij

(uh)tvhdx =

∫

Ij

uh(vh)xdx − ûj+1/2(vh)
−
j+1/2 + ûj−1/2(vh)

+
j−1/2 (2.2a)

uh(x, 0) = P (eikx) (2.2b)

Here, the upwind numerical flux is given by ûj±1/2 = uh(x
−
j±1/2), and (vh)

±
j+1/2 =

vh(x
±
j+1/2). P (eikx) is the L2 projection of eikx in V q

h , i.e.

P (eikx) ∈ V q
h ,

∫

Ij

(eikx − P (eikx))v(x) = 0, for all j and v(x) ∈ V q
h (2.3)

We assume that the solution of (2.2a) is uh(x, t)|Ij
=

∑q
m=0 uj

m(t)ϕj
m(x), where ϕj

m(x),

m = 0, 1, · · · , q are the Legendre polynomials on Ij . As an ansatz, uj
m(t) is taken as:

uj
m(t) = ei(kxj−ω̄t)βm (2.4)

Substitute it into (2.2a), take vh as ϕj
l (x) and sort it out, we get:

ω̄βl =
i(2l + 1)

h

q
∑

m=0

(
∫ 1

−1

ϕmϕ
′

ldξ − 1 + e−ikh(−1)l

)

βm (2.5)

Here, ϕl(ξ), l = 0, 1, · · · , q are the Legendre polynomials on [−1, 1]. ϕl(−1) = (−1)l,

ϕl(1) = 1 are used in the equations above. We denote β = (β0, β1, · · · , βq)
T , clm =

i(2l+1)
h

(
∫ 1

−1
ϕmϕ

′

ldξ − 1 + e−ikh(−1)l), A = (aij)(q+1)×(q+1), aij = ci−1,j−1. In the following

discussion, we assume that A always has a complete set of eigenvectors. Equation (2.5)

can be written as:

Aβ = ω̄β (2.6)

If ω̄ is an eigenvalue of A and β is its corresponding eigenvector, uh(x, t) =
∑q

m=0 uj
m(t)

ϕj
m(x) is a “characteristic solution” of (2.2a). Since A has a complete set of eigenvectors,

(2.2a) has q + 1 linearly independent characteristic solutions. We write them down as

un
h(x, t) =

∑q
m=0 ei(kxj−ω̄nt)βmnϕ

j
m(x), n = 0, 1, · · · , q. Now let us take the initial condi-

tions into account and assume that the solution of the DG scheme (2.2) is interpreted
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as:

uh(x, t) =

q
∑

n=0

γnu
n
h(x, t) =

q
∑

m=0

q
∑

n=0

γnβmne
i(kxj−ω̄nt)ϕj

m(x) (2.7)

Noting that

uj
m(0) =

∫

Ij
ϕj

m(x)eikxdx
∫

Ij
(ϕj

m(x))2dx
= eikxjαm, (2.8)

where αm = 2m+1
2

∫ 1

−1
ϕm(ξ)eikhξ/2dξ, we would get:

αm =

q
∑

n=0

γnβmn (2.9)

We denote B = (bij)(q+1)×(q+1), γ = (γ0, γ1, · · · , γq)
T , α = (α0, α1, · · · , αq)

T , where

bij = βi−1,j−1, then

Bγ = α (2.10)

Considering that A has a complete set of eigenvectors, B is invertible. We would obtain

γ = B−1α. By this time, the solution of equation (2.2) has been obtained completely. In

order to analyze the propagation properties of the DG scheme, we denote ω̄n = ω̄nr +iω̄ni

and obtain

uh(x, 0) =

q
∑

n=0

γnun
h(x, 0) (2.11)

uh(x, t) =

q
∑

n=0

γnun
h(x, t) =

q
∑

n=0

γneω̄nite−iω̄nrt

q
∑

m=0

eikxjβmnϕ
j
m(x)

=

q
∑

n=0

eω̄nite−iω̄nrtγnun
h(x, 0)

(2.12)

We see that, the waveforms of the initial solution are superposed by q + 1 waves, which

propagate in accordance with q + 1 different properties. ω̄ni and ω̄nr determine the

dissipative and dispersive properties of their propagations respectively. If ω̄ni > 0, the

scheme is unstable; if ω̄ni < 0, then the n-th wave has dissipation. The propagation speed

of the n-th wave is ω̄nr/k. After a detailed analysis of several different DG schemes, we

could see that the dispersion relation of only one wave among all q+1 waves is consistent

with that of the analytic solution when kh is relatively small. This wave is called the
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physical wave while the other waves are called virtual waves. Without loss of generality,

we assume that ω̄0 stands for the propagation properties of the physical wave. uh(x, t)

can be written as:

uh(x, t) = γ0u
0
h(x, 0)e−iω̄0rteω̄0it +

q
∑

n=1

γnun
h(x, 0)e−iω̄nrteω̄nit

= e−
ikhη

2

q
∑

m=0

βm0ϕm(η)eikxe−iω̄0rteω̄0it +

q
∑

n=1

γnun
h(x, 0)e−iω̄nrteω̄nit

= r(η)eiθ(η)eikxe−iω̄0rteω̄0it +

q
∑

n=1

γnun
h(x, 0)e−iω̄nrteω̄nit

Here, we assume that x ∈ Ij , and η =
2(x−xj)

h
. r(η) = |

∑q
m=0 βm0ϕm(η)|, θ(η) =

arg(
∑q

m=0 βm0ϕm(η)) − khη/2. r(η)eiθ(η) is the “initial physical wave proportion”. For

FD schemes, it is equal to 1. But for DG schemes, it is not. This phenomenon is caused

by the initial conditions using the L2 projection of the exact initial condition, and only

physical waves propagating according to the correct properties. In order for the DG

solutions to be reliable, the following three conditions must be satisfied:

• The initial physical wave proportion is very close to 1.

• The propagation property of the physical wave is very close to that of the exact

solution.

• The dissipation of the virtual waves is very strong.

As an example, let us consider the piecewise linear case of q = 1. In this case, we

can compute explicitly A, α, ω̄ as follows:

A =
i

h

[

−1 + e−ikh −1 + e−ikh

3 − 3e−ikh −3 − 3e−ikh

]

α =











(

2 sin (kh/2)

hk
,−6i (hk cos (kh/2) − 2 sin (kh/2))

h2k2

)T

, kh 6= 0

(1, 0)T kh = 0

ω̄ =
1

h







−ie−ikh
(

−i
√

−10eikh + 2e2ikh − 1 + 2eikh + 1
)

e−ikh
(
√

−10eikh + 2e2ikh − 1 − 2ieikh − i
)






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(a) Dispersion relation (b) Dissipation coefficient

Fig. 2.1. Exact dispersion, dispersion relation and the dissipation coefficient for the
DG-P 1 scheme. Lines with delta symbols correspond to the physical waves, lines with
circle symbols correspond to the virtual waves, and the solid line without any symbols
represents the exact dispersion relation.

(a) Contour map of r(η) (b) Contour map of θ(η)

Fig. 2.2. The contour maps of modulus and principal argument angle of the initial
physical wave proportion for the DG-P 1 scheme.
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Then we can compute B, γ, r(η), θ(η) and make relevant figures. Figure 2.1 shows

the dispersion and dissipation properties of the physical and virtual waves for the DG-P 1

scheme. Figure 2.2 shows the distributions of modulus and principal argument angle of

the initial physical wave proportion. It can be seen from the figure that when kh is small,

the dispersion relation of the physical wave is very close to the exact dispersion relation,

and the dissipation is very small; the virtual wave, of which the propagation direction is

opposite to that of the exact solution, has strong dissipation; the initial physical wave

proportion is close to 1. With the increase of kh, the dispersion relation of the physical

wave begins to depart from the exact dispersion relation and the dissipation becomes

stronger; the dissipation of the virtual wave becomes weaker; the initial physical wave

proportion begins to depart from 1.

3 Comparison of dispersion relations among DG

schemes, FD schemes and the DRP scheme

In addition to the DG scheme, we also consider the following commonly used numer-

ical schemes for (2.1):

• 2nd-order central difference scheme (3-point scheme):

d

dt
uj +

1

h

(

1

2
uj+1 −

1

2
uj−1

)

= 0 (3.1)

• 4th-order central difference scheme (5-point scheme):

d

dt
uj +

1

h

(

(− 1

12
(uj+2 − uj−2) +

2

3
(uj+1 − uj−1)

)

= 0 (3.2)

• 6th-order central difference scheme (7-point scheme):

d

dt
uj +

1

h

(

1

60
(uj+3 − uj−3) −

3

20
(uj+2 − uj−2) +

3

4
(uj+1 − uj−1)

)

= 0 (3.3)
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• optimized 7-point DRP scheme [36] (7-point scheme):

d

dt
uj +

1

h
(a3(uj+3 − uj−3) + a2(uj+2 − uj−2) + a1(uj+1 − uj−1)) = 0 (3.4)

with

a1 = 0.770882380518, a2 = −0.1667059044145, a3 = 0.020843142770

where uj represents the approximation of u at xj = jh. Scheme (3.4), the optimized

7-point DRP scheme, might be the most classical DRP scheme. In the following, when

we mention the DRP scheme without further clarification, it will be referring to the

scheme (3.4). For better intuition, we rewrite the formulations of the DG schemes as

block finite difference (FD) schemes according to the idea in [39]. For DG-P q, we take

Ij = [xj−q−1, xj ] for j ≡ 0 (mod(q + 1)) as the DG cells, where xi = ih (that is, the DG

cells are of the size (q + 1)h), and we choose the following Lagrange basis functions:

φj−r(x) =
(x − xj−q)(x − xj−q+1) · · · (x − xj)

(xj−r − xj−q)(x − xj−q+1) · · · (xj−r − xj)
, r = 0, 1 · · · , q (3.5)

as the basis functions of the DG scheme. This choice of basis functions corresponds to

the choice of point values at uniformly distributed points inside each cell including the

right boundary but excluding the left boundary. Considering the upwind numerical flux,

the definition of point values are given as ui = uh(x
−
i ). Here, the left limit is relevant

only when xi = xj with j ≡ 0 (mod(q + 1)), that is, when xi is a boundary point of a

cell. The DG scheme is then given as

∫

Ij

q
∑

l=0

φj−lφj−m(uj−l)tdx =

∫

Ij

q
∑

l=0

φj−lφ
′

j−muj−ldx − φj−m(xj)uj

+ φj−m(xj−q−1)uj−q−1, m = 0, 1, · · · , q

(3.6)

We denote

Aj = (a(j)
rs )(q+1)×(q+1), Bj = (b(j)

rs )(q+1)×(q+1)

Uj = (uj−q, uj−q+1, · · · , uj)
T , Vj = (0, 0, 0, · · · ,−uj)

T

Wj = (φj−q(xj−q−1)uj−q−1, φj−q+1(xj−q−1)uj−q−1, · · · , φj(xj−q−1)uj−q−1)
T
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where a
(j)
rs =

∫

Ij
φj−q+r−1φj−q+s−1dx, b

(j)
rs =

∫

Ij
φ

′

j−q+r−1φj−q+s−1dx. Then (3.6) can be

written as:

Aj(Uj)t = BjUj + Vj + Wj (3.7)

It can be easily verified that the mass matrix Aj is nonsingular. Then we get (Uj)t =

A−1
j BjUj + A−1

j Vj + A−1
j Wj . The FD forms of DG-P 1 to P 5 are listed as follows.

• DG-P 1 (3-point scheme):

d

dt
uj =















1

h

(

1

2
uj−1 −

1

2
uj+1

)

, j ≡ 1 (mod2)

1

h
(−uj−2 + 3uj−1 − 2uj) , j ≡ 0 (mod2)

(3.8)

• DG-P 2 (4-point scheme):

d

dt
uj =



































1

h

(

1

9
uj−1 +

7

6
uj −

5

3
uj+1 +

7

18
uj+2

)

, j ≡ 1 (mod3)

1

h

(

−5

9
uj−2 +

13

6
uj−1 −

5

3
uj +

1

18
uj+1

)

, j ≡ 2 (mod3)

1

h

(

uj−3 −
7

2
uj−2 + 5uj−1 −

5

2
uj

)

, j ≡ 0 (mod3)

(3.9)

• DG-P 3 (5-point scheme):

d

dt
uj =























































1

h

(

−19

64
uj−1 +

145

18
uj −

153

32
uj+1 +

43

16
uj+2 −

121

192
uj+3

)

, j ≡ 1 (mod4)

1

h

(

−3

8
uj−2 +

11

6
uj−1 −

7

4
uj +

1

2
uj+1 −

5

24
uj+2

)

, j ≡ 2 (mod4)

1

h

(

31

64
uj−3 −

101

48
uj−2 +

125

32
uj−1 −

39

16
uj +

29

192
uj+1

)

, j ≡ 3 (mod4)

1

h

(

−uj−4 +
13

3
uj−3 −

15

2
uj−2 + 7uj−1 −

17

6
uj

)

, j ≡ 0 (mod4)

(3.10)
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• DG-P 4 (6-point scheme):

d

dt
uj =







































































































































































1

h

(

− 399

625
uj−1 +

7913

1500
uj −

1298

125
uj+1 +

1173

125
uj+2 −

1697

375
uj+3

+
2221

2500
uj+4

)

, j ≡ 1 (mod5)

1

h

(

− 59

625
uj−2 +

361

500
uj−1 −

83

750
uj −

139

250
uj+1 +

7

250
uj+2

+
83

7500
uj+3

)

, j ≡ 2 (mod5)

1

h

(

281

625
uj−3 −

3497

1500
uj−2 +

1936

375
uj−1 −

562

125
uj +

593

375
uj+1

− 2747

7500
uj+2

)

, j ≡ 3 (mod5)

1

h

(

− 219

625
uj−4 +

2753

1500
uj−3 −

1001

250
uj−2 +

1251

250
uj−1 −

1939

750
uj

+
251

2500
uj+1

)

, j ≡ 4 (mod5)

1

h

(

uj−5 −
21

4
uj−4 +

34

3
uj−3 − 13uj−2 + 9uj−1

− 37

12
uj

)

, j ≡ 0 (mod5)

(3.11)

• DG-P 5 (7-point scheme):

d

dt
uj =











































































































































































































1

h

(

− 1121

1296
uj−1 +

8071

1080
uj −

7765

432
uj+1 +

7725

324
uj+2 −

7045

432
uj+3 +

1391

216
uj+4

− 6901

6480
uj+5

)

, j ≡ 1 (mod6)

1

h

(

17

81
uj−2 −

143

135
uj−1 +

457

108
uj −

502

81
uj+1 +

112

27
uj+2 −

43

27
uj+3

+
421

1620
uj+4

)

, j ≡ 2 (mod6)

1

h

(

5

16
uj−3 −

77

40
uj−2 +

83

16
uj−1 −

71

12
uj +

59

16
uj+1 −

13

8
uj+2

+
67

240
uj+3

)

, j ≡ 3 (mod6)

1

h

(

− 32

81
uj−4 +

649

270
uj−3 −

667

108
uj−2 +

721

81
uj−1 −

169

27
uj +

101

54
uj+1

− 559

1620
uj+2

)

, j ≡ 4 (mod6)

1

h

(

251

1296
uj−5 −

1309

1080
uj−4 +

1399

432
uj−3 −

1579

324
uj−2 +

2119

432
uj−1 −

485

216
uj

− 41

6480
uj+1

)

, j ≡ 5 (mod6)

1

h

(

− uj−6 +
31

5
uj−5 −

65

4
uj−4 +

70

3
uj−3 − 20uj−2 + 11uj−1

− 197

60
uj

)

, j ≡ 0 (mod6)

(3.12)
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We can also analyze the dispersion relations of these finite difference schemes and get

the same results as those in section 2.

To ensure that different schemes use the same degrees of freedom in one wavelength,

we let hDG−P q = (q + 1)h, hFD = h, then we introduce

k̃ = kh, ω̃∗ = ω̄h, ω̃ = ωh

to compare different schemes which have different cell lengths h and different polynomial

degrees q. We found that for DG-P q, q = 1 to 5, A has q +1 different eigenvalues, which

is consistent with our previous assumption. Figure 3.1 shows the real parts of dispersion

relations for the DG schemes and some central FD schemes. Figures 3.2 and 3.3 give

the dissipation coefficients diagram and relative dispersion error diagram respectively. It

can be seen that the DG schemes have better dispersive properties than the FD schemes

and the increasing of the order of the DG schemes can reduce the dispersion error.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

Fig. 3.1. Dispersion relations for DG schemes and central FD schemes.

3.1 Long wave components

In order to better compare the dispersion properties of different schemes in long waves

(waves for which k̃ is relatively small), we define the well resolved range of wave numbers
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Fig. 3.2. Dissipation coefficients for DG schemes.
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Fig. 3.3. Relative errors of Re(ω̃) for DG schemes and central FD schemes.
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by requiring

|Re(ω̃) − k̃| < 0.01

Then we can find the maximum resolved wave number and the corresponding minimum

number of unknowns per wavelength. Table 3.1 lists the maximum resolved wave num-

bers and minimum numbers of unknowns per wavelength for DG schemes and central FD

schemes, respectively. This indicates that the DG schemes can resolve more small scale

features than the same order FD schemes can and high order DG schemes can better

resolve these small scale features.

scheme wave number unknowns per wavelength
DG-P 1 0.7716 8.1430
DG-P 2 0.9942 6.3193
DG-P 3 1.1567 5.4318
DG-P 4 1.2754 4.9266
DG-P 5 1.3653 4.6020

FD 2nd order 0.3925 16.0075
FD 4th order 0.7980 7.8733
FD 6th order 1.0841 5.7955

optimized 7-point DRP 1.2469 5.0390

Table 3.1. Maximum resolved wave number and minimum number of unknowns per
wavelength for DG schemes, central FD schemes and the DRP scheme.

3.2 Short wave components

For short wave components, their k̃’s are larger, and all schemes have large dispersion

errors. Therefore, in order to ensure the reliability of the computation results, the short

wave components must be automatically removed from the computation as soon as they

are generated. This is not possible for the original DRP scheme and other central

FD schemes, as they are strictly non-dissipative. For this reason, an artificial selective

damping (ASD) term was added to the DRP scheme [37]. In fact, it provides a dissipation

term with dissipation coefficient inversely related to wavelength.

As for a DG scheme, for example, DG-P 1, we can see from Figure 2.1 that the

dissipative term exists for the scheme. Therefore, the short wave components of the
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solution can be automatically removed without any modification. Examples 6.4 and 6.5

in section 6 illustrate this point.

4 Group velocity consideration and numerical sta-

bility

In section 3, we have given the relation between Re(ω̃) and k̃ of several DG and FD

schemes. The phase velocity is defined by:

cp =
Re(ω̃)

k̃
(4.1)

and it represents the propagation speed of each single wave. However, in order to study

the effect of numerical schemes on high frequency waveforms more accurately, we need

to introduce the concept of group velocity.

Considering that uh is related to k, we use uh(k, x, t) instead of uh(x, t). In order to

establish the group velocity formula of DG solutions, we first propose the lemmas:

Lemma 4.1. If each eigenvalue of A is a single eigenvalue, uh(k, x, t) is continuous with

respect to k in (−∞,∞).

Proof. From (2.7), we know that we only need to prove that ω̄n(k), γn(k) and βmn(k)

are continuous with respect to k. Noticing that every elements of A and α are continuous

with respect to k, from the matrix perturbation theory in [38], we know that eigenvalues,

the left and right eigenvectors of A’s single eigenvalue are continuous with respect to

the elements of A. Therefore, the desired results can be obtained.

Lemma 4.2. Take k0 as an arbitrary positive number, when |k| > k0, the following

inequalities hold:

|uh(k, x, t)| < 2(q + 1)

√

(2q + 1)(q + 1)(k0h + π)

k0h
(4.2a)

∣

∣

∣

∣

∂uh

∂t
(k, x, t)

∣

∣

∣

∣

<
2(2q + 1)(q + 1)2

h

√

(q + 1)(k0h + π)

k0h
(2

√

2q + 1 +
√

2M0) (4.2b)

for all x ∈ (−∞,∞) and t > 0. Here, M0 = max
s=0,1,··· ,q

||ϕ′

s(ξ)||L2(−1,1).
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Proof. The proof of this lemma is provided in the appendix; see section A.

Based on Lemma 4.1 and Lemma 4.2, we can get the following theorem to describe

the relationship between DG solutions of single and composite waves.

Theorem 4.1. Change the initial value of equation (2.1) to:

u(x, 0) = f(x) (4.3)

Suppose that:

• Each eigenvalue of A is a single eigenvalue.

• f(x) ∈ L1(−∞,∞). That is to say, Fourier transform can be done for it:

f̂(k) =
1

2π

∫ ∞

−∞

f(x)e−ikxdx, f(x) =

∫ ∞

−∞

f̂(k)eikxdk (4.4)

• f̂(k) ∈ L1(−∞,∞) ∩ C(−∞,∞).

Here, L1 and C are symbols of absolute integrable functions and continuous functions,

respectively. Then

• The improper integral:
∫ ∞

−∞

f̂(k)uh(k, x, t)dk (4.5)

converges.

• The corresponding DG solution of equation (2.1) is:

ũh(x, t) =

∫ ∞

−∞

f̂(k)uh(k, x, t)dk (4.6)

Proof. The proof of this theorem is provided in the appendix; see section B.

Next, we consider the group velocity of DG solutions on a line x = ct+ ξ, we can get:

ũh(x, t) =

∫ ∞

−∞

f̂(k)uh(k, x, t)dk

=

∫ ∞

−∞

f̂(k)

(

r(η)eiθ(η)eikξeit(kc−ω̄0r)eω̄0it +

p
∑

n=1

γnu
n
h(x, 0)e−iω̄nrteω̄nit

)

dk

(4.7)
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It is easy to verify that the effect of virtual waves can be dissipated to negligible levels

when t → ∞. Let Φ(k) = kc − ω̄0r. The method of stationary phase [21] implies that

the most significant contribution to the integral (4.7) occurs when:

Φ
′

(k) = c − dω̄0r

dk
= 0 (4.8)

Thus, the principal contribution of the components at wave number k is felt when moving

at the group velocity

cg =
dω̄0r

dk
=

dRe(ω̃)

dk̃
(4.9)

Figure 4.4 shows the variation of group velocity with k̃ in different schemes. Figure

4.5 shows a locally enlarged image. We can see that, unlike FD schemes, the group

velocities of DG schemes are larger than the exact group velocity in a considerable

range. Therefore, DG scheme usually produces “leading waves” (which are removed by

numerical dissipation), rather than “trailing waves” in FD schemes. Moreover, compared

with FD schemes of the same order, the “resolvable ranges” of group velocities of DG

schemes are larger.
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Fig. 4.4. Group velocity comparison for DG schemes and central FD schemes.

The finite difference schemes on non-symmetric stencils often produce numerical in-

stability, especially when they violate the upwind property. However, central difference
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Fig. 4.5. An enlarged image for Figure 4.4.

schemes, including DRP scheme, do not cause this problem. On the other hand, for DG

schemes with an appropriate numerical flux, the L2 stability [28] for scalar conservation

laws ensures that the L2 norm of DG solution does not increase with time. For solu-

tions with strong discontinuities, various limiters (TVD, TVB, WENO et al) [9, 41] are

designed to obtain nonlinear stability and to control spurious oscillations.

5 DG schemes with upwind-biased flux

It should be noted that the DG schemes do not necessarily use upwind numerical

fluxes. For example, in [25], Meng and Shu proposed an upwind-biased numerical flux:

ûj+1/2 = θu−
j+1/2 + (1 − θ)u+

j+1/2 (5.1)

where θ = 1 corresponds to the numerical flux in the common upwind form. The stability

of the scheme and the optimal error estimate are proved in the case of θ > 1/2. Our

analytical method for dispersion properties of DG schemes can be easily applied to this

kind of upwind-biased flux DG. At this time, (2.5) becomes:

ω̄βl =
i(2l + 1)

h

q
∑

m=0

(
∫ 1

−1

ϕmϕ
′

ldξ + (θ + (1 − θ)eikh(−1)m)(−1 + e−ikh(−1)l)

)

βm

(5.2)
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The maximum resolved wave number and minimum number of unknowns per wavelength

results for θ = 0.75 and θ = 2 are given in Table 5.2 and Table 5.3 respectively. From the

results, we can see that the dispersion properties of upwind-biased DG schemes depend

on both θ and the polynomial degree q.

scheme wave number unknowns per wavelength
DG-P 1 θ = 0.75 0.5770 10.8885
DG-P 2 θ = 0.75 0.9333 6.7320
DG-P 3 θ = 0.75 1.3338 4.7108
DG-P 4 θ = 0.75 1.5967 3.9350
DG-P 5 θ = 0.75 1.3282 4.7305

Table 5.2. Maximum resolved wave number and minimum number of unknowns per
wavelength for DG scheme with θ = 0.75.

scheme wave number unknowns per wavelength
DG-P 1 θ = 2 0.6613 9.5011
DG-P 2 θ = 2 1.3548 4.6376
DG-P 3 θ = 2 1.0297 6.1022
DG-P 4 θ = 2 1.1665 5.3863
DG-P 5 θ = 2 1.4264 4.4050

Table 5.3. Maximum resolved wave number and minimum number of unknowns per
wavelength for DG scheme with θ = 2.

6 Numerical results

Now we validate our conclusion with a series of numerical results. The numerical

examples we choose mainly come from the ICASE workshop [17] and a series of related

studies, which have shown that these examples can evaluate the performance of numerical

schemes in CAA well.

Example 6.1. In this example, we consider the linear convection equation:

ut + ux = 0 (6.1a)

u(x, 0) =
1

2
e−(ln 2)( x

b )
2

(6.1b)
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We can easily get the analytic solution of this equation is:

u(x, t) =
1

2
e−(ln 2)( x−t

b )
2

(6.2)

by means of the characteristic line method. We select a sufficiently large computational

region ([−800, 1000]) so that the compactly supported boundary conditions can be ap-

plied to both boundaries. In order to ensure the consistency of the degrees of freedom

of each scheme in one wavelength, we let hFD = 1, hDG−P q = q + 1, ∆t = 1/30h. In

all finite difference schemes, no filters are used. The settings of boundary conditions

and filter-free computation are also applied to Examples 6.2 to 6.5. After the spatial

discretization by DG or FD schemes, we use the optimal third order TVD Runge-Kutta

method [29] to advance the solution to t = 400. The results of the FD schemes and DG

schemes are shown in Figure 6.1. As we can see, all the FD solutions, including the DRP

solution, are trailed by noticeable spurious dispersive waves. However, this phenomenon

is almost not noticeable for the DG solutions. The DG schemes have very nice dispersive

properties. On the other hand, the location and amplitude of the solution bump are

resolved by the optimized 7-point DRP scheme and by DG-P 5 (which is also a 7-point

scheme) almost equally well.

Figure 6.2 shows the results of upwind-biased DG schemes with different θ’s. In order

to make the results more differentiated, we changed b to 1.5. Notice that the upwind DG

scheme is the case when θ = 1. As we can see from the figure, the results are irregular:

for DG-P 1, θ = 1 performs best; for DG-P 2 and DG-P 5, θ = 2 performs best; for DG-P 3,

θ = 0.75 performs best; for DG-P 4, the three schemes perform similarly.

Example 6.2. In this example, we consider the linearized Euler equations in the absence

of a mean flow:

ut + px = 0 (6.3a)

pt + ux = 0 (6.3b)
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Fig. 6.1. Comparisons between the numerical and exact solutions of the convective
wave equation. b = 2, t = 400, hFD = 1, hDG−P q = q + 1. Lines without square symbols
correspond to exact solutions while lines with square symbols correspond to numerical
solutions. The subgraphs from top to bottom on the left correspond to FD schemes of
order 2, 4, 6, optimized 7-point DRP scheme, and the subgraphs from top to bottom on
the right correspond to DG P 1 − P 4. The bottom subgraph corresponds to DG-P 5.
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Fig. 6.2. Comparisons between the numerical and exact solutions of the convective
wave equation. b = 1.5, t = 400, hDG−P q = q +1. Subgraphs correspond to DG-P 1 −P 5

in the order of left to right and top to bottom, respectively.
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with initial conditions:

u(x, 0) = e−(ln 2)( x
b )

2

(6.4a)

p(x, 0) = 0 (6.4b)

The exact solutions are given by:

u(x, t) =
1

2
[u(x − t, 0) + u(x + t, 0)] (6.5a)

p(x, t) =
1

2
[u(x − t, 0) − u(x + t, 0)] (6.5b)

The third-order RK scheme is used for time discretizations. The computational region

is [−420, 420], ∆t = 1/30h. Figures 6.3 and 6.4 show the results of the FD schemes

and the DG schemes, respectively. Just like the previous example, we can see that the

DG schemes yield good results without spurious trailing waves. Also, the location and

amplitude of the solution bump are resolved by the optimized 7-point DRP scheme and

by DG-P 5 almost equally well.

Example 6.3. Now we consider the dimensionless linearized Euler equations with a

uniform mean flow:

ρt + Mρx + ux = 0 (6.6a)

ut + Mux + px = 0 (6.6b)

pt + Mpx + ux = 0 (6.6c)

where M is the flow Mach number. Let the initial conditions be

u(x, 0) = 0 (6.7a)

p(x, 0) = e−(ln 2)(x−200

b )
2

+ e−(ln 2)( x+200

b )
2

(6.7b)

ρ(x, 0) = p(x, 0) + e−(ln 2)( x
b )

2

. (6.7c)

Using the method of characteristics, we can get the exact solution as follows:

u(x, t) =
1

2
[p(x − (M + 1)t, 0) − p(x − (M − 1)t, 0)] (6.8a)
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Fig. 6.3. Comparisons between the numerical and exact solutions of the linearized Euler
equations in the absence of a mean flow. b = 2, t = 400, h = 1. Lines without square
symbols correspond to the exact solutions while lines with square symbols correspond to
the numerical solutions. The subgraphs from top to bottom correspond to FD schemes of
orders 2, 4, 6, and the optimized 7-point DRP scheme. The graphs on the left correspond
to the upstream and the graphs on the right correspond to the downstream.
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Fig. 6.4. Comparisons between the numerical and exact solutions of the linearized
Euler equations in the absence of a mean flow. b = 2, t = 400, hDG−P q = q + 1. Lines
without square symbols correspond to the exact solutions while lines with square symbols
correspond to the numerical solutions. The subgraphs from top to bottom correspond
to DG-P 1 to P 5. The graphs on the left correspond to the upstream and the graphs on
the right correspond to the downstream.
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p(x, t) =
1

2
[p(x − (M + 1)t, 0) + p(x − (M − 1)t, 0)] (6.8b)

ρ(x, t) =
1

2
[p(x − (M + 1)t, 0) + p(x − (M − 1)t, 0)] − p(x − Mt, 0) + ρ(x − Mt, 0)

(6.8c)

As before, we use the third-order RK method as the time discretization method. The

computational region is [−1000, 2300]. ∆t = 1/(30(M + 1))h. Figures 6.5 and 6.6 show

the results of the FD schemes and the DG schemes, respectively. We can see that, similar

to the previous examples, the DG schemes have achieved good results. In particular,

the resolutions of the spikes by the optimized 7-point DRP scheme and by DG-P 5 are

comparable.

Example 6.4. In this example, we test the ability of DG scheme to resolve short wave

component solutions by an initial value problem of piecewise constants for linearized

Euler equations (6.9), following the earlier work of Tam [31,37].

ut + px = 0 (6.9a)

pt + ux = 0 (6.9b)

u(x, 0) = 0 (6.9c)

p(x, 0) = H(x + M) − H(x − M) (6.9d)

where H(x) is the unit step function. The wave number spectrum of this initial condition

extends to a large extent beyond [0, π]. The exact solutions of (6.9) are given by:

u(x, t) =
1

2
[H(x − t + M) − H(x − t − M)] − 1

2
[H(x + t + M) − H(x + t − M)]

(6.10a)

p(x, t) =
1

2
[H(x − t + M) − H(x − t − M)] +

1

2
[H(x + t + M) − H(x + t − M)]

(6.10b)

We choose the computational region as [−420, 800]. ∆t = 1/30h. The numerical

results of the DG-P 1 scheme, the DRP scheme and the DRP-ASD scheme are shown in

Figure 6.7. From the figure, we can see that the solution of the original DRP scheme is

polluted by the short wave components when dealing with the initial value problem with a
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Fig. 6.5. Comparisons between the numerical and exact solutions of the dimensionless
linearized Euler equations with a uniform mean flow. b = 2, t = 400, h = 1. Lines
without square symbols correspond to the exact solutions while lines with square symbols
correspond to the numerical solutions. The subgraphs from top to bottom correspond
to FD schemes of orders 2, 4, 6, and the optimized 7-point DRP scheme. The graphs
on the left correspond to the upstream and the graphs on the right correspond to the
downstream. 29



Fig. 6.6. Comparisons between the numerical and exact solutions of the dimensionless
linearized Euler equations with a uniform mean b = 2, t = 400, hDG−P q = q + 1. Lines
without square symbols correspond to the exact solutions while lines with square symbols
correspond to the numerical solutions. The subgraphs from top to bottom correspond
to DG-P 1 to P 5. The graphs on the left correspond to the upstream and the graphs on
the right correspond to the downstream.
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Fig. 6.7. Comparisons between the numerical and exact solutions of (6.9). hDG−P 1 = 2,
hDRP = hDRP−ASD = 1, tend = 202, M = 50. Lines without square symbols correspond
to the exact solutions while lines with square symbols correspond to the numerical solu-
tions. The subgraphs from left to right correspond to DG-P 1, DRP, DRP-ASD.

relatively large proportion of short wave components. After adding an artificial selective

damping (ASD) term, the solution has been greatly improved. On the other hand, the

DG scheme can resolve the short wave component solution without any modification.

Example 6.5. We continue to test the resolution ability of the DG scheme for short

wave component solutions through a nonlinear scalar problem [31,37]:

ut + ux +
γ + 1

4
(u2)x = 0 (6.11a)

u(x, 0) = h0e
−(ln 2)(x

b )
2

(6.11b)

Fig. 6.8. Comparisons between the numerical and exact solutions of (6.11). hDG−P 1 = 2,
hDRP = hDRP−ASD = 1, tend = 36, h0 = 1, b = 12, γ = 1.4. Lines without square
symbols correspond to the exact solutions while lines with square symbols correspond to
the numerical solutions. The subgraphs from left to right correspond to DG-P 1, DRP,
and DRP-ASD.
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The computational area is selected as [−400, 400], and the time step is taken as:

∆t =
1

30(1 + (γ + 1)/2 max
j

|ūj|)
h. (6.12)

Figure 6.8 shows the results of the three schemes for tend = 36. Similar to the previous

example, the original DRP scheme cannot resolve the short wave component solution

well. It needs an artificial selective damping modification. The DG scheme, on the other

hand, can resolve them very well.

Example 6.6. The nozzle flow is a classical test problem which has been studied by many

researchers because of its complex CAA characteristics and important application value

[13, 30, 32, 34]. We consider sound generation in a one-dimension supersonic nozzle flow

induced by the passage of an entropy pulse. Dimensionless variables with the following

scales are used.

• Length scale: D, the diameter of the uniform duct upstream of the nozzle.

• Velocity scale: a0, speed of the sound in the uniform duct upstream of the nozzle.

• Time scale: D/a0.

• Density scale: ρ0, density of gas in the uniform duct upstream of the nozzle.

• Pressure scale: ρ0a
2
0

The governing equations are:

ρt + (ρu)x +
Ax

A
ρu = 0 (6.13a)

(ρu)t + (ρu2 + p)x +
Ax

A
ρu2 = 0 (6.13b)

Et + (u(E + p))x +
Ax

A
u(E + p) = 0 (6.13c)

where E is the energy, E = p
γ−1

+ 1
2
ρu2, A(x) = πR(x)2. The geometry of nozzle is

shown in Figure 6.9. R(x) is the radius of the nozzle’s cross section. Its expression is as
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follows.

R =































0.5, x < −0.4

− 24.5571(x + 0.4)4 + 26.1942(x + 0.4)3 − 7.8586(x + 0.4)2 + 0.5,−0.4 ≤ x ≤ 0

− 0.0265(x + 0.4)4 + 0.0991(x + 0.4)3 − 0.0934(x + 0.4)2 + 0.0340(x + 0.4)

+ 0.2861, 0 < x ≤ 1.6

0.3484, x > 1.6

Fig. 6.9. supersonic nozzle geometry.

At t = 0, an entropy wave pulse (density perturbation) in the form given below:

ρ
′

= 0.001 exp

(

−(ln 2)

(

x − x0 − ūt

3∆/(q0 + 1)

)2
)

(6.14a)

p
′

= 0 (6.14b)

u
′

= 0 (6.14c)

where

∆ = mesh spacing (6.15a)

x0 = −1.2 (6.15b)

ū = 0.2 (6.15c)

q0 =







q, if we use the DG-P q scheme.

0, if we use any FD schemes.
(6.15d)

enters the computational domain on the left at x = x0. The entropy pulse is convected

downstream by the mean flow. As the entropy wave moves downstream through the

nozzle, sound is generated. Firstly, we take the analytic mean flow as the initial value

and obtain a numerical mean flow through repeated iterations as shown in Figures 6.11
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and 6.13. Then we add the entropy pulse to get the results. In order to observe the

results, we first fix the observation points, compute the pressure at station A located at

x = −1.0 and at station B located at x = 2.2 until the entropy wave pulse exits the

computational domain on the right. We use DG-P 1 and DG-P 2, respectively. The time

step is set as:

∆t =
1

30

∆

max
j

(|uj| + cj)
(6.16)

where uj and cj are computed from ρ̄j , m̄j and Ēj . Characteristic boundary conditions

are used in this example. Figures 6.12 and 6.14 show their time history results.

Fig. 6.10. Numerical and analytical average flow. The Mach number M = u√
γp/ρ

is

also presented. DG-P 2, N = 300 are used.
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Fig. 6.11. The residual of ρ. DG-P 1, N = 450.

Fig. 6.12. Left: Time history for the upstream observation point A. Small circle, delta
and square symbols stand for (ρ − ρ̄)a2

u × 105, −(u − ū)ρuau × 105, and (p − p̄) × 105

respectively. Right: Time history for the downstream observation point B. Small circle,
delta and square symbols stand for (ρ− ρ̄)a2

d × 105, (u− ū)ρdad × 105, and (p− p̄)× 105

respectively. ρu, ρd, au, ad are the mean density and sound velocity of the upstream and
the downstream, respectively. DG-P 1, N = 450.
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Fig. 6.13. The residual of ρ. DG-P 2, N=300.

Fig. 6.14. Left: Time history for the upstream observation point A. Small circle, delta
and square symbols stand for (ρ − ρ̄)a2

u × 105, −(u − ū)ρuau × 105, and (p − p̄) × 105

respectively. Right: Time history for the downstream observation point B. Small circle,
delta and square symbols stand for (ρ− ρ̄)a2

d × 105, (u− ū)ρdad × 105, and (p− p̄)× 105

respectively. DG-P 2, N = 300.

Then, we change the initial pulse of ρ to:

ρ
′

= 0.001 exp

(

−(ln 2)

(

x − x0 + 9∆/(q0 + 1) − ūt

3∆/(q0 + 1)

)2
)
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and fix the observation time and observe the distribution of the physical quantities in

space. The results are shown in Figures 6.15 and 6.16, which are in good agreement

with those of the DRP-ASD scheme by Tam and Parrish [32, 33], reproduced in Figure

6.17, showing that the DG schemes are compatible with the DRP-ASD scheme for the

nozzle flow in simulating such non-linear and small amplitude acoustic wave propagation

problem well.
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Fig. 6.15. Instantaneous density distributions inside the supersonic nozzle as the en-
tropy pulse is convected downstream. DG-P 2, N = 600. t = 4.2, 4.9, 5.0, 5.3, 5.4, 6.3.
Subgraphs are arranged in the order from left to right, then from top to bottom.
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Fig. 6.16. Instantaneous pressure distributions inside the supersonic nozzle as the
entropy pulse is convected downstream. DG-P 2, N = 600. t = 4.2, 4.9, 5.0, 5.3, 5.4, 6.3.
Subgraphs are arranged in the order from left to right, then from top to bottom.

Fig. 6.17. Instantaneous density and pressure distributions inside the supersonic nozzle
as the entropy pulse is convected downstream. Results in [32].

Example 6.7. Tam and Parrish also presented a subsonic-subsonic nozzle in [32],
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where:

D(x) =



















































1, x ≤ −0.59

8.343301(x + 0.59)3 − 6.011463(x + 0.59)2 + 1, −0.59 < x ≤ −0.25

− 0.293408(x + 0.59)3 + 2.797980(x + 0.59)2 − 2.995210(x + 0.59)

+ 1.339457, −0.25 < x ≤ 0

− 5.310065(x + 0.59)3 + 12.640609(x + 0.59)2 − 9.370618(x + 0.59)

+ 2.705044, 0 < x ≤ 0.407

0.665, x ≥ 0.407

and R(x) = D(x)/2. The geometry of the nozzle and the mean flow are presented in

Fig. 6.18. subsonic nozzle geometry.

Fig. 6.19. Numerical and analytical average flow. The Mach number M = u√
γp/ρ

is

also presented. DG-P 3, N = 1000 are used.

Figures 6.18 and 6.19 respectively. At t = 0, an entropy wave pulse (density perturba-

tion) in the form given below,

ρ
′

= exp

(

− ln 2

(

x − x0 + 9∆/(q0 + 1) − ūt

3∆/(q0 + 1)

)2
)

(6.17a)
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p
′

= 0 (6.17b)

u
′

= 0 (6.17c)

where

∆ = mesh spacing (6.18a)

x0 = −1 (6.18b)

ū = 0.05 (6.18c)

q0 =







q, if we use the DG-P q scheme.

0, if we use any FD schemes.
(6.18d)

enters the computational domain on the left at x = x0. The time step settings in this

example are consistent with those in Example 6.6.

Although we use the original Euler equation while [32] uses its linearized version, we

still get consistent results. It is worth noting that for boundary conditions, [32] uses per-

fectly matched layer (PML) boundary conditions while we only use simple characteristic

boundary conditions. This example demonstrates that the DG scheme performs well in

simulating indirect combustion noise generation in ducted flows.
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Fig. 6.20. Instantaneous pressure distributions inside the subsonic nozzle as the entropy
pulse is convected downstream. DG-P 3, h = 2/1000. t = 8.5, 12.5, 14.3, 15.2, 16.3, 18.
Subgraphs are arranged in the order from left to right, then from top to bottom.
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Fig. 6.21. Instantaneous pressure distributions inside the subsonic nozzle as the entropy
pulse is convected downstream. DG-P 3, h = 2/1000. t = 8.5, 12.5, 14.3, 15.2, 16.3, 18.
Subgraphs are arranged in the order from left to right, then from top to bottom.
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Fig. 6.22. Instantaneous density and pressure distributions inside the subsonic nozzle
as the entropy pulse is convected downstream. The results of the DRP-ASD scheme
in [32].

7 Conclusion

In this paper, we discuss the propagation properties of the DG schemes in detail

and compare them with several finite difference schemes including the DRP scheme. We

find that the propagation properties of DG-P q scheme is complex: the initial wave can

be divided into q + 1 waves propagating according to different properties respectively.

In the long wave range, only one of them is close to the propagation properties of the

exact solution, which is called the physical wave. Other waveforms have very disorderly

propagation properties and strong dissipation. They are called the virtual waves. Never-

theless, the DG schemes still have good dispersion and dissipation properties, and these

properties improve with the increase of order of the scheme. We also discussed the DG

schemes with upwind-biased flux and found that their dispersion properties depend on

both θ and polynomial degree q. For many test problems, the DG-P 5 (a 7-point scheme)

and the optimized 7-point DRP scheme, have comparable dispersion properties. A series
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of numerical examples verify our theoretical analysis. We find that the DG schemes are

comparable in resolution with the DRP scheme with the same stencil for many standard

test cases, including for the nozzle flow problems.

Since the DG schemes have many advantages than finite difference schemes on non-

uniform meshes and general unstructured meshes, the DG schemes have a good potential

in CAA applications. Moreover, the “block finite difference” schemes can be derived from

the standard DG schemes as shown in this paper, but they are more general than DG

schemes. More study will be performed to identify good “block finite difference” schemes

especially for CAA problems.

For future research, we will implement DG schemes on more complex problems,

including multi-dimensional problems and problems with complex geometries, to assess

their resolution properties for CAA applications, especially on their resolution property

of short wave components. Study of DG-based finite difference schemes to general wave

propagation problems, following the earlier work of Fernando and Hu [12], would also be

worth pursuing.
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A Proof for Lemma 4.2

First, we write uh(k, x, t) in the algebraic form of complex functions:

uh(k, x, t)|Ij
=

q
∑

m=0

uj
m(t)ϕj

m(x) =

q
∑

m=0

uj
mr(t)ϕ

j
m(x) + i

q
∑

m=0

uj
mi(t)ϕ

j
m(x)

= uhr(k, x, t) + iuhi(k, x, t)

(A.1)

where uj
mr(t), uj

mi(t), uhr(k, x, t), uhi(k, x, t) ∈ R. According to the linearity of the L2

projection operator and the DG scheme, it is easy to verify that uhr(k, x, t) and uhi(k, x, t)
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are the corresponding DG solutions of the follow equations:






ut + ux = 0

u(x, 0) = cos kx,







ut + ux = 0

u(x, 0) = sin kx

It is obvious that |k| > k0 > 0. We assume that M =
[

|k|h
2π

]

+1. Suppose that k ∈ [k1, k2],

and k1, k2 are given by:

2πM

k1h
=

[

2πM

|k|h

]

+ 1,
2πM

k2h
=

[

2πM

|k|h

]

when(k > 0) (A.2)

or:

2πM

k1h
= −

[

2πM

|k|h

]

,
2πM

k2h
= −

[

2πM

|k|h

]

− 1 when(k < 0) (A.3)

It is easy to verify that uh(k1, x, t), uhr(k1, x, t), uhi(k1, x, t) are all periodic functions

with a period of 2πM/|k1| for x. Let us consider the value of uhr(k1, x, t) over a period

[0, 2πM/|k1|]. In [28], it is pointed out that uhr satisfies the following L2 stability in a

period:

||uhr(k1, x, t)||L2[0,2πM/|k1|] ≤ ||uhr(k1, x, 0)||L2[0,2πM/|k1|] (A.4)

Through the properties of inequalities we get:

2πM

|k1,2|h
≤ 2πM

|k|h + 1 ≤ 2π

|k|h + 2 <
2π

k0h
+ 2 (A.5)

We expand the expression of ||uhr(k1, x, t)||L2[0,2πM/|k1|] and use the properties of Legendre

polynomials to obtain:

||uhr(k1, x, t)||L2[0,2πM/|k1|]

=

√

√

√

√

N
∑

p=1

∫

Ip

(

q
∑

m=0

up
mr(t)ϕ

p
m(x)

)2

dx

=

√

√

√

√

N
∑

p=1

(

q
∑

m=0

up
mr(t)2

∫

Ip

(ϕp
m(x))2dx + 2

q
∑

l=0

q
∑

m=0,m6=l

up
lr(t)u

p
mr(t)

∫

Ip

ϕp
l (x)ϕp

m(x)dx

)

=

√

√

√

√

N
∑

p=1

q
∑

m=0

h

2m + 1
(up

mr(t))2

≥
√

h

2s + 1
|uj

sr(t)|
(A.6)
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where N = 2πM/(|k1|h), s = 0, 1, · · · , q, j = 1, 2, · · · , N .

On the other hand:

||uhr(k1, x, 0)||L2[0,2πM/|k1|]

=

√

√

√

√

N
∑

p=1

q
∑

m=0

h

2m + 1
(up

mr(0))2

=

√

√

√

√

N
∑

p=1

q
∑

m=0

h

2m + 1

(

2m + 1

2

)2 (∫ 1

−1

ϕm(ξ) cos k1

(

xp +
hξ

2

)

dξ

)2

≤

√

√

√

√

N
∑

p=1

q
∑

m=0

(2m + 1)h

4

∫ 1

−1

ϕ2
m(ξ)dξ

∫ 1

−1

cos2 k1

(

xp +
hξ

2

)

dξ

=

√

√

√

√

N
∑

p=1

q
∑

m=0

h

2

(

1 +
sin k1h

k1h
cos ((2p − 1)k1h)

)

≤
√

2(q + 1)πM

|k1|
<

√

2(q + 1)(k0h + π)

k0

(A.7)

Combining (A.4,A.6,A.7), we get

|uj
sr(t)| <

√

2(2s + 1)(q + 1)(k0h + π)

k0h
(A.8)

and

|uhr(k1, x, t)|Ij
| =

∣

∣

∣

∣

∣

q
∑

s=0

uj
sr(t)ϕ

j
s(x)

∣

∣

∣

∣

∣

<

q
∑

s=0

√

2(2s + 1)(q + 1)(k0h + π)

k0h
||ϕj

s(x)||L∞(Ij)

<(q + 1)

√

2(2q + 1)(q + 1)(k0h + π)

k0h

(A.9)

The last inequality holds because |ϕj
s(x)| ≤ 1. Using the same method, we can get the

same results about uhi and uh(k2, x, t). According to the continuity of uh(k, x, t) for k

we can get the conclusion:

|uh(k, x, t)| < 2(q + 1)

√

(2q + 1)(q + 1)(k0h + π)

k0h
(A.10)
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Then, we return uhr to DG scheme to get:

|(uj
sr)t| =

∣

∣

∣

∣

∣

2s + 1

h

(

q
∑

m=0

uj
mr

∫ 1

−1

ϕm(ξ)ϕ
′

s(ξ)dξ −
q

∑

m=0

uj
mr +

q
∑

m=0

uj−1
mr (−1)s

)∣

∣

∣

∣

∣

<
2s + 1

h





q
∑

m=0

√

2(2m + 1)(q + 1)(k0h + π)

k0h

(

2 +

√

2

2m + 1
||ϕ′

s(ξ)||L2(−1,1)

)





<
(2s + 1)(q + 1)

h

√

2(q + 1)(k0h + π)

k0h
(2

√

2q + 1 +
√

2M0)

(A.11)

Using the same method of estimating uh, we can get:

∣

∣

∣

∣

∂uh

∂t
(k, x, t)

∣

∣

∣

∣

<
2(2q + 1)(q + 1)2

h

√

(q + 1)(k0h + π)

k0h
(2

√

2q + 1 +
√

2M0) (A.12)

B Proof for Theorem 4.1

First, let us denote the bounds as follows:

M1 = 2(q + 1)

√

(2q + 1)(q + 1)(k0h + π)

k0h
(B.1)

M2 =
2(2q + 1)(q + 1)2

h

√

(q + 1)(k0h + π)

k0h
(2

√

2q + 1 +
√

2M0) (B.2)

Since when k > k0, f̂(k)uh(k, x, t) < M1|f̂(k)| ∈ L1(−∞,∞), the first conclusion of

Theorem 4.1 can be easy proved by Weierstrass discriminant. It is easy to see that

ũh ∈ V q
h . In order for the second conclusion to be valid, we only need to prove the

following two points:

• Initial condition:

ũh(x, 0) =

∫ ∞

−∞

f̂(k)uh(k, x, 0)dk = PL2(f(x)) (B.3)

• For any vh ∈ V q
h , the DG formula holds:

∫

Ij

(ũh)tvhdx =

∫

Ij

ũh(vh)xdx − (ũh)
−
j+1/2(vh)

−
j+1/2 + (ũh)

−
j−1/2(vh)

+
j−1/2 (B.4)
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For vh ∈ V q
h and x ∈ Ij , we let

F (k, x) = f̂(k)(uh(k, x, 0) − eikx)vh(x) (B.5)

G(k, x, t) = f̂(k)
∂uh

∂t
(k, x, t)vh(x) (B.6)

H(k, x, t) = f̂(k)uh(k, x, t)(vh)x (B.7)

I(k, x, t) = f̂(k)uh(k, x, t) (B.8)

The following inequalities hold when k > k0:

|F (k, x)| ≤ (M1 + 1)|f̂(k)|||vh||L∞(Ij) (B.9)

|G(k, x, t)| ≤ M2|f̂(k)|||vh||L∞(Ij) (B.10)

|H(k, x, t)| ≤ M1|f̂(k)|||(vh)x||L∞(Ij) (B.11)

|I(k, x, t)| ≤ M1|f̂(k)| (B.12)

Noting that (M1+1)|f̂(k)|||vh||L∞(Ij) ∈ L1(−∞,∞), we know that the integral
∫ ∞

−∞
F (k, x)dk

converges uniformly on Ij according to Weierstrass discriminant. From Lemma 4.1 we

know F (k, x) ∈ C(−∞,∞) × Ij . Then we get:

∫

Ij

∫ ∞

−∞

F (k, x)dkdx =

∫ ∞

−∞

∫

Ij

F (k, x)dxdk (B.13)

For G(k, x, t), H(k, x, t), I(k, x, t), there are similar results.

For all vh ∈ V q
h , the following formula holds:

∫

Ij

(
∫ ∞

−∞

f̂(k)uh(k, x, 0)dk − f(x)

)

vh(x)dx

=

∫

Ij

(
∫ ∞

−∞

f̂(k)(uh(k, x, 0) − eikx)dk

)

vh(x)dx

=

∫

Ij

(
∫ ∞

−∞

f̂(k)(uh(k, x, 0) − eikx)vh(x)dk

)

dx

=

∫ ∞

−∞

(

∫

Ij

f̂(k)(uh(k, x, 0) − eikx)vh(x)dx

)

dk

=

∫ ∞

−∞

f̂(k)

(

∫

Ij

(uh(k, x, 0) − eikx)vh(x)dx

)

dk

=0

(B.14)
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The last equality is established because uh(k, x, 0) = PL2(eikx). Therefore, (B.3) has

been proved.

In the same way, we can get the following facts:

∫

Ij

(ũh)tvhdx =

∫ ∞

−∞

f̂(k)

∫

Ij

(uh)tvhdxdk (B.15)

∫

Ij

ũh(vh)xdx =

∫ ∞

−∞

f̂(k)

∫

Ij

uh(vh)xdxdk (B.16)

Then we construct Lagrangian basis functions φj
0, φ

j
1, · · · , φj

q by taking q + 1 different

points xj
0, x

j
1, · · · , xj

q in Ij , and write uh in the form of Lagrangian basis as follows:

uh(k, x, t) =

q
∑

m=0

uh(k, xj
m, t)φj

m(x) (B.17)

For any given k
′ ∈ [k0, +∞), and ǫ > 0 , there exists a small quantity δ, such that:

|uh(k, x, t) − uh(k, x−
j+1/2, t)|

=

∣

∣

∣

∣

∣

q
∑

m=0

uh(k, xj
m, t)(φj

m(x) − φj
m(x−

j+1/2))

∣

∣

∣

∣

∣

<M1(q + 1) max
m=0,1,··· ,q

|φj
m(x) − φj

m(x−
j+1/2)|

<M1(q + 1)ǫ

(B.18)

holds for all k ∈ [k0, k
′

] and k ∈ [−k
′

,−k0] and x ∈ (xj+1/2 − δ, xj+1/2). Therefore,

lim
x→x−

j+1/2

uh(k, x, t) = uh(k, x−
j+1/2, t) (B.19)
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holds for k ∈ [k0, k
′

] and k ∈ [−k
′

,−k0] uniformly. In addition, integral
∫ ∞

−∞
f̂(k)uh(k, x, t)dk

is uniformly convergent on Ij. So we can get:

(ũh)(x
−
j+1/2)(vh)

−
j+1/2

= lim
x→x−

j+1/2

∫ −k0

−∞

f̂(k)uh(k, x, t)dk(vh)
−
j+1/2 + lim

x→x−

j+1/2

∫ k0

−k0

f̂(k)uh(k, x, t)dk(vh)
−
j+1/2

+ lim
x→x−

j+1/2

∫ ∞

k0

f̂(k)uh(k, x, t)dk(vh)
−
j+1/2

=

∫ −k0

−∞

f̂(k)uh(k, x−
j+1/2, t)(vh)

−
j+1/2dk +

∫ k0

−k0

f̂(k)uh(k, x−
j+1/2, t)(vh)

−
j+1/2dk

+

∫ ∞

k0

f̂(k)uh(k, x−
j+1/2, t)(vh)

−
j+1/2dk

=

∫ ∞

−∞

f̂(k)uh(k, x−
j+1/2, t)(vh)

−
j+1/2dk

(B.20)

Similarly,

(ũh)(x
−
j−1/2)(vh)

+
j−1/2 =

∫ ∞

−∞

f̂(k)uh(k, x−
j−1/2, t)(vh)

+
j−1/2dk (B.21)

Combining (B.15), (B.16), (B.20) and (B.21), we can draw the following conclusion:

∫

Ij

(ũh)tvhdx −
∫

Ij

ũh(vh)xdx + (ũh)
−
j+1/2(vh)

−
j+1/2 − (ũh)

−
j−1/2(vh)

+
j−1/2

=

∫ ∞

−∞

f̂(k)

(

∫

Ij

(uh)tvhdx −
∫

Ij

uh(vh)xdx + (uh)
−
j+1/2(vh)

−
j+1/2 − (uh)

−
j−1/2(vh)

+
j−1/2

)

dk

=0
(B.22)

By this time, we have proved Theorem 4.1.
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