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ABSTRACT
Exposure assessment models are deterministic models derived from physical–chemical laws. In real work-
place settings, chemical concentration measurements can be noisy and indirectly measured. In addition,
inference on important parameters such as generation and ventilation rates are usually of interest since
they are difficult to obtain. In this article, we outline a flexible Bayesian framework for parameter inference
and exposure prediction. In particular, we devise Bayesian state space models by discretizing the differential
equation models and incorporating information from observed measurements and expert prior knowledge.
At each time point, a new measurement is available that contains some noise, so using the physical model
and the available measurements, we try to obtain a more accurate state estimate, which can be called
filtering. We consider Monte Carlo sampling methods for parameter estimation and inference under non-
linear and non-Gaussian assumptions. The performance of the different methods is studied on computer-
simulated and controlled laboratory-generated data. We consider some commonly used exposure models
representing different physical hypotheses. Supplementary materials for this article are available online.
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1. Introduction

In industrial hygiene, estimation of a worker’s exposure to
chemical concentrations in the workplace is an important
concern. In many situations, chemical concentrations are
not observed directly and partial noisy measurements are
available. Exposure models aim at capturing the underlying
physical processes generating chemical concentrations in the
workplace. Statistical and mathematical models may provide
more accurate exposure estimates than monitoring (Nicas
and Jayjock 2002). Industrial hygienists seek to estimate these
latent processes from the available measurements as well as
quantification of uncertainty in parameter estimation. For
example, generation and ventilation rates in a worker’s chamber
are crucial parameters that are difficult to obtain since most
workplaces do not collect information routinely. Traditional
approaches involve deterministic physical models that ignore
the existence of uncertainty by assigning values to those
parameters (Keil, Berge, and AIHA 2009). These approaches
do not provide accurate representation in a real workplace.

Bayesian methods (see, e.g., Banerjee et al. 2014) combining
professional judgment from experts and direct measurements
have been shown to be effective in industrial hygiene decision-
making. However, Bayesian inference on processes generating
chemical concentrations have received scant attention. Zhang
et al. (2009) employed a Bayesian nonlinear regression using the
solution of the differential equations representing the underly-
ing physical process using Gaussian errors. The model has some
limitations since it ignores extraneous factors and variations
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and requires a closed-form solution of the differential equa-
tions. Monteiro, Banerjee, and Ramachandran (2011) intro-
duced an R package (B2Z), which implements the Bayesian two-
zone model proposed by Zhang et al. (2009). Monteiro, Baner-
jee, and Ramachandran (2014) demonstrated that straightfor-
ward Bayesian regression can be ineffective in predicting expo-
sure concentrations in industrial workplaces since the infor-
mation is limited to partial measurements. They introduced
a process-based Bayesian melding approach, where measure-
ments are related to the physical model through a stochastic
process capturing the bias in the physical model and a measure-
ment error. The resulting inference suffers from inflated vari-
ability because of the additional complexities in the model and
cumbersome computations due to Gaussian process random
effects.

Physical models for industrial hygiene are represented by
differential equations that model the rate of change in con-
centrations. We propose Bayesian state space models (SSMs)
by discretizing differential equations and incorporating infor-
mation from observed measurements and prior knowledge of
experts. This enriches the existing methods as we are no longer
restricted to fitting a confined selection of physical models
amenable to analytic solutions. Any conceivable physical model,
in theory, can be accommodated. Neither will they be restricted
to Gaussian data, an assumption that most industrial hygiene
practitioners will agree is rarely tenable, especially given the
small to moderate number of measurements they have to deal
with.

© 2019 American Statistical Association and the American Society for Quality
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At each time point, a new measurement is available that con-
tains some noise, so using the physical model and the available
measurements, we try to obtain a more accurate state estimate,
which can be called filtering. The importance of filters lies in
their ability to produce estimates of the latent process using
information generated by the observations which may provide
a poor representation of the latent process if used alone. The
aim is to evince and statistically quantify the latent process using
chamber observations, while incorporating information from
the physical model that theoretically describes it and expert
knowledge of the posited physical system. We consider Monte
Carlo based filtering methods for parameter estimation and
inference in SSMs. We also relax the assumption of Gaussian
error terms and consider other alternatives.

In particular, we consider different filtering methods
under different assumptions. The widely deployed Kalman
filter (KF) (Eubank 2005) offers an optimal solution under
linearity and normality assumptions. State-by-state update
samplers (Fearnhead 2011) can provide state estimates under
nonlinear and/or non-Gaussian models. The different models
are compared and assessed using computer-simulated as well
as lab-generated datasets. In the lab-generated data, most of
the model parameters are known up to a considerable level of
accuracy. Experiments were conducted in a controlled chamber
that mimics real workplace settings, where concentrations were
generated at different ventilation and generation rates and under
different exposure model settings.

Our contribution in this article expands upon the existing
exposure models to allow for better prediction of the quantities
of interest. The article is organized as follows. Section 2 pro-
vides a brief review of three families of commonly referenced
exposure physical models. Section 3 describes the Bayesian
approaches used. Section 4 applies our models to the simulated
data and lab-generated data. Section 5 concludes the article with
an eye toward future work.

2. Physical Models and Their Statistical Counterparts

Bayesian SSMs for exposure assessment incorporate direct
measurements of the environmental exposure, determinis-
tic physical models, and prior information from experts.
There are several physical models varying in their level of
complexity (Ramachandran 2005). Three commonly used
families that we consider here are: (i) the well-mixed com-
partment (one-zone) model; (ii) the two-zone model; and
(iii) the turbulent eddy diffusion model. We use discrete
approximations to these deterministic models and introduce
stochasticity to devise flexible Bayesian versions. This obvi-
ates the need for exact analytic solutions to the differential
equations, which can be sensitive to the choice of initial
conditions. Prior specifications for the model parameters
produce Bayesian SSMs. Dynamic steady-state models are
composed of (i) a measurement equation that relates the
observations (or some function thereof) to the true con-
centrations; and (ii) a transition equation describing the
concentration change from time t to time t + δt . We will
derive the dynamic models from the respective differential
equations for three popular physical models in industrial
hygiene.

Figure 1. One-zone model schematic showing key model parameters; generation
rate G, ventilation rate Q, and loss rate KL .

2.1. Well-Mixed Compartment (One-Zone) Model

The well-mixed compartment model assumes that a source
is generating a pollutant at a rate G (mg/min) in a room of
volume V (m3) with ventilation rate Q (m3/min). The room
is assumed to be perfectly mixed, which means that there is a
uniform concentration of the contaminant throughout the room
(Figure 1). The loss term KL (mg/min) measures the loss rate of
the contaminant due to other factors such as chemical reactions
or the contaminant being absorbed by the room surfaces. The
differential equation describing this model is

V
d
dt

C(t) + (Q + KLV) C(t) = G. (1)

The exact solution to (1) is

C(t) = exp{−t(Q + KLV)/V}C(t0) + ((Q + KLV)/V)−1[
1 − exp{−t(Q + KLV)/V}]G/V .

Theoretically, the steady state concentration is the limit of C(t)
as t → ∞ which is G/(Q+KLV) (mg/m3). Details of the steady
state solution are provided in the supplementary materials. Fur-
ther specifications yield the Bayesian SSM corresponding to (1)
as below,

Measurement: Zt = f (Ct) + νt , νt
iid∼ Pν,θν ;

Transition: Ct+δt =
(

1 − δt
Q + KLV

V

)
Ct + δt

G
V

+ ωt ,

ωt
iid∼ Pω,θω .

Q ∼ Unif(aQ, bQ); G ∼ Unif(aG, bG);
KL ∼ Unif(aKL , bKL); σ 2 ∼ IG(aσ , bσ ), (2)

where Zt represents measurements (perhaps transformed), f (·)
is a function that maps Ct to the scale of Zt , Pν,θν , and Pω,θω

are probability distributions to be specified, while the prior dis-
tributions for the physical parameters are customarily specified
as uniform within certain fixed physical bounds. The transition
equation depends on the parameters only through (Q/V +
KL) and G/V . One can, therefore, reparameterize the tran-
sition equation in terms of these functions. However, indus-
trial hygienists are interested in estimating all the parameters
{Q, KL, G} (the volume V is usually known) using prior infor-
mation on these parameters. While constructing a prior on G is
equivalent to a prior on G/V , experts find it easier to quantify
and construct prior beliefs on the individual parameters {Q, KL}
than on the function (Q/V +KL). Hence, the formulation in (2)
is retained in the Bayesian setting developed here.
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Figure 2. Two-zone model schematic showing key model parameters; generation
rate G, ventilation rate Q, airflow β , and loss rate KL .

2.2. Two-Zone Model

The two-zone model assumes the presence of a source for the
contaminant in the workplace. Two zones or regions are defined:
(i) the region closer to the source is called the “near field,” while
the rest of the room is called the “far field,” which completely
encloses the near field. Both fields are assumed to be a well-
mixed box, that is, two distinct places that are in the same field
have equal levels of concentration of the contaminant. Similar
to the one-zone model, this model assumes that a contaminant
is generated at a rate G (mg/min), in a room with supply and
exhaust flow rates (ventilation rate) Q (m3/min), and loss rate by
other mechanisms KL (mg/m3). This model includes one more
parameter that indicates the airflow between the near and the
far field β (m3/min). The volume in the near field is denoted by
VN (m3) and the volume in the far field is denoted by VF (m3).
Figure 2 illustrates the dynamics of the system. The following
system of differential equations represents the two-zone model,

d
dt C(t)︷ ︸︸ ︷

d
dt

[
CN(t)
CF(t)

]
=

A︷ ︸︸ ︷[−β/VN β/VN
β/VF −(β + Q)/VF − KL

]
C(t)︷ ︸︸ ︷[

CN(t)
CF(t)

]
+

g︷ ︸︸ ︷[
G/VN

0

]
. (3)

The solution to (3) is C(t) = exp(tA)C(t0)+A−1 [exp(tA)− I
]

g,
where exp(tA) is the matrix exponential. Theoretically, for large

values of t, the steady state concentrations are
G(β +Q+KLVF)

β(Q+VFKL)

(mg/m3) and
G

Q + KLVF
(mg/m3) for the near and far fields,

respectively. The matrix exponential can be numerically unsta-
ble to compute in general. For example, for non-diagonalizable
matrices a Jordan decomposition (see, e.g., Banerjee and
Roy 2014) may be required, which is very sensitive to small
perturbations in A. Hence, we will avoid this approach. Instead,
we derive the discrete counterpart of (3) as

Measurement: Zt = f (Ct) + νt , νt
iid∼ Pν,θν ;

Transition: Ct+δt = (δtA(θc; x) + I) Ct + δtg(θc; x) + ωt ;

ωt
iid∼ Pω,θω ;

Q ∼ Unif(aQ, bQ); G ∼ Unif(aG, bG);
KL ∼ Unif(aKL , bKL); β ∼ Unif(aβ , bβ),

Figure 3. Eddy diffusion model schematic showing key model parameter; diffusion
coefficient DT .

where Zt is the 2 × 1 vector with near-field and far-field
measurements (or some function thereof) at time t, Ct is
the unobserved concentration state at time t, A(θc; x) =[−β/VN β/VN

β/VF −(β + Q)/VF − KL

]
and g(θc; x) =

[
G/VN

0

]
.

Similar to the one-zone model, we will specify distributions for
νt and for ωt , where θν and θω are parameters in Pν,θν and Pω,θω ,
respectively.

2.3. Turbulent Eddy Diffusion Model

In real workplace settings, the rooms may neither be perfectly
mixed nor consist of well-mixed zones. Furthermore, the
concentration state could depend upon space and time.
A popular model for such settings is the turbulent eddy
diffusion model, which accounts for a continuous concentration
gradient from the source outward. It accounts for the worker’s
location relative to the source. The concentration C(s, t) is
a function of the location s = (x, y) in a two-dimensional
Euclidean coordinate frame and time t, where the source of
the contaminant is assumed to be at (0, 0). The parameter
that is unique to this model is the turbulent eddy diffusion
coefficient DT (m2/min). It describes how quickly the emission
spreads with time (Figure 3) and is assumed to be constant
over space and time. There has been very little research on the
values of DT due to the difficulty of measuring it. Some studies
suggest a relationship between DT and air change per hour
(ACH) (Shao et al. 2017). We will provide inference for this
parameter.

The exact contaminant concentration at location s relative to
the source of emission is

C(s, t) = G
2πDT ‖s‖

{
1 − erf

( ‖s‖√
4DTt

)}
, (4)

where erf(z) = 2
π

∫ z
0 exp(−u2)du. The steady state concentra-

tion at location s is theoretically the limit of the concentration
as t → ∞, which is G/(2πDT(s)) (mg/m3). The following
differential equation represents the change in concentration
over time

d
dt

C(s, t) = G
4(DTπ t)3/2 exp

(
− ‖s‖2

4DTt

)
.
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A general dynamic modeling framework accounting for
space and time is as follows

Measurement: Z(t, s) = f (C(t, s)) + νt(s) + ηt ,
νt(s)∼Pνt(s),θν

, ηt ∼ Pηt ,θη ;

Transition: C(s, t + δt) = C(s, t) + δt
G

4(DTπ t)3/2

exp
(

− ‖s‖2

4DTt

)
+ ω(s, t + δt), ω(s, t)∼Pωt,s,θω ;

DT ∼ Unif(aDT , bDT ); G ∼ Unif(aG, bG), (5)

where Pνt(s),θν
and Pωt,s,θω are probability laws for spatial-

temporal stochastic processes and Pηt ,θη is the law for a tempo-
rally structured or perhaps a white-noise process. Note that νt(s)
is a spatial-temporal process discrete in time and continuous in
space. This is reasonable because the measurements are taken
over discrete time points and the estimation for the latent
concentration states are usually desired at those times. On
the other hand, ω(s, t) would ideally be a process continuous
in both space and time because it models spatial-temporal
associations between concentration states at arbitrary space-
time coordinates.

3. Model Implementation and Assessment

For each physical model in Section 2 we will consider two differ-
ent Bayesian SSMs. We will refer to the first as a Gaussian SSM.
Gaussian (linear) SSMs result from specifying f (Ct) = BtCt ,
where Bt is a known p × p design matrix (usually the identity
matrix), Pν,θν ≡ N(0, 
ν) and Pω,θω ≡ N(0, 
ω) are p-variate
Gaussian densities. These deliver accessible distribution theory
for updating parameters using Kalman-filters or Gibbs samplers.
Let T = {t1, . . . , tn} be timepoints where concentration mea-
surements Zt have been measured. A Bayesian hierarchical SSM
is

p(θc)× IW(
ω |rω, Sω)× IW(
ν |rν , Sν)×N(Ct0 |M0m0, M0)

×
n∏

i=1
N(Cti | Ati(θc)Cti−1 + δigti , 
ω)

×
n∏

i=1
N(Zti | Bti Cti , 
ν), (6)

where p(θc) is the prior distribution on θc, δi = ti − ti−1, and the
other distributions follow definitions as in Gelman et al. (2013).

We will implement filtering and smoothing on the latent con-
centration states. Filtering estimates the posterior expectation of
the concentration value Cti given the data up to and including ti,
that is, E[Cti | Z1:i], where Z1:i = {Ztj : j = 1, 2, . . . , i}], for every
ti ∈ T . For any fixed values of the parameters � = {θc, 
ω, 
ν}
filtering can be achieved by adapting the KFs forecast and
update steps to our physical models. Given the distribution
p(Cti−1 | �, Z1:(i−1)) = N(Cti−1 | Mti−1 mti−1 , Mti−1), the forecast
step computes the predictive distribution p(Cti | �, Z1:(i−1)) =
N(Cti | μ̃ti , 
̃ti), where μ̃ti = Ati(θc)Mti−1 mti−1 +δigti and 
̃ti =
Ati(θc)Mti−1 Ati(θc)	 +
ω. The update step follows the forecast
step to compute p(Cti | �, Z1:i) = N(Cti | Mti mti , Mti), where
M−1

ti = 
̃−1
ti + B	

ti 

−1
ν Bti and mti = 
̃−1

ti μ̃ti + B	
ti 


−1
ν Z1:i.

Thus, E[Cti | �, Z1:i] = Mti mti is conveniently computed in
sequential fashion starting with fixed values of mt0 = m0 and
Mt0 = M0 in the prior for Ct0 in (6). When the parameters
in � are unknown and need to be estimated, we simulate
samples (using MCMC) from p(� | Z1:i) and then compute
E� | Z1:i

[
E
{

Cti | �, Z1:i
}] = E

[
Mti mti | Z1:i

]
as a Monte Carlo

average of Mti mti over the samples from p(� | Z1:i). Posterior
samples from p(Cti | Z1:i), if desired for each ti ∈ T , can also be
easily drawn in sequential fashion using the above distributions
drawing one Cti from p(Cti | �, Z1:i) for each sampled �.

For smoothing, we estimate the posterior expectation of
each Cti given the entire set of observations from timepoints
in T , that is, E[Cti | Z1:n]. Here, we devise an MCMC sampling
algorithm that updates {Cti}n

i=1, 
ω and 
ν using Gibbs
updates from their respective full conditional distributions
and we update θc from its full conditional distribution using
Metropolis random walk steps. The full conditional distri-
butions are p(Cti | ·) = N(Cti | Mti mti , Mti) where M−1

ti =

−1

ω + Ati+1(θc)	
−1
ω Ati+1(θc) + B	

ti 

−1
ν Bti and mti =


−1
ω (Ati(θc)Cti−1 + δigti) + A	

ti+1

−1
ω (Cti+1 − δi+1gti+1) +

B	
ti 


−1
ν Zti , p(
ν | ·) = IW(
ν | rν|·, Sν|·) and p(
ω | ·) =

IW(
ω | rω|·, Sω|·), where rν|· = rν + n, Sν|· = Sν +∑n
i=1(Zti −

Bti Cti)(Zti −Bti Cti)
	, rω|· = rω +n and Sω|· = Sω +∑n

i=1(Cti −
Ati(θc)Cti−1 − δigti)(Cti − Ati(θc)Cti−1 − δigti)

	. The full
conditional distribution for θc is not a standard distribution and
is proportional to p(θc) ×∏n

i=1 N(Cti | Ati(θc)Cti−1 + δigti , 
ω).
The smoothed estimates E[Cti | Z1:n] are obtained by simply
averaging the posterior samples (post burn-in) of Cti .

The two-zone model has p = 2, while the one-compartment
and eddy-diffusion models have p = 1. Gaussian Bayesian SSMs
for p = 1 specify Pν,θν ≡ N(0, σ 2) and Pω,θω ≡ N(0, τ 2).
The measurement equation is linear in the state Ct . The IW(·, ·)
priors in (6) are replaced by IG(σ 2 | aσ , bσ ) and IG(τ 2 | aτ , bτ ).

Although Gaussian SSMs are popular in dynamic model-
ing of physical systems, especially due to convenient updat-
ing schemes, the Gaussian assumption for the concentration
measurements may be untenable. Our second Bayesian SSM
assumes that Zt = log Yt are log-concentration measurements
and f (Ct) = log Ct in the measurement equation. We still spec-
ify Pν,θν as Gaussian, which means that Zt ’s are log-normal and is
probably a more plausible assumption than in Gaussian SSMs.
In the transition equation, again the Gaussian assumption on
ωt seems implausible: if the measurements of the state are log-
normal, then why should Ct be Gaussian? Since Ct is positive,
a Gamma or log-normal specification for Pω,θω seems much
more plausible. For p = 2, we will specify logarithmic bivariate
normal distributions, while for p = 1 we will explore Gamma
and log-normal densities. We will refer to all of these models as
non-Gaussian Bayesian SSMs.

The turbulent eddy-diffusion model requires some further
specifications. While the framework in (5) is rich, unfortunately
it will not usually be applicable to practical industrial hygiene
settings because typically very few measurements are available
over distinct locations in a workplace chamber and estimating
the processes will be unfeasible. Hence, we will need simpler
specifications. For example, we can consider a setting with loca-
tions {s1, s2, . . . , sm} and n time-points. We fit the model in (5)
with Zt(si) = log Yt(si) are log-concentration measurements
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and f (Ct(si)) = log Ct(si). We further specify Pηt ,θη as a white-

noise process, that is, ηt
iid∼ N(0, τ 2) for every t and s, and

Pνt(s),θν
is a temporally indexed spatial Gaussian process with

an exponential covariance function, independent across time.
This means that the m × 1 vector νt

ind∼ N(0, σ 2
t Rt(φt)), where

Rt(φt) is an m × m matrix with (i, j)th element exp(−φtdij) and
dij = ‖si − sj‖.

In theory Pνt(s),θν
can be a continuous-time spatial-temporal

process specified through a space-time covariance function (see,
e.g., Banerjee, Carlin, and Gelfand 2014). Alternatively, we could
treat time as discrete and evolving, for each location s, as an
autoregressive process so that νt(s) = γ νt−1(s) + ηt(s) with
ηt(s) being a spatial process independent across time (see, e.g.,
Wikle and Cressie 1999; Gelfand, Banerjee, and Gamerman
2005). One could continue to embellish the model in (5) using
spatial-temporal structures that represent richer hypotheses and
more flexible modeling. However, in industrial hygiene appli-
cations such specifications will rarely lead to estimable models
given the scarcity of data points. Most realistic settings will
provide measurements from only a handful of locations (e.g.,
m ∼ 5) and some moderate numbers of time points (e.g.,
n ∼ 100). Hence, we will not explore these specifications any
further. Moreover, even when we assume independence across
time it will be difficult to estimate models with time-varying
spatial process parameters. Hence, we let νt

iid∼ N(0, σ 2R(φ))

so that each m × 1 vector νt has the same m-variate Gaussian
distribution.

To compare among competing models, we adopt a poste-
rior predictive loss approach (Gelfand and Ghosh 1998), which
quantifies how tenable a given model is with respect to the
observed data. This approach is composed of two components,
one measuring goodness of fit and another penalizing for model
complexity. We generate replicated datasets that would be pre-
dicted by the model with the values of the parameters esti-
mated from the observations. The uncertainty in the model’s
parameter estimates is propagated to the replicated datasets. To
be specific, we generate samples from the posterior predictive
distribution for each data point by sampling from Zrep,i ∼
p(Zrep,i | Z1:n) =

∫
p(Zrep,i | �, {Cti})p(�, {Cti} | Z1:n)d� for

i = 1, 2, . . . , n, where {Cti} is the collection of latent concentra-
tions over the entire time frame, and Zrep,i is a random variable
having the same probability distribution as the observed data
point Zti given � and {Cti}. Thus, the replicated observations
follow the posterior predictive distribution (see, e.g., Gelman
et al. 2013, for more on sampling from the posterior predictive
distributions) at the observed timepoints.

We will compute the posterior predictive mean, μrep,i =
E[Zrep,i | Z1:n], and dispersion, 
rep,i = var[Zrep,i | Z1:n], for
each Zrep,i; these are easily calculated from the posterior sam-
ples for each Zrep,i. We will prefer models that will perform
well under a decision-theoretical balanced loss function that
penalizes departure of replicated means from the corresponding
observed values (lack of fit), and also penalizes model complex-
ity by accounting for variability in model parameters. Using a
squared error loss function, the measure for goodness of fit is
evaluated as G = ∑n

i=1 ‖Zti − μrep,i‖2, where ‖ · ‖ denotes the

Euclidean norm (two-dimensional for the two-zone; absolute
difference for one-zone and eddy diffusion), while the penalty
for variability in replicates is given by P = ∑n

i=1 Tr(
rep,i),
where Tr(A) denotes the trace of the matrix A. Models with
poorer fits will tend to have higher G and those with less reliable
replicates will usually have increased P. We will use the score
D = G + P as a model selection criteria, with lower values
of D indicating better models. This measure is based upon
a sound decision-theoretical principle (see, e.g., Gelfand and
Ghosh 1998) and, unlike information criterion such as AIC or
BIC, does not rely upon asymptotic justifications.

4. Data Analysis

In this section, we evaluate the performance of the models
discussed in Section 3, for the three physical exposure models
illustrated in Section 2, using computer-simulated datasets as
well as experimental lab-generated data. We generate computer-
simulated data by adding noise to the exact solutions of the
physical model. The computer-simulated data were generated
using the R computing environment. The lab-generated data
experiments were conducted in test chambers. Arnold, Shao,
and Ramachandran (2017) examined parts of this data using the
deterministic one-zone and two-zone models and showed that
performance is highly sensitive to the modeling assumptions
and knowing the generation (G) and ventilation (Q) rates. Shao
et al. (2017) studied the eddy diffusion data using a deterministic
model and concluded that it is suitable for indoor spaces with
persistent directional flow toward a wall boundary, as well as in
rooms where the airflow is solely driven by mechanical venti-
lation (no natural ventilation involved). These results imply the
need for a more flexible model that accounts for uncertainty and
also be used for parameter inference.

4.1. Prior Settings

In Bayesian exposure models, reasonable informative priors are
usually used, based on expert knowledge and physical consid-
erations (Monteiro, Banerjee, and Ramachandran 2014). We
assigned informative priors on the generation rate G, ventilation
rate Q, loss rate KL, airflow rate β , and diffusion coefficient
DT using uniform distributions for the plausible values of the
parameters.

For the simulation data, uniform priors were assigned within
at least 20% of the true values following the prior settings in
Monteiro, Banerjee, and Ramachandran (2011). In the one-zone
and two-zone models, we assume that G ∼ Unif(281, 482), Q ∼
Unif(11, 17), KL ∼ Unif(0, 1), and β ∼ Unif(0, 10) in the two-
zone model and DT ∼ Unif(0, 3) in the eddy diffusion model.
For the exponential covariance function, the spatial range is
given by approximately 3/φ which is the distance where the
correlation drops below 0.05. The prior on φ ∼ Unif(0.5, 3)

implies that the effective spatial range, that is, the distance
beyond which spatial correlation is negligible, is between 1 and
6 m.

Wider ranges for the prior distributions were considered in
the lab-generated data analysis because the exact true values for
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some of the parameters were unknown. The ranges of the true
values in the well-mixed compartment and two-zone models for
G, Q, KL, and β are (40–120) (mg/min), (0.04–0.77) (m3/min),
<0.01, and (0.24–1.24)(m3/min), respectively. We assume that
G ∼ Unif(30, 150), Q ∼ Unif(0, 1), and KL ∼ Unif(0, 1) in
the one-zone and two-zone models and β ∼ Unif(0, 5) in the
two-zone model. For the eddy diffusion model, the true value
for G is 1318 (mg/sec) and from the literature (Shao et al. 2017)
the range for DT is (0.001–0.2) m2/sec. Hence, we assigned
priors of G ∼ Unif(1104, 1650) and Dt ∼ Unif(0, 1). Weakly
informative priors using IW(3, I) were assigned to the variance
covariance matrices 
ω and 
ν .

4.2. Simulation Results

We generate computer-simulated data by fixing parameters in
a physical model and adding Gaussian noise to the exact solu-
tion of the respective deterministic equation. We fix the deter-
ministic model parameters based upon physical considerations
similar to the experiments described in Zhang et al. (2009).
Following Zhang et al. (2009), we assumed that the workplace
chamber was 1.73 m long, 1.27 m wide, and 1.73 m high, yielding
a volume V = 3.8 m3. The one-zone model also assumed that
toluene was released at a rate of G = 351.5 mg/min, the average
flow-rate was Q = 13.8 m3/min and the loss rate was KL = 0.1.
For the two-zone model, the near field represents the region
very near and around the source and its volume contains the
breathing zone of the worker and is equal to half of the volume of
a sphere with radius 0.2 m (i.e., VN = 10−2×π), and the volume
of the far field is equal to the difference between the volume
of the room (3.8 m3) and the volume of the near field. In two-
zone experiments, usually the airflow flow rate is not measured
directly, but estimated using the steady-state solution. Based
upon Zhang et al. (2009), we assumed that β → G

CN−CF
≈ 5

m3/min. For the eddy diffusion data, an assigned value of DT =
1 m2/min agrees with the values in literature reported in Shao
et al. (2017). Estimation of physical model parameters and the
latent concentration process, and subsequent model assessment
are conducted as described in Section 3.

4.2.1. One-Zone Model
We simulated 50 independent datasets, each with T = 100
exposure concentrations at equally spaced time points, using the
exact solution to the ODE in (1). The measurements {yt , t =
1, . . . , T} were generated by adding random Gaussian noise

with zero mean and variance 0.1 to values obtained from the
exact solution at time t = 1, . . . , T. The initial concentration
C(0) was assigned a value of 1 mg/m3. Theoretically, the steady
state concentration in the simulated setting is ≈25 mg/m3. We
applied the Gaussian and non-Gaussian SSM models to the
synthetic data and compared our results to the simple Bayesian
nonlinear regression model (BNLR) proposed by Zhang et al.
(2009). The Gaussian SSM in (6) assumes linearity and Gaussian

errors, where At(θc) =
(

1 − δt
Q + KLV

V

)
and g = δt

G
V

.

Table 1 presents the posterior medians and the 95% credible
intervals for the model parameters along with the MSE and
the D = G + P score for different models corresponding to one
of the simulated datasets. The table also presents the coverage
probabilities of the Bayesian credible intervals—calculated as
the percentage of cases in which the 95% credible intervals
include the true parameter value—and the average lengths of
the credible intervals over the 50 replicated datasets. Panels “a”
and “b” in Figure 4 present filtered results from the Gaussian and
non-Gaussian SSMs, a panel titled “BNLR” presents the model-
fitted results from the Bayesian nonlinear regression in Zhang
et al. (2009), and a fourth panel titled “Smoothing” presents
smoothed results from the non-Gaussian SSM (the best-fitting
model). Each panel plots the simulated concentration measure-
ments and the true value from the one-zone ODE, as indi-
cated by “Measurements” and “True.” Panels “a,” “b,” and BNLR
present estimates of the posterior means of the (latent) concen-
trations conditional on all measurements up to the time-points
indicated in the x-axis (filtering, indicated as “Estimated”), while
the corresponding curve in “Smoothing” presents the estimates
of the posterior means of the latent concentrations conditional
on all measurements spanning the entire dataset (including
before and after the indicated time-points in the x-axis).

A summary of the performances of the different models are
as follows:

• Non-Gaussian SSM: The credible intervals include the true
values for all the parameters except KL. The latent state
estimates are very close to the true simulated values as shown
in Figure 4.

• Gaussian SSM: The credible intervals for the generation rate
G and the ventilation rate Q include the true values. The
interval for the loss rate KL does not cover the true parameter
value. The model estimates for the latent states are closer to
the observed values than the true values, that is, it produced
noisy estimates for the state process.

Table 1. Posterior medians, 95% credible intervals, coverage probabilities, and average interval lengths based on the 50 simulated datasets, posterior predictive loss (D =
G + P), and MSEs for the non-Gaussian and Gaussian SSMs and the BNLR for measurements simulated using the one-zone physical model.

Parameter Non-Gaussian SSM Gaussian SSM BNLR

G(351.5) 326.8(283.3, 351.7) 363.5(314.2,413.8) 301.9(282.0,347.3)
Coverage and average length (84%, 64.0) (78%, 131.0) (22%, 66.0)
Q(13.8) 12.9(11.1, 14.8) 12.8(11.4, 14.3) 13.0(13.2,16.9)
Coverage and average length (96%, 4.0) (94%, 4.7) (98%, 3.5)
KL(0.1) 0.34(0.19,0.78) 0.30(0.28, 0.4) 0.35(0.06,0.78)
Coverage and average length (98%, 0.7) (4%, 0.02) (98%, 0.7)

D = G + P 312.2 = 5.9 + 306.3 435.8 = 232.8 + 203.0 727.9 = 371.0 + 356.8
MSE 0.07 2.3 0.3

NOTE: The posterior medians, credible intervals, D score, and MSEs are representatives from a single simulated dataset.
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Figure 4. Plots of the simulated measurements, the true concentrations from the physical model, and estimated concentration profiles using filtering. Panels “a” and “b”
correspond to the non-Gaussian and Gaussian SSMs, respectively. “Smoothing” presents smoothed concentration estimates from the non-Gaussian SSM. Each panel plots
the measurements and the true values from the simulated one-zone ODE for comparisons.

• BNLR: The credible intervals include the true values for all
the parameters except for G. The model estimates for the
latent states are close to the true values.

The D scores show that the non-Gaussian SSM is preferable
to the Gaussian and BNLR models. This is corroborated by the
coverage probabilities of Bayesian credible intervals: the per-
centage of cases among the 50 simulations in which the credible
intervals include the true values of the parameters indicate that
the non-Gaussian SSMs empirical coverages tend to be much
closer to the nominal 95% compared to the Gaussian SSM and
the BNLR model. This implies that the non-Gaussian SSM offers
better posterior region calibration (Syring and Martin 2018).

4.2.2. Two-Zone Model
We simulated 50 independent datasets, each with T = 200
exposure concentrations at the near and far fields at equally
spaced time points using the exact solution to the ODE in
(3). Random noise was generated from a bivariate Gaussian
distribution with zero means and unit variances for each of the
two fields and zero correlation between them. The noise was
added to the log of the true values to produce measurements
{yt , t = 1, . . . , T}. The initial concentrations CN(0) and CF(0)

were assigned values 0 and 0.5 mg/m3, respectively. Theoreti-
cally, the steady state concentrations are ≈95 mg/m3 and ≈25
mg/m3 in the near and far fields, respectively. The Gaussian SSM

in (6) assumes linearity and Gaussian errors, so that At(θc) =
δtA + I and g = δg .

Table 2 presents the posterior summaries for the two-zone
model analogous to those described in Table 1. Figure 5 has pan-
els corresponding to both near and far fields from the two-zone
model. The labels and descriptions of the panels are analogous
to those described in Figure 4.

A summary of the performances of the three models are as
follows:

• Non-Gaussian SSM: The credible intervals include the true
values for all the parameters. The estimates of the latent states
are close to the true values in both the near and far fields as
shown in Figure 5.

• Gaussian SSM: The credible intervals for all the parameters
except the ventilation rate Q and the flow rate β do not
include the true values. The estimates of the latent states tend
to be closer to the true values in the near field than in the
far field. The estimates tend to also exhibit wider credible
intervals.

• BNLR: The credible intervals include the true values for all
the parameters. The estimates for the latent states are closer
to the true values at in the near field than in the far field

The D = G + P scores indicate that the non-Gaussian SSM
is preferred to the BNLR and the Gaussian SMM. The MSEs
and Figure 5 confirm these results. The coverage probabilities
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Table 2. Posterior medians, 95% credible intervals, coverage probabilities, and average interval lengths based on the 50 simulated datasets, posterior predictive loss
(D = G + P), and MSEs for the non-Gaussian and Gaussian SSMs and the BNLR for measurements simulated using the two-zone physical model.

Parameter Non-Gaussian SSM Gaussian SSM BNLR

G(351.5) 347.3(315.6,379.3) 450.5(395.2, 480.2) 335.1(302.5,382.6)
Coverage and average length (98%, 41.0) (90%, 102.0) (82%,87.5)
Q(13.8) 14.7(12.1,16.8) 13.5(11.1, 16.7) 14.4(11.2, 15.8)
Coverage and average length (96%, 3.6) (96%, 5.0) (62%, 3.5)
KL(0.1) 0.38(0.02,0.78) 0.22(0.16,0.35) –
Coverage and average length (100%, 0.7) (86%, 0.7) –
β(5) 5.0(4.3,5.8) 4.8(3.3, 5.8) 5.1(4.0, 6.8)
Coverage and average length (100%,0.6) (88%,1.4) (98%, 3.6)

D = G + P 1,049,840 = 1,010,905 + 38,934.0 1,118,550 = 1,033,428 + 85,121.7 2,504,429 = 1,359,016 + 1,145,413
MSE 15.3 116.1 54.9

NOTE: The posterior medians, credible intervals, D score, and MSEs are representatives from a single simulated dataset.
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Figure 5. Plots of the simulated measurements, the true concentrations from the physical model, and estimated concentration profiles using filtering. Panels “a” and “b”
correspond to non-Gaussian and Gaussian SSMs, respectively, “Near” and “Far” indicates the respective fields. “Smoothing” presents smoothed concentration estimates for
the near and far fields from the non-Gaussian SSM. Each panel plots the measurements and the true values from the simulated two-zone ODE for comparisons.

calculated from the 50 simulated datasets indicate that the
non-Gaussian SSMs coverages tend to be the closest to
the nominal 95%. In addition, the credible intervals tend
to be shorter than those from the Gaussian and BNLR
models.

4.2.3. Turbulent Eddy Diffusion Model
We simulated 50 independent datasets, each comprising 5
different locations and 100 equally spaced time points over
which 5 × 100 = 500 concentrations were generated using

the exact model given in (4). Random Gaussian noise with
zero mean and unit variance was added to the log of the
generated concentrations to yield measurements {yt : t =
1, 2, . . . , T}. Table 3 describes posterior summaries of the
model parameters, model comparison metrics, and coverage
probabilities and average credible interval lengths analogous to
those in Tables 1 and 2. Figure 6 has panel labels analogous to
Figures 4 and 5 but are presented for three different locations
indicated as L1 (top row), L2 (middle row), and L3 (bottom
row). Figure 7 is an interpolated image of the posterior mean
surface of the latent spatial process νt(s). The plot indicates
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Table 3. Posterior medians, 95% credible intervals, coverage probabilities, and average interval lengths based on the 50 simulated datasets, posterior predictive loss
(D = G + P), and MSEs for the non-Gaussian and Gaussian SSMs and the BNLR for measurements simulated using the turbulent eddy-diffusion model.

Parameter Non-Gaussian SSM Gaussian SSM BNLR

G(351.5) 355.9(284.0,477.5) 449.6(301.0,480.5) 376.5(281.0,480.0)
Coverage and average length (99%,184.0) (26%,32.0) (28%,50.0)
DT (1) 1.2(0.9,1.5) 1.4(1.3,1.6) 1.14(1.03, 1.8)
Coverage and average length (88%, 1.2) (14%,0.1) (28%,0.1)

D = G + P 7062.4 = 1564.5 + 5497.9 22,025.7 = 1112.5 + 20,913.1 27,719.1 = 14,529.7 + 13,189.5
MSE 3.11 5.55 4.22

NOTE: The posterior medians, credible intervals, D score, and MSEs are representatives from a single simulated dataset.
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Figure 6. Plots at three locations (L1, L2, and L3) of the simulated measurements, the true concentrations from the physical model, and estimated concentration profiles
using filtering. Panel labels “a” and “b” correspond to non-Gaussian and Gaussian SSMs, respectively, while “Smoothing” presents smoothed concentration estimates. Each
panel plots the measurements and the true values from the simulated turbulent eddy-diffusion ODE for comparisons.

higher concentration values near the source of emission
at the bottom-left corner and lower values away from the
source, which is what the turbulent eddy diffusion model
posits.

The performance of the three models are summarized as
follows:

• Non-Gaussian SSM: The credible intervals include the true
values for all the parameters. The estimates of the latent
states approximate the true values very well at the five
locations.

• Gaussian SSM: The credible intervals include the true value
for the generation rate G, but not for the eddy diffusion
coefficient DT . The model estimates for the latent states are
closer to the observed values than the true values.

• BNLR: The credible intervals do not include the true value
for the eddy diffusion coefficient DT . The model estimates
for the latent states are close to the true values.

The non-Gaussian SSM again seems to produce more accu-
rate parameters estimates. The D scores also prefer the non-
Gaussian SSM to either the BNLR or the Gaussian SSM. The
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Figure 7. Interpolated surface of the mean of the random spatial effects posterior
distribution.

MSE and Figure 6 further affirm these results. Coverage of
the credible intervals also seem to be closest to the theoretical
95% for the non-Gaussian SSM, but the average length of the
intervals tend to be wider. Thus, the non-Gaussian SSM seems
to be more conservative with its parameter estimates for the
turbulent eddy-diffusion model.

4.3. Experimental Chamber Data Results

In this section, we study the performance of the non-Gaussian
and Gaussian SSMs on controlled lab-generated data in which
solvent concentrations have been measured under different sce-
narios. We are interested in the inference through the posterior
distributions of the parameters Q and G in the one-zone model,
in addition to β in the two-zone model, and G and DT in the
eddy diffusion model.

4.3.1. One-Zone Model
A series of studies were conducted in an exposure chamber
under different controlled conditions. Arnold, Shao, and
Ramachandran (2017) constructed a chamber of size (2.0 m ×
2.8 m × 2.1 m = 11.8 m3), where two industrial solvents
(acetone and toluene) were released using different generation
G (mg/min) and ventilation Q (m3/min) rates. In particular,
three levels of ventilation rates corresponding to ranges of 0.04–
0.07 m3/min, 0.23–0.27 m3/min and 0.47–0.77 m3/min were
used. The loss rate KL was determined from empirical studies to
be <0.01. Solvent concentrations were measured every 1.5 min.
Details of the experiments can be found in Arnold, Shao, and
Ramachandran (2017).

Table 4 presents the medians and 95% Bayesian credible
intervals from the MCMC posterior samples in addition to the
D = G + P scores. The non-Gaussian SSMs credible intervals
cover the true values for both G and Q, while the Gaussian SSMs

intervals include the true values for G at low and high ventilation
levels. BNLRs intervals also include the true values for G at high
ventilation levels and Q at all levels. Posterior predictive loss
(D = G + P) indicates better fit for the non-Gaussian SSM model
followed by the Gaussian model and finally the BNLR. Figure 8
confirms these results.

4.3.2. Two-Zone Model
The near field box of size (0.51 m×0.51 m×0.41 m = 0.105 m3)
was constructed within the far field box (Arnold, Shao, and
Ramachandran 2017). The volume of the far field is 11.79 m3,
which is the chamber volume minus the near field volume.
The airflow parameter β cannot be directly measured, but it
was estimated from the local air speed to range from 0.24 to
1.24 m3/min. Similar to the one-zone model, three different
experimental datasets at three different ventilation levels were
used. Table 5 shows the posterior medians and 95% credible
intervals, and the D = G + P score. The non-Gaussian SSMs 95%
credible intervals include the true (experimentally set) values
of Q at medium and high ventilation rates, while they include
the true values of G only at the medium ventilation rate. The
Gaussian SSMs 95% credible intervals cover the true value of
Q only at medium ventilation, but not the generation rates G
in any of the three ventilation settings. The BNLRs intervals
cover the true value of Q at a high ventilation level, but not the
G . The true value for β was not directly measured and hence
is unknown, however, it was estimated to be between 0.24 and
1.24. In general, the non-Gaussian SSMs estimate for β is closer
to experimental range. The D = G + P scores clearly indicate that
the non-Gaussian SSM outperforms the BNLR and the Gaussian
SSM. These are also further affirmed in Figure 9.

4.3.3. Turbulent Eddy Diffusion Model
Shao et al. (2017) constructed a chamber of size (2.8 m ×
2.15 m × 2.0 m = 11.9 m3), where toluene was released. Mea-
surements were taken at two locations at distances 0.41 m and
1.07 m away from the source every 2 min. Due to the limited
spatial information from the two locations, an unstructured
covariance for νt(s) was used instead of the geostatistical expo-
nential covariance specified in the simulation experiments. A
weakly informative prior was assigned to the covariance matrix
using IW(3, I) (Gelman et al. 2013).

Table 6 shows the posterior medians and 95% credible inter-
vals, and the D = G + P scores. The value of DT is difficult to
measure; hence, the true value is unknown. However, Shao et al.

Table 4. Posterior predictive loss (D = G + P), medians, and 95% credible intervals from the posterior samples of the one-zone model parameters using toluene and acetone
solvents.

Parameter Ventilation level True value Non-Gaussian SSM Gaussian SSM BNLR

G
Low 43.2 38.1(30.2,62.9) 35.3(30.2, 46.7) 30.1(30.0,30.4)

Medium 43.2 45.06(30.5,101.9) 72.9(45.6,94.9) 30.9(30.0,34.2)
High 39.55 81.7(32.9,142.4) 38.1(30.5,51.4) 36.1(30.2,67.6)

Q
Low 0.04–0.07 0.27(0.02, 0.41) 0.20(0.15,0.27) 0.07(0.003,0.19)

Medium 0.23–0.27 0.50(0.02,0.97) 0.15(0.10,0.21) 0.57(0.02,0.94)
High 0.47–0.77 0.59(0.03,0.98) 0.30(0.23,0.45) 0.5(0.03,0.97)

D = G + P
Low 129.4 = 88.8 + 40.6 208.0 = 4.3 + 203.7 52,257.53 = 36,044.83 + 16,212.71

Medium 9.8 = 0.52 + 9.2 77.7 = 0.20 + 77.1 16,256.04 = 3040.128 + 13,215.91
High 7.5 = 1.0 + 6.5 38.2 = 0.1 + 38.1 4345.8 = 237.4 + 4108.4
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Figure 8. Plots of the measured concentrations and the posterior means of the latent states conditional on the measurements for (a) Non-Gaussian SSM; (b) Gaussian SSM;
and BNLR.

Table 5. Posterior predictive loss (D = G + P), posterior medians, and 95% credible intervals for the two-zone model parameters using toluene and acetone solvents.

Parameter Ventilation level True value Non-Gaussian SSM Gaussian SSM BNLR

G
Low 43.2 30.4(30.0, 32.2) 115.8(88.9, 143.9) 28.1(28.0,28.4)

Medium 86.4 73.7(60.2,90.5) 141.6(130.6,149.7) 28.5(28.0,30.8)
High 120.7 49.8(33.9,68.3) 132.9(121.6,148.0) 43.7(37.8,50.3)

Q
Low 0.04–0.07 0.68(0.09, 0.98) 0.28(0.23,0.36) 0.62(0.60,0.65)

Medium 0.23–0.27 0.38(0.11,0.50) 0.25(0.20,0.31) 0.38(0.29,0.50)
High 0.47–0.77 0.46(0.45,0.98) 0.14(0.11,0.16) 0.5(0.30,0.64)

β

Low 0.24–1.24 3.0(2.3,3.7) 5.1(4.1,6.0) 4.9(4.7,5.0)
Medium 0.24–1.24 2.9(2.5, 3.4) 2.3(2.0,2.8) 4.5(3.4,5.0)

High 0.24–1.24 2.2(1.5, 2.8) 2.5(2.0,3.0) 4.1(2.7,4.9)

D = G + P
Low 5653 = 189 + 5464 554,650 = 554,234 + 416 248,358 = 73,006 + 175,352

Medium 22,262 = 10,596 + 11,666 850,014 = 424,452 + 425,562 93,267 = 16,824 + 76,443
High 20,941 = 4345 + 16,596 479,098 = 240,278 + 238,820 119,212 = 64,968 + 54,244

(2017) demonstrated that most of the reported values of DT in
the literature range from 0.001 to 0.01 m2/sec. The 95% credible
intervals for DT in the non-Gaussian SSM lie within that range.
The 95% credible interval for G includes the true value. The 95%
credible intervals from the Gaussian SSM do not include any
of the true parameter values. The BNLRs estimates of G does
not include the true value and the range for DT is very narrow.
Figure 10 shows that the latent state estimates for both SSMs
are closer to the measurements in the first location than in the

second location. The BNLR model is clearly biased and that is
illustrated in the D score and in Figure 10. D = G + P scores show
that the non-Gaussian SSM provides a better fit.

5. Discussion

We have proposed a Bayesian framework for analyzing
experimental exposure data specific to industrial hygiene.
This approach combines information from physical models
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Figure 9. Plot of the measured concentrations and the posterior mean of the latent states conditional on the measurements in the near and far fields for (a) Non-Gaussian
SSM; (b) Gaussian SSM; and BNLR.

Table 6. Posterior predictive loss (D = G + P), medians, and 95% CI of the posterior samples of the turbulent eddy diffusion model parameters using toluene.

Parameter True value Non-Gaussian SSM Gaussian SSM BNLR

G 1318.33 1207.3(1107.2,1371.7) 1118.7(1104.5,1294.3) 1108.4(1104.1,1127.7)
DT 0.001–0.01 0.007(0.006,0.008) 0.67(0.64,0.78) 0.008(0.008,0.008)

D = G + P 100,877.8 = 59,369.9 + 41,507.9 3,664,659 = 3,660,710 + 3949.3 6,458,521 = 6,289,785 + 168,735.6

of industrial hygiene, observed data and prior knowledge of
the physical system. We derive a likelihood by discretizing
the physical models and subsequently relax the Gaussian noise
assumptions, so that industrial hygienists will not be restricted
to Gaussian SSMs.

In practical industrial hygiene settings, Gaussian SSMs are
still often used as approximations to analyze possibly non-
Gaussian data. To do so, some possibly inappropriate accom-
modations may need to be made. For example, Hoi, Yuen,
and Mok (2008) allowed negative values in estimating PM10
concentrations, while Leleux et al. (2002) used KFs to pre-
dict gas concentrations by using a tuning parameter to fix σ 2

ω

and σ 2
ν in a one dimensional autoregressive exposure model,

rather than pursuing full statistical inference. Our simulation
experiments and results demonstrate that Gaussian SSMs may
yield extremely poor fits when data are non-Gaussian. This was
especially evident for the two-zone analysis. Our results, we

hope, will inform the industrial hygiene community about some
of the pitfalls of Gaussian SSMs.

Non-Gaussian SSMs tended to perform better than linear
Gaussian SSMs, a result that appeared to be consistent
across different exposure models and different experimental
conditions. Moreover, our analysis revealed that the discretized
non-Gaussian models outperform the BNLR method proposed
by Zhang et al. (2009). This is unsurprising given that our
approach is richer by accommodating stochastic distributions
at two levels—one each for the measurement and transition
equations—whereas BNLR accommodates only an error
distribution from a nonlinear regression and hence performs
poorly if the physical model is misspecified. Finally, our
proposed approach also enjoys better interpretation than the
hierarchical Gaussian process models of Monteiro, Banerjee,
and Ramachandran (2014) as they provide greater precisions in
estimates because the random effects in the hierarchical models
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Figure 10. Plots of the measured concentrations and posterior means of the latent states conditional on the measurements at the two locations for (a) Non-Gaussian SSM;
(b) Gaussian SSM; and BNLR.

of Monteiro, Banerjee, and Ramachandran (2014) tend to inflate
variances.

For the experimental data, the one-zone model results were
better compared to the two-zone model and the eddy diffu-
sion model. This is not entirely surprising since each physical
experiment was designed for one physical model, and simpler
models imply simpler data and assumptions, and possibly fewer
parameters. In addition, in the one-zone model, there is only
one state at each time point to be estimated, unlike the two-
zone and the eddy diffusion models, where there are at least two
point estimates at each time point. However, we believe that in
a real workplace settings, assuming a uniform concentration of
the contaminant across the room may not be realistic and a more
flexible model like the eddy diffusion model would yield better
results.

The eddy diffusion data has some limitations related to the
small size of the chamber, which rendered a small difference
between the concentrations in the two locations which also
makes it hard to measure the spatial variation for Model (5)
implementation. Despite that, in most cases, a nonlinear non-
Gaussian Bayesian SSM was able to characterize the data well
and the model seems robust to most of the experimental sce-
narios.

We conclude with some indicators for future research. First,
as alluded to earlier, we will need to do a much more com-
prehensive spatiotemporal analysis for eddy diffusion experi-
ments. While our simulation experiments showed the promise
of spatiotemporal SSMs in analyzing eddy diffusion experi-
ments, our chamber data analysis had limited scope because of
the very small number of spatial measurements. Second, our
current framework relies upon first-order linear approximations
of the differential equations. This approximation will likely be
improved using second or higher order approximations leading
to new classes of dynamic hierarchical models that need to be
further investigated. Another important consideration is mis-

aligned data, such as was considered in Monteiro, Banerjee, and
Ramachandran (2014) for two zone experiments, where not all
measurements for the near and far fields came from the same
set of timepoints. An advantage of the Bayesian paradigm is that
we can handle missing data, hence misaligned data, very easily
and indeed our Bayesian SSMs should be able to handle them as
easily as the models in Monteiro, Banerjee, and Ramachandran
(2014). Future work will include such analysis and also exten-
sions to spatiotemporal misalignment for eddy-diffusion exper-
iments, where not all timepoints generated measurements for
the same set of spatial locations. Future work may also include
incorporating the multiresolution method proposed by Kou
et al. (2012) in the discretized model. Accuracy of the discretiza-
tion can be improved by introducing missing data, where more
accuracy implies dense discretization and hence computational
burden. The multiresolution method can improve the discrete-
time approximations of diffusion processes differential equa-
tions by employing different discretization schemes at different
resolutions that communicate with each other, hence provide
fast and accurate approximations. The multiresolution method
can be used in the proposed SSM when data is observed over
long intervals in time.

Supplementary Materials

R-code for Bayesian SSMs used: R-code to perform the filtering, smooth-
ing and parameters estimation and model assessment methods
described in the article. (Bayesian_STSP Rmd and PDF files)

Discretization of the differential equations: We approximate the deter-
ministic physical model through discretization. The Taylor expansion
of C(t) at t = t∗ is C(t) = ∑∞

n=0
C(n)(t∗)

n ! (t − t∗)n, where C(n)(t∗) =
dn

dtn C(t)
∣∣∣
t=t∗

. Let t = t∗ + δt hence

C(t∗ + δt) =
∞∑

n=0

C(n)(t∗)
n ! (δt)

n = C(t∗) + C′(t∗)
1 ! δt + o(δt), (7)
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for small δt . From the above equation we can express C′(t∗) as

C′(t∗) = C(t∗ + δt) − C(t∗)
δt

+ o(δt). (8)

In the applications to the three physical models, we replace the first-
order derivative d

dt C(t) at t = t∗ with Equation (8) using the appropriate
value of δt . In the one-zone and two-zone models a value δt = 0.01
was found to provide an accurate approximation, while for the eddy
diffusion model δt = 1 was used.

Steady states derivations: The steady state is achieved as t → ∞ in the
exact solution of the ODE.

lim
t→∞ exp{tFt}C(t0) + F−1

t [exp{tFt} − I]g. (9)

For the one-zone model Ft = −(Q + KLV)/V and g = G/V so (9)
= F−1

t [−I]g = G/(Q + KLV).

For the two-zone model, Ft = A =
[ −β/VN β/VN

β/VF −(β + Q)/VF − KL

]
and g =

[
G/VN

0

]
. The term exp(tFt), where exp() is the matrix

exponential, can be written as exp(tL�L−1) = ∑
etλGi where Gi =

uivT
i , ui is the ith column of L and vT

i is the ith row of L−1. It easily
follows that etFt = ∑m

i=1 etλi Gi. The eigenvalues are available in closed
form Zhang et al. (2009) as

λ1 = 1
2

[
−
(

βVF+(β+Q)VN
VN VF

)
+
√(

βVF+(β+Q)VN
VN VF

)2 − 4
(

βQ
VN VF

)]
,

λ2 = 1
2

[
−
(

βVF+(β+Q)VN
VN VF

)
−
√(

βVF+(β+Q)VN
VN VF

)2 − 4
(

βQ
VN VF

)]
.

(10)

As long as β and Q are positive, the sum of the two eigenvalues are
negative. Hence, etFt = ∑m

i=1 etλi Gi → 0 as t → ∞ and the first term
becomes 0 and the second term becomes A−1[−I]g. Also, det(A) =
(Qβ + βKLVF)/VN VF , and

A−1 =

⎡
⎢⎢⎣

−((β + Q + KLVF)/VF)(VN VF/(βQ + βKLVF))

−(β/VN)(VN VF/(βQ + βKLVF))

−(β/VF)(VN VF/(βQ + βKLVF))

−((β)/VN)(VN VF/(βQ + βKLVF))

⎤
⎥⎥⎦ .

So the steady state is a 2 × 1 vector equal to A−1[−I]g =[ Gβ+QG+KLVF G
βQ+βVF KL

βG
βQ+βKLVF

]
. So as t → ∞ CN(t) ≈ Gβ+QG+KLVF G

βQ+βVF KL
and

CF(t) ≈ βG
βQ+βKLVF

.
The steady state for the eddy diffusion model is theoretically the value
of C(s, t) in Equation (4) when t → ∞. Clearly limt→∞ G

2πDT (||s||)(
1 − erf ||s||√

4DT t

)
= G

2πDT (||s||) .
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