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Abstract

Local discontinuous Galerkin methods with generalized alternating numerical fluxes

coupled with implicit-explicit time marching for solving convection-diffusion problems is

analyzed in this paper, where the explicit part is treated by a strong-stability-preserving

Runge-Kutta scheme, and the implicit part is treated by an L-stable diagonally implicit

Runge-Kutta method. Based on the generalized alternating numerical flux, we establish

the important relationship between the gradient and interface jump of the numerical

solution with the independent numerical solution of the gradient, which plays a key role

in obtaining the unconditional stability of the proposed schemes. Also by the aid of the

generalized Gauss-Radau projection, optimal error estimates can be shown. Numerical

experiments are given to verify the stability and accuracy of the proposed schemes with

different numerical fluxes.
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alternating numerical flux, convection-diffusion equation.
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1 Introduction

Local discontinuous Galerkin (LDG) method is one of the widely used numerical methods

during the last two decades. Since it was introduced by Cockburn and Shu [11], motivated
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by the work of Bassi and Rebay [3] for solving the compressible Navier-Stokes equations, the

LDG method has been rapidly developed and widely applied to many practical problems,

such as nonlinear wave equations with higher order derivatives [35, 34], semiconductor device

simulations [22, 23], the incompressible fluid flows [10], porous medium equations [39], the

miscible displacement in porous media [14], wave equation in heterogeneous media [9], the

Keller-Segel chemotaxis model [21], and so on.

The idea of the LDG method is to rewrite equations with higher order derivatives into

an equivalent first order system, then apply the DG method [27] to the system. The choice

of the numerical flux is an important ingredient in the design of LDG method. In the

pioneering paper [11], the authors presented a general form of numerical fluxes and showed

suboptimal error estimate. In later works, e.g. [6, 32], optimal error estimates were given

for semi-discrete and fully-discrete LDG methods with purely alternating numerical fluxes

(PANF). Compared with PANF, the generalized alternating numerical fluxes (GANF) are

easier to define for linear equations with varying-coefficients or nonlinear equations [7], so

they gained attention by researchers. Recently, the optimal error estimate of LDG methods

with GANF was derived in [7] by carefully defining the generalized Gauss-Radau (GGR)

projection, the corresponding local analysis for singularly perturbed problems was also

carried out [8], these works are all in the framework of semi-discrete LDG methods.

An important issue we shall consider in this paper is the time discretization. In our

previous work [29, 30, 31], a class of stiffly accurate implicit-explicit (IMEX) Runge-Kutta

(RK) time discretization schemes [2, 5] were considered for convection-diffusion equations,

where the convection part is treated explicitly and the diffusion part is treated implicitly.

Those IMEX schemes coupled with LDG spatial discretization with PANF were shown to be

unconditionally stable, in the sense that the time step is only required to be upper bounded

by a positive constant which is independent of mesh size but depends on the coefficients of

convection and diffusion. In this paper, we pay attention to a class of IMEX RK formu-

las which are not stiffly accurate but have strong-stability-preserving (SSP) property [13].

These formulas were proposed in [25] for hyperbolic systems of conservation laws with stiff

relaxation, where the explicit parts are total variation diminishing (TVD) schemes [28], and

the implicit parts are L-stable diagonally implicit Runge-Kutta (DIRK) methods. We call

these methods as IMEX SSP methods in this paper.

The main difference between stiffly accurate schemes and IMEX SSP methods lies in

the following aspect: for stiffly accurate schemes, the solution at the end of the time step is

identified with the solution at the last internal stage [16, 2], while for IMEX SSP methods, an

additional quadrature is used at the end of the time step. So the IMEX SSP methods require

more storage than stiffly accurate schemes and it seems that they are less efficient. However,

for some problems such as semiconvection problems in astrophysics, the SSP property is

necessary to suppress spurious oscillations in the spatial discretization [19], IMEX SSP
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methods can enhance the stability and accuracy of the simulations [18]. Based on the

computational advantages, IMEX SSP methods have been adopted in many applications,

such as BGK kinetic equations [26], compressible Navier-Stokes equations [20], optimal

control problems [17], highly nonlinear PDEs [15], and so on.

The objective of this paper is to study the L2-norm stability and optimal error analysis

for LDG methods with GANF, coupled with two specific second and third order IMEX

SSP time discretizations proposed in [25]. Compared with the stiffly accurate schemes

considered in [29], an additional quadrature is used at the end of the time step in the IMEX

SSP schemes, this makes the construction of energy equation and the corresponding energy

analysis much more complicated than what we have done in [29]. We will establish energy

equation along the similar line as those established in [37, 38] for explicit Runge-Kutta

discontinuous Galerkin (RKDG) methods.

Besides the construction of energy equations, the crucial step is to build up the important

relationship between the gradient and interface jump of the numerical solution with the

independent numerical solution of the gradient, in the LDG methods with GANF, just as

what we did in [29] for PANF. Different from [29], where the relationship can be built up

locally (i.e, it holds in each cell), for GANF the relationship has to be established globally;

see Lemma 2.3 and its proof. By the aid of this important relationship and the energy

analysis, we can derive similar stability results for the LDG methods with GANF coupled

with the second and third order IMEX SSP schemes as that in [29]. Also the optimal error

estimates will be obtained by the aid of the GGR projection.

The remaining part of this paper is organized as follows. In Section 2 we present the

semi-discrete LDG method and the IMEX SSP time discretization schemes. Sections 3 and

4 are devoted to the stability and optimal error estimates of the proposed fully-discrete LDG

schemes. In Section 5, numerical experiments are given to verify the theoretical results and

to illustrate the effects of different choices of the numerical fluxes. Concluding remarks and

proof of some of the technical lemmas are given in Section 6 and the Appendix respectively.

2 The LDG method and IMEX SSP schemes

2.1 The semi-discrete LDG scheme

In this subsection we present the definition of semi-discrete LDG schemes for the linear

convection-diffusion problem

Ut + cUx − dUxx = 0, (x, t) ∈ QT = (a, b) × (0, T ], (2.1a)

U(x, 0) = U0(x), x ∈ Ω = (a, b), (2.1b)
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where d > 0 is the diffusion coefficient and c is the velocity of the flow field. Without loss

of generality, we assume that both d and c are constants and c > 0. The initial solution

U0(x) is assumed to be in L2(Ω). For the simplicity of analysis, we only consider periodic

boundary condition in this paper. The analysis for other boundary conditions is much more

complicated, one can refer to [33] for the discussion of Dirichlet boundary condition.

Let Q =
√

dUx, the LDG scheme starts from the following equivalent first-order differ-

ential system

Ut + cUx −
√

dQx = 0, Q −
√

dUx = 0, (x, t) ∈ QT , (2.2)

with the same initial condition (2.1b) and boundary condition.

Let Th = {Ij = (xj− 1

2

, xj+ 1

2

)}N
j=1 be the partition of Ω, where x 1

2

= a and xN+ 1

2

= b

are the boundary endpoints. Denote the cell length as hj = xj+ 1

2

− xj− 1

2

for j = 1, . . . , N ,

and define h = maxj hj. We assume Th is quasi-uniform in this paper, that is, there exists

a positive constant ν such that for all j there holds hj/h ≥ ν, as h goes to zero.

Associated with this mesh, we define the discontinuous finite element space

Vh =
{

v ∈ L2(Ω) : v|Ij
∈ Pk(Ij), ∀j = 1, . . . , N

}
, (2.3)

where Pk(Ij) denotes the space of polynomials in Ij of degree at most k ≥ 0. Note that

the functions in this space are allowed to have discontinuities across element interfaces. At

each element interface point, for any piecewise function v, there are two traces along the

right-hand and left-hand, denoted by v+ and v−, respectively, and the jump is denoted by

[[v]] = v+ − v−.

Multiplying (2.2) by test functions v and r, integrating over each cell Ij and integrating

by parts, then restricting unknown functions and test functions in finite element space Vh

and taking proper numerical fluxes, one can define the LDG scheme, please refer to [11] for

more details. In this paper, we would like to adopt the “upwind-biased” numerical flux [24]

for the convection, and the GANF [7] for the diffusion, then we can define the semi-discrete

LDG scheme as follows: for any t > 0, find the numerical solution u(t), q(t) ∈ Vh (where

the argument x is omitted), such that the variational forms

(ut, v)j = cZϑ
j (u, v) −

√
dZ θ̃

j (q, v), (2.4a)

(q, r)j = −
√

dZθ
j (u, r), (2.4b)

hold in each cell Ij, j = 1, 2, . . . , N , for any test functions v, r ∈ Vh. Here ϑ ≥ 1
2 and θ are

parameters associated with convection and diffusion respectively, and θ̃ = 1 − θ. Since the

central numerical flux (θ = 1
2 ) will affect the accuracy of the LDG scheme in the case of

odd polynomial degree k [34], we will mainly consider θ 6= 1
2 in this paper. Note that ϑ = 1
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gives the upwind numerical flux, and θ = 0, 1 give the PANF. The notation (·, ·)j means

the inner product in L2(Ij) and

Zβ
j (w, v) = (w, vx)j − w

(β)

j+ 1

2

v−
j+ 1

2

+ w
(β)

j− 1

2

v+
j− 1

2

, (2.5)

for any functions w and v. Here and below, w(β) = βw− + β̃w+, and β̃ = 1 − β for any

parameter β. w−
1

2

= w−
N+ 1

2

and w+
N+ 1

2

= w+
1

2

due to the periodic boundary condition. One

can refer to [8] for the definition of numerical fluxes for Dirichlet boundary conditions.

The initial condition u(x, 0) can be taken as any approximation of the given initial

solution U0(x), for example, the standard L2 projection of U0(x). We have now defined the

semi-discrete LDG scheme.

For the convenience of analysis, we denote by (q, r) =
∑N

j=1(q, r)j the inner product

in L2(Ω). Summing up the variational formulations (2.4) over j = 1, 2, . . . , N , and letting

Zβ =
∑N

j=1 Z
β
j , H = cZϑ,L = −

√
dZ θ̃,K = −

√
dZθ, we can write the above semi-discrete

LDG scheme in the global form: for any t > 0, find the numerical solution u, q ∈ Vh such

that the variation equations

(ut, v) =H(u, v) + L(q, v), (2.6a)

(q, r) =K(u, r), (2.6b)

hold for any v, r ∈ Vh.

2.2 The properties of the LDG spatial discretization

We present some properties of the LDG spatial discretizaiton in this subsection. To this

end, let us first introduce some notations and the inverse inequality.

We use the standard notations and norms in Sobolev spaces, for example, Hℓ(D) (ℓ ≥ 1)

denotes the space where the function itself and its derivatives up to ℓ-th order are all square-

integrable in domain D. And we define the (mesh-dependent) broken Sobolev space

Hℓ(Th) =
{
v ∈ L2(Ω) : v|Ij

∈ Hℓ(Ij), ∀j = 1, . . . , N
}
, (2.7)

which contains the discontinuous finite element space Vh. Associated with the space Hℓ(Th),

we would like to define the following semi-norms

|[v]|2 =

N∑

j=1

[[v]]2
j− 1

2

, ‖v‖2
Γh

=

N∑

j=1

‖v‖2
∂Ij

for arbitrary v ∈ Hℓ(Th), where ‖v‖∂Ij
=

√
(v+

j− 1

2

)2 + (v−
j+ 1

2

)2 is the L2-norm on the bound-

ary of Ij. In addition,

‖v‖2 =

N∑

j=1

‖v‖2
j , ‖v‖2

Hℓ(Th) =

N∑

j=1

‖v‖2
Hℓ(Ij)

,
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where ‖v‖j and ‖v‖Hℓ(Ij) are the L2-norm and Hℓ-norm of v in cell Ij, respectively.

For any function v ∈ Vh, there exists an inverse constant µ > 0 independent of v, h and

j such that [1]

‖v‖∂Ij
≤

√
µh−1‖v‖j . (2.8)

Integrating by parts and using the periodic boundary condition, we can easily get the

following properties, similar results for upwind numerical flux and PANF can be found in

[36, 29]. We omit the details here to save space.

Lemma 2.1. For any w, v ∈ Vh, there hold the equalities

Zβ(v, v) = −(β − 1

2
)|[v]|2, (2.9)

Zβ(w, v) = −Z β̃(v,w). (2.10)

Corollary 2.1. For u, q, ũ, q̃ ∈ Vh, suppose (q, r) = K(u, r) and (q̃, r) = K(ũ, r) for any

r ∈ Vh, then we have

L(q̃, u) = L(q, ũ) = −(q, q̃). (2.11)

Proof. By the definition of L and K, and owing to (2.10) we can easily get

L(q̃, u) = −K(u, q̃) = −(q, q̃).

And similarly, L(q, ũ) = −K(ũ, q) = −(q̃, q).

Lemma 2.2. For any w, v ∈ Vh, there exists a positive constant Cβ depending on β such

that

|Zβ(w, v)| ≤ Cβ

(
‖wx‖ +

√
µh−1|[w]|

)
‖v‖, (2.12a)

|Zβ(w, v)| ≤ Cβ

(
‖vx‖ +

√
µh−1|[v]|

)
‖w‖. (2.12b)

In [29] we presented an important relationship (Lemma 2.4 in [29]) between the gradient

and interface jump of the numerical solution with the independent numerical solution of

the gradient, in the LDG scheme with PANF, which plays a key role in obtaining the

unconditional stability of the fully discrete LDG schemes. In the following lemma we will

show that the same relationship also holds for GANF excluding the central flux.

Lemma 2.3. Let θ 6= 1
2 . Suppose u, q ∈ Vh satisfy (2.6b), then there exists a positive

constant C⋆, which is independent of h and d but may depend on µ, θ and k, such that

‖ux‖ +
√

µh−1|[u]| ≤
√

C⋆

d
‖q‖. (2.13)
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Proof. From (2.4b) and (2.5) we have

(q, r)j = −
√

d

[
(u, rx)j − u

(θ)

j+ 1

2

r−
j+ 1

2

+ u
(θ)

j− 1

2

r+
j− 1

2

]

=
√

d

[
(ux, r)j − (u−

j+ 1

2

− u
(θ)

j+ 1

2

)r−
j+ 1

2

+ (u+
j− 1

2

− u
(θ)

j− 1

2

)r+
j− 1

2

]

=
√

d

[
(ux, r)j + θ̃[[u]]j+ 1

2

r−
j+ 1

2

+ θ[[u]]j− 1

2

r+
j− 1

2

]
, (2.14)

where integration by parts is used in the second step. Thus, owing to the periodic boundary

conditions, we have

(q, r) =
√

d

N∑

j=1

[
(ux, r)j + [[u]]j+ 1

2

r
(θ̃)

j+ 1

2

]
. (2.15)

In what follows we first show that there exists positive constant C1 such that

‖ux‖2 ≤ C1

d
‖q‖2. (2.16)

In the special cases θ = 0 or θ = 1, we can get (2.16) by showing it holds in each cell,

i.e, ‖ux‖2
j ≤ C1

d ‖q‖2
j . Since in these cases, there is only one boundary term in (2.14),

suitable test function r can be taken to eliminate the boundary term; see [29] for more

details. However, it is difficult to find such test function so that the two boundary terms

in (2.14) can be eliminated simultaneously for general θ. So for general θ, we begin with

the global formulation (2.15). The basic idea is to take suitable test function r such that

(ux, r)j = ‖ux‖2
j and r

(θ̃)

j+ 1

2

= 0 for every j = 1, 2, · · · , N . To this end, we take r as

piecewise-defined function in the form

r(x) = ux(x) −
[
λ1ux(x−

j+ 1

2

) + λ2ux(x+
j+ 1

2

)

]
P j

k (x), for x ∈ Ij, (2.17)

where λ1, λ2 are θ-dependent constants to be determined later, and P j
k (x) = Lk(

2(x−xj)
hj

)

for x ∈ Ij, with Lk(·) being the standard Legendre polynomial of degree k in [−1, 1], so we

have (ux, P j
k )j = 0, P j

k (xj+ 1

2

) = 1 and P j
k (xj− 1

2

) = (−1)k.

From (2.17), we obtain

r−
j+ 1

2

= (1 − λ1)ux(x−
j+ 1

2

) − λ2ux(x+
j+ 1

2

),

r+
j+ 1

2

= − (−1)kλ1ux(x−
j+ 1

2

) + [1 − (−1)kλ2]ux(x+
j+ 1

2

).

To ensure r
(θ̃)

j+ 1

2

= 0, we need to choose different λ1, λ2 for different cases when k is even or

odd. After a simple manipulation, we get

λ1 = θ̃, λ2 = θ
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when k is even, and

λ1 =
−θ̃

2θ − 1
, λ2 =

−θ

2θ − 1

when k is odd.

Now taking r as (2.17) with the above choice of λ1 and λ2 in (2.15), we get

‖ux‖2 =
N∑

j=1

(ux, r)j =
1√
d

N∑

j=1

(q, r)j ≤ ε‖r‖2 +
1

4εd
‖q‖2, (2.18)

for arbitrary ε > 0. Notice that

‖r‖2
j = ‖ux‖2

j + |λ1ux(x−
j+ 1

2

) + λ2ux(x+
j+ 1

2

)|2‖P j
k‖2

j

≤‖ux‖2
j + 2max{λ2

1, λ
2
2}(‖ux‖2

∂Ij
+ ‖ux‖2

∂Ij+1
)‖P j

k‖2

≤‖ux‖2
j +

2µ max{λ2
1, λ

2
2}

2k + 1
(‖ux‖2

j + ‖ux‖2
j+1),

by the inverse inequality (2.8) and the fact that ‖P j
k‖2 =

hj

2k+1 . Thus (2.18) becomes

‖ux‖2 ≤C1ε‖ux‖2 +
1

4εd
‖q‖2, (2.19)

where C1 = 1 +
4µ max{λ2

1,λ2
2}

2k+1 . Hence taking ε = 1
2C1

yields (2.16).

Next we show there exists positive constant C2 such that

|[u]|2 ≤ C2h

d
‖q‖2. (2.20)

Taking r = 1 in (2.14), we get

θ̃[[u]]j+ 1

2

+ θ[[u]]j− 1

2

=
1√
d
(q, 1)j − (ux, 1)j

.
= bj , ∀j. (2.21)

In the special cases θ = 0 or θ = 1, the system (2.21) is decoupled, [[u]]j− 1

2

can be solved

locally, and thus (2.20) is very easy to get. So here we only consider the general case θ 6= 0, 1.

Owing to the periodic boundary condition, it forms a linear system

Ax = b,

where x = ([[u]]1/2, · · · , [[u]]N−1/2)
⊤, b = (b1, · · · , bN )⊤, and A is an N ×N circulant matrix

in the form

A =




θ θ̃

θ θ̃
. . .

. . .

θ θ̃

θ̃ θ




.
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Notice that det(A) = θN(1 − ςN ), where ς = −θ̃/θ, so A is invertible when θ 6= 1
2 , and the

inverse matrix of A is also a circulant matrix in the form [24]

A−1 =
1

θ(1 − ςN )




1 ς ς2 · · · ςN−1

ςN−1 1 ς · · · ςN−2

. . .
. . .

ς2 ς3 · · · 1 ς

ς ς2 · · · ςN−1 1




.

Notice that the row-norm and column-norm of A−1 are equal and satisfy

‖A−1‖1 = ‖A−1‖∞ =
1

|θ(1 − ςN )|

N−1∑

i=0

|ςi| =
1

|θ(1 − ςN )|
1 − |ς|N
1 − |ς| ≤ 1

|θ||1 − |ς|| ,

so from [12] we get the spectral norm

‖A−1‖2 ≤ ‖A−1‖
1

2

1 ‖A−1‖
1

2∞ ≤ 1

|θ||1 − |ς|| .

Moreover, from the definition of bj in (2.21), we get the l2 norm of vector b which satisfies

|b|22 =

N∑

j=1

b2
j ≤

N∑

j=1

2h

[
1

d
‖q‖2

j + ‖ux‖2
j

]
≤ 2(1 + C1)h

d
‖q‖2,

due to Cauchy-Schwarz inequality and (2.16). Hence we can get

|[u]|2 =
N∑

j=1

[[u]]2
j− 1

2

= |x|22 ≤ ‖A−1‖2
2|b|22 ≤ C2h

d
‖q‖2,

where C2 = 2(1+C1)
|θ|2|1−|ς||2 .

Finally taking C⋆ = (
√

C1 +
√

µC2)
2 we complete the proof of this lemma.

This lemma does not hold for the central flux, i.e, θ = 1
2 . For example, in the case when

k is odd, we let u(x)|Ij
= P j

k (x), where P j
k (x) = Lk(

2(x−xj)
hj

) has been defined in the above

proof, then u satisfies (u, rx)j = 0 for any r ∈ Vh, and for any j, u
( 1

2
)

j+ 1

2

= 1
2(u−

j+ 1

2

+ u+
j+ 1

2

) =

1
2 [1+ (−1)k] = 0. So q = 0 satisfies (2.14) and thus this special choice of u and q = 0 satisfy

(2.6b), but obviously they do not satisfy the relationship (2.13). Similarly, for even k, let

u(x)|Ij
= (−1)jP j

k (x) for j = 1, · · · , N (where N is even), then q = 0 satisfies (2.14), but

u, q do not satisfy the relationship (2.13).

By applying Lemmas 2.2 and 2.3, we can easily get the estimate for the convection

terms, which is given in the following lemma.
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Lemma 2.4. Let θ 6= 1
2 . Suppose u, q ∈ Vh satisfy (q, v) = K(u, v) for any v ∈ Vh, then we

have

|H(u, v)| ≤ C
c√
d
‖q‖‖v‖, (2.22)

where C > 0 is independent of c, d and h.

Remark 2.1. Even though Lemma 2.3 is invalid in the case θ = 1
2 , Lemma 2.4 also holds

in the special case ϑ = θ = 1
2 . Since by the definition of H and K we have

H(u, v) = − c√
d
K(u, v) = − c√

d
(q, v) ≤ c√

d
‖q‖‖v‖.

2.3 The IMEX SSP schemes

To give a brief introduction of the IMEX SSP scheme, let us consider the system of ordinary

differential equations
dy

dt
= N(y) + L(y), y(t0) = y0, (2.23)

where y = [y1, y2, · · · , yd]
⊤. By applying explicit and implicit discretization for N(y) and

L(y), respectively, the solution of (2.23) advanced from time tn to tn+1 = tn + τ is given

by:

Yi = yn + τ
i−1∑

j=1

ãijN(Yj) + τ
s∑

j=1

aijL(Yj), 1 ≤ i ≤ s,

yn+1 = yn + τ

s∑

i=1

b̃iN(Yi) + τ

s∑

i=1

biL(Yi), (2.24)

where Yi denotes the intermediate stages. Let

c̃i =

i−1∑

j=1

ãij , ci =

s∑

j=1

aij .

Denote Ã = (ãij), A = (aij) ∈ R
s×s, b̃⊤ = [b̃1, · · · , b̃s], b

⊤ = [b1, · · · , bs] and c̃⊤ =

[c̃1, · · · , c̃s], c
⊤ = [c1, · · · , cs], then we can represent the above formula as a double tableau

in the Butcher notation
c̃ Ã

b̃⊤
c A

b⊤
(2.25)

Formally, it is a little different from that considered in [29], where the vectors c̃ = c and thus

the formulas can be expressed in a single Butcher tableau. Moreover, the IMEX formulas

considered in [29] are stiffly accurate, i.e, in the implicit part of the above tableau, b⊤ equals

the last row of the matrix A. Here we consider a class of IMEX formulas whose vector b⊤ is

not equal to the last row of the matrix A, which means an additional quadrature is used at
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the end of the time step. We will take two specific formulas proposed in [25] as examples,

where the SSP schemes [13] are taken for the explicit discretization, and L-stable [16]

diagonally implicit RK schemes (aij = 0 for j > i) are taken for the implicit discretization.

Second order IMEX SSP scheme:

0 0 0

1 1 0

1/2 1/2

γ γ 0

1 − γ 1 − 2γ γ

1/2 1/2

(2.26)

where γ = 1 −
√

2
2 was considered in [25]. In this paper, we consider γ as a parameter in

certain range, which will be discussed later.

Third order IMEX SSP scheme:

0 0 0 0 0

0 0 0 0 0

1 0 1 0 0

1/2 0 1/4 1/4 0

0 1/6 1/6 2/3

α α 0 0 0

0 −α α 0 0

1 0 1 − α α 0

1/2 ϕ φ ρ α

0 1/6 1/6 2/3

(2.27)

where α = 3
2 −

√
57
6 ≈ 0.241694261 is the smallest root of 6α3 − 21α2 + 13α − 2 = 0, ϕ, φ

and ρ are positive constants satisfying the following relationship:

α = 4ϕ, 2ϕ + φ =
1

4
, and ρ =

1

2
− α − ϕ − φ. (2.28)

3 The stability analysis for the IMEX-LDG schemes

In this section we would like to study the stability of the above two IMEX SSP schemes with

the LDG spatial discretization (2.6), the corresponding fully discrete schemes are denoted

as IMEX-LDG(k, s), where k is the degree of piecewise polynomials used in the LDG spatial

discretization, and s is the order of IMEX SSP time discretization. Let {tn = nτ}M
n=0 be

an uniform partition of the time interval [0, T ], with time step τ . The time step could

actually change from step to step, but in this paper we take the time step as a constant

for simplicity. Given un, hence qn, we would like to find the numerical solution at the next

time level tn+1, maybe through several intermediate stages tn,ℓ, by the above IMEX SSP

methods (2.26) and (2.27).

The IMEX-LDG(k, 2) scheme reads: for any v ∈ Vh

(un,1, v) = (un, v) + γτL(qn,1, v), (3.1a)

(un,2, v) = (un, v) + τH(un,1, v) + (1 − 2γ)τL(qn,1, v) + γτL(qn,2, v), (3.1b)

(un+1, v) = (un, v) +
τ

2

[
H(un,1, v) + H(un,2, v)

]
+

τ

2

[
L(qn,1, v) + L(qn,2, v)

]
, (3.1c)
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and the auxiliary solutions qn,ℓ ∈ Vh are determined by the variation form

(qn,ℓ, r) = K(un,ℓ, r), ∀r ∈ Vh, for ℓ = 1, 2. (3.1d)

The IMEX-LDG(k, 3) scheme reads: for any v ∈ Vh

(un,1, v) = (un, v) + ατL(qn,1, v), (3.2a)

(un,2, v) = (un, v) − ατL(qn,1, v) + ατL(qn,2, v), (3.2b)

(un,3, v) = (un, v) + τH(un,2, v) + (1 − α)τL(qn,2, v) + ατL(qn,3, v), (3.2c)

(un,4, v) = (un, v) +
τ

4

[
H(un,2, v) + H(un,3, v)

]
+ ϕτL(qn,1, v) + φτL(qn,2, v)

+ ρτL(qn,3, v) + ατL(qn,4, v), (3.2d)

(un+1, v) = (un, v) +
τ

6

[
H(un,2, v) + H(un,3, v) + 4H(un,4, v)

]

+
τ

6

[
L(qn,2, v) + L(qn,3, v) + 4L(qn,4, v)

]
, (3.2e)

and qn,ℓ ∈ Vh satisfy (3.1d) for ℓ = 1, 2, 3, 4.

Theorem 3.1. Let ϑ ≥ 1
2 and θ 6= 1

2 . There exists positive constant τ0 which is independent

of h, such that if τ ≤ τ0, then the solution of schemes (3.1) and (3.2) satisfy

‖un‖ ≤ ‖u0‖, ∀n. (3.3)

In what follows, we will present the proof for Theorem 3.1. Since the explicit parts are

the same as the SSP schemes analyzed in [37, 38], we can imitate [37, 38] to build up energy

equations. In the following we use C to denote a generic constant independent of c, d and

n, h, τ , which may have different values in different occurrences.

3.1 Proof for the IMEX-LDG(k, 2) scheme

3.1.1 Energy equation

Let {wn,ℓ}ℓ=0,1,2
∀n be a series of functions defined at every stage time levels, wn,0 = wn. For

the convenience of analysis, we would like to adopt two series of simplified notations

R1w
n = wn,1 − wn, R2w

n = wn,2 − wn,1, R3w
n = wn+1 − 1

2
(wn,1 + wn,2), (3.4)

and

S1w
n = R2w

n, S2w
n = R3w

n − 1

2
R2w

n. (3.5)

Furthermore, we would like to introduce another two series of notations R̃ and S̃ corre-

sponding to R and S, respectively, which are related to the implicit discretization of the

diffusion part.

R̃1w
n = γwn,1, R̃2w

n = (1 − 3γ)wn,1 + γwn,2, R̃3w
n =

γ

2
wn,1 +

1 − γ

2
wn,2, (3.6)
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and

S̃1w
n = R̃2w

n, S̃2w
n = R̃3w

n − 1

2
R̃2w

n. (3.7)

Then we get

(Rℓu
n, v) = bℓτH(un,ℓ−1, v) + τL(R̃ℓq

n, v), for ℓ = 1, 2, 3, (3.8)

where bℓ = 0 for ℓ = 1 and bℓ = 1
ℓ−1 for ℓ = 2, 3. And

(Sℓu
n, v) =

1

ℓ
τH(Sℓ−1u

n, v) + τL(S̃ℓq
n, v), for ℓ = 1, 2, (3.9)

where S0u
n = un,1.

Let v1 = 2un,1, v2 = un,1, v3 = 2un,2. Taking v = vℓ in (3.8) for ℓ = 1, 2, 3, respectively,

adding them together, we obtain the energy equation

‖un+1‖2 − ‖un‖2 + ‖R1u
n‖2 = V1 + V2 + V3, (3.10a)

where

V1 = τ

3∑

ℓ=1

bℓH(un,ℓ−1, vℓ), (3.10b)

V2 = τ

3∑

ℓ=1

L(R̃ℓq
n, vℓ), (3.10c)

V3 = ‖S2u
n‖2. (3.10d)

3.1.2 Energy estimate

From (2.9) we have

V1 = −(ϑ − 1

2
)cτ

(
|[un,1]|2 + |[un,2]|2

)
≤ 0. (3.11)

Owing to Corollary 2.1 we can obtain

V2 = − τ
[
2(qn,1, R̃1q

n) + (qn,1, R̃2q
n) + 2(qn,2, R̃3q

n)
]

= −τ

∫

Ω
qn⊤

A1q
ndx, (3.12)

where qn = (qn,1, qn,2)⊤ and

A1 =

(
1 − γ γ

γ 1 − γ

)
, (3.13)

which is positive definite if 0 < γ < 1
2 .

Next we present the estimate for V3. To this end, we adopt the similar argument as in

[4] and give the following lemma firstly.
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Lemma 3.1. For any v ∈ Vh, we have

(S2u
n, v) = ω1(R1u

n, v) + ω2(R2u
n, v) +

τ

2
H(S1u

n, v) − ω2τH(un,1, v), (3.14)

where ω1 = −1+4γ−2γ2

2γ2 , ω2 = 1−2γ
2γ .

Proof. From (3.9) and the notations from (3.4) to (3.7), and owing to the linear structure

of the operators H and L, we have

(S2u
n, v) =

1

2
τH(S1u

n, v) +
4γ − 1

2
τL(qn,1, v) +

1 − 2γ

2
τL(qn,2, v). (3.15)

And from (3.8) we get

τL(qn,1, v) =
1

γ
(R1u

n, v), (3.16)

τL(qn,2, v) =
1

γ

[
(R2u

n, v) − τH(un,1, v) − (1 − 3γ)τL(qn,1, v)
]

=
1

γ
(R2u

n, v) − 1 − 3γ

γ2
(R1u

n, v) − 1

γ
τH(un,1, v). (3.17)

Substituting (3.16), (3.17) into (3.15) yields (3.14). �

By taking v = S2u
n in (3.14), and using Cauchy-Schwarz inequality for the first two

terms and applying Lemma 2.4 for the last two terms, we have

‖S2u
n‖ ≤ |ω1|‖R1u

n‖ + |ω2|‖R2u
n‖ + V, (3.18)

where

V = C
c√
d
τ(‖qn,1‖ + ‖qn,2‖).

As a consequence, using Young’s inequality leads to

‖S2u
n‖2 ≤ (1 + ε̂) (|ω1|‖R1u

n‖ + |ω2|‖R2u
n‖)2 + (1 + ε̂−1)V 2

≤ (1 + ε̂)(1 + ε̃)|ω1|2‖R1u
n‖2 + (1 + ε̂)(1 + ε̃−1)|ω2|2‖R2u

n‖2 + (1 + ε̂−1)V 2,

for arbitrary positive constants ε̂ and ε̃. In order to ensure the stability, we would like to

require that there exists a positive constant σ0 ∈ (0, 1), such that for a given ε̂

(1 + ε̂)(1 + ε̃)|ω1|2 ≤ 1 and (1 + ε̂)(1 + ε̃−1)|ω2|2 ≤ σ0 (3.19)

hold for some ε̃. That is to say

0 <
1

σ0

(1+ε̂)ω2
2

− 1
≤ ε̃ ≤ 1

(1 + ε̂)ω2
1

− 1.

To ensure (3.19) holds for some ε̃, we need to solve the inequality

0 <
1

σ0

(1+ε̂)ω2
2

− 1
≤ 1

(1 + ε̂)ω2
1

− 1, (3.20)
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which will give a range for the parameter γ. Apparently the range depends on the choice

of ε̂ and σ0. For the convenience of discussion, we take ε̂ = 1
3 and σ0 = 8

9 . In this case,

solving (3.20) by Maple we get γ ∈ [γ1, γ2] ≈ [0.27998, 0.37932]. Thus

‖S2u
n‖2 ≤ ‖R1u

n‖2 + σ0‖R2u
n‖2 + 4V 2. (3.21)

Now the only remaining thing is to estimate ‖R2u
n‖. Taking v = R2u

n in (3.8) for ℓ = 2,

applying Corollary 2.1, Lemma 2.4 and Young’s inequality we get

‖R2u
n‖2 = τH(un,1, R2u

n) − τ(R2q
n, R̃2q

n)

≤C
c√
d
τ‖qn,1‖‖R2u

n‖ − τ

∫

Ω
qn⊤

A2q
ndx

≤ ε‖R2u
n‖2 +

Cc2τ

4εd
τ‖qn,1‖2 − τ

∫

Ω
qn⊤

A2q
ndx, (3.22)

for arbitrary ε, where

A2 =

(
3γ − 1 1

2 − 2γ
1
2 − 2γ γ

)
. (3.23)

Taking ε = 1 − σ0 = 1
9 , we get

σ0‖R2u
n‖2 ≤ 9Cc2τ

4d
τ‖qn,1‖2 − τ

∫

Ω
qn⊤

A2q
ndx. (3.24)

Thus

‖S2u
n‖2 ≤ ‖R1u

n‖2 +
9Cc2τ

4d
τ‖qn,1‖2 − τ

∫

Ω
qn⊤

A2q
ndx + 4V 2. (3.25)

Consequently, from (3.10), (3.11), (3.12) and (3.25), we get

‖un+1‖2 − ‖un‖2 ≤ − τ

∫

Ω
qn⊤(A1 + A2)q

ndx +
41

4

Cc2τ

d
τ(‖qn,1‖2 + ‖qn,2‖2). (3.26)

It can be verified that A1 + A2 − γI is positive definite if γ ∈ [12 −
√

2
4 , 1

2 +
√

2
4 ] ⊃ [γ1, γ2].

Hence, if τ ≤ τ0 such that 41
4

Cc2

d τ ≤ γ, i.e, τ ≤ 4γd
41Cc2 , then

‖un+1‖ ≤ ‖un‖ ≤ · · · ≤ ‖u0‖. (3.27)

Remark 3.1. In Theorem 3.1, we require ϑ ≥ 1
2 to ensure V1 ≤ 0 in (3.11). Actually ϑ < 1

2

also works, since in this case

V1 ≤ (
1

2
− ϑ)

C⋆ch

d
τ

(
‖qn,1‖2 + ‖qn,2‖2

)
, (3.28)

according to Lemma 2.3. So if h is small enough such that V1 can be bounded by the stability

term τ
∫
Ω qn⊤(A1 + A2)q

ndx, then the theorem can also be proven.

Remark 3.2. Owing to Remark 2.1, Theorem 3.1 also holds in the special case ϑ = θ = 1
2 .
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3.2 Proof for the IMEX-LDG(k, 3) scheme

The line of proof for the third order scheme is similar as but more complicated than that

for the second order scheme. The main difficulty is the construction of the energy equation.

3.2.1 Energy equation

Let {wn,ℓ}ℓ=0,1,2,3,4
∀n be a series of functions defined at the different stage time levels, wn,0 =

wn. Following [38], we define two series of simplified notations

E1w
n = wn,1 − wn, E2w

n = wn,2 − wn,1, E3w
n = wn,3 − wn,2,

E4w
n = 4wn,4 − 3wn,2 − wn,3, E5w

n =
3

2
wn+1 − wn,4 − 1

2
wn,2, (3.29)

and

D1w
n = E3w

n, D2w
n =

1

2
(E4w

n − E3w
n), D3w

n =
1

3
(2E5w

n − E4w
n − E3w

n). (3.30)

For the convenience of expression, we define another two series of notations Ẽ and D̃

corresponding to E and D, respectively, which are used to simplify notations about the

implicit discretization of the diffusion part.

Ẽ1w
n = αwn,1, (3.31a)

Ẽ2w
n = − 2αwn,1 + αwn,2, (3.31b)

Ẽ3w
n = αwn,1 + (1 − 2α)wn,2 + αwn,3, (3.31c)

Ẽ4w
n = (3α + 4ϕ)wn,1 + (4φ − 2α − 1)wn,2 + (4ρ − α)wn,3 + 4αwn,4

= 4αwn,1 − 4αwn,2 + (1 − 4α)wn,3 + 4αwn,4, (3.31d)

Ẽ5w
n = (

α

2
− ϕ)wn,1 + (

1

4
− α

2
− φ)wn,2 + (

1

4
− ρ)wn,3 + (1 − α)wn,4

=
α

4
wn,1 +

3α

4
wn,3 + (1 − α)wn,4, (3.31e)

and

D̃1w
n = Ẽ3w

n, D̃2w
n =

1

2
(Ẽ4w

n − Ẽ3w
n), D̃3w

n =
1

3
(2Ẽ5w

n − Ẽ4w
n − Ẽ3w

n). (3.32)

Then we get

(Eℓu
n, v) = dℓτH(un,ℓ−1, v) + τL(Ẽℓq

n, v), for ℓ = 1, 2, 3, 4, 5, (3.33)

where dℓ = 0 for ℓ = 1, 2 and dℓ = 1 for ℓ = 3, 4, 5. And

(Dℓu
n, v) =

1

ℓ
τH(Dℓ−1u

n, v) + τL(D̃ℓq
n, v), for ℓ = 1, 2, 3, (3.34)
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where D0u
n = un,2.

Let v1 = 6un,1, v2 = 6un,2, v3 = un,2, v4 = un,3 and v5 = 4un,4. Taking v = vℓ in (3.33)

for ℓ = 1, 2, 3, 4, 5, respectively, adding them together, we obtain

3‖un+1‖2 − 3‖un‖2 + 3‖E1u
n‖2 + 3‖E2u

n‖2 = T1 + T2 + T3, (3.35a)

where

T1 = τ

5∑

ℓ=1

dℓH(un,ℓ−1, vℓ), (3.35b)

T2 = τ

5∑

ℓ=1

L(Ẽℓq
n, vℓ), (3.35c)

T3 = ‖D2u
n‖2 + 3(D3u

n, D1u
n) + 3(D3u

n, D2u
n) + 3‖D3u

n‖2. (3.35d)

3.2.2 Energy estimate

By the definition of dℓ and vℓ and according to (2.9), we have

T1 = − (ϑ − 1

2
)τ

(
|[un,2]|2 + |[un,3]|2 + 4|[un,4]|2

)
≤ 0. (3.36)

Owing to Corollary 2.1, we can get

T2 = − τ
[
6(qn,1, Ẽ1q

n) + 6(qn,2, Ẽ2q
n) + (qn,2, Ẽ3q

n) + (qn,3, Ẽ4q
n) + 4(qn,4, Ẽ5q

n)
]

= − τ

∫

Ω
qn⊤

B1q
ndx, (3.37)

where qn = (qn,1, qn,2, qn,3, qn,4)⊤ and

B1 =




6α −11
2 α 2α 1

2α

−11
2 α 1 + 4α −3

2α 0

2α −3
2α 1 − 4α 7

2α
1
2α 0 7

2α 4 − 4α




. (3.38)

Next we estimate T3 following the trick adopted in [38], we rewrite T3 as

T3 = −‖D2u
n‖2 + 2‖D2u

n‖2 + 3(D3u
n, D1u

n)︸ ︷︷ ︸
R1

+ 3(D3u
n, D2u

n)︸ ︷︷ ︸
R2

+ 3‖D3u
n‖2

︸ ︷︷ ︸
R3

. (3.39)

To estimate R1, we take v = 2D2u
n and v = 3D1u

n in (3.34) for ℓ = 2 and ℓ = 3, respectively,

adding them together and using Corollary 2.1 we get

R1 = τ [H(D1u
n, D2u

n) + H(D2u
n, D1u

n)]︸ ︷︷ ︸
R4

+τ
[
2L(D̃2q

n, D2u
n) + 3L(D̃3q

n, D1u
n)

]

= R4 − τ
[
2(D2q

n, D̃2q
n) + 3(D1q

n, D̃3q
n)

]
= R4 − τ

∫

Ω
qn⊤

B2q
ndx, (3.40)
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where

B2 =




0 3
4α −15

4 α 3α
3
4α 2 − 4α 17

4 α −2 − α

−15
4 α 17

4 α 19
2 α − 2 2 − 10α

3α −2 − α 2 − 10α 8α




. (3.41)

To estimate R2, we take v = 3D2u
n in (3.34) for ℓ = 3, using (2.9) and Corollary 2.1 yields

R2 = τH(D2u
n, D2u

n) + 3τL(D̃3q
n, D2u

n)

= − (ϑ − 1

2
)cτ |[D2u

n]|2 − 3τ(D2q
n, D̃3q

n) ≤ −τ

∫

Ω
qn⊤

B3q
ndx, (3.42)

where

B3 =




0 9
4α 9

4α −9
2α

9
4α 1 − 6α 1 − 21

4 α 9α − 2
9
4α 1 − 21

4 α 1 − 9
2α 15

2 α − 2

−9
2α 9α − 2 15

2 α − 2 4 − 12α




. (3.43)

Combining the above estimates, we have

3‖un+1‖2 − 3‖un‖2 + 3‖E1u
n‖2 + 3‖E2u

n‖2 + τ

∫

Ω
qn⊤

3∑

i=1

Biq
ndx

≤− ‖D2u
n‖2 + R3 + R4. (3.44)

It can be verified that the matrix
∑3

i=1 Bi is positive definite by verifying all the leading

principle minors are positive, and along the same way,
∑3

i=1 Bi −σI is also positive definite

if 0 < σ ≤ 1
12α.

In what follows we use the stability terms ‖D2u
n‖2 and τ‖qn,ℓ‖2 to estimate R3 and R4.

Owing to Lemma 2.4 we get

|R4| ≤C
c√
d
τ‖D1q

n‖‖D2u
n‖ ≤ 1

4
‖D2u

n‖2 + 2
Cc2τ

d
τ(‖qn,2‖2 + ‖qn,3‖2), (3.45)

where Young’s inequality is used in the last step.

The most technical term is R3. To estimate it, we adopt the technique used in estimating

V3 in Subsection 3.1. Eliminating the L(D̃3q
n, v) terms (using (3.33)) in (3.34) for ℓ = 3,

we can represent (D3u
n, v) as

(D3u
n, v) =

1

3
τH(D2u

n, v) + (
1

2
− 1

6α
)τH(un,3, v) + (

1

2
− 5

6α
+

1

6α2
)τH(un,2, v)

+ κ1(D2u
n, v) + κ2(D̃0u

n, v), (3.46)
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where

κ1 =
1

3α
− 1 ≈ 0.379152868,

κ2 =
1

α
− 1

6α2
− 1 ≈ 0.284364653,

D̃0u
n = un,3 + (

1

α
− 1)un,2 − 1

α
un,1.

Here we have used the relationship 6α3 − 21α2 + 13α − 2 = 0.

Taking v = D3u
n in (3.46), owing to Lemma 2.4, and Cauchy-Schwarz inequality we

have

‖D3u
n‖ ≤ κ1‖D2u

n‖ + κ2‖D̃0u
n‖ + R, (3.47)

where

R = C
c√
d
τ(‖qn,2‖ + ‖qn,3‖ + ‖qn,4‖).

As a result,

R3 =3‖D3u
n‖2 ≤ 3

{
(1 + ε̂)[κ1‖D2u

n‖ + κ2‖D̃0u
n‖]2 + (1 + ε̂−1)R2

}

≤ 3(1 + ε̂)
[
(1 + ε̃)κ2

1‖D2u
n‖2 + (1 + ε̃−1)κ2

2‖D̃0u
n‖2

]
+ 3(1 + ε̂−1)R2, (3.48)

where ε̂ and ε̃ are arbitrary positive constants. Taking ε̂ = 1/9 and ε̃ = 1/2 we get

R3 ≤ 5κ2
1‖D2u

n‖2 + 10κ2
2‖D̃0u

n‖2 + 30R2

≤ 3

4
‖D2u

n‖2 +
7

8
‖D̃0u

n‖2 + 30R2, (3.49)

since κ2
1 ≈ 0.1437568973, κ2

2 ≈ 0.08086325588.

To estimate ‖D̃0u
n‖, we notice that

(D̃0u
n, v) = τH(un,2, v) + (α − 2)τL(qn,1, v) + (2 − 2α)τL(qn,2, v) + ατL(qn,3, v), (3.50)

from (3.2). Taking v = D̃0u
n in (3.50) we get

‖D̃0u
n‖2 = τH(un,2, D̃0u

n) − τ
(
(α − 2)qn,1 + (2 − 2α)qn,2 + αqn,3, D̃0q

n
)

. (3.51)

Applying Lemma 2.4 on the first term and rearranging the second term lead to

‖D̃0u
n‖2 ≤C

c√
d
τ‖qn,2‖‖D̃0u

n‖ − τ

∫

Ω
qn⊤

B4q
ndx

≤ ε‖D̃0u
n‖2 +

Cc2τ

4εd
τ‖qn,2‖2 − τ

∫

Ω
qn⊤

B4q
ndx, (3.52)
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for arbitrary ε, where

B4 =




2
α − 1 5

2 − α
2 − 2

α
α−3

2 0
5
2 − α

2 − 2
α 2α − 4 + 2

α
3−3α

2 0
α−3

2
3−3α

2 α 0

0 0 0 0




. (3.53)

Taking ε = 1
8 , we get

7

8
‖D̃0u

n‖2 ≤ 2
Cc2τ

d
τ‖qn,2‖2 − τ

∫

Ω
qn⊤

B4q
ndx. (3.54)

So

R3 ≤ 3

4
‖D2u

n‖2 + 30R2 + 2
Cc2τ

d
τ‖qn,2‖2 − τ

∫

Ω
qn⊤

B4q
ndx. (3.55)

Hence, from (3.44), (3.45) and (3.55) we obtain

3‖un+1‖2 − 3‖un‖2 + 3‖E1u
n‖2 + 3‖E2u

n‖2 + τ

∫

Ω
qn⊤

4∑

i=1

Biq
ndx

≤30R2 + 2
Cc2τ

d
τ(2‖qn,2‖2 + ‖qn,3‖2) ≤ 94

Cc2τ

d
τ

∫

Ω
qn⊤qndx. (3.56)

It can be verified that the matrix
∑4

i=1 Bi is positive definite and
∑4

i=1 Bi − α
18 I is also

positive definite, thus if τ ≤ τ0 such that 94Cc2

d τ ≤ α
18 , then

‖un+1‖ ≤ ‖un‖ ≤ · · · ≤ ‖u0‖. (3.57)

4 Error estimates

In this section, we would like to take the IMEX-LDG(k, 2) scheme (3.1) as an example

to present the error estimates, the line of proof for the IMEX-LDG(k, 3) scheme (3.2) is

similar. The standard approach of error estimates is to introduce a suitable projection

and to divide the error e into two parts, one is the projection error η, the other is the

error ξ in the finite element space, then to estimate ξ by η. Hence the projection is a

key ingredient in the error estimate. The principle of choosing the projection in the DG

analysis is to eliminate the projection errors in the inner product and element interfaces as

much as possible. Thus we usually choose the projection according to the very choice of the

numerical fluxes, for example, the well-known Gauss-Radau projection for purely upwind

numerical flux or PANF. Here for GANF, we adopt the GGR projection proposed in [24].

To simplify the analysis, we consider the simple case when the parameters ϑ = θ 6= 1
2 .
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4.1 GGR projection

Following [24, 7], we define the GGR projection. For any periodic function z ∈ H1(Th), the

projection Pβz ∈ Vh satisfies

(Pβz − z, v)j = 0, ∀v ∈ Pk−1(Ij), (4.1a)

(Pβz)
(β)

j+ 1

2

= z
(β)

j+ 1

2

, (4.1b)

for any j = 1, · · · , N and any parameter β. Here z(β) = βz− + β̃z+ with β̃ = 1 − β.

Obviously, this projection degenerates to the local Gauss-Radau projection if the parameter

β is taken as 0 or 1. Hence it can be viewed as an extension of the local Gauss-Radau

projections.

According to [7], we have the following lemma.

Lemma 4.1. Assume z ∈ Hℓ(Th) with ℓ ≥ 1. For β 6= 1
2 , the projection Pβz is well-defined

and the projection error η = z − Pβz satisfies

‖η‖ + h1/2‖η‖Γh
≤ Chmin{k+1,ℓ}‖z‖Hℓ(Th), (4.2)

where the bounding constant C > 0 is independent of h and z.

4.2 Reference functions and energy equation

In this paper, we assume the exact solution U satisfies the following smoothness

U ∈ L∞(0, T ;Hk+2), Ut ∈ L∞(0, T ;Hk+1 ∩ H2), (4.3a)

Utt ∈ L∞(0, T ;H1), Uttt ∈ L∞(0, T ;L2), (4.3b)

where L∞(0, T ;Hℓ) represents the set of functions v such that max0≤t≤T ‖v(·, t)‖Hℓ(Ω) < ∞.

To proceed with error estimates, we introduce several reference functions, denoted by

U (ℓ), Q(ℓ) for ℓ = 0, 1, 2, associated with the second order IMEX SSP time discretization

(2.26). In detail, U (0) = U is the exact solution of the problem (2.1) and then we define

U (1) = U (0) + γτ
√

dQ(1)
x , (4.4a)

U (2) = U (0) − τcU (1)
x + (1 − 2γ)τ

√
dQ(1)

x + γτ
√

dQ(2)
x , (4.4b)

where

Q(ℓ) =
√

dU (ℓ)
x , for ℓ = 1, 2. (4.5)

For any indices n and ℓ under consideration, the reference functions at each stage time level

are defined as Un,ℓ = U (ℓ)(x, tn), Qn,ℓ = Q(ℓ)(x, tn).

Under the smoothness assumption (4.3) we can verify that the reference functions satisfy

Un+1 = Un − τ

2
c(Un,1

x + Un,2
x ) +

τ

2

√
d(Qn,1

x + Qn,2
x ) + ζn, (4.6)
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where ζn is the local truncation error, which satisfies

‖ζn‖ ≤ Cτ3, (4.7)

where C depends on the regularity of Ut, Utt and Uttt, the detailed proof will be given in the

Appendix. As a consequence, the reference functions satisfy the following variational form

(Un,1, v) = (Un, v) + γτL(Qn,1, v), (4.8a)

(Un,2, v) = (Un, v) + τH(Un,1, v) + (1 − 2γ)τL(Qn,1, v) + γτL(Qn,2, v), (4.8b)

(Un+1, v) = (Un, v) +
τ

2

[
H(Un,1, v) + H(Un,2, v)

]

+
τ

2

[
L(Qn,1, v) + L(Qn,2, v)

]
+ (ζn, v), (4.8c)

for any v ∈ Vh, and

(Qn,ℓ, r) = K(Un,ℓ, r), ∀r ∈ Vh, for ℓ = 1, 2. (4.8d)

At each stage time, we denote the error between the exact (reference) solution and

the numerical solution by en,ℓ = (en,ℓ
u , en,ℓ

q ) = (Un,ℓ − un,ℓ, Qn,ℓ − qn,ℓ). As the standard

treatment in finite element analysis, we would like to divide the error in the form e = ξ−η,

where

η = (ηu, ηq) = (PθU − U,Pθ̃Q − Q),

ξ = (ξu, ξq) = (PθU − u, Pθ̃Q − q), (4.9)

here we have dropped the superscripts n and ℓ for simplicity.

By the definition of the projections Pθ and Pθ̃ we can verify that

H(ηu, v) = 0, L(ηq, v) = 0, K(ηu, r) = 0, (4.10)

for any v, r ∈ Vh, since we assume ϑ = θ at present. In addition, by the smoothness

assumption (4.3a), it follows from Lemma 4.1 and the linearity of the projections Pθ and

Pθ̃ that the stage projection errors and their evolutions satisfy

‖ηn,ℓ
u ‖ + ‖ηn,ℓ

q ‖ + h1/2‖ηn,ℓ
u ‖Γh

≤ Chk+1, (4.11a)

and

‖Rℓ+1η
n
u‖ ≤ Chk+1τ, (4.11b)

for any n and ℓ = 0, 1, 2 under consideration. Here (4.11b) is obtained by the regularity

Ux, Ut ∈ L∞(0, T ;Hk+1).
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In what follows we will focus on the estimate of the error in the finite element space,

say, ξ ∈ Vh×Vh. To this end, we need to set up the error equations about ξn,ℓ. Subtracting

those variational forms in (4.8) from those in the scheme (3.1), in the same order, we get

(ξn,1
u , v) = (ξn

u , v) + γτL(ξn,1
q , v) + (ηn,1

u − ηn
u , v), (4.12a)

(ξn,2
u , v) = (ξn

u , v) + τH(ξn,1
u , v)

+ (1 − 2γ)τL(ξn,1
q , v) + γτL(ξn,2

q , v) + (ηn,2
u − ηn

u , v), (4.12b)

(ξn+1
u , v) = (ξn

u , v) +
τ

2

[
H(ξn,1

u , v) + H(ξn,2
u , v)

]

+
τ

2

[
L(ξn,1

q , v) + L(ξn,2
q , v)

]
+ (ηn+1

u − ηn
u , v) + (ζn, v). (4.12c)

Adopting the notations R and R̃ as in Subsection 3.1, we obtain the following error equations

(Rℓξ
n
u , v) = bℓτH(ξn,ℓ−1

u , v) + τL(R̃ℓξ
n
q , v) + (Rℓη

n
u + δ3ℓζ

n, v), for ℓ = 1, 2, 3, (4.13a)

(ξn,ℓ
q , r) =K(ξn,ℓ

u , r) + (ηn,ℓ
q , r), for ℓ = 1, 2, (4.13b)

where we have used (4.10). Here bℓ = 0 for ℓ = 1 and bℓ = 1
ℓ−1 for ℓ = 2, 3, δ3ℓ is the

Kronecker symbol which equals 1 if ℓ = 3 and equals 0 otherwise.

Let ṽ1 = 2ξn,1
u , ṽ2 = ξn,1

u , ṽ3 = 2ξn,2
u . Taking v = ṽℓ in (4.13a) for ℓ = 1, 2, 3, respectively,

adding them together, we can obtain the energy equation

‖ξn+1
u ‖2 − ‖ξn

u‖2 + ‖R1ξ
n
u‖2 =

4∑

i=1

Ṽi, (4.14a)

where

Ṽ1 = τ
3∑

ℓ=1

bℓH(ξn,ℓ−1
u , ṽℓ), (4.14b)

Ṽ2 = τ

3∑

ℓ=1

L(R̃ℓξ
n
q , ṽℓ), (4.14c)

Ṽ3 = ‖S2ξ
n
u‖2, (4.14d)

Ṽ4 =
3∑

ℓ=1

bℓ(Rℓη
n
u + δ3ℓζ

n, ṽℓ). (4.14e)

4.3 Energy estimate

Before proceeding with the energy estimate, we present the following important relationship

‖(ξu)x‖ +
√

µh−1|[ξu]| ≤
√

C⋆

d
(‖ξq‖ + ‖ηq‖), (4.15)
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which can be derived similarly as in Lemma 2.3, and hence

|H(ξu, v)| ≤ C
c√
d
(‖ξq‖ + hk+1)‖v‖, (4.16)

for any v ∈ Vh.

In what follows, we give the estimate of Ṽi for i = 1, 2, 3, 4. We will first consider the

case ϑ > 1
2 . By (2.9) we have

Ṽ1 = −(ϑ − 1

2
)cτ

(
|[ξn,1

u ]|2 + |[ξn,2
u ]|2

)
≤ 0. (4.17)

Owing to (2.10) and the relationship (4.13b), we get

Ṽ2 = − τ

∫

Ω
ξn

q

⊤
A1ξ

n
q
dx + τ

∫

Ω
ηn

q

⊤
A1ξ

n
q
dx, (4.18)

where ξn
q

= (ξn,1
q , ξn,2

q )⊤, ηn
q

= (ηn,1
q , ηn,2

q )⊤ and A1 is defined in (3.13).

To estimate Ṽ3, we notice that

(S2ξ
n
u , v) =

τ

2
H(S1ξ

n
u , v) + τL(S̃1ξ

n
q , v) + (S2η

n
u + ζn, v)

= ω1(R1ξ
n
u , v) + ω2(R2ξ

n
u , v) +

τ

2
H(S1ξ

n
u , v) − ω2τH(ξn,1

u , v)

+ (S2η
n
u − ω1R1η

n
u − ω2R2η

n
u + ζn, v), (4.19)

where ω1 and ω2 are the same as before. Thus taking v = S2ξ
n
u in (4.19) we get

‖S2ξ
n
u‖ ≤ |ω1|‖R1ξ

n
u‖ + |ω2|‖R2ξ

n
u‖ + Ṽ , (4.20)

where

Ṽ = C
c√
d
τ(‖ξn,1

q ‖ + ‖ξn,2
q ‖ + hk+1) + C(hk+1τ + τ3).

Here (4.16) and (4.11), (4.7) are used. Along the same line as the estimate of ‖S2u
n‖ in

Subsection 3.1.2, we can derive

‖S2ξ
n
u‖2 ≤ ‖R1ξ

n
u‖2 + σ0‖R2ξ

n
u‖2 + 4Ṽ 2, (4.21)

where σ0 is taken as 8
9 as before. Taking v = R2ξ

n
u in (4.13a) for ℓ = 2 yields

‖R2ξ
n
u‖2 = τH(ξn,1

u , R2ξ
n
u) + τL(R̃2ξ

n
q , R2ξ

n
u) + (R2η

n
u , R2ξ

n
u).

Applying (4.16) for the first term, using (2.10) and (4.13b) for the second term and the

Cauchy-Schwarz inequality for the last term, we get

‖R2ξ
n
u‖2 ≤C

c√
d
τ(‖ξn,1

q ‖ + hk+1)‖R2ξ
n
u‖

− τ

∫

Ω
ξn

q

⊤
A2ξ

n
q
dx + τ

∫

Ω
ηn

q

⊤
A2ξ

n
q
dx + ‖R2η

n
u‖‖R2ξ

n
u‖

≤ ε‖R2ξ
n
u‖2 +

Cc2τ

εd
τ‖ξn,1

q ‖2 + Ch2k+2τ

− τ

∫

Ω
ξn

q

⊤
A2ξ

n
q
dx + τ

∫

Ω
ηn

q

⊤
A2ξ

n
q
dx, (4.22)
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for arbitrary ε > 0, where A2 is defined in (3.23). Taking ε = 1 − σ0 = 1
9 leads to

Ṽ3 = ‖S2ξ
n
u‖2 ≤‖R1ξ

n
u‖2 +

9Cc2τ

d
τ‖ξn,1

q ‖2 + Ch2k+2τ

− τ

∫

Ω
ξn

q

⊤
A2ξ

n
q
dx + τ

∫

Ω
ηn

q

⊤
A2ξ

n
q
dx + 4Ṽ 2 (4.23)

Finally, using the Cauchy-Schwarz inequality, (4.11), (4.7) and Young’s inequality di-

rectly leads to

Ṽ4 ≤ τ(‖ξn,1
u ‖2 + ‖ξn,2

u ‖2) + C(h2k+2τ + τ5). (4.24)

The estimate of ξn,1
u , ξn,2

u are presented in the following lemma, whose proof will be given

in the Appendix.

Lemma 4.2. Under the condition of Theorem 3.1, we have

‖ξn,ℓ
u ‖2 ≤ C‖ξn

u‖2 + Ch2k+2τ, for ℓ = 1, 2, (4.25)

where the bounding constant C is independent of h and τ .

As a result

Ṽ4 ≤ Cτ‖ξn
u‖2 + C(h2k+2τ + τ5). (4.26)

Combining (4.17), (4.18), (4.23) and (4.26), we get

‖ξn+1
u ‖2 − ‖ξn

u‖2 ≤ − τ

∫

Ω
ξn

q

⊤(A1 + A2)ξ
n
q
dx + τ

∫

Ω
ηn

q

⊤(A1 + A2)ξ
n
q
dx

+
Cc2τ

d
τ

(
‖ξn,1

q ‖2 + ‖ξn,2
q ‖2

)
+ Cτ‖ξn

u‖2 + C(h2k+2τ + τ5)

≤Cτ‖ξn
u‖2 + C(h2k+2τ + τ5) − τ

∫

Ω
ξn

q

⊤(A1 + A2)ξ
n
q
dx

+

(
Cc2τ

d
+ ε

)
τ

∫

Ω
ξn

q

⊤ξn
q
dx, (4.27)

for arbitrary ε > 0. Since A1 + A2 − γI is positive definite for γ ∈ [γ1, γ2], taking ε small

enough and letting τ ≤ τ0 such that Cc2

d τ + ε ≤ γ, by the discrete Gronwall inequality, and

noting that ‖ξ0
u‖ ≤ Chk+1 (refer to [7]), we obtain

‖ξn
u‖ ≤ C(hk+1 + τ2). (4.28)

Remark 4.1. In the case ϑ < 1
2 , Ṽ1 ≤ 0 does not hold. But we can estimate Ṽ1 similarly

as the estimate for V1 in (3.28). According to (4.16), Ṽ1 can be controlled by the stability

terms provided by Ṽ2, so we will get the same results as that for ϑ > 1
2 .

Owing to (4.28), (4.11) and the triangle inequality, we can obtain the final error estimate,

which is summarized in the following theorem.
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Theorem 4.1. Let U be the exact solution of problem (2.1) satisfying the smoothness

assumption (4.3) and let u be the numerical solution of scheme (3.1). Let ϑ = θ 6= 1
2 , there

exists a positive constant τ0 which is independent of the mesh size h, such that if τ ≤ τ0

then

max
nτ≤T

‖U(tn) − un‖ ≤ C(hk+1 + τ2), (4.29)

where T is the final computing time and the bounding constant C > 0 is independent of n, h

and τ .

Remark 4.2. The optimal error estimate is not easy to get when ϑ 6= θ. In this situation,

H(ηu, v) = −c

N∑

j=1

(η(ϑ)
u )j− 1

2

[[v]]j− 1

2

6= 0,

if we adopt the same projections PθU and Pθ̃Q as above. As a result, there will be some

extra terms

W (v) = −τ

2
H(S1η

n
u , v) + ω2τH(ηn,1

u , v)

on the right hand side of (4.19). Even if we use the important relationship (4.15), we would

still be unable to get the expected estimate to W (S2ξ
n
u), due to the loss of stability for terms

like ‖ξn+1
q ‖. We could use the inverse inequality and get

W (S2ξ
n
u) ≤ Chk+1/2τ |[S2ξ

n
u ]| ≤ Chkτ‖S2ξ

n
u‖,

which cannot lead to the same estimate to ‖S2ξ
n
u‖ as (4.20), but only to the sub-optimal error

estimate O(hk +τ2). However, numerical experiments do indicate optimal convergence rates

in this case. In future work we will try to find different techniques to obtain optimal error

estimates in this case.

5 Numerical experiments

We will present numerical experiments to illustrate the stability and error estimates of the

proposed schemes, for different parameters ϑ, θ in the numerical fluxes. In all the following

numerical experiments, piecewise polynomials of degree 1 and 2 are adopted respectively

with the second order and third order IMEX SSP schemes, such that the orders of accuracy

match in space and time if τ = O(h).

To test the stability of the schemes, we consider problem (2.1) defined in [−π, π] with

the exact solution U(x, t) = e−dt sin(x − ct). Different pairs of parameters (ϑ, θ) = (1
4 , 1

4),

(1
2 , 1

2), (3
4 , 3

4), (1, 1), (5
4 , 5

4), (3
2 , 3

2) and (ϑ, θ) = (1
4 , 3

4), (1
2 , 1), (3

4 , 1
4), (1, 3

2 ), (5
4 , 3

4) are tested

on uniform meshes, with mesh size h = 2π/N , where N is the number of cells. Somewhat

surprisingly, we find that the maximum time step τ0 to ensure the stability of the schemes
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(in the sense that the L2-norm decreases with time) are the same for different pairs of

parameters. Table 1 lists the maximum time step τ0. In the test, we take N = 1280. The

final computing time is T = 5000. The result shows that τ0 ≈ ̟d/c2 for some constant ̟,

and τ0 is independent of h, because if we take N = 640, we can get the same results. For

the second order scheme (3.1), we verify the stability for γ ∈ [γ1, γ2], it seems that the ratio

̟ is larger for larger γ, we list the results for γ = 0.28, 1 −
√

2
2 , 0.38 as examples.

Table 1: The maximum time step τ0 to ensure that the L2-norm decreases with time for

the IMEX-LDG(1,2) scheme (3.1) and the IMEX-LDG(2,3) scheme (3.2).

scheme
d = 0.01 c = 0.1

̟
c = 0.05 c = 0.1 c = 0.2 d = 0.01 d = 0.02 d = 0.04

(3.1), γ = 0.28 5.034 1.258 0.313 1.258 2.517 5.064 1.258

(3.1), γ = 1 −

√
2

2
5.540 1.385 0.346 1.385 2.770 5.540 1.385

(3.1), γ = 0.38 7.402 1.848 0.461 1.848 3.701 7.399 1.848

(3.2) 2.632 0.657 0.164 0.657 1.316 2.632 0.657

To verify the error accuracy of the schemes, we first test the model equation (2.1) with

c = d = 1. The computing time is T = 1 and uniform meshes are adopted. In Tables 2-5, we

list the L2-norm errors and orders of accuracy for the IMEX-LDG(1,2) and IMEX-LDG(2,3)

schemes, for different pairs of parameters (ϑ, θ) (θ 6= 1
2). Optimal orders of accuracy can

be observed from these tables. For the IMEX-LDG(1,2) scheme, we only list the results for

γ = 1 −
√

2
2 to save space, the orders of accuracy for other γ are almost the same, but the

errors will be a little larger for larger γ.

Table 2: L2-norm errors and orders of accuracy for the IMEX-LDG(1,2) scheme. ϑ = θ.

τ = h.

N
θ = 1

4
θ = 3

4
θ = 1 θ = 5

4
θ = 3

2

error order error order error order error order error order

40 4.99E-03 - 5.10E-03 - 4.89E-03 - 4.85E-03 - 4.83E-03 -

80 1.26E-03 1.99 1.27E-03 2.00 1.22E-03 2.00 1.21E-03 2.00 1.21E-03 2.00

160 3.16E-04 2.00 3.17E-04 2.00 3.06E-04 2.00 3.03E-04 2.00 3.03E-04 2.00

320 7.95E-05 1.99 7.97E-05 1.99 7.68E-05 1.99 7.63E-05 1.99 7.61E-05 1.99

640 1.98E-05 2.00 1.99E-05 2.00 1.92E-05 2.00 1.90E-05 2.00 1.90E-05 2.00
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Table 3: L2-norm errors and orders of accuracy for the IMEX-LDG(1,2) scheme. ϑ 6= θ.

τ = 0.75h.

N
(ϑ, θ) = (1

4
, 3

4
) (ϑ, θ) = (1

2
, 1) (ϑ, θ) = (3

4
, 1

4
) (ϑ, θ) = (1, 3

2
) (ϑ, θ) = (5

4
, 3

4
)

error order error order error order error order error order

40 2.88E-03 - 2.85E-03 - 2.75E-03 - 2.75E-03 - 1.39E-02 -

80 8.78E-04 1.71 8.43E-04 1.76 8.19E-04 1.75 7.38E-04 1.90 2.60E-03 2.42

160 2.34E-04 1.91 2.06E-04 2.04 2.00E-04 2.03 1.82E-04 2.02 5.09E-04 2.35

320 5.91E-05 1.99 5.02E-05 2.03 4.90E-05 2.03 4.49E-05 2.02 1.12E-04 2.18

640 1.40E-05 2.08 1.21E-05 2.05 1.18E-05 2.05 1.11E-05 2.02 2.52E-05 2.16

Table 4: L2-norm errors and orders of accuracy for the IMEX-LDG(2,3) scheme. ϑ = θ.

τ = h.

N
θ = 1

4
θ = 3

4
θ = 1 θ = 5

4
θ = 3

2

error order error order error order error order error order

40 1.86E-04 - 1.85E-04 - 1.86E-04 - 1.86E-04 - 1.86E-04 -

80 2.28E-05 3.02 2.28E-05 3.02 2.28E-05 3.02 2.29E-05 3.02 2.29E-05 3.02

160 2.85E-06 3.00 2.85E-06 3.00 2.85E-06 3.00 2.86E-06 3.00 2.86E-06 3.00

320 3.58E-07 2.99 3.58E-07 2.99 3.58E-07 2.99 3.58E-07 3.00 3.59E-07 3.00

640 4.45E-08 3.01 4.45E-08 3.01 4.46E-08 3.01 4.46E-08 3.01 4.47E-08 3.01

It is worth pointing out that in the special case θ = 1
2 , if ϑ = θ then the stability is

almost the same as other parameter pairs, according to Remark 3.2. But if ϑ 6= θ, the

stability results are very interesting. Our experiments indicate that the schemes are not

stable if ϑ < 1
2 , and if ϑ > 1

2 then the schemes are stable under the constraint τ ≤ λh

for some constant λ, which is the standard CFL condition of RKDG methods for solving

hyperbolic problems [37, 38]. The L2-norm errors and orders of accuracy in the special

case θ = 1
2 are shown in Table 6, from which we observe optimal accuracy except for the

second order scheme with k = 1 in the case ϑ = θ = 1
2 , where sub-optimal accuracy is

observed, which coincides with the conclusion given in [34] that only k-th order accuracy

can be obtained for odd k if central numerical flux is adopted in the LDG scheme. Notice

that in this test, we require smaller time step to ensure the stability of the schemes in the
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Table 5: L2-norm errors and orders of accuracy for the IMEX-LDG(2,3) scheme. ϑ 6= θ.

τ = h.

N
(ϑ, θ) = (1

4
, 3

4
) (ϑ, θ) = (1

2
, 1) (ϑ, θ) = (3

4
, 1

4
) (ϑ, θ) = (1, 3

2
) (ϑ, θ) = (5

4
, 3

4
)

error order error order error order error order error order

40 1.86E-04 - 1.86E-04 - 1.86E-04 - 1.87E-04 - 1.86E-04 -

80 2.29E-05 3.02 2.29E-05 3.02 2.29E-05 3.02 2.30E-05 3.02 2.29E-05 3.02

160 2.86E-06 3.00 2.86E-06 3.00 2.86E-06 3.00 2.87E-06 3.00 2.85E-06 3.00

320 3.60E-07 2.99 3.60E-07 2.99 3.60E-07 2.99 3.62E-07 2.99 3.60E-07 2.99

640 4.47E-08 3.01 4.48E-08 3.01 4.47E-08 3.01 4.50E-08 3.01 4.47E-08 3.01

case ϑ 6= θ for θ = 1
2 , while larger time step can be taken when ϑ = θ = 1

2 .

Next we consider the viscous Burgers’ equation

Ut + UUx = dUxx + g(x, t), (5.1)

in [−π, π], where g(x, t) = 1
2e−2dt sin(2x). The exact solution is

U(x, t) = e−dt sin(x). (5.2)

The numerical flux for the convection term is taken as 1
2 [ϑ(u−)2+ϑ̃(u+)2], and the numerical

flux for the diffusion term is the GANF with parameter θ. For d = 1, 0.2, 0.05, the L2-

norm errors and orders of accuracy for IMEX-LDG(1,2) and IMEX-LDG(2,3) schemes with

different pairs of parameter (ϑ, θ) are listed in Table 7 and Table 8, respectively. In this

test, the computing time is T = 1 and uniform meshes are adopted. Optimal orders of

accuracy are observed except for the case (ϑ, θ) = (1
2 , 1

2 ) for the IMEX-LDG(1,2) scheme.

6 Concluding remarks

The LDG methods with generalized alternating numerical fluxes coupled with two specific

IMEX SSP time discretizations for convection-diffusion problems have been shown to be

unconditionally stable, in the sense that the time step is only required to be upper bounded

by a positive constant which is independent of the mesh size. The key is the important

relationship established between the gradient and interface jump of the numerical solution

with the independent numerical solution of the gradient. The energy equations have been

built up following those constructed for the explicit RKDG methods. By the aid of the

generalized Gauss-Radau projection, we have also obtained optimal error estimates for the
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Table 6: L2-norm errors and orders of accuracy for IMEX-LDG(1,2) and IMEX-LDG(2,3)

schemes. θ = 1
2 . The time step for each column is τ = h, 0.1h, 0.1h, 0.1h respectively.

scheme N
ϑ = 1

2
ϑ = 3

4
ϑ = 1 ϑ = 5

4

error order error order error order error order

40 9.23E-03 - 2.77E-03 - 2.04E-03 - 1.82E-03 -

80 3.95E-03 1.22 8.02E-04 1.79 5.47E-04 1.90 4.77E-04 1.93

IMEX-LDG(1,2) 160 1.88E-03 1.07 2.18E-04 1.88 1.42E-04 1.95 1.22E-04 1.97

320 9.31E-04 1.02 5.70E-05 1.94 3.62E-05 1.97 3.09E-05 1.98

640 4.64E-04 1.00 1.46E-05 1.97 9.13E-06 1.99 7.73E-06 2.00

40 1.85E-04 - 8.29E-06 - 8.35E-06 - 8.40E-06 -

80 2.28E-05 3.02 1.03E-06 3.01 1.03E-06 3.01 1.04E-06 3.02

IMEX-LDG(2,3) 160 2.85E-06 3.00 1.29E-07 3.00 1.31E-07 2.98 1.32E-07 2.97

320 3.58E-07 2.99 1.61E-08 3.01 1.62E-08 3.02 1.62E-08 3.03

640 4.45E-08 3.01 2.02E-09 3.00 2.04E-09 2.99 2.07E-09 2.97

proposed schemes. Numerical experiments have verified the theoretical results as well as

illustrated the effect of different choices of the numerical fluxes. The results of this paper can

also be extended to multi-dimensional and nonlinear convection-diffusion problems, which

will be left for our future work.

7 Appendix

Proof of (4.7). Firstly, by Taylor’s expansion

Un+1 = Un + τUn
t +

τ2

2
Un

tt +
τ3

6
Uttt(tξ),

where tξ ∈ (tn, tn+1) and we omit the argument x for simplicity. Secondly, notice that

Un,1 = Un + γτ
√

dQn,1
x ,

Un,2 = Un + τUn,1
t − 2γτ

√
dQn,1

x + γτ
√

dQn,2
x ,
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Table 7: Burgers’ equation: L2-norm errors and orders of accuracy for IMEX-LDG(1,2)

scheme. τ = 0.75h, 0.25h, 0.1h for d = 1, 0.2, 0.05 respectively.

d N
(ϑ, θ) = (1

2
, 1

2
) (ϑ, θ) = (1

4
, 3

4
) (ϑ, θ) = (3

4
, 3

4
) (ϑ, θ) = (3

4
, 5

4
) (ϑ, θ) = (5

4
, 1)

error order error order error order error order error order

40 1.90E-02 - 1.89E-03 - 1.78E-03 - 1.08E-03 - 1.23E-03 -

80 9.49E-03 1.00 5.99E-04 1.66 4.51E-04 1.98 3.00E-04 1.84 3.23E-04 1.93

1 160 4.74E-03 1.00 1.47E-04 2.03 1.12E-04 2.00 7.33E-05 2.04 7.91E-05 2.03

320 2.37E-03 1.00 3.59E-05 2.03 2.81E-05 2.00 1.80E-05 2.03 1.95E-05 2.02

640 1.19E-03 1.00 8.60E-06 2.06 7.01E-06 2.00 4.40E-06 2.03 4.82E-06 2.02

40 4.37E-02 - 4.11E-03 - 3.67E-03 - 1.76E-03 - 2.26E-03 -

80 2.18E-02 1.00 9.96E-04 2.04 9.25E-04 1.99 4.64E-04 1.92 5.90E-04 1.94

0.2 160 1.09E-02 1.00 2.49E-04 2.00 2.32E-04 2.00 1.17E-04 1.99 1.45E-04 2.03

320 5.46E-03 1.00 6.16E-05 2.01 5.79E-05 2.00 2.90E-05 2.01 3.55E-05 2.03

640 2.73E-03 1.00 1.49E-05 2.05 1.45E-05 2.00 7.05E-06 2.04 8.69E-06 2.03

40 5.49E-02 - 3.38E-02 - 4.00E-03 - 2.06E-03 - 3.17E-03 -

80 2.74E-02 1.00 1.87E-03 4.17 1.07E-03 1.90 5.15E-04 2.00 6.60E-04 2.26

0.05 160 1.37E-02 1.00 3.14E-04 2.58 2.69E-04 2.00 1.28E-04 2.00 1.61E-04 2.03

320 6.86E-03 1.00 7.00E-05 2.16 6.73E-05 2.00 3.22E-05 2.00 3.99E-05 2.01

640 3.43E-03 1.00 1.70E-05 2.04 1.68E-05 2.00 8.05E-06 2.00 1.00E-05 1.99

and then

Un − τ

2
c(Un,1

x + Un,2
x ) +

τ

2

√
d(Qn,1

x + Qn,2
x )

= Un +
τ

2
Un,1

t +
τ

2
Un,2

t

= Un + τUn
t +

τ2

2
Un,1

tt +
γτ2

2
(Qn,2

xt − Qn,1
xt )

= Un + τUn
t +

τ2

2
Un

tt +
γτ3

2

√
dQn,1

xtt +
γτ2

2

√
d(Qn,2

xt − Qn,1
xt ).

As a result

ζn =
τ3

6
Uttt(x, tξ) −

γτ3

2

√
dQn,1

xtt −
γτ2

2

√
d(Qn,2

xt − Qn,1
xt )

=
τ3

6
Uttt(x, tξ) −

γτ3

2
(Un,1

ttt + cUn,1
xtt ) − γτ2

2
[(Un,2 − Un,1)tt + c(Un,2 − Un,1)xt).
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Table 8: Burgers’ equation: L2-norm errors and orders of accuracy for IMEX-LDG(2,3)

scheme. τ = h, 0.5h, 0.1h for d = 1, 0.2, 0.05 respectively.

d N
(ϑ, θ) = (1

2
, 1

2
) (ϑ, θ) = (1

4
, 3

4
) (ϑ, θ) = (3

4
, 3

4
) (ϑ, θ) = (3

4
, 5

4
) (ϑ, θ) = (5

4
, 1)

error order error order error order error order error order

40 1.08E-04 - 1.08E-04 - 1.08E-04 - 1.09E-04 - 1.09E-04 -

80 1.33E-05 3.02 1.33E-05 3.02 1.33E-05 3.02 1.34E-05 3.02 1.34E-05 3.02

1 160 1.68E-06 2.98 1.68E-06 2.98 1.68E-06 2.98 1.70E-06 2.98 1.69E-06 2.98

320 2.14E-07 2.98 2.14E-07 2.98 2.14E-07 2.98 2.15E-07 2.98 2.14E-07 2.98

640 2.65E-08 3.01 2.66E-08 3.01 2.66E-08 3.01 2.68E-08 3.01 2.66E-08 3.01

40 1.84E-05 - 2.41E-05 - 2.13E-05 - 3.86E-05 - 2.75E-05 -

80 2.30E-06 3.00 2.83E-06 3.09 2.65E-06 3.00 4.74E-06 3.03 3.45E-06 2.99

0.2 160 2.87E-07 3.00 3.70E-07 2.94 3.32E-07 3.00 6.07E-07 2.97 4.36E-07 2.99

320 3.59E-08 3.00 4.51E-08 3.04 4.15E-08 3.00 7.47E-08 3.02 5.49E-08 2.99

640 4.49E-09 3.00 5.49E-09 3.04 5.18E-09 3.00 9.20E-09 3.02 6.87E-09 3.00

40 2.13E-05 - 2.48E-05 - 2.47E-05 - 4.20E-05 - 3.34E-05 -

80 2.66E-06 3.00 3.08E-06 3.01 3.08E-06 3.00 5.32E-06 2.98 4.09E-06 3.03

0.05 160 3.33E-07 3.00 3.85E-07 3.00 3.84E-07 3.00 6.67E-07 3.00 5.10E-07 3.01

320 4.16E-08 3.00 4.81E-08 3.00 4.80E-08 3.00 8.34E-08 3.00 6.36E-08 3.00

640 5.20E-09 3.00 6.03E-09 2.99 6.01E-09 3.00 1.04E-08 3.00 7.95E-09 3.00

Since

Un,2 − Un,1 = τUn,1
t − 3γτ

√
dQn,1

x + γτ
√

dQn,2
x

= τUn,1
t − 3γτ(Un,1

t + cUn,1
x ) + γτ(Un,2

t + cUn,2
x ).

We get ‖ζn‖ = O(τ3) if Uttt, Uxtt, Uxxt ∈ L∞(0, T ;L2).

Proof of Lemma 4.2. By taking v = 2ξn,1
u in (4.12a) and v = 2ξn,2

u in (4.12b), we get

from (2.10) and (4.13b) that

‖ξn,1
u ‖2 + ‖ξn,1

u − ξn
u‖2 − ‖ξn

u‖2 = − 2γτ‖ξn,1
q ‖2 + 2(ηn,1

u − ηn
u , ξn,1

u ), (7.1)

‖ξn,2
u ‖2 + ‖ξn,2

u − ξn
u‖2 − ‖ξn

u‖2 = 2τH(ξn,1
u , ξn,2

u ) + 2(ηn,2
u − ηn

u , ξn,2
u )

− 2(1 − 2γ)τ(ξn,1
q , ξn,2

q ) − 2γτ‖ξn,2
q ‖2

+ 2(1 − 2γ)τ(ηn,1
q , ξn,2

q ) + 2γτ(ηn,2
q , ξn,2

q ). (7.2)
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Hence applying Young’s inequality yields

‖ξn,1
u ‖2 ≤ 2(‖ξn

u‖2 − 2γτ‖ξn,1
q ‖2) + Ch2k+2τ2. (7.3)

Using (4.16) for the term 2τH(ξn,1
u , ξn,2

u ), applying Cauchy-Schwarz inequality and Young’s

inequality for the remaining terms, we get

‖ξn,2
u ‖2 ≤‖ξn

u‖2 + C
c√
d
τ(‖ξn,2

q ‖ + hk+1)‖ξn,1
u ‖ + Chk+1τ‖ξn,2

u ‖

− 2(1 − 2γ)τ(ξn,1
q , ξn,2

q ) − 2γτ‖ξn,2
q ‖2 + Chk+1τ‖ξn,2

q ‖

≤‖ξn
u‖2 + ‖ξn,1

u ‖2 +
Cc2τ

2d
τ‖ξn,2

q ‖2 +
1

2
‖ξn,2

u ‖2 + Ch2k+2τ

− 2(1 − 2γ)τ(ξn,1
q , ξn,2

q ) − (2γ − ε)τ‖ξn,2
q ‖2. (7.4)

So taking ε = γ
2 and letting Cc2τ

2d ≤ γ
2 , we get

‖ξn,2
u ‖2 ≤ 6‖ξn

u‖2 − 2τ [4γ‖ξn,1
q ‖2 + 2(1 − 2γ)(ξn,1

q , ξn,2
q ) + γ‖ξn,2

q ‖2] + Ch2k+2τ

≤ 6‖ξn
u‖2 + Ch2k+2τ, (7.5)

if γ ∈ [γ1, γ2]. Thus the lemma is proved. �
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