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Abstract

Local discontinuous Galerkin methods with generalized alternating numerical fluxes
coupled with implicit-explicit time marching for solving convection-diffusion problems is
analyzed in this paper, where the explicit part is treated by a strong-stability-preserving
Runge-Kutta scheme, and the implicit part is treated by an L-stable diagonally implicit
Runge-Kutta method. Based on the generalized alternating numerical flux, we establish
the important relationship between the gradient and interface jump of the numerical
solution with the independent numerical solution of the gradient, which plays a key role
in obtaining the unconditional stability of the proposed schemes. Also by the aid of the
generalized Gauss-Radau projection, optimal error estimates can be shown. Numerical
experiments are given to verify the stability and accuracy of the proposed schemes with

different numerical fluxes.
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1 Introduction

Local discontinuous Galerkin (LDG) method is one of the widely used numerical methods

during the last two decades. Since it was introduced by Cockburn and Shu [11], motivated
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by the work of Bassi and Rebay [3] for solving the compressible Navier-Stokes equations, the
LDG method has been rapidly developed and widely applied to many practical problems,
such as nonlinear wave equations with higher order derivatives [35, 34], semiconductor device
simulations [22, 23], the incompressible fluid flows [10], porous medium equations [39], the
miscible displacement in porous media [14], wave equation in heterogeneous media [9], the
Keller-Segel chemotaxis model [21], and so on.

The idea of the LDG method is to rewrite equations with higher order derivatives into
an equivalent first order system, then apply the DG method [27] to the system. The choice
of the numerical flux is an important ingredient in the design of LDG method. In the
pioneering paper [11], the authors presented a general form of numerical fluxes and showed
suboptimal error estimate. In later works, e.g. [6, 32], optimal error estimates were given
for semi-discrete and fully-discrete LDG methods with purely alternating numerical fluxes
(PANF). Compared with PANF, the generalized alternating numerical fluxes (GANF) are
easier to define for linear equations with varying-coefficients or nonlinear equations [7], so
they gained attention by researchers. Recently, the optimal error estimate of LDG methods
with GANF was derived in [7] by carefully defining the generalized Gauss-Radau (GGR)
projection, the corresponding local analysis for singularly perturbed problems was also
carried out [8], these works are all in the framework of semi-discrete LDG methods.

An important issue we shall consider in this paper is the time discretization. In our
previous work [29, 30, 31], a class of stiffly accurate implicit-explicit (IMEX) Runge-Kutta
(RK) time discretization schemes [2, 5] were considered for convection-diffusion equations,
where the convection part is treated explicitly and the diffusion part is treated implicitly.
Those IMEX schemes coupled with LDG spatial discretization with PANF were shown to be
unconditionally stable, in the sense that the time step is only required to be upper bounded
by a positive constant which is independent of mesh size but depends on the coefficients of
convection and diffusion. In this paper, we pay attention to a class of IMEX RK formu-
las which are not stiffly accurate but have strong-stability-preserving (SSP) property [13].
These formulas were proposed in [25] for hyperbolic systems of conservation laws with stiff
relaxation, where the explicit parts are total variation diminishing (TVD) schemes [28], and
the implicit parts are L-stable diagonally implicit Runge-Kutta (DIRK) methods. We call
these methods as IMEX SSP methods in this paper.

The main difference between stiffly accurate schemes and IMEX SSP methods lies in
the following aspect: for stiffly accurate schemes, the solution at the end of the time step is
identified with the solution at the last internal stage [16, 2], while for IMEX SSP methods, an
additional quadrature is used at the end of the time step. So the IMEX SSP methods require
more storage than stiffly accurate schemes and it seems that they are less efficient. However,
for some problems such as semiconvection problems in astrophysics, the SSP property is

necessary to suppress spurious oscillations in the spatial discretization [19], IMEX SSP



methods can enhance the stability and accuracy of the simulations [18]. Based on the
computational advantages, IMEX SSP methods have been adopted in many applications,
such as BGK kinetic equations [26], compressible Navier-Stokes equations [20], optimal
control problems [17], highly nonlinear PDEs [15], and so on.

The objective of this paper is to study the L2-norm stability and optimal error analysis
for LDG methods with GANF, coupled with two specific second and third order IMEX
SSP time discretizations proposed in [25]. Compared with the stiffly accurate schemes
considered in [29], an additional quadrature is used at the end of the time step in the IMEX
SSP schemes, this makes the construction of energy equation and the corresponding energy
analysis much more complicated than what we have done in [29]. We will establish energy
equation along the similar line as those established in [37, 38] for explicit Runge-Kutta
discontinuous Galerkin (RKDG) methods.

Besides the construction of energy equations, the crucial step is to build up the important
relationship between the gradient and interface jump of the numerical solution with the
independent numerical solution of the gradient, in the LDG methods with GANF, just as
what we did in [29] for PANF. Different from [29], where the relationship can be built up
locally (i.e, it holds in each cell), for GANF the relationship has to be established globally;
see Lemma 2.3 and its proof. By the aid of this important relationship and the energy
analysis, we can derive similar stability results for the LDG methods with GANF coupled
with the second and third order IMEX SSP schemes as that in [29]. Also the optimal error
estimates will be obtained by the aid of the GGR projection.

The remaining part of this paper is organized as follows. In Section 2 we present the
semi-discrete LDG method and the IMEX SSP time discretization schemes. Sections 3 and
4 are devoted to the stability and optimal error estimates of the proposed fully-discrete LDG
schemes. In Section 5, numerical experiments are given to verify the theoretical results and
to illustrate the effects of different choices of the numerical fluxes. Concluding remarks and

proof of some of the technical lemmas are given in Section 6 and the Appendix respectively.

2 The LDG method and IMEX SSP schemes

2.1 The semi-discrete LDG scheme

In this subsection we present the definition of semi-discrete LDG schemes for the linear

convection-diffusion problem

Ui+ cUyp — dUy, =0, (x,t) € Qr = (a,b) x (0,77, (2.1a)
U(z,0) = Up(x), x € Q= (a,b), (2.1b)



where d > 0 is the diffusion coefficient and ¢ is the velocity of the flow field. Without loss
of generality, we assume that both d and ¢ are constants and ¢ > 0. The initial solution
Uo(z) is assumed to be in L?(9). For the simplicity of analysis, we only consider periodic
boundary condition in this paper. The analysis for other boundary conditions is much more
complicated, one can refer to [33] for the discussion of Dirichlet boundary condition.

Let Q = V/dU,, the LDG scheme starts from the following equivalent first-order differ-

ential system
Ui +cUy — \/ng =0, Q - \/gUm =0, (:Evt) € QT7 (22)

with the same initial condition (2.1b) and boundary condition.
Let 7, = {I; = (xj_%,mﬂ%)};v:l be the partition of €, where z1=a and Tynp1 = b

are the boundary endpoints. Denote the cell length as h; = T 1 forj=1,...,N,

xXr., 1 — .

J+3 J
and define h = max; h;. We assume 7}, is quasi-uniform in this paper, that is, there exists
a positive constant v such that for all j there holds h;/h > v, as h goes to zero.

Associated with this mesh, we define the discontinuous finite element space
Vi={veL*(Q) vl €P(l),Vi=1,....,N}, (2.3)

where Py (I;) denotes the space of polynomials in I; of degree at most k& > 0. Note that
the functions in this space are allowed to have discontinuities across element interfaces. At
each element interface point, for any piecewise function v, there are two traces along the
right-hand and left-hand, denoted by v and v, respectively, and the jump is denoted by
[v] = vt —v™.

Multiplying (2.2) by test functions v and r, integrating over each cell /; and integrating
by parts, then restricting unknown functions and test functions in finite element space Vj,
and taking proper numerical fluxes, one can define the LDG scheme, please refer to [11] for
more details. In this paper, we would like to adopt the “upwind-biased” numerical flux [24]
for the convection, and the GANF [7] for the diffusion, then we can define the semi-discrete
LDG scheme as follows: for any ¢ > 0, find the numerical solution u(t),q(t) € V}, (where

the argument x is omitted), such that the variational forms

(ug,v); :cZ}g(u,v) — \/EZJé(q,v), (2.4a)
(q.7); = — VdZ!(u,r), (2.4b)

hold in each cell I;, 7 = 1,2,..., N, for any test functions v, € V},. Here ¥ > % and 0 are
parameters associated with convection and diffusion respectively, and 6 = 1 — 6. Since the
central numerical flux (0 = %) will affect the accuracy of the LDG scheme in the case of

odd polynomial degree k [34], we will mainly consider 6 # % in this paper. Note that ¢ = 1



gives the upwind numerical flux, and 6 = 0,1 give the PANF. The notation (-,-); means

the inner product in L?(I;) and

20 (w,v) = (w,v,); — 0 A ot | (2.5)

for any functions w and v. Here and below, w'® = fw™ + pw™, and 8 = 1 — 3 for any

]J\FH 1= wir due to the periodic boundary condition. One
2 2

can refer to [8] for the definition of numerical fluxes for Dirichlet boundary conditions.

parameter 5. w; = w_ ; and w
2 N+3

The initial condition u(x,0) can be taken as any approximation of the given initial
solution Up(z), for example, the standard L? projection of Uy(z). We have now defined the
semi-discrete LDG scheme.

For the convenience of analysis, we denote by (¢,r) = Z;-V:l(q,r)j the inner product
in L?(Q). Summing up the variational formulations (2.4) over j = 1,2,..., N, and letting
Z8 = Zjvzl Zjﬁ, H=c2 L= —\/(_iZé, K = —VdZ?, we can write the above semi-discrete
LDG scheme in the global form: for any ¢ > 0, find the numerical solution u,q € V}, such

that the variation equations

(ut,v) =H(u,v) + L(g,v), (2.6a)
(¢;r) =K(u,7), (2.6b)

hold for any v,r € V,.

2.2 The properties of the LDG spatial discretization

We present some properties of the LDG spatial discretizaiton in this subsection. To this
end, let us first introduce some notations and the inverse inequality.

We use the standard notations and norms in Sobolev spaces, for example, H*(D) (£ > 1)
denotes the space where the function itself and its derivatives up to ¢-th order are all square-

integrable in domain D. And we define the (mesh-dependent) broken Sobolev space
HYT,) = {ve L*Q):v|;, € H(I;),Yj=1,...,N }, (2.7)

which contains the discontinuous finite element space V},. Associated with the space H Z(’Z}L),
we would like to define the following semi-norms

N

N
R =Y 0, el =Y Il
j=1

i=1

for arbitrary v € H*(T},), where [vllor, = \/(v;f_l)2 + (vj_+ )2 is the L%-norm on the bound-
2

ary of I;. In addition,

N N
lol> =D 0lE ol =D 1ol Zre 1,
j=1 Jj=1

1
2



where [|v]|; and ||v||ge(z,) are the L%mnorm and H*norm of v in cell I}, respectively.
For any function v € V4, there exists an inverse constant g > 0 independent of v, h and
j such that [1]

[vllor, < v/ uh=H o]l (2.8)

Integrating by parts and using the periodic boundary condition, we can easily get the
following properties, similar results for upwind numerical flux and PANF can be found in

[36, 29]. We omit the details here to save space.

Lemma 2.1. For any w,v € V},, there hold the equalities

20(v,0) = (8- I (29)

ZP(w,v) = —ZP(v,w). (2.10)

Corollary 2.1. For u,q,u,q € Vi, suppose (q,r) = K(u,r) and (q,r) = K(u,r) for any
r € Vy, then we have
L(q,u) = L(q,a) = —(g,q)- (2.11)

Proof. By the definition of £ and I, and owing to (2.10) we can easily get
And similarly, £(q,a) = —K(a,q) = —(q,q). O

Lemma 2.2. For any w,v € V}, there exists a positive constant Cg depending on (3 such
that

128w, )] < Cs (Jlwall +v/uhT[w]) [l (2.122)

12%(w, )| < s (Jloall + Vi 1[e] ) el (2120)

In [29] we presented an important relationship (Lemma 2.4 in [29]) between the gradient
and interface jump of the numerical solution with the independent numerical solution of
the gradient, in the LDG scheme with PANF, which plays a key role in obtaining the

unconditional stability of the fully discrete LDG schemes. In the following lemma we will

show that the same relationship also holds for GANF excluding the central flux.

Lemma 2.3. Let 0§ # % Suppose u,q € V, satisfy (2.6b), then there exists a positive
constant Cy, which is independent of h and d but may depend on 1, 0 and k, such that

e || + V/ ph~Hu] < \/%HQH- (2.13)



Proof. From (2.4b) and (2.5) we have

(0.0); = = V| (1) = o

- _ O .- + 0 o+
=Vd [(ux, r); — (uj+% uj+%)rj+% + (uj_% uj_;)rj_%}
:\/E[(um,r)j+§[[u]]j+%r;+% —|—9[[u]]j_%r;r_%] , (2.14)

where integration by parts is used in the second step. Thus, owing to the periodic boundary

conditions, we have

\/_Z[ux +[[u]]j+1r+) ] (2.15)
In what follows we first show that there exists positive constant C such that

C
Jusl® < = llall* (216)

In the special cases 8 = 0 or § = 1, we can get (2.16) by showing it holds in each cell,
ie, HuxH? < %HqH? Since in these cases, there is only one boundary term in (2.14),
suitable test function r can be taken to eliminate the boundary term; see [29] for more
details. However, it is difficult to find such test function so that the two boundary terms
in (2.14) can be eliminated simultaneously for general 6. So for general 6, we begin with
the global formulation (2.15). The basic idea is to take suitable test function r such that

©)

(ug,7)j = |lugllf and r 1 = 0 for every j = 1,2,--- ,N. To this end, we take r as

piecewise-defined functlon in the form

r(z) = ug(x) — Alum( )+)\2um( e 1) PJ( ), for zelj, (2.17)

where A\, A2 are f-dependent constants to be determined later, and P,g(a:) =L (ijﬂ))
for « € I, with L(-) being the standard Legendre polynomial of degree k in [—1,1], so we
have (ug, P}); =0, P,g(ijr%) =1 and P,g(xj_%) = (—1)k.

From (2.17), we obtain

ro

_ _ +
N =(1—A\)uz(z ]+2) )\qu(xj+%),

= = (_1)k)\1ux(xj_+%) + 11— (_1)k)‘2]ux(xj+%)’

<.
D=

rt
J+

(NI

0 . . .
To ensure TJ(JF) 1 = 0, we need to choose different A1, Ay for different cases when k is even or

odd. After a SQimple manipulation, we get

M =0, =6



when k is even, and
—0 —0
P —
2T 91
when k is odd.
Now taking r as (2.17) with the above choice of A\ and Ay in (2.15), we get

N

N
1 1
el = > (ua,r); = N > (g, <elrl®+ @HQ\P, (2.18)
j=1

j=1
for arbitrary € > 0. Notice that
117 = lluall? + Arug (2, 1) + Azux(fc;;%)FHP;ﬂI!?

< ualF + 2max {2, A3} (luall3s, + luall3r,, ) IP?
2umax{\f, A3}

< lualf + (luallf + a3 1).

2k +1
by the inverse inequality (2.8) and the fact that HP,gH2 = 2:_{_1. Thus (2.18) becomes
1
lual® < Creflual® + 1 llall*, (2.19)
2 42
where C7 =1+ %. Hence taking ¢ = ﬁ yields (2.16).

Next we show there exists positive constant Cy such that

Csh
[u]® < TH(JHz- (2.20)
Taking r = 1 in (2.14), we get
- 1 . .
Ouljpr +0[ul; 1 = ﬁ(q, 1)j = (ug,1); = bj, Vj. (2.21)

In the special cases 6 = 0 or 6 = 1, the system (2.21) is decoupled, [u]; 1 can be solved
2
locally, and thus (2.20) is very easy to get. So here we only consider the general case 6 # 0, 1.

Owing to the periodic boundary condition, it forms a linear system

Ax = b,
where = ([u] /2, , [[u]]N_l/g)T, b= (b, - ,by)", and Ais an N x N circulant matrix
in the form B
0 0
0 0

™
>



Notice that det(A) = OV (1 —¢), where ¢ = —0/6, so A is invertible when 6 # 1, and the

inverse matrix of A is also a circulant matrix in the form [24]

1 ¢ & N-1
) gN—l 1 c §N_2
AT =
6(1 —¢N)
S 1 S
S N1

Notice that the row-norm and column-norm of A~! are equal and satisfy

1—|¢|V 1
M T=1sl T 1ol = Il

M = M e = Z 'l =

so from [12] we get the spectral norm

1

1 1
M= 2 < JATHIF MG < -
' el =l

Moreover, from the definition of b; in (2.21), we get the > norm of vector b which satisfies

N N
1 2(1+Ch 01)
o8 = >0t < 320 | glal + sl < 2R g2
=1 j=1

due to Cauchy-Schwarz inequality and (2.16). Hence we can get

al Csh
_ 2
[ =Y [ul}_s =l < A7 [3163 < =2l
j=1
where Cy = %
Finally taking C, = (v/C1 + v/1C3)? we complete the proof of this lemma. O

This lemma does not hold for the central flux, i.e, = % For example, in the case when
k is odd, we let u(z)|;;, = P,g(:n), where P,g(x) = Lk(%whi_f’)) has been defined in the above

proof, then u satisfies (u,r;); = 0 for any r € V},, and for any j, u (j_)l = %( J+1 + U]+1)
$[1+(—1)%] = 0. So ¢ = 0 satisfies (2.14) and thus this special choice of u and g = 0 satisfy
(2.6b), but obviously they do not satisfy the relationship (2.13). Similarly, for even k, let
u(z)|r; = (—1)jPlg(x) for j =1,---,N (where N is even), then ¢ = 0 satisfies (2.14), but

u, ¢ do not satisfy the relationship (2.13).

By applying Lemmas 2.2 and 2.3, we can easily get the estimate for the convection

terms, which is given in the following lemma.
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Lemma 2.4. Let 0 # % Suppose u,q € Vi, satisfy (q,v) = K(u,v) for any v € V3, then we
have

[H(u, )| < G%uquuvu, (2.22)

where C' > 0 is independent of ¢,d and h.

Remark 2.1. Even though Lemma 2.3 is invalid in the case 0 = %, Lemma 2.4 also holds
in the special case 9 =0 = % Since by the definition of H and IKC we have

H(u,v) = —LIC(u,v) - ° v)

\/E ﬁ((b
2.3 The IMEX SSP schemes

[o]l-

< Jlqll
_\/Eq

To give a brief introduction of the IMEX SSP scheme, let us consider the system of ordinary

differential equations

% = N(y) + L(y),  y(to) = yo, (2.23)

where y = [y1,92, -+ ,v4] . By applying explicit and implicit discretization for N(y) and

L(y), respectively, the solution of (2.23) advanced from time " to t"*1 = " + 7 is given
by:

i—1 s
Yi=yn+ TzdijN(Yj) + TzaijL(Yj)a 1<i<s,
=1 =
S B S
Yol = Yo + 73 0N(Y:) + 7 bL(Y), (2.24)
i=1

i=1

where Y; denotes the intermediate stages. Let

i—1 s
67; = E ELij, C; = E a,-j.
J=1 Jj=1

Denote A = (aij), A = (a;;) € R¥*, b' = [by,---,by],b" = [by, - ,bs] and &' =

[61, - ,Gs],e" =c1,--- ,cs], then we can represent the above formula as a double tableau
in the Butcher notation ~
¢ ‘ A c ‘ A (2.25)
CaD |

Formally, it is a little different from that considered in [29], where the vectors é = ¢ and thus
the formulas can be expressed in a single Butcher tableau. Moreover, the IMEX formulas
considered in [29] are stiffly accurate, i.e, in the implicit part of the above tableau, b' equals
the last row of the matrix A. Here we consider a class of IMEX formulas whose vector b' is

not equal to the last row of the matrix A, which means an additional quadrature is used at
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the end of the time step. We will take two specific formulas proposed in [25] as examples,

where the SSP schemes [13] are taken for the explicit discretization, and L-stable [16]

diagonally implicit RK schemes (a;; = 0 for j > i) are taken for the implicit discretization.
Second order IMEX SSP scheme:

0] O 0 vy ot 0
1] 1 0 1—v|1=-2y ~ (2.26)
[1/2 172 |12 1/2
where v =1 — ? was considered in [25]. In this paper, we consider v as a parameter in

certain range, which will be discussed later.
Third order IMEX SSP scheme:

olo o o o0 alao 0 0 o0
0o 0o 0 0 0O|l-a a 0 0
1/0 1 0 0 0 1-a a 0 (2.27)
/200 1/4 1/4 0 12 ¢ ¢  p o«

0 1/6 1/6 2/3 0 1/6 1/6 2/3

where o = % — @ ~ 0.241694261 is the smallest root of 6a> — 21a? + 13ac — 2 = 0, @, ¢
and p are positive constants satisfying the following relationship:

1 1
a = 4o, 24,0—1—(15:1, and pzi—a—cp—gb. (2.28)

3 The stability analysis for the IMEX-LDG schemes

In this section we would like to study the stability of the above two IMEX SSP schemes with
the LDG spatial discretization (2.6), the corresponding fully discrete schemes are denoted
as IMEX-LDG(k, s), where k is the degree of piecewise polynomials used in the LDG spatial
discretization, and s is the order of IMEX SSP time discretization. Let {t" = n7}M  be
an uniform partition of the time interval [0,7], with time step 7. The time step could
actually change from step to step, but in this paper we take the time step as a constant
for simplicity. Given ", hence ¢", we would like to find the numerical solution at the next
time level t"*1, maybe through several intermediate stages t™, by the above IMEX SSP
methods (2.26) and (2.27).
The IMEX-LDG(k, 2) scheme reads: for any v € V},

(un’l,v) = (u",v) +77’£(q”’1,v), (3.1a)

(w™?,0) = (u",v) + TH(u™!, v) + (1= 29)7L(¢"™, v) +97L(¢"™%, v), (3.1b)

(" v) = (u",v) + % [H(u™,v) + H(u™2,v)] + % [L(g™",v) + L(g™*v)],  (3.1¢)
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and the auxiliary solutions ¢™* € Vj, are determined by the variation form
(V) = K™, r), VYreV, for £=1,2. (3.1d)

The IMEX-LDG(k, 3) scheme reads: for any v € V},

(™, v) = (u™,v) + arL(q™",v), (3.2a)
(u™? v) = (u",v) — atL(q™",v) + arL(g™?,v), (3.2b)
(u™3,v) = (u™,v) + TH(W™?,v) + (1 — a)TL(¢™?,v) + arL(q™,v), (3.2¢)
(™4, v) = (u",v) + % [H(u"’2,v) + H(u™3 v)} + @1 L(¢", v) + ¢TL(¢V2,v)
+ pTL(g"™ ) + ar LM, v), (3.2d)
(™ 0) = (", v) + T [H2,0) + Hu,v) + 4R, v)]
+ T [/L(q"’2, v) + L(q"™3,v) + 4L(¢™1, v)} , (3.2e)

6
and ¢™* € V}, satisfy (3.1d) for £ = 1,2, 3, 4.

Theorem 3.1. Let ¢ > % and 0 # % There exists positive constant 7o which is independent
of h, such that if T < 19, then the solution of schemes (3.1) and (3.2) satisfy

[ < Rl W (3.3)

In what follows, we will present the proof for Theorem 3.1. Since the explicit parts are
the same as the SSP schemes analyzed in [37, 38], we can imitate [37, 38] to build up energy
equations. In the following we use C' to denote a generic constant independent of ¢, d and

n, h, 7, which may have different values in different occurrences.

3.1 Proof for the IMEX-LDG(k,2) scheme

3.1.1 Energy equation

0

Let {w"’é}ézo’l’z be a series of functions defined at every stage time levels, w™"” = w". For

the convenience of analysis, we would like to adopt two series of simplified notations

1
—w™, Rgw" = w"t — i(w"’l + w"’2), (3.4)

n,l n

—w", Row" = w™?

Riw™ =w

and 1
Siw" = Row", - Spu" = Ryw” — SRyw™. (3.5)

Furthermore, we would like to introduce another two series of notations R and S corre-
sponding to R and S, respectively, which are related to the implicit discretization of the

diffusion part.

- - - 1—
len — ’Ywn’l, ngn — (1 - 3’}/)11)”’1 + ,Ywn,27 ngn _ zwn,l + ’Ywn,2

. 5 . (3.6)
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and )
Slw” = ngn, Sgw" = I@gw” — 5@2’[0”. (37)

Then we get
(Rou™,v) = byrH (U™ v) + 7L(Req™, v), for ¢=1,2,3, (3.8)

where by =0 for £ =1 and bg:ﬁ for £ =2,3. And

(Spu™,v) = %TH(Sg_lu",v) + Tﬁ(ggq”,v), for ¢=1,2, (3.9)

where Sou™ = u™!.

1

Let v; = 2u™', vy = u™!, v3 = 2u™2. Taking v = vy in (3.8) for £ = 1,2, 3, respectively,

adding them together, we obtain the energy equation

a2 = [Ju™]|? + |Ryu”||? = Vi + Vo + V3, (3.10a)
where
3
Vi=71Y bH(u™ " ), (3.10b)
/=1
3 ~
Vo =7 L(Req",vy), (3.10c)
/=1
Vs =||Sou™||?. (3.10d)

3.1.2 Energy estimate

From (2.9) we have

Vi= (0~ ger ("' + ") <. (3.11)

Owing to Corollary 2.1 we can obtain

Vo= —7|2(¢"" Rig") + (¢ Rag") +2(Q"’Z,R3qn)] = —T/Qq"TAlq"dw, (3.12)

1—
Ay = T ) (3.13)
7 l-y

which is positive definite if 0 < v < %

n,1

where ¢ = (¢™',¢™?) T and

Next we present the estimate for V3. To this end, we adopt the similar argument as in

[4] and give the following lemma firstly.
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Lemma 3.1. For any v € Vy, we have

(Sou™,v) = wi(Ryu", v) + wo(Rou", v) + %H(Slu”,v) — woTH(u™ ) v), (3.14)
14y —242 -
where wy = 7“';1;/2 By = L2 23“’.

Proof. From (3.9) and the notations from (3.4) to (3.7), and owing to the linear structure
of the operators H and L, we have
1— 2y

(Squ™,v) = %TH(Slu”, v) + 472_ 1T£(q"’1, v) + TL(q™? v). (3.15)
And from (3.8) we get
TL(¢" v) = %(Rw", v), (3.16)
TL(q™?,v) :% [(Rou™,v) — TH(u™,v) — (1 — 37)7’£(q”’1,v)]
= %(RQU”,U) ! ;237 (Ryu",v) — %TH(un’l,v). (3.17)
Substituting (3.16), (3.17) into (3.15) yields (3.14). O

By taking v = Spu™ in (3.14), and using Cauchy-Schwarz inequality for the first two

terms and applying Lemma 2.4 for the last two terms, we have
[Sau” || < Jwi||Ryu" || + [wa||Rou™ || + V, (3.18)

where

C
V=C—7(l¢""| + lla").
Nz (g™ =+ 1lg™ =)

As a consequence, using Young’s inequality leads to
ISou™|* < (14 &) (Jon [ Ryw™[| + |wal[Rou[[)* 4 (1 + €7 1)V?
<@+ 81+ E)|wr PIRru™* + (1 + ) (1 + & wa*[Row™|* + (1 + 671V,

for arbitrary positive constants € and €. In order to ensure the stability, we would like to

require that there exists a positive constant oy € (0, 1), such that for a given &
A+8A+8)wi* <1 and (1+8) 1+ N waf* <ap (3.19)

hold for some €. That is to say

1 1
0<— << 1
Traw L (14 &)wi

To ensure (3.19) holds for some &, we need to solve the inequality

0t o1 1 (3.20)
Tz T 4wt '
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which will give a range for the parameter «v. Apparently the range depends on the choice

of £ and og. For the convenience of discussion, we take & = % and oy = %. In this case,

solving (3.20) by Maple we get v € [y1,72] ~ [0.27998, 0.37932]. Thus
[Sou™||? < ||R1u™||? 4 oo||Rou||? + 4V2. (3.21)

Now the only remaining thing is to estimate |[Rou™||. Taking v = Rou" in (3.8) for ¢ = 2,
applying Corollary 2.1, Lemma 2.4 and Young’s inequality we get

|]R2u”|]2 :TH(u”’l,]Rgu") — T(qu",qu")

C
< C—=1||¢"™ ||| Rou™ —T/ " Arq"dx
=07 g™ [[[[Rou™|| [ a A
n| 2 0627_ n,1(2 nT n
< efRew™||” + ——7llg™ | = 7 g Asq"dz, (3.22)
for arbitrary e, where
3y—1 L2
Ay = (17 2 7) . (3.23)
272y v
2
Takinge =1—0¢ = %, we get
9C AT
olRou | < 2 T T/ ¢ Asqda. (3.24)
Q
Thus 9
9C
IS0 ? < [Ryw” | + 25 g™ T/ ¢ Aogidz + 4V, (3.25)
Q

Consequently, from (3.10), (3.11), (3.12) and (3.25), we get

41 CcPr
o I = P < 7 [ @A+ Ao+ T

n,112 n,2 |2
' ' . 2
1 g Ul T+ Nl (3-26)

It can be verified that A; 4+ Ay — 71 is positive definite if v € [5 — @, I+ %] D [y1,72)-

2 .
t AL <y e, T < 4d - then

Hence, if 7 < 7 such tha T o

™ < ] < < - (3.27)

Remark 3.1. In Theorem 3.1, we require ¥ > % to ensure Vi < 0 in (3.11). Actually 9 < %

also works, since in this case

1 Cich
Vi<

according to Lemma 2.3. So if h is small enough such that Vi can be bounded by the stability

7 (llg™ 11” + g™ 1) , (3.28)

term TfQ q"T(Al + Ag)q"dx, then the theorem can also be proven.

Remark 3.2. Owing to Remark 2.1, Theorem 3.1 also holds in the special case ¥ = 60 = %
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3.2 Proof for the IMEX-LDG(k, 3) scheme

The line of proof for the third order scheme is similar as but more complicated than that

for the second order scheme. The main difficulty is the construction of the energy equation.

3.2.1 Energy equation

Let {w"’f}620’1’2’3’4 be a series of functions defined at the different stage time levels, w™" =
w™. Following [38], we define two series of simplified notations
Elwn _ ,wn,l . ,wn7 E2wn — ,wn,2 o ,wn,17 ngn — wn,3 o ,wn,27
3 1
Esw" = dw™* — 3uw™? — w™3, Esuw" = §wn+1 —w™?t — §wn’2a (3.29)

and
1 1
Diw" = Egw”, Dyw"™ = §(E4w" —Esw"), Dyw" = §(2E5w" — Esjw"™ — Egw™). (3.30)

For the convenience of expression, we define another two series of notations E and D
corresponding to [E and I, respectively, which are used to simplify notations about the

implicit discretization of the diffusion part.

Eiw" = aw™?, (3.31a)
Eow™ = — 20w™t + aw™?, (3.31b)
Esw” = aw™! + (1 — 20)w™? 4+ aw™3, (3.31c¢)
Eqw"™ = (3a + 4p)w™ + (4¢ — 200 — Dw™? + (4p — a)w™> + dow™*

= daw™! — dow™? + (1 — 4a)w™? + dow™?, (3.31d)
~ o 1 « 1
Esw™ = (5 — p)w™! + (Z —5~ P)w™? + (Z —p)w"™? + (1 — a)w™*

3
= %w"’l + Zaw"’g + (1 — a)w™?, (3.31e)

and
N n n n N n 1 - n n n ~ n 1 = n n n n n
]Dlw = ng 5 Dgw = §(E4w - ng ), Dg’w = §(2E5w - E4w - ng ) (332)
Then we get
(Egu", v) = dprH(u™* 1, v) + 7L(Erq", v), for ¢(=1,2,3,4,5, (3.33)
where dy =0 for { = 1,2 and dy = 1 for £ = 3,4,5. And

1 .
(Deu™,v) = ZTH(]Dg_lu”,v) + 7L(Dyq", v), for ¢=1,2,3, (3.34)
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where Dou™ = u™2.

2

Let v1 = 6u™!, vy = 6u™?, v3 = u™?, vy = u™3 and v5 = 4u™*. Taking v = vy in (3.33)

for £ =1,2,3,4,5, respectively, adding them together, we obtain

3w 2 = 3||lu™||* + 3||Eru||* + 3||Eou™||* = T1 + Ta + T, (3.35a)
where
5
Ty =7 diH(u™ " vy), (3.35h)
/=1
5 ~
Ty =7 L{Eeq" ve), (3.35¢)
(=1
T3 = ||Dou™|? 4 3(D3u™, Dyu™) + 3(D3u™, Dou™) + 3||Dyu™||?. (3.35d)

3.2.2 Energy estimate
By the definition of d; and v, and according to (2.9), we have
1 n n n
Ty = — (9 = )7 (" + [u™]? + 4[u™]?) <. (3.36)
Owing to Corollary 2.1, we can get

Ty=—7 [6(q"’1, E1¢") + 6(¢™2, Eaq™) + ("% E3q™) + (¢™3, Eaq™) + 4(¢™*, fEsq")]

=-7 / q" " B1q"dz, (3.37)
Q
where ¢" = (¢, ¢"2,¢"%,¢"*)" and
6 —%a 20 %oz
11
| T3« 1+4a —5 0
By 2cy 30  1-4«a o (3'38)
2 2
%a 0 %a 4 — 4o

Next we estimate T3 following the trick adopted in [38], we rewrite T3 as

T3 = —||Dou™||? + 2||Dou™||? + 3(D3u™, Dyu™) + 3(Dau™, Dou™) + 3||Dsu™||? . (3.39)

Ry R> R3

To estimate Ry, we take v = 2D9u™ and v = 3D u™ in (3.34) for £ = 2 and ¢ = 3, respectively,
adding them together and using Corollary 2.1 we get
Rl =T [H(]D)lu",]D)gu”) + H(]D)gu",]D)lu”)] —+7 [2£(D2q”, ]Dgu”) + 35(]@3(]”, ]D)lu")
Ry

=Ry—T 2(D2q",]1~))2q") + 3(Dy¢", Hﬁgq")} =Ry —T /Q q"Tng"dx, (3.40)
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where
0 %a —%a 3a
3 17
2o 2 — 4o Lo -2 -«
By=| * 4 ) 3.41
? —%a 17470z %a —2 2—10« ( )

3 —2—a 2-10«a S«
To estimate Rg, we take v = 3Dyu” in (3.34) for ¢ = 3, using (2.9) and Corollary 2.1 yields

Ry = 7H(Dou™, Dou™) + 37£(D3qn, Dou'™)

1 -
=— (- 5)07"[]1)2“”]‘2 — 37(D2q", D3qg") < —7'/ q"TIBégq”da;, (3.42)
Q
where
0 %a %a —%a
9 21
Yo" 1 — 6 —=a 9a—2
Bs=| 3 : 3.43
’ %oz — %a 1-— %a %a -2 ( )

—%a 9a — 2 %a—Z 4 — 12

Combining the above estimates, we have

3
Bl P = 3w * + 3w + 3|[Egu|* + T/ q"" ) Big'dx
{ i=1
< — [IDou”[|* + R3 + Ra. (3.44)

It can be verified that the matrix Z?:l B; is positive definite by verifying all the leading
principle minors are positive, and along the same way, Z?=1 B; — ol is also positive definite

if0<o< 5o
n||2 ™42 to estimate Rs and Ry.

In what follows we use the stability terms ||Dou”||* and 7||q

Owing to Lemma 2.4 we get

c n n 1 n|2 0627_ n,2 2 n,3 (12
| R4 SC—dTHqu HD2w”| < 7| Dau™||" +2 T(la™7 1"+ g™ 1), (3.45)

Vd d

where Young’s inequality is used in the last step.
The most technical term is R3. To estimate it, we adopt the technique used in estimating
V3 in Subsection 3.1. Eliminating the £(D3q",v) terms (using (3.33)) in (3.34) for £ = 3,

we can represent (Dsu™,v) as

1 1 1 1 5 1
D-au™ _ = Dou™ - n,3 - Y - n,2
(D3u,v) 37’H( oU ,v)+(2 6a) H(u ,v)—l—(2 60z+6a2) H(u™*,v)

+ k1 (Dau™, v) + Ko (Dou™, v), (3.46)
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where

k1 = — — 1=~ 0.379152868,
3o

1 1
Rg = —

— —— — 1~ 0.284364653,
a 602
~ 1 1
]D)()Un — un,3 + (_ . 1)un,2 . _un,l
Q Q
Here we have used the relationship 6a® — 21a® + 13a — 2 = 0.

Taking v = Dsu™ in (3.46), owing to Lemma 2.4, and Cauchy-Schwarz inequality we
have

[D3u”|| < w1][Dou"|| + Ko||Dou"|| + R,

(3.47)
where
R= C%T(angll +lg™ ]+ llg™ ).
As a result,
Ry =3|Dgu” | < 3{(1+ &)l Dau” | + ral|Bou” )? + (1 + &7 R2 |
<3(1+2) [(1 + 2)k2||Dou” |2 + (1 + é—l)nguﬁoun\ﬂ Y31+ YR, (3.48)
where € and £ are arbitrary positive constants. Taking £ = 1/9 and & = 1/2 we get

R <562 Dyu™||? + 10s3 || Dou”||> + 30R?
3 7~
< Z”DQUH‘P + gH]Doun”2 + 30R2, (349)
since k2 ~ 0.1437568973, K3 ~ 0.08086325588.

To estimate H]]/)Tou"H, we notice that

(Dou”, v) = TH(U™2,0) 4+ (o — 2)7L(¢™", v) + (2 = 20)7L(¢™%, v) + aTL(g™>,v), (3.50)
from (3.2). Taking v = Dyu™ in (3.50) we get

H]ﬁaunw = TH(u"’Z, ]T)Tou") -7 <(a — 2)q"’1 +(2 - 2a)q"’2 + aq"’?’,]lf)%q") .

(3.51)
Applying Lemma 2.4 on the first term and rearranging the second term lead to

Dou"||? < C—=7]|¢™?|||Dou” —7'/ q" 'Byq"dx
[Dow™| 7 g™l Dou"| ;

—~ Cccr
<e|Dou” || + ——-

g eI —T/Qq”TIBMq"dx, (3.52)
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for arbitrary e, where

2 5 2 -3
a1l 3-9-3 T 0
5 « 2 2 3-3a

————— 200 — 4 + == 0
By=]2 2 2 3.53
i B %)

0 0 0 0

Taking € = %, we get
T =~ (ofets
gH]DOu"H2 < ZTTan’2H2 — 7'/ q" "'Big"dz. (3.54)
Q
So Co
3
Ry < J[Dou” | + 30R? + 2——=r]|¢"?||” - T/ q""Baig"de. (3.55)
Q
Hence, from (3.44), (3.45) and (3.55) we obtain
4
Bllu 1 = 3w + 3| Eru”|? + 3| Eou™|* + T/ q"" ) Biq"dz
Q i=1
C 2 C 2

<30R2 + 2 277(2\@"’2\\2 + [1g™3)%) < 94 ‘;TT /Q q" " q"dz. (3.56)

It can be verified that the matrix Z?:l B; is positive definite and Z?:l B; — 1l is also

positive definite, thus if 7 < 7y such that 9407627' < 15, then

™ < ] < <l (3.57)

4 Error estimates

In this section, we would like to take the IMEX-LDG(k,2) scheme (3.1) as an example
to present the error estimates, the line of proof for the IMEX-LDG(k,3) scheme (3.2) is
similar. The standard approach of error estimates is to introduce a suitable projection
and to divide the error e into two parts, one is the projection error 7, the other is the
error ¢ in the finite element space, then to estimate & by 7. Hence the projection is a
key ingredient in the error estimate. The principle of choosing the projection in the DG
analysis is to eliminate the projection errors in the inner product and element interfaces as
much as possible. Thus we usually choose the projection according to the very choice of the
numerical fluxes, for example, the well-known Gauss-Radau projection for purely upwind
numerical flux or PANF. Here for GANF, we adopt the GGR projection proposed in [24].

To simplify the analysis, we consider the simple case when the parameters ¢ = 6 # %
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4.1 GGR projection

Following [24, 7], we define the GGR projection. For any periodic function z € H'(7},), the
projection Pgz € V), satisfies

(Pgz — z,v); =0, Yve P,_1(I), (4.1a)
(P52){)y = 271 (4.1D)

for any j = 1,---,N and any parameter 3. Here z(9) = Bz + 3z with 3 = 1 — .
Obviously, this projection degenerates to the local Gauss-Radau projection if the parameter
0 is taken as 0 or 1. Hence it can be viewed as an extension of the local Gauss-Radau
projections.

According to [7], we have the following lemma.

Lemma 4.1. Assume z € HY(T},) with { > 1. For 3 # %, the projection Pgz is well-defined

and the projection error 1 = z — Pgz satisfies
Il + 22 nllr, < CA™™ L2 e ), (4.2)

where the bounding constant C' > 0 is independent of h and z.

4.2 Reference functions and energy equation
In this paper, we assume the exact solution U satisfies the following smoothness

U e L>®0,T; H**?), U, e L>®(0,T; H**' n H?), (4.3a)
Uy € L0, T; HY), Uy € L>(0,T;L?), (4.3b)

where L>(0, T; H) represents the set of functions v such that maxo<;<7 ||v(-, Ol e ) < oo
To proceed with error estimates, we introduce several reference functions, denoted by

UD,QW for ¢ = 0,1,2, associated with the second order IMEX SSP time discretization

(2.26). In detail, U(®) = U is the exact solution of the problem (2.1) and then we define

W = g© 4 yrvaQW, (4.4a)
U@ = U0 — reUM + (1 = 29)7vdQY +4rvdQ?, (4.4b)

where
QY =Vaul¥, for ¢=1,2. (4.5)

For any indices n and ¢ under consideration, the reference functions at each stage time level
are defined as U™ = UO) (z,t"), Q™ = Q) (z,t").

Under the smoothness assumption (4.3) we can verify that the reference functions satisfy

U = U = TeUP - UR) 4 DVAQE + Q) + ¢ (46)
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where (" is the local truncation error, which satisfies
I¢™ < C7?, (4.7)

where C depends on the regularity of U;, Uy and Uy, the detailed proof will be given in the

Appendix. As a consequence, the reference functions satisfy the following variational form

U™ 0) = (U",0) +47LQ™, v), (4.8a)
(U™, v) = (U™, v) + TH(U" Vo) + (1 = 29)7L(Q™ v) +47L(Q™2,v), (4.8b)
(U ) = (U™, v) + [ (U™ v) + H(U™?,v)]

+5 e (Q”’l, v) + LQ™,0)] + (¢, v), (4.8¢)

for any v € V},, and
Q™ r)y =KU™,r), YreV, for £=1,2. (4.8d)

At each stage time, we denote the error between the exact (reference) solution and
the numerical solution by e™’ = (eZZ, eq’ Z) = (U™ — vt Qmf — ™). As the standard
treatment in finite element analysis, we would like to divide the error in the form e = £ —n,

where

n = (Mu,1g) = (U = U, F;Q - Q),
§ = (§u, &) = (BU —u, F;Q — q), (4.9)

here we have dropped the superscripts n and ¢ for simplicity.

By the definition of the projections P and Pj we can verify that
H (1, v) =0, L(ng,v) =0, K(ny,r) =0, (4.10)

for any v,r € Vj, since we assume ¢ = # at present. In addition, by the smoothness
assumption (4.3a), it follows from Lemma 4.1 and the linearity of the projections Py and

Pj; that the stage projection errors and their evolutions satisfy
Il =+ g1l + B2t I, < CRFFY, (4.11a)

and
[Resm|| < ChF e, (4.11b)

for any n and ¢ = 0,1,2 under consideration. Here (4.11b) is obtained by the regularity
Us, Up € L>®(0,T; HEFY).
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In what follows we will focus on the estimate of the error in the finite element space,
say, & € Vj, x V3. To this end, we need to set up the error equations about €. Subtracting

those variational forms in (4.8) from those in the scheme (3.1), in the same order, we get

(€0t v) = (&0, v) +7LEP V) + (! — i v), (4.12a)
(€%, v) = (&) + TH(ER V)
+ (1 - 27)T£( (?717'0) + ’YTE( 2’271)) + (77372 - 7]37”)7 (412b)
(6, 0) = (&l v) + 5 [HIE ) + H(E, V)]
T n n mn n n
+ 5 [LEG T v) + L% v)] + (™ =0l v) + (¢ ). (4.12¢)

Adopting the notations R and R as in Subsection 3.1, we obtain the following error equations

(Re€lt,v) =ber (L v) + TL(REY, v) + Ry + 03¢, v), for £=1,2,3, (4.13a)
(&tr) =K@t r) + mptor), for £=1,2, (4.13b)

q )

where we have used (4.10). Here by = 0 for £ = 1 and by = ﬁ for £ = 2,3, 03 is the
Kronecker symbol which equals 1 if £ = 3 and equals 0 otherwise.
Let oy = 265", 0y = €01, 05 = 262, Taking v = @y in (4.13a) for £ = 1,2, 3, respectively,

adding them together, we can obtain the energy equation

€t 1? = lenl® + IR 5 1% = 24: Vi, (4.14a)
=1
where
Vi —TZb[H b=l g (4.14D)
Vo=1 Z L(ReEY, D), (4.14c)
/=1
Vs = [IS262117, (4.14d)
‘74 = ibg(RgﬁZ + 53((",17@). (4.146)
/=1

4.3 Energy estimate

Before proceeding with the energy estimate, we present the following important relationship

1(€u)ell + Vuh= &) < \/7 (Eqll + limg ) (4.15)
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which can be derived similarly as in Lemma 2.3, and hence

[H(&u, v)| < Cf(quH + R o), (4.16)

for any v € V},.
In what follows, we give the estimate of V; for i = 1,2,3,4. We will first consider the
case ¥ > % By (2.9) we have

i = (0 - ger ([ + 162 <. (117)

Owing to (2.10) and the relationship (4.13b), we get
=71 / EnTAERdT + 7 / nTAERdz, (4.18)

where &7 = (£, LenT, g = (et )T and A is defined in (3.13).
To estimate Vi, we notice that
(5267, v) = ZH(S1€5,v) + mLE165, ) + (S + ¢ )
=wi(Ri€],v) + wa(Ra€ v) + SHSIEL ) — warH(E v)
+ (Samy, — wiRiny — walamy + ¢, v), (4.19)
where w; and wy are the same as before. Thus taking v =S¢} in (4.19) we get
IS2631| < fwilIR1E7 | + w2 [R2E7 | + V, (4.20)

where

(7 &
V= Omr (6 |+ 16570 + ) 4+ O 7).

Here (4.16) and (4.11), (4.7) are used. Along the same line as the estimate of ||Squ™| in

Subsection 3.1.2, we can derive
IS26311* < IIR1&5 112 + ool IR 11 + 4V, (4.21)
where oy is taken as S as before. Taking v = Ry} in (4.13a) for ¢ = 2 yields
IR2& 1% = TH(E0" Ro&l) + TL(R2E)  Ro&L) + (Ramy, Ro&lh).
Applying (4.16) for the first term, using (2.10) and (4.13b) for the second term and the

Cauchy-Schwarz inequality for the last term, we get

IRo€L ]I < C—=r(llEg || + B ||Rag|

\/_
. / €T Aoglda 4 7 / T Agglda + Ryl |RoED|

n C’c
S€|’R2§u”2

”gg 1H2 + Ch2k+2

-7 / g"TAQg"da;+T / no " Ax€lda, (4.22)
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for arbitrary € > 0, where Ay is defined in (3.23). Taking e =1 —o0¢ = % leads to

QC’C

Vs = [S26311% <RI + )& + Ch¥ Ry

—T / E"TAQE"dx +7 / ne T As€lda + 4V? (4.23)

Finally, using the Cauchy-Schwarz inequality, (4.11), (4.7) and Young’s inequality di-
rectly leads to

< Tt + 1€021%) + C(h* 27 4+ 7°). (4.24)

The estimate of &7’1, &7’2 are presented in the following lemma, whose proof will be given
in the Appendix.

Lemma 4.2. Under the condition of Theorem 3.1, we have
e l® < Cllgn? + Ch***27, - for (=12, (4.25)
where the bounding constant C' is independent of h and 7.

As a result
vV, < Cr|| €)% + C(h2k+27' + 7°). (4.26)

Combining (4.17), (4.18), (4.23) and (4.26), we get

lemH 2 — e < / €7 (A + Ag)gnda + 7 /Q 7T (A + Ag)Enda

C’c
+

7 (€12 + Nlgg2I1?) + Crllenl? + C(h#+27 + )

gcT\\gm2+C(h2k+2T+T5) —T/ €7 (Ay + Ag)€ndx
Q

Cccr T an
+< y +e> T/ngqudx, (4.27)

for arbitrary € > 0. Since A + Ay — 41 is positive definite for v € [y1,72], taking e small

enough and letting 7 < 7 such that CC =271+ < 7, by the discrete Gronwall inequality, and
noting that ||£2]|] < Ch**1 (refer to [7]), we obtain

€8] < C(R*1 4 72). (4.28)

Remark 4.1. In the case ¥ < %, 171 < 0 does not hold. But we can estimate 171 similarly
as the estimate for Vq in (3.28). According to (4.16), Vi can be controlled by the stability

terms provided by Va, so we will get the same results as that for ¥ > %

Owing to (4.28), (4.11) and the triangle inequality, we can obtain the final error estimate,

which is summarized in the following theorem.
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Theorem 4.1. Let U be the exact solution of problem (2.1) satisfying the smoothness
assumption (4.3) and let u be the numerical solution of scheme (3.1). Let 9 = 6 # &, there
erists a positive constant 1o which is independent of the mesh size h, such that if 7 < 79
then

max [T ") —u®|| < C(hFH + 72, (4.29)

where T is the final computing time and the bounding constant C > 0 is independent of n, h

and T.

Remark 4.2. The optimal error estimate is not easy to get when ¥ # 0. In this situation,

H (0, v Z Dj-3ll;y #0,

if we adopt the same projections PyU and F;Q) as above. As a result, there will be some

extra terms

W (v) = —ZH(Sm,v) + worH(m " v)

on the right hand side of (4.19). Even if we use the important relationship (4.15), we would
still be unable to get the expected estimate to W (S9&!"), due to the loss of stability for terms

like |2 We could use the inverse inequality and get
W (Sa83) < CRM27[8567] < Chlr|ISa€l

which cannot lead to the same estimate to ||[So&l}|| as (4.20), but only to the sub-optimal error
estimate O(h* +72). However, numerical experiments do indicate optimal convergence rates
in this case. In future work we will try to find different techniques to obtain optimal error

estimates in this case.

5 Numerical experiments

We will present numerical experiments to illustrate the stability and error estimates of the
proposed schemes, for different parameters 19,6 in the numerical fluxes. In all the following
numerical experiments, piecewise polynomials of degree 1 and 2 are adopted respectively
with the second order and third order IMEX SSP schemes, such that the orders of accuracy
match in space and time if 7 = O(h).

To test the stability of the schemes, we consider problem (2.1) defined in [—m, 7] with

the exact solution U(z,t) = e % sin(z — ct). Different pairs of parameters (9,6) = (1, 1),

(35 G311, (3.3, (3.3) and (8,60) = (3.2), (3.1, (3,1), (1.3, (5,3) are tested
on uniform meshes, with mesh size h = 27 /N, where N is the number of cells. Somewhat

surprisingly, we find that the maximum time step 79 to ensure the stability of the schemes
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(in the sense that the L?-norm decreases with time) are the same for different pairs of
parameters. Table 1 lists the maximum time step 9. In the test, we take N = 1280. The
final computing time is 7' = 5000. The result shows that 79 ~ wd/c? for some constant o,
and 7y is independent of h, because if we take N = 640, we can get the same results. For
the second order scheme (3.1), we verify the stability for v € [y1,72], it seems that the ratio
w is larger for larger ~, we list the results for v = 0.28,1 — @, 0.38 as examples.

Table 1: The maximum time step 7 to ensure that the L?-norm decreases with time for
the IMEX-LDG(1,2) scheme (3.1) and the IMEX-LDG(2,3) scheme (3.2).

d=0.01 c=0.1
scheme w
c=005]|¢c=01]|¢c=02|d=001|d=0.02 | d=0.04
(3.1), v =0.28 5.034 1.258 0.313 1.258 2.517 5.064 1.258
3.1),y=1- V2 5.540 1.385 0.346 1.385 2.770 5.540 1.385
2

(3.1), v =0.38 7.402 1.848 0.461 1.848 3.701 7.399 1.848
(3.2) 2.632 0.657 0.164 0.657 1.316 2.632 0.657

To verify the error accuracy of the schemes, we first test the model equation (2.1) with
¢ =d = 1. The computing time is T" = 1 and uniform meshes are adopted. In Tables 2-5, we
list the L2-norm errors and orders of accuracy for the IMEX-LDG(1,2) and IMEX-LDG(2,3)
schemes, for different pairs of parameters (¢,6) (6 # %) Optimal orders of accuracy can
be observed from these tables. For the IMEX-LDG(1,2) scheme, we only list the results for
y=1-— @ to save space, the orders of accuracy for other v are almost the same, but the

errors will be a little larger for larger ~.

Table 2: L2-norm errors and orders of accuracy for the IMEX-LDG(1,2) scheme. ¥ = 6.
T =h.

_ 1 _ 3 _ _5 _ 3
N 0=z =13 =1 0=z =3
error order error order error order error order error order
40 | 4.99E-03 - 5.10E-03 - 4.89E-03 - 4.85E-03 - 4.83E-03 -

80 | 1.26E-03 1.99 | 1.27E-03 2.00 | 1.22E-03 2.00 | 1.21E-03 2.00 | 1.21E-03  2.00
160 | 3.16E-04 2.00 | 3.17TE-04 2.00 | 3.06E-04 2.00 | 3.03E-04 2.00 | 3.03E-04 2.00
320 | 7.95E-05 1.99 | 7.97E-05 1.99 | 7.68E-05 1.99 | 7.63E-05 1.99 | 7.61E-05 1.99
640 | 1.98E-05 2.00 | 1.99E-05 2.00 | 1.92E-05 2.00 | 1.90E-05 2.00 | 1.90E-05 2.00
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Table 3: L2-norm errors and orders of accuracy for the IMEX-LDG(1,2) scheme. ¥ # 6.
7 = 0.75h.

(19’9):(%’%) (079):(%’1) (079):(%’%) (079):(1’%) (19’9):(%’%)

error order error order error order error order error order

40 | 2.88E-03 - 2.85E-03 - 2.75E-03 - 2.75E-03 - 1.39E-02 -

80 | 8.78E-04 1.71 | 8.43E-04 1.76 | 8.19E-04 1.75 | 7.38E-04 1.90 | 2.60E-03 2.42
160 | 2.34E-04 1.91 | 2.06E-04 2.04 | 2.00E-04 2.03 | 1.82E-04 2.02 | 5.09E-04 2.35
320 | 5.91E-05 1.99 | 5.02E-05 2.03 | 4.90E-05 2.03 | 4.49E-05 2.02 | 1.12E-04 2.18
640 | 1.40E-05 2.08 | 1.21E-05 2.05 | 1.18E-05 2.05 | 1.11E-05 2.02 | 2.52E-05 2.16

Table 4: L?-norm errors and orders of accuracy for the IMEX-LDG(2,3) scheme. ¢ = 6.
T =h.

N 6=1 o=3 =1 o=2 o=3
error order error order error order error order error order
40 | 1.86E-04 - 1.85E-04 - 1.86E-04 - 1.86E-04 - 1.86E-04 -

80 | 2.28E-05 3.02 | 2.28E-05 3.02 | 2.28E-05 3.02 | 2.29E-05 3.02 | 2.29E-05 3.02
160 | 2.85E-06 3.00 | 2.85E-06 3.00 | 2.85E-06 3.00 | 2.86E-06 3.00 | 2.86E-06 3.00
320 | 3.58E-07 2.99 | 3.58E-07 2.99 | 3.58E-07 2.99 | 3.58E-07 3.00 | 3.59E-07  3.00
640 | 4.45E-08 3.01 | 4.45E-08 3.01 | 4.46E-08 3.01 | 4.46E-08 3.01 | 447E-08 3.01

It is worth pointing out that in the special case 6§ = %, if 9 = 6 then the stability is
almost the same as other parameter pairs, according to Remark 3.2. But if ¥ # 6, the
stability results are very interesting. Our experiments indicate that the schemes are not
stable if ¥ < %, and if ¥ > % then the schemes are stable under the constraint 7 < AA
for some constant A, which is the standard CFL condition of RKDG methods for solving
hyperbolic problems [37, 38]. The L?-norm errors and orders of accuracy in the special
case 0 = % are shown in Table 6, from which we observe optimal accuracy except for the
second order scheme with £ = 1 in the case ¥ = 0 = %, where sub-optimal accuracy is
observed, which coincides with the conclusion given in [34] that only k-th order accuracy
can be obtained for odd k if central numerical flux is adopted in the LDG scheme. Notice

that in this test, we require smaller time step to ensure the stability of the schemes in the



29

Table 5: L2-norm errors and orders of accuracy for the IMEX-LDG(2,3) scheme. ¥ # 6.

7T =h.
N (1979):(%7%) (079): (%71) (079): (%7%) (079):(17%) (1979):(%7%)
error order error order error order error order error order
40 | 1.86E-04 - 1.86E-04 - 1.86E-04 - 1.87E-04 - 1.86E-04 -
80 | 2.29E-05 3.02 | 2.29E-05 3.02 | 2.29E-05 3.02 | 2.30E-05 3.02 | 2.29E-05 3.02
160 | 2.86E-06 3.00 | 2.86E-06 3.00 | 2.86E-06 3.00 | 2.87E-06 3.00 | 2.85E-06 3.00
320 | 3.60E-07 2.99 | 3.60E-07 2.99 | 3.60E-07 2.99 | 3.62E-07 2.99 | 3.60E-07 2.99
640 | 4.47E-08 3.01 | 4.48E-08 3.01 | 447E-08 3.01 | 4.50E-08 3.01 | 4.47E-08 3.01
case ¥ # 0 for 6 = %, while larger time step can be taken when 9 = 0 = %
Next we consider the viscous Burgers’ equation
U+ UU, = dUyy + g(x,t), (5.1)
in [—m, 7], where g(z,t) = 724 sin(2z). The exact solution is
Ulx,t) = e sin(z). (5.2)

The numerical flux for the convection term is taken as %[0(u‘)2+7§(u+)2], and the numerical

flux for the diffusion term is the GANF with parameter 6. For d = 1,0.2,0.05, the L*-
norm errors and orders of accuracy for IMEX-LDG(1,2) and IMEX-LDG(2,3) schemes with
different pairs of parameter (¢,0) are listed in Table 7 and Table 8, respectively. In this
test, the computing time is 1" = 1 and uniform meshes are adopted. Optimal orders of
accuracy are observed except for the case (¢,0) = (%, %) for the IMEX-LDG(1,2) scheme.

6 Concluding remarks

The LDG methods with generalized alternating numerical fluxes coupled with two specific
IMEX SSP time discretizations for convection-diffusion problems have been shown to be
unconditionally stable, in the sense that the time step is only required to be upper bounded
by a positive constant which is independent of the mesh size. The key is the important
relationship established between the gradient and interface jump of the numerical solution
with the independent numerical solution of the gradient. The energy equations have been
built up following those constructed for the explicit RKDG methods. By the aid of the

generalized Gauss-Radau projection, we have also obtained optimal error estimates for the
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Table 6: L%-norm errors and orders of accuracy for IMEX-LDG(1,2) and IMEX-LDG(2,3)
schemes. 0 = % The time step for each column is 7 = h,0.1h,0.1h,0.1h respectively.

9=41 9=2 J=1 9=2
scheme N 2 4 4
error order error order error order error order
40 | 9.23E-03 - 2.77TE-03 - 2.04E-03 - 1.82E-03 -

80 | 3.95E-03 1.22 | 8.02E-04 1.79 | 547E-04 1.90 | 4.77E-04 1.93
IMEX-LDG(1,2) | 160 | 1.88E-03 1.07 | 2.18E-04 1.88 | 1.42E-04 1.95 | 1.22E-04 1.97
320 | 9.31E-04 1.02 | 5.70E-05 1.94 | 3.62E-05 1.97 | 3.09E-05 1.98
640 | 4.64E-04 1.00 | 1.46E-05 1.97 | 9.13E-06 1.99 | 7.73E-06 2.00

40 | 1.85E-04 - 8.29E-06 - 8.35E-06 - 8.40E-06 -

80 | 2.28E-05 3.02 | 1.03E-06 3.01 | 1.03E-06 3.01 | 1.04E-06 3.02
IMEX-LDG(2,3) | 160 | 2.85E-06 3.00 | 1.29E-07 3.00 | 1.31E-07 2.98 | 1.32E-07 2.97
320 | 3.58E-07 2.99 | 1.61E-08 3.01 | 1.62E-08 3.02 | 1.62E-08 3.03
640 | 4.45E-08 3.01 | 2.02E-09 3.00 | 2.04E-09 2.99 | 2.07E-09 2.97

proposed schemes. Numerical experiments have verified the theoretical results as well as
illustrated the effect of different choices of the numerical fluxes. The results of this paper can
also be extended to multi-dimensional and nonlinear convection-diffusion problems, which

will be left for our future work.

7 Appendix

Proof of (4.7). Firstly, by Taylor’s expansion
2 3

Ut = U 4+ rU + %U{; + %Um(tg),

where t¢ € (1", t"*1) and we omit the argument x for simplicity. Secondly, notice that

Un,l — " + ’YT\/EQZ’I,
U™? =U" + rU = 2mVdQE! + 4 VdQy?,
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Table 7: Burgers’ equation: L2?-norm errors and orders of accuracy for IMEX-LDG(1,2)
scheme. 7 = 0.75h,0.25h,0.1h for d = 1,0.2,0.05 respectively.

d N (079):(%5%) (079):(%5%) (19’9):(%7%) (19’9):(%7%) (079):(%1)
error order error order error order error order error order
40 | 1.90E-02 - 1.89E-03 - 1.78E-03 - 1.08E-03 - 1.23E-03 -
80 | 9.49E-03 1.00 | 5.99E-04 1.66 | 4.51E-04 1.98 | 3.00E-04 1.84 | 3.23E-04 1.93
1 160 | 4.74E-03 1.00 | 1.47E-04 2.03 | 1.12E-04 2.00 | 7.33E-05 2.04 | 7.91E-05 2.03
320 | 2.37E-03  1.00 | 3.59E-05 2.03 | 2.81E-05 2.00 | 1.80E-05 2.03 | 1.95E-05 2.02
640 | 1.19E-03 1.00 | 8.60E-06 2.06 | 7.01E-06 2.00 | 4.40E-06 2.03 | 4.82E-06 2.02
40 | 4.37E-02 - 4.11E-03 - 3.67E-03 - 1.76E-03 - 2.26E-03 -
80 | 2.18E-02 1.00 | 9.96E-04 2.04 | 9.25E-04 1.99 | 4.64E-04 1.92 | 5.90E-04 1.94
0.2 | 160 | 1.09E-02 1.00 | 2.49E-04 2.00 | 2.32E-04 2.00 | 1.17E-04 1.99 | 1.45E-04 2.03
320 | 5.46E-03 1.00 | 6.16E-05 2.01 | 5.79E-05 2.00 | 2.90E-05 2.01 | 3.55E-05 2.03
640 | 2.73E-03  1.00 | 1.49E-05 2.05 | 1.45E-05 2.00 | 7.05E-06 2.04 | 8.69E-06 2.03
40 | 5.49E-02 - 3.38E-02 - 4.00E-03 - 2.06E-03 - 3.17E-03 -
80 | 2.74E-02 1.00 | 1.87E-03 4.17 | 1.07E-03 1.90 | 5.15E-04 2.00 | 6.60E-04 2.26
0.05 | 160 | 1.37E-02 1.00 | 3.14E-04 2.58 | 2.69E-04 2.00 | 1.28E-04 2.00 | 1.61E-04 2.03
320 | 6.86E-03 1.00 | 7.00E-05 2.16 | 6.73E-05 2.00 | 3.22E-05 2.00 | 3.99E-05 2.01
640 | 3.43E-03 1.00 | 1.70E-05 2.04 | 1.68E-05 2.00 | 8.05E-06 2.00 | 1.00E-05 1.99
and then
T T
U" = Se(Up! + U3?) + SvVd(Qp' + Q)
T T
=U" + _Utn,l + _UtThQ
77' ) 1
=U" 70 + - 2 5 (Qai” — Qai)
2
2 1
=U"+7Uf + 7Uzz f AQ; + T-VaAQ - Q).
As a result
n 7_3 /7 \/_ \/_ n,2 n,1
C = FUttt(‘fat{) tht d(th - th )
3 3 2
T T )1 )1 T
=g U@, te) — T(UZtLt + CU;Ltt) - T[(U"’Z — U™y + (U™ = U™ ).
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Table 8: Burgers’ equation: L?-norm errors and orders of accuracy for IMEX-LDG(2,3)
scheme. 7 = h,0.5h,0.1h for d = 1,0.2,0.05 respectively.

v Leo=-dd [wo-¢d [ wo-6GD | 00-G | 0.0-G

error order error order error order error order error order

40 | 1.08E-04 - 1.08E-04 - 1.08E-04 - 1.09E-04 - 1.09E-04 -

80 | 1.33E-05 3.02 | 1.33E-05 3.02 | 1.33E-05 3.02 | 1.34E-05 3.02 | 1.34E-05 3.02

1 160 | 1.68E-06 2.98 | 1.68E-06 2.98 | 1.68E-06 2.98 | 1.70E-06 2.98 | 1.69E-06 2.98

320 | 2.14E-07 298 | 2.14E-07 2.98 | 2.14E-07 2.98 | 2.15E-07 298 | 2.14E-07 2.98

640 | 2.65E-08 3.01 | 2.66E-08 3.01 | 2.66E-08 3.01 | 2.68E-08 3.01 | 2.66E-08 3.01

40 | 1.84E-05 - 2.41E-05 - 2.13E-05 - 3.86E-05 - 2.75E-05 -

80 | 2.30E-06 3.00 | 2.83E-06 3.09 | 2.65E-06 3.00 | 4.74E-06 3.03 | 3.45E-06 2.99

0.2 | 160 | 2.87E-07 3.00 | 3.70E-07 2.94 | 3.32E-07 3.00 | 6.07E-07 297 | 4.36E-07 2.99

320 | 3.59E-08 3.00 | 4.51E-08 3.04 | 4.15E-08 3.00 | 7.47E-08 3.02 | 5.49E-08 2.99

640 | 4.49E-09 3.00 | 5.49E-09 3.04 | 5.18E-09 3.00 | 9.20E-09 3.02 | 6.87E-09  3.00

40 | 2.13E-05 - 2.48E-05 - 2.47E-05 - 4.20E-05 - 3.34E-05 -

80 | 2.66E-06 3.00 | 3.08E-06 3.01 | 3.08E-06 3.00 | 5.32E-06 2.98 | 4.09E-06 3.03

0.05 | 160 | 3.33E-07 3.00 | 3.85E-07 3.00 | 3.84E-07 3.00 | 6.67E-07 3.00 | 5.10E-07 3.01

320 | 4.16E-08 3.00 | 4.81E-08 3.00 | 4.80E-08 3.00 | 8.34E-08 3.00 | 6.36E-08  3.00

640 | 5.20E-09 3.00 | 6.03E-09 2.99 | 6.01E-09 3.00 | 1.04E-08 3.00 | 7.95E-09 3.00
Since

g2 —pyml :7'Ut”’1 — 377‘\/362;"1 + 77‘\/362;"2
=7UP" = 3yr (U + cURY) + 47 (U2 + cU2).

We get ”CnH = O(Tg) lf Uttt7 Uxtta U:c:ct S LOO(O,T, L2)

Proof of Lemma 4.2. By taking v = 26" in (4.12a) and v = 2602 in (4.12b), we get

from (2.10) and (4.13b) that

+2(1 - 27)7'(172’1

n,1
q )

’>q

et 1P + et — € = l€all* = — 2ylleg I + 200l — i, €01,
l€a?1? + llew? — enll® = llEall® = 2rr(ent, &) + 20m* — i, €0°%)
—2(1 = 2y)7(

&) = 2rlleg |

n,2

)+ 297 (g2

’>q

n,2)'

(7.1)

(7.2)
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Hence applying Young’s inequality yields

et 1P < 20181 — 2yl 1) + Ch*F 272, (7.3)

Using (4.16) for the term 27H (&, ’1, & ’2), applying Cauchy-Schwarz inequality and Young’s

inequality for the remaining terms, we get

n n c n n n
g 211* < llgal® + C—dT(Hiq’QH + R Ent ] + on e

\/7
— 21— 2)r( ) — 2y + ORI
< ezl + eI + ST r e R + Shen? + onterr
— 21— 27 €0 — (29 — )l (7.4
So taking € = 3 and letting C;;T < 3, we get

e 1* <GlEI — 2[4y lleg 17 + 2(1 — 29) (€t €52) + €G3 1P + Ch*+2r
<6llEn]® + Cn* i, (7.5)

if v € [y1,72]. Thus the lemma is proved. O
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