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Abstract In this paper we discuss the local discontinuous Galerkin methods coupled with two specific explicit-

implicit-null time discretizations for solving one-dimensional nonlinear diffusion problems Ut = (a(U)Ux)x. The

basic idea is to add and subtract two equal terms a0Uxx on the right hand side of the partial differential equation,

then to treat the term a0Uxx implicitly and the other terms (a(U)Ux)x − a0Uxx explicitly. We give stability

analysis for the method on a simplified model by the aid of energy analysis, which gives a guidance for the

choice of a0, i.e, a0 > max{a(u)}/2 to ensure the unconditional stability of the first order and second order

schemes. The optimal error estimate is also derived for the simplified model, and numerical experiments are

given to demonstrate the stability, accuracy and performance of the schemes for nonlinear diffusion equations.
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1 Introduction

Many partial differential equations (PDE) which arise in physics or engineering involve the computation

of nonlinear diffusion, such as the miscible displacement in porous media [16] which is widely used in the

exploration of underground water, oil, and gas, the carburizing model [6] which is derived in the chemical

heat treatment in mechanical industry, the high-field model in semiconductor device simulations [7,8], and

so on. It is well known that the time discretization is a very important issue for such problems containing

complicated nonlinear diffusion coefficients. Explicit time marching always suffer from stringent time step

restriction. Implicit time marching can overcome the constraint of small time step, however, this method

becomes cumbersome if the diffusion coefficients vary in space or depend on the solution (quasi-linear or

nonlinear cases), since a Newton iteration is required at each time step.
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To cope with both the shortcomings of the explicit and implicit time marching methods, we notice that

the implicit time discretization can be actually very efficient for solving diffusion equations with constant

coefficients, since the inverse matrix is only needed to be solved once. This observation inspire us to add

and subtract a term with constant diffusion coefficient a0Uxx on the right hand side of the considered

PDE

Ut = (a(U)Ux)x, x ∈ Ω = [a, b], t ∈ (0, T ] (1.1)

where a(U) > 0 and a(U) is bounded and smooth, and then apply the implicit-explicit (IMEX) time

marching methods [2] to the equivalent PDE

Ut = (a(U)Ux)x − a0Uxx︸ ︷︷ ︸
T1

+ a0Uxx︸ ︷︷ ︸
T2

. (1.2)

Namely, we treat the damping term T2 implicitly and the remaining term T1 explicitly.

Such idea had been adopted by Douglas and Dupont [14] to assure the stability for a nonlinear diffusion

equation on a rectangle. The similar idea has also been adopted, for example, by Smereka [22] in the

context of flow by mean curvature and surface diffusion, by Jin and Filbet [17] in the context of the

Boltzmann equation of rarefied gas dynamics when the Knudsen number is very small, in the context of

hyperbolic systems with diffusive relaxation [4], and for the solution of PDEs on surfaces [21]. In a recent

study, Duchemin and Eggers [15] proposed to call this method as explicit-implicit-null (EIN) method.

In this paper, we exploit EIN method coupled with local discontinuous Galerkin (LDG) spatial dis-

cretization to solve the nonlinear diffusion equation (1.1). The LDG method was introduced by Cockburn

and Shu in [12] for solving convection diffusion equations, motivated by the work of Bassi and Rebay [3]

for the compressible Navier-Stokes equations. The idea of the LDG method is to rewrite the equations

with higher order derivatives into an equivalent first order system, then apply the DG method [11] to

the system, so the LDG scheme shares the advantages of the DG methods. It can easily handle meshes

with hanging nodes, elements of general shapes and local spaces of different types, thus it is flexible for

hp-adaptivity. Besides, a key advantage of the LDG scheme is the local solvability, that is, the auxiliary

variables approximating the derivatives of the solution can be locally eliminated [5, 12].

Two EIN time marching schemes with LDG spatial discretization (EIN-LDG) will be analyzed in the

present paper. The first order scheme is a combination of forward Euler discretization and backward

Euler discretization for the explicit part and the implicit part, respectively, which was considered in our

previous work [23,24] for solving one-dimensional convection-diffusion problem and time-dependent fourth

order problem. The second order scheme to be considered in this paper is different from the one we used

in [23, 24], the new scheme is a modification of the second order scheme proposed by Cooper and Sayfy

[13]. By the aid of the energy analysis, we show that the proposed schemes are unconditionally stable

provided a0 > a/2 for the simplified linear model Ut = aUxx, where a > 0 is a constant. The optimal

error estimates will also be given by energy analysis for the simplified model. We would like to point out

that it is necessary to do energy analysis even for the linear model, since the spatial discretization may

result in non-normal systems with a growing dimension, hence the spectral stability analysis based on

scalar eigenvalues arguments may be misleading [18].

Based on the stability and error analysis for the simplified model, we propose a guidance for the choice

of a0 for the general model Ut = (a(U)Ux)x, that is, a0 > max{a(u)}/2, where u is the numerical solution.

It is worth pointing out that it is not necessary to scan the maximum of a(u) and adjust a0 at every

time level, theoretically we can choose a0 as a sufficiently large positive constant. However, too large

a0 may cause larger errors and may require a smaller time step from our numerical observation. So in

practical computing, we adjust a0 after certain number of time steps to alleviate numerical errors and

to keep high efficiency in the meantime. We point out that the EIN-LDG schemes also work well for

convection-diffusion problems with nonlinear diffusions. To verify the accuracy and performance of the

proposed schemes, we present several numerical experiments, including the simulations for porous media

equations and the high-field model in semiconductor device simulations.



Haijin Wang et al. Sci China Math 3

The paper is organized as follows. In Section 2 we present the semi-discrete LDG scheme and the

time-discretization methods. Sections 3 and 4 are devoted to the stability and error analysis of the EIN-

LDG methods, respectively. In Section 5 we will present numerical results to verify the accuracy and the

performance of the proposed schemes. The conclusion is given in Section 6.

2 The LDG scheme and time-discretization

In this section, we will present the discontinuous finite element space, the semi-discrete LDG scheme,

and the implicit-explicit (IMEX) Runge-Kutta (RK) time-discretization methods.

2.1 The discontinuous finite element space

Let Th = {Ij = (xj−1
2
, xj+1

2
)}Nj=1 be a partition of Ω, where x 1

2
= a and xN+1

2
= b are the two boundary

endpoints. Denote the cell length as hj = xj+1
2
− xj−1

2
for j = 1, . . . , N , and define h = maxj hj. We

assume Th is quasi-uniform in this paper, that is, there exists a positive constant ρ such that for all j

there holds hj/h > ρ, as h goes to zero.

Associated with this mesh, we define the discontinuous finite element space

Vh =
{
v ∈ L2(Ω) : v|Ij ∈ Pk(Ij), ∀j = 1, . . . , N

}
, (2.1)

where Pk(Ij) denotes the space of polynomials in Ij of degree at most k. Note that functions in this

space are allowed to have discontinuities across element interfaces. At each element interface point, for

any piecewise function p, there are two traces along the right-hand and left-hand, denoted by p+ and p−,

respectively. The jump is denoted by [[p]] = p+ − p−.

2.2 The semi-discrete LDG scheme

We begin with equation (1.2) to define the LDG scheme. Denote by b(U) =
√
a(U), by introducing

P = b(U)Ux and Q = Ux, the equation can be written as

Ut + (a0Q− b(U)P )x = a0Qx, (2.2a)

P −B(U)x = 0, (2.2b)

Q− Ux = 0, (2.2c)

where B(U) =
∫ U

b(s)ds. The semi-discrete LDG scheme is to find u, q, p ∈ Vh, such that for arbitrary

v, r, w ∈ Vh we have

(ut, v) = L̃(b(u)p, v)− a0L(q, v) + a0L(q, v), (2.3a)

(q, r) =K(u, r), (2.3b)

(p, w) = K̃(B(u), w), (2.3c)

where

L(q, v) = −
N∑

j=1

[
(q, vx)j − q̂j+1

2
v−
j+1

2

+ q̂j−1
2
v+
j−1

2

]
, (2.4a)

K(u, r) = −
N∑

j=1

[
(u, rx)j − ûj+1

2
r−
j+1

2

+ ûj−1
2
r+
j−1

2

]
, (2.4b)

L̃(b(u)p, v) = −
N∑

j=1

[
(b(u)p, vx)j − (b̂(u)p̂)j+1

2
v−
j+1

2

+ (b̂(u)p̂)j−1
2
v+
j−1

2

]
, (2.4c)

K̃(B(u), w) = −
N∑

j=1

[
(B(u), wx)j − B̂(u)j+1

2
w−

j+1
2

+ B̂(u)j−1
2
w+

j−1
2

]
. (2.4d)
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The “hat” terms are numerical fluxes which are taken as in [12, 26, 27]

q̂ = q+, p̂ = p+, û = u−, B̂(u) = B(u−)

and

b̂(u) =

{
[[B(u)]]/[[u]] if [[u]] 6= 0

b((u+ + u−)/2) otherwise
,

where we omitted the subscripts j− 1
2 and j+ 1

2 . For simplicity of analysis, we consider the periodic

boundary conditions, i.e, w−
1
2

= w−
N+ 1

2

and w+
N+ 1

2

= w+
1
2

for w = u, p, q. For other boundary conditions,

such as Dirichlet boundary condition problems, we refer the readers to [5,25] for the setting of numerical

fluxes.

The initial solution u0 can be taken as any approximation of the initial condition U(x, 0), for example

the Gauss-Radau projection of U(x, 0).

We have the following lemma which can be obtained easily by integrating by parts, so we omit the

proof and refer the reader to [28].

Lemma 2.1. For any pairs of (u1, q1) and (u2, q2) belonging to Vh × Vh, we have

L(q1, u2) = −K(u2, q1) = −(q2, q1), (2.5)

and for any pairs of (u1, p1) and (u2, p2) belonging to Vh × Vh, we have

L̃(b(u1)p2, u1) = −K̃(B(u1), p2) = −(p1, p2). (2.6)

We will discretize the operator L̃(b(u)p, v) − a0L(q, v) in (2.3a) explicitly and the other operator

a0L(q, v) implicitly. The fully discrete scheme will be referred to as EIN-LDG scheme in this paper. In

the next subsection we will give a brief introduction of the IMEX RK time discretizations.

2.3 The IMEX RK time discretizations

For a detailed introduction to IMEX RK schemes, we refer the readers to [2] and [13]. To give a brief

introduction of the scheme, let us consider the system of ordinary differential equations

dy

dt
= L(t,y) +N(t,y), y(t0) = y0, (2.7)

where y = [y1, y2, · · · , yd]⊤, L(t,y) and N(t,y) are derived from the spatial discretization of the two

parts of the right hand side of PDEs. By applying the general s-stage IMEX RK time marching scheme,

the solution of (2.7) advanced from time tn to tn+1 = tn + τ is given by:

Y1 = yn,

Yi = yn + τ

i∑

j=1

aijL(t
j
n,Yj) + τ

i−1∑

j=1

âijN(tjn,Yj), 2 6 i 6 s+ 1,

yn+1 = yn + τ
s+1∑

i=1

biL(t
i
n,Yi) + τ

s+1∑

i=1

b̂iN(tin,Yi),

where τ is the time step, Yi denotes the intermediate stages, ci =
∑i

j=1 aij =
∑i−1

j=1 âij , and tjn =

tn + cjτ . Denote A = (aij), Â = (âij) ∈ R(s+1)×(s+1), b⊤ = [b1, · · · , bs+1], b̂
⊤ = [b̂1, · · · , b̂s+1] and

c⊤ = [0, c2, · · · , cs+1], then we can express the general s-stage IMEX RK scheme as the following Butcher

tableau

c A Â

b⊤ b̂⊤
(2.8)
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In the above tableau, the pair (A | b) determines an s-stage diagonally implicit RK method and (Â | b̂)
defines an (s + 1)-stage (s-stage if b̂s+1 = 0) explicit RK method. The first order IMEX RK method is

taking the forward Euler discretization for the explicit part and the backward Euler discretization for the

implicit part, which is expressed in the Butcher tableau

0 0 0 0 0

1 0 1 1 0

0 1 1 0

(2.9)

The second order IMEX RK method presented in this paper is

0 0 0 0 0 0 0
1
2 0 1

2 0 1
2 0 0

1 1
2 0 1

2 0 1 0
1
2 0 1

2 0 1 0

(2.10)

which is a modification of the second order scheme

0 0 0 0 0 0 0
µ
2

µ
2 0 0 µ

2 0 0

1 1
2 0 1

2
µ−1
µ

1
µ 0

1
2 0 1

2
µ−1
µ

1
µ 0

(2.11)

given by [13], where µ 6= 0. Notice that if we let µ = 1, then (2.10) and (2.11) are only different in the

discretization of L(t,y) at the first intermediate stage, scheme (2.11) discretizes L(t,y) explicitly at the

first stage, while the modified scheme (2.10) discretize L(t,y) implicitly at the first stage. Owing to the

implicit discretization at the first stage, the stability of the modified scheme (2.10) is better than the

original one (2.11), especially when adopting it for the convection-diffusion problems. This is why we

consider the modified scheme (2.10) in this paper.

3 Stability analysis

In this section, we will present the stability analysis for the proposed EIN-LDG schemes. We would like

to investigate how to choose a0 such that the schemes are stable. For simplicity of analysis, we consider

the simplified equation

Ut = aUxx, (3.1)

with constant diffusion coefficient a > 0. Adding and subtracting a term a0Uxx we get

Ut = (a− a0)Uxx + a0Uxx. (3.2)

Then the LDG scheme reads

(ut, v) = (a− a0)L(q, v) + a0L(q, v), (3.3a)

(q, r) =K(u, r), (3.3b)

where L and K have been defined in Section 2.

3.1 First order scheme

Now we consider the first order EIN-LDG scheme, which is the first order IMEX time discretization (2.9)

coupled with (3.3), i.e,

(un+1, v) = (un, v) + (a− a0)τL(qn, v) + a0τL(qn+1, v), (3.4a)
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(qn,ℓ, r) = K(un,ℓ, r), for ℓ = 0, 1, (3.4b)

where wn,0 = wn and wn,1 = wn+1 for w = u, q.

For the simplified linear model, if we let a0 = a then the scheme (3.4) degenerates to backward Euler

scheme, which is unconditionally stable in the sense that

‖un‖ 6 ‖u0‖, ∀n. (3.5)

So we only consider the case a0 6= a. We state the stability result in the following theorem.

Theorem 3.1. If a0 > a
2 and a0 6= a, then the first order EIN-LDG scheme (3.4) is unconditionally

stable in the sense that

‖un‖2 + a0τ‖qn‖2 6 ‖u0‖2 + a0τ‖q0‖2. (3.6)

Proof. Taking v = un+1 in (3.4a), and by the property (2.5) we have

1

2
‖un+1‖2 + 1

2
‖un+1 − un‖2 − 1

2
‖un‖2 = −(a− a0)τ(q

n, qn+1)− a0τ‖qn+1‖2. (3.7)

Rearranging the terms yields

LHS =
1

2
‖un+1‖2 + 1

2
‖un+1 − un‖2 − 1

2
‖un‖2 + a0τ‖qn+1‖2 = (a0 − a)τ(qn, qn+1) = RHS.

By simple use of the Cauchy-Schwarz and the Young’s inequalities we get

RHS 6 |a0 − a|τ‖qn‖‖qn+1‖ 6
a0
2
τ‖qn+1‖2 + (a0 − a)2

2a0
τ‖qn‖2.

Hence, if we let (a0−a)2

2a0
6

a0

2 , i.e, a0 >
a
2 , then

LHS 6
a0
2
τ(‖qn‖2 + ‖qn+1‖2).

As a result, we have

1

2
‖un+1‖2 + 1

2
‖un+1 − un‖2 − 1

2
‖un‖2 + a0

2
τ(‖qn+1‖2 − ‖qn‖2) 6 0,

that is

‖un+1‖2 + a0τ‖qn+1‖2 6 ‖un‖2 + a0τ‖qn‖2.
And hence we are led to (3.6).

3.2 Second order scheme

The second order EIN-LDG scheme, which is the second order IMEX scheme (2.10) coupled with the

LDG method (3.3), reads

(un,1, v) = (un, v) +
1

2
(a− a0)τL(qn, v) +

1

2
a0τL(qn,1, v), (3.8a)

(un+1, v) = (un, v) + (a− a0)τL(qn,1, v) +
1

2
a0τ [L(qn, v) + L(qn+1, v)], (3.8b)

(qn,ℓ, r) =K(un,ℓ, r), for ℓ = 0, 1, 2, (3.8c)

where wn,0 = wn and wn,2 = wn+1 for w = u, q.

The same as in the first order scheme, we only consider the case a0 6= a, since in the case a0 = a we

can also easily get (3.5) unconditionally. The stability result is given in the following theorem.

Theorem 3.2. If a0 >
a
2 and a0 6= a, then the second order EIN-LDG scheme (3.8) satisfies

‖un‖2 + 1

2
a0τ‖qn‖2 6 ‖u0‖2 + 1

2
a0τ‖q0‖2. (3.9)
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Proof. Subtracting (3.8a) from (3.8b) we get

(un+1 − un,1, v) = (a0 −
1

2
a)τL(qn, v) + (a− 3

2
a0)τL(qn,1, v) +

a0
2
τL(qn+1, v). (3.10)

Taking v = un,1 in (3.8a) we have

1

2
‖un,1‖2 + 1

2
‖un,1 − un‖2 − 1

2
‖un‖2 + 1

2
(a− a0)τ(q

n, qn,1) +
1

2
a0τ‖qn,1‖2 = 0, (3.11)

where we have used property (2.5). Taking v = un+1 in (3.10) we have

1

2
‖un+1‖2 + 1

2
‖un+1 − un,1‖2 − 1

2
‖un,1‖2 + (a0 −

a

2
)τ(qn, qn+1)

+ (a− 3

2
a0)τ(q

n,1, qn+1) +
1

2
a0τ‖qn+1‖2 = 0. (3.12)

Adding (3.11) and (3.12) together, and multiplying by 2, we get

‖un+1‖2 + ‖un,1 − un‖2 + ‖un+1 − un,1‖2 − ‖un‖2 + a0τ
[
‖qn,1‖2 + ‖qn+1‖2

]

+ τ
[
(a− a0)(q

n, qn,1) + (2a0 − a)(qn, qn+1) + (2a− 3a0)(q
n,1, qn+1)

]
= 0.

Then by adding and subtracting δτ‖qn‖2 we obtain

‖un+1‖2 + ‖un,1 − un‖2 + ‖un+1 − un,1‖2 − ‖un‖2

+δτ(‖qn+1‖2 − ‖qn‖2) + τ

∫

Ω

q⊤Aqdx = 0, (3.13)

where q = (qn, qn,1, qn+1)⊤, and

A =




δ 1
2 (a− a0) a0 − a

2
1
2 (a− a0) a0 a− 3

2a0

a0 − a
2 a− 3

2a0 a0 − δ


 . (3.14)

On the other hand, taking v = un,1 − un in (3.8a) we have

‖un,1 − un‖2 + 1

2
(a− a0)τ(q

n, qn,1 − qn) +
1

2
a0τ(q

n,1, qn,1 − qn) = 0,

owing to (2.5). That is

‖un,1 − un‖2 + τ

∫

Ω

q⊤Bqdx = 0, (3.15)

where

B =




1
2 (a0 − a) a

4 − a0

2 0
a
4 − a0

2
1
2a0 0

0 0 0


 . (3.16)

Adding (3.13) and σ×(3.15) together leads to

‖un+1‖2 + (1 + σ)‖un,1 − un‖2 + ‖un+1 − un,1‖2 − ‖un‖2

+ δτ(‖qn+1‖2 − ‖qn‖2) + τ

∫

Ω

q⊤(A+ σB)qdx = 0. (3.17)

Here 0 6 δ 6 a0 and σ > −1 are free parameters. For convenience, we let δ = 1
2a0. We claim that there

exists σ > −1 such that the matrix A + σB is positive definite for any a0 >
1
2a, whose proof will be

deferred to Lemma 3.3. We can also verify that A + σB is semi-positive definite for a0 = 1
2a if σ = 0,

since the eigenvalues of the matrix are 3
4a,

1
4a and 0 in this situation. Thus we can get

‖un+1‖2 + 1

2
a0τ‖qn+1‖2 6 ‖un‖2 + 1

2
a0τ‖qn‖2. (3.18)

And hence we obtain (3.9).
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Lemma 3.3. Let δ = 1
2a0, for any a0 >

1
2a and a0 6= a, there exists σ > −1 such that A + σB is

positive definite, where A and B are defined in (3.14) and (3.16) respectively.

Proof. Assume a0 = θa, then

A+ σB =
1

2
a




θ + σ(θ − 1) 1− θ + σ(12 − θ) 2θ − 1

1− θ + σ(12 − θ) (2 + σ)θ 2− 3θ

2θ − 1 2− 3θ θ


 .

To ensure A+ σB is positive definite, we require all the leading principle minors are positive, namely

σ(θ − 1) + θ > 0, (3.19a)

− 1

4
σ2 + (θ2 + θ − 1)σ + θ2 + 2θ − 1 > 0, (3.19b)

− 1

4
θσ2 + (6θ2 − 7θ + 2)σ − (4θ3 + 4θ2 − 11θ+ 4) > 0. (3.19c)

In what follows, we will prove the solution (σ) of (3.19) exists provided that θ > 1
2 and θ 6= 1. From

(3.19b), we get

2(θ2 + θ − 1)− 2
√
∆1 < σ < 2(θ2 + θ − 1) + 2

√
∆1, (3.20)

where ∆1 = (θ2 + θ− 1)2 + θ2 +2θ− 1 = θ4 +2θ3, which is always positive if θ > 1
2 . From (3.19c) we get

2(6θ2 − 7θ + 2)− 2
√
∆2

θ
< σ <

2(6θ2 − 7θ + 2) + 2
√
∆2

θ
, (3.21)

where ∆2 = (6θ2 − 7θ + 2)2 − θ(4θ3 + 4θ2 − 11θ+ 4) = 32θ4 − 88θ3 + 84θ2 − 32θ+ 4 which is positive if

θ > 1
2 and θ 6= 1.

To simplify the notations, we denote A1 = 2(θ2 + θ − 1) − 2
√
∆1, A2 = 2(θ2 + θ − 1) + 2

√
∆1,

B1 = 2(6θ2−7θ+2)−2
√
∆2

θ , and B2 = 2(6θ2−7θ+2)+2
√
∆2

θ . Since

(A1 −B2)(A2 −B1) = −4

θ

[
2
√
∆1∆2 + (12θ4 − 5θ3 − 24θ2 + 28θ − 8)

]
< 0 if θ >

1

2
,

we can conclude that the intersection of (3.20) and (3.21) is not empty.

In addition, from (3.19a) we get
{
σ < θ

1−θ if 1
2 < θ < 1,

σ > − θ
θ−1 if θ > 1.

(3.22)

So, if 1
2 < θ < 1, then we require max{A1, B1} < θ

1−θ . This condition can be verified by noticing that

2(θ2 + θ − 1)− θ

1− θ
< 0 and

2(6θ2 − 7θ + 2)

θ
− θ

1− θ
< 0,

for 1
2 < θ < 1. If θ > 1, we require min{A2, B2} > − θ

θ−1 , it holds obviously since

2(θ2 + θ − 1) +
θ

θ − 1
> 0 and

2(6θ2 − 7θ + 2)

θ
+

θ

θ − 1
> 0,

for θ > 1. Thus we proved that the solution of (3.19) exists.

Furthermore, we can check that min{A2, B2} > −1 in the case θ > 1, and in the case 1
2 < θ < 1,

min{A2, B2,
θ

1−θ} > −1, so we complete the proof of this lemma.

Remark 3.4. In the above stability analysis for the linear model, it is required to study the positive

definiteness of the matrix A+ σB which is a constant matrix. The arguments, however, are not easy to

extend to nonlinear problems, since the corresponding matrix will depend on the numerical solutions at

different intermediate time stages, it will be more complicated to study the positive definiteness of the

matrix. So we need to seek new techniques to overcome the difficulties, which will be left for future work.

Even though the analysis for the nonlinear model is not available at present, the stability analysis for the

linear model can provide us with some guidance in designing schemes for nonlinear diffusion problems.
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4 Optimal error estimates

With the stability result in the previous section, it is conceptually straightforward to obtain error esti-

mates for smooth solutions of the simplified model (3.2) with a > 0 being a constant. We will only give

the error estimates for the second order EIN-LDG scheme (3.8) as an example. To this end, we would like

to introduce two Gauss-Radau projections, from H1(Th) =
{
φ ∈ L2(Ω) : φ|Ij ∈ H1(Ij), ∀j = 1, . . . , N

}

to Vh, denoted by π−
h and π+

h respectively. For any function p ∈ H1(Th), the projections π±
h p are defined

as the unique element in Vh such that

(π−
h p− p, v)Ij = 0, ∀v ∈ Pk−1(Ij), (π−

h p)
−
j+1

2

= p−
j+1

2

, (4.1a)

(π+
h p− p, v)Ij = 0, ∀v ∈ Pk−1(Ij), (π+

h p)
+
j−1

2

= p+
j−1

2

, (4.1b)

for any j = 1, 2, · · · , N . In view of the exact collocation on one endpoint of each element, the Gauss-Radau

projections provide a great help to obtain the optimal error estimates.

Denote by η = p− π±
h p the projection error. By a standard scaling argument [9], it is easy to obtain

the following approximation property

‖η‖ 6 Chmin(k+1,s)‖p‖Hs , (4.2)

where the bounding constant C > 0 is independent of h. Furthermore, by the definition of the operators

L and K we have

L(p− π+
h p, v) = K(p− π−

h p, v) = 0 (4.3)

for any p ∈ H1(Th) and v ∈ Vh, due to the periodic boundary condition.

Following [23], we introduce three “reference” functions, denoted by W (ℓ) = (U (ℓ), Q(ℓ)), ℓ = 0, 1, 2,

associated with the second order IMEX RK time discretization (2.10). In detail, U (0) = U is the exact

solution of problem (3.2) and then we define

U (1) = U (0) +
1

2
(a− a0)τQ

(0)
x +

1

2
a0τQ

(1)
x , (4.4a)

U (2) = U (0) + (a− a0)τQ
(1)
x +

1

2
a0τ(Q

(0)
x +Q(2)

x ), (4.4b)

where

Q(ℓ) = U (ℓ)
x , for ℓ = 0, 1, 2. (4.4c)

For any indices n and ℓ under consideration, the reference function at each stage time level is defined as

W n,ℓ = (Un,ℓ, Qn,ℓ) = W (ℓ)(x, tn). Here W n,0 = W n and W n,2 = W n+1.

At each stage time, we denote the error between the exact (reference) solution and the numerical

solution by en,ℓ = (en,ℓu , en,ℓq ) = (Un,ℓ − un,ℓ, Qn,ℓ − qn,ℓ). As the standard treatment in finite element

analysis, we would like to divide the error in the form e = ξ − η, where

η = (ηu, ηq) = (π−
h U − U, π+

hQ−Q), ξ = (ξu, ξq) = (π−
h U − u, π+

hQ − q), (4.5)

here we have dropped the superscripts n and ℓ for simplicity.

We would like to assume that the exact solution U satisfies the following smoothness

U ∈ L∞(0, T ;Hk+2), DtU ∈ L∞(0, T ;Hk+1), and D3
tU ∈ L∞(0, T ;L2), (4.6)

where Dℓ
tU is the ℓ-th order time derivative of U .

By the smoothness assumption (4.6), it follows from (4.2) that the stage projection errors satisfy

‖ηn,ℓu ‖+ ‖ηn,ℓq ‖ 6 Chk+1(‖Un,ℓ‖Hk+1 + ‖Qn,ℓ‖Hk+1) 6 Chk+1, (4.7a)

for any n and ℓ = 0, 1, 2 under consideration. And owing to the linear structure of the Gauss-Radau

projection, we have

‖ηn,1u − ηnu‖ 6Chk+1‖Un,1 − Un‖Hk+1 6 Chk+1τ, (4.7b)
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‖ηn+1
u − ηn,1u ‖ 6Chk+1‖Un+1 − Un,1‖Hk+1 6 Chk+1τ. (4.7c)

Here the bounding constant C > 0 depends solely on the smoothness of the exact solution and is inde-

pendent of n, h, τ .

In what follows we will focus on the estimate of the error ξ. Notice that the “reference” function

satisfies the following variational forms

(Un,1, v) = (Un, v) +
1

2
(a− a0)τL(Qn, v) +

1

2
a0τL(Qn,1, v), (4.8a)

(Un+1, v) = (Un, v) + (a− a0)τL(Qn,1, v) +
1

2
a0τ [L(Qn, v) + L(Qn+1, v)] + (ζn, v), (4.8b)

(Qn,ℓ, r) =K(Un,ℓ, r), for ℓ = 0, 1, 2, (4.8c)

where ζn = O(τ3) by the smoothness assumption (4.6).

Subtracting these variational forms from those in scheme (3.8), in the same order, we obtain the

following error equations

(ξn,1u , v) = (ξnu , v) + (ηn,1u − ηnu , v) +
1

2
(a− a0)τL(ξnq , v) +

1

2
a0τL(ξn,1q , v), (4.9a)

(ξn+1
u , v) = (ξnu , v) + (ηn+1

u − ηnu , v) + (a− a0)τL(ξn,1q , v)

+
1

2
a0τ [L(ξnq , v) + L(ξn+1

q , v)] + (ζn, v), (4.9b)

(ξn,ℓq , r) = (ηn,ℓq , r) +K(ξn,ℓu , r), for ℓ = 0, 1, 2, (4.9c)

since L(ηq , v) = K(ηu, r) = 0 by property (4.3).

Subtracting (4.9a) from (4.9b) we get

(ξn+1
u − ξn,1u , v) = (a0 −

1

2
a)τL(ξnq , v) + (a− 3

2
a0)τL(ξn,1q , v) +

a0
2
τL(ξn+1

q , v)

+ (ηn+1
u − ηn,1u , v) + (ζn, v). (4.10)

Taking v = ξn,1u in (4.9a), v = ξn+1
u in (4.10), then proceeding along the similar line as the stability

analysis in Subsection 3.2, we obtain

‖ξn+1
u ‖2 + ‖ξn,1u − ξnu‖2 + ‖ξn+1

u − ξn,1u ‖2 − ‖ξnu‖2

+ δτ(‖ξn+1
q ‖2 − ‖ξnq ‖2) + τ

∫

Ω

ξ⊤q Aξq dx = T1, (4.11)

where ξq = (ξnq , ξ
n,1
q , ξn+1

q )⊤, A is the same as in (3.14), and

T1 =2(ηn,1u − ηnu , ξ
n,1
u ) + (a− a0)τ(η

n,1
q , ξnq ) + a0τ(η

n,1
q , ξn,1q )

+ 2(ηn+1
u − ηn,1u , ξn+1

u ) + (2a0 − a)τ(ηn+1
q , ξnq ) + (2a− 3a0)τ(η

n+1
q , ξn,1q )

+ a0τ(η
n+1
q , ξn+1

q ) + 2(ζn, ξn+1
u ).

On the other hand, taking v = ξn,1u − ξnu in (4.9a) we get

‖ξn,1u − ξnu‖2 + τ

∫

Ω

ξ⊤q Bξq dx = T2, (4.12)

where B is the same as in (3.16) and

T2 =(ηn,1u − ηnu , ξ
n,1
u − ξnu ) +

1

2
(a− a0)τ(η

n,1
q − ηnq , ξ

n
q ) +

1

2
a0τ(η

n,1
q − ηnq , ξ

n,1
q ). (4.13)

A simple use of the Cauchy-Schwarz and Young’s inequalities and the properties (4.7) we have

|T1 + T2| 6 ετ(‖ξnu‖2 + ‖ξn,1u ‖2 + ‖ξn+1
u ‖2) + ετ(‖ξnq ‖2 + ‖ξn,1q ‖2 + ‖ξn+1

q ‖2) + C(h2k+2τ + τ5),
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for arbitrary ε. So adding (4.11) and σ×(4.12) together leads to

‖ξn+1
u ‖2 + (1 + σ)‖ξn,1u − ξnu‖2 + ‖ξn+1

u − ξn,1u ‖2 − ‖ξnu‖2

+ δτ(‖ξn+1
q ‖2 − ‖ξnq ‖2) + τ

∫

Ω

ξ⊤q (A+ σB − εI)ξq dx

6 ετ(‖ξnu‖2 + ‖ξn,1u ‖2 + ‖ξn+1
u ‖2) + C(h2k+2τ + τ5)

6 ετ(‖ξnu‖2 + ‖ξn,1u − ξnu‖2 + ‖ξn+1
u − ξn,1u ‖2) + C(h2k+2τ + τ5). (4.14)

Here 0 6 δ 6 a0 and σ > −1 are free parameters, I is the identity matrix.

As in the stability analysis, we let δ = 1
2a0. Since the matrix A+σB is symmetric, from Lemma 3.3 we

conclude that, for a0 >
1
2a there exists σ > −1 such that the matrix A+ σB− εI is also positive definite,

by choosing ε small enough such that ε 6 1
2λ, where λ is the smallest positive eigenvalue of the matrix

A+ σB. Note that in the case a0 = 1
2a, we are not able to ensure the positive definiteness of the matrix

A+ σB− εI, since in this case the matrix A+ σB is only semi-positive definite. Thus for a0 >
1
2a, using

the discrete Gronwall’s inequality yields

‖ξn+1
u ‖2 + 1

2
a0τ‖ξn+1

q ‖2 6 ‖ξ0u‖2 +
1

2
a0τ‖ξ0q‖2 + C(h2k+2 + τ4). (4.15)

Taking u0 = π−
h U

0 we get ξ0u = 0 and hence from (4.9c) we get ‖ξ0q‖ 6 ‖η0q‖ 6 Chk+1, so we are led to

‖ξnu‖ 6 C(hk+1 + τ2). (4.16)

Finally we obtain the following theorem by (4.7), (4.16) and the triangle inequality.

Theorem 4.1. Let U(x, t) be the exact solution of equation (3.2) satisfying the smoothness assumption

(4.6), and let un be the solution of the second order EIN-LDG scheme (3.8). Then if a0 >
a
2 we have

max
nτ6T

‖U(x, tn)− un‖ 6 C(hk+1 + τ2), (4.17)

where C is a bounding constant independent of n, h, τ .

5 Numerical Experiments

In this section, we will numerically validate the accuracy and performance of the LDG spatial discretiza-

tion (2.3) coupled with the first and second order IMEX schemes (2.9) and (2.10). In addition, we would

like to test for a third order IMEX scheme proposed in [2]

0 0 0 0 0 0 0 0 0 0 0

1
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2 0 0 0 1
2 0 0 0 0

2
3 0 1

6
1
2 0 0 11

18
1
18 0 0 0

1
2 0 − 1

2
1
2

1
2 0 5

6 − 5
6

1
2 0 0

1 0 3
2 − 3

2
1
2

1
2

1
4

7
4

3
4 − 7

4 0

0 3
2 − 3

2
1
2

1
2

1
4

7
4

3
4 − 7

4 0

(5.1)

5.1 The stability and accuracy test

In this subsection we test the stability and accuracy of the proposed schemes. We will consider two

examples. In each example, the source term f(x, t) is chosen properly such that the exact solution

satisfies the given equation. The final computing time is T = 10 and uniform meshes are adopted for all

tests in this subsection. In addition, we take piecewise constant, piecewise linear and piecewise quadratic

polynomials in the LDG spatial discretization for the first order, the second order and the third order
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IMEX time discretization, respectively, such that the orders accuracy of errors in space and time match

if the time step τ = O(h).

Example 1 . The diffusion equation ut = (a(u)ux)x + f(x, t) with exact solution

u(x, t) = sin(x− t)

defined on [−π, π]. We will consider three cases:

(i) a(u) = 1
2 , (ii) a(u) = u2 + 1, (iii) a(u) = sin2 u.

For this example, the time step is τ = h, where h = 2π/N is the mesh size, N is the number of

elements.

In Tables 1-3, we list the L2 errors and orders of accuracy for the three cases. In each table, we display

the numerical results of the three IMEX schemes (2.9), (2.10) and (5.1) coupled with the LDG method

(2.3) with different a0. From these tables, we see that the first and second order EIN-LDG schemes are

stable and can achieve optimal error accuracy in both space and time if a0 > max{a(u0)}/2, where u0 is

the approximation of the initial solution. From the experiment we also find that the smallest a0 to ensure

the stability of the third order EIN-LDG scheme is about 0.54max{a(u0)}, and we observe optimal error

accuracy in both space and time if a0 > 0.54max{a(u0)}. From the numerical results we can also find

that larger a0 may cause larger errors.

Table 1 The L2 errors and orders of accuracy for Example 1: a(u) = 1/2.

schemes N
L2 error order L2 error order L2 error order L2 error order

a0 = 0.24 a0 = 0.25 a0 = 1 a0 = 10

80 8.04E-02 - 8.09E-02 - 1.40E-01 - 7.94E-01 -

(2.9) 160 4.02E-02 1.00 4.04E-02 1.00 7.13E-02 0.97 4.84E-01 0.71

with 320 2.01E-02 1.00 2.02E-02 1.00 3.60E-02 0.98 2.73E-01 0.83

k = 0 640 1.73E+11 -42.97 1.01E-02 1.00 1.81E-02 0.99 1.46E-01 0.90

1280 4.33E+46 -117.59 5.05E-03 1.00 9.08E-03 1.00 7.56E-02 0.95

a0 = 0.24 a0 = 0.25 a0 = 1 a0 = 10

80 3.90E+09 - 8.80E-04 - 2.02E-03 - 1.24E-01 -

(2.10) 160 3.09E+25 -52.82 2.19E-04 2.00 5.17E-04 1.97 4.13E-02 1.58

with 320 7.67E+57 -107.61 5.48E-05 2.00 1.31E-04 1.98 1.22E-02 1.76

k = 1 640 1.53+123 -216.92 1.37E-05 2.00 3.30E-05 1.99 3.33E-03 1.87

1280 Infinity -Inf 3.42E-06 2.00 8.28E-06 1.99 8.73E-04 1.93

a0 = 0.26 a0 = 0.27 a0 = 1 a0 = 10

80 6.37E+12 - 6.92E-06 - 5.10E-05 - 3.31E-02 -

(5.1) 160 3.67E+31 -62.32 8.67E-07 3.00 6.58E-06 2.95 6.49E-03 2.35

with 320 1.26E+70 -128.01 1.09E-07 2.99 8.41E-07 2.97 1.05E-03 2.63

k = 2 640 8.64+147 -258.56 1.36E-08 3.00 1.06E-07 2.99 1.51E-04 2.80

1280 NaN NaN 1.73E-09 2.98 1.31E-08 3.02 2.03E-05 2.90

Example 2 . To test the efficiency of the proposed methods for problems with large variation of diffusion

coefficients, we consider the diffusion equation

ut = (a(x)ux)x + f(x, t)

with the same exact solution as Example 1. We will consider a(x) = 1 + b sin2(x) for b = 10, 100 and

1000. Obviously, the diffusion coefficient varies from 1 to 1 + b, and the variation is larger if b is larger.

The choice of a0 and time step in different situations are given in Table 4. We see that the first and

second order schemes are stable if a0 > 0.5(1+ b) and the third order scheme is stable if a0 > 0.54(1+ b).

The numerical results are listed in Table 5, from which we can observe optimal orders of accuracy of
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Table 2 The L2 errors and orders of accuracy for Example 1: a(u) = u2 + 1.

schemes N
L2 error order L2 error order L2 error order L2 error order

a0 = 0.85 a0 = 0.9 a0 = 1 a0 = 10

80 9.73E-02 - 1.01E-01 - 1.08E-01 - 6.72E-01 -

(2.9) 160 4.90E-02 0.99 5.09E-02 0.99 5.47E-02 0.98 3.91E-01 0.78

with 320 2.46E-02 0.99 2.56E-02 0.99 2.75E-02 0.99 2.11E-01 0.89

k = 0 640 NaN NaN 1.28E-02 1.00 1.38E-02 1.00 1.10E-01 0.94

1280 NaN NaN 6.42E-03 1.00 6.90E-03 1.00 5.61E-02 0.97

a0 = 0.95 a0 = 0.98 a0 = 1 a0 = 10

80 1.04E-03 - 1.03E-03 - 1.02E-03 - 8.64E-02 -

(2.10) 160 2.62E-04 1.99 2.59E-04 1.99 2.57E-04 1.98 2.83E-02 1.61

with 320 6.65E-05 1.98 6.61E-05 1.97 6.56E-05 1.97 8.32E-03 1.76

k = 1 640 NaN NaN 1.65E-05 2.00 1.64E-05 2.00 2.27E-03 1.88

1280 NaN NaN 4.12E-06 2.00 4.13E-06 1.99 5.95E-04 1.93

a0 = 1 a0 = 1.05 a0 = 1.1 a0 = 10

80 3.56E-05 - 3.88E-05 - 4.23E-05 - 2.17E-02 -

(5.1) 160 4.73E-06 2.91 5.23E-06 2.89 5.77E-06 2.87 4.25E-03 2.35

with 320 NaN NaN 7.45E-07 2.81 8.30E-07 2.80 6.97E-04 2.61

k = 2 640 NaN NaN 9.52E-08 2.97 1.07E-07 2.96 1.01E-04 2.79

1280 NaN NaN 1.27E-08 2.91 1.40E-08 2.93 1.37E-05 2.88

Table 3 The L2 errors and orders of accuracy for Example 1: a(u) = sin2 u.

schemes N
L2 error order L2 error order L2 error order L2 error order

a0 = 0.5 sin2 1− 0.1 a0 = 0.5 sin2 1 a0 = 1 a0 = 10

80 9.68E-02 - 1.05E-01 - 1.73E-01 - 1.06E+00 -

(2.9) 160 4.89E-02 0.99 5.34E-02 0.98 8.99E-02 0.95 5.89E-01 0.85

with 320 1.14E+00 -4.54 2.70E-02 0.99 4.60E-02 0.97 3.20E-01 0.88

k = 0 640 1.54E+00 -0.43 1.35E-02 0.99 2.34E-02 0.98 1.71E-01 0.91

1280 1.44E+00 0.09 6.80E-03 1.00 1.18E-02 0.99 8.93E-02 0.93

a0 = 0.5 sin2 1− 0.1 a0 = 0.5 sin2 1 a0 = 1 a0 = 10

80 2.41E+01 - 1.01E-03 - 3.41E-03 - 1.49E-01 -

(2.10) 160 3.67E+01 -0.61 2.58E-04 1.97 9.05E-04 1.91 5.05E-02 1.56

with 320 7.41E+01 -1.01 6.55E-05 1.98 2.34E-04 1.95 1.52E-02 1.73

k = 1 640 1.52E+02 -1.04 1.65E-05 1.99 5.97E-05 1.97 4.22E-03 1.85

1280 3.34E+02 -1.13 4.14E-06 1.99 1.51E-05 1.99 1.12E-03 1.92

a0 = 0.5 sin2 1 a0 = 0.54 sin2 1 a0 = 1 a0 = 10

80 4.01E-05 - 4.27E-05 - 1.87E-04 - 4.11E-02 -

(5.1) 160 5.81E-06 2.79 6.26E-06 2.77 2.98E-05 2.65 8.28E-03 2.31

with 320 1.01E+03 -27.37 8.78E-07 2.83 4.39E-06 2.76 1.38E-03 2.59

k = 2 640 1.88E+03 -0.90 1.16E-07 2.92 6.01E-07 2.87 2.03E-04 2.77

1280 3.25E+03 -0.79 1.49E-08 2.95 7.92E-08 2.93 2.78E-05 2.87



14 Haijin Wang et al. Sci China Math

Table 4 The constant a0 and time step taken in the experiments.
P
P
P
P
P
PP

scheme

b
10 100 1000

(2.9) with k = 0 a0 = 6, τ = 0.1h a0 = 51, τ = 0.1h a0 = 501, τ = 0.01h

(2.10) with k = 1 a0 = 6, τ = 0.1h a0 = 51, τ = 0.1h a0 = 501, τ = 0.01h

(5.1) with k = 2 a0 = 6, τ = 0.1h a0 = 55, τ = 0.05h a0 = 540, τ = 0.01h

Table 5 The L2 errors and orders of accuracy for Example 2: a(x) = 1 + b sin2(x).

schemes N
b = 10 b = 100 b = 1000

L2 error order L2 error order L2 error order

80 4.66E-02 - 8.66E-02 - 5.19E-02 -

(2.9) 160 2.33E-02 1.00 4.73E-02 0.87 2.63E-02 0.98

with 320 1.17E-02 1.00 2.48E-02 0.93 1.34E-02 0.97

k = 0 640 5.84E-03 1.00 1.27E-02 0.96 6.76E-03 0.99

1280 2.92E-03 1.00 6.46E-03 0.98 3.40E-03 0.99

80 6.92E-04 - 5.02E-03 - 2.06E-03 -

(2.10) 160 1.74E-04 1.99 1.56E-03 1.69 6.40E-04 1.69

with 320 4.36E-05 2.00 4.49E-04 1.79 1.84E-04 1.80

k = 1 640 1.09E-05 2.00 1.23E-04 1.87 5.01E-05 1.88

1280 2.73E-06 2.00 3.24E-05 1.92 1.32E-05 1.93

80 5.60E-06 - 1.58E-04 - 3.65E-04 -

(5.1) 160 7.40E-07 2.92 2.79E-05 2.50 7.41E-05 2.30

with 320 9.66E-08 2.94 4.36E-06 2.68 1.30E-05 2.51

k = 2 640 1.23E-08 2.97 6.28E-07 2.80 2.04E-06 2.67

1280 1.46E-09 3.08 8.35E-08 2.91 2.88E-07 2.82

the proposed schemes. We also note that, small mesh size and small time step are required to observe

optimal error accuracy for large b.

From the stability analysis in Section 3 and the numerical experiments in this subsection, we propose

a guidance for the choice of a0 for general model Ut = (a(U)Ux)x, that is, a0 > max{a(u)}/2 for the first

and second order schemes, and a0 > 0.54max{a(u)} for the third order scheme, where u is the numerical

solution at the corresponding time level. In our experiments, the LU factorization is used as the linear

solver, it will cost more computation to solve a linear system with different coefficient matrix at each

time level. Actually in practical computing, it is not necessary to scan the maximum of a(u) and adjust

a0 at every time step. In the next two subsections, we will simulate the porous medium equation and the

high-field model, where we adjust a0 after every 100 time steps.

5.2 Numerical simulation to the porous medium equation

To further validate the performance of the proposed schemes, we consider the porous medium equation

(PME)

ut = (um)xx, (5.2)

in which m is a constant greater than one. This equation often occurs in nonlinear problems of heat

and mass transfer, combustion theory, and flow in porous media, where u is either a concentration or a

temperature required to be non negative. We assume the initial solution u0(x) is a bounded non negative

continuous function, then (5.2) can be written as

ut = (a(u)ux)x, (5.3)
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with a(u) = mum−1. It is a degenerate parabolic equation since u may be 0 at some points. The

LDG schemes coupled with the explicit third order RK time marching for solving this kind of problems

were studied in [29], where a slope limiter was introduced to ensure the non negativity of the numerical

solutions.

In this subsection, we present the numerical results given by the EIN-LDG schemes. In all the following

experiments, we adopt k = 2 for the spatial discretization, and the second order scheme (2.10) for the

time discretization. The same slope limiter as in [29] is adopted at each intermediate stage. Thanks to

the limiter, we can ensure the non negativity of numerical solutions, and thus can ensure the diffusion

coefficient a(u) is non negative. Moreover, the physical meaning of u can be maintained, and the possible

numerical oscillation near discontinuous interfaces can be eliminated. All the experiments are tested on

uniform mesh with mesh size h = 0.02, the time step is τ = O(h). In the experiments of this subsection,

we adjust a0 after every 100 time steps, according to the maximum of a(u). We take a0 = max a(u)/2 at

the corresponding time levels.

Test 1. Equation (5.3) with the Barenblatt solution

Bm(x, t) = t−s

[(
1− s(m− 1)

2m

|x|2
t2s

)

+

]1/(m−1)

, (5.4)

where u+ = max{u, 0} and s = 1/(m + 1). We begin the computation from t = 1 in order to avoid

the singularity of the Barenblatt solution near t = 0. The boundary condition is u(±6, t) = 0 for t > 1.

We plot in Figure 1 the numerical results for m = 2, 3, 5, 8 at t = 2. From this figure, we see that our

scheme can simulate the Barenblatt solution accurately and sharply, without noticeable oscillations near

the interface.
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1

(a) m = 2
-6 -4 -2 0 2 4 6

0
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1

(b) m = 3

-6 -4 -2 0 2 4 6

0

0.5

1

(c) m = 5
-6 -4 -2 0 2 4 6

0

0.5

1

(d) m = 8

Figure 1 Numerical results for the Barenblatt solution: t = 2.

Test 2. The collision of two-Box solutions with the same or different heights. If the variable u is regarded

as the temperature, this model can be used to describe how the temperature changes when two hot spots

are suddenly put in the computation domain. In Figure 2 we plot the evolution of the numerical solution

for the PME with m = 5. The initial condition is the two-Box solution with the same height, namely

u0(x) =

{
1, if x ∈ (−3.7,−0.7)∪ (0.7, 3.7)

0, otherwise
(5.5)

with the boundary condition u(±5.5, t) = 0 for all t > 0.

In Figure 3 we plot the evolution of the numerical solution for the PME with parameter m = 8. The

initial condition is defined as

u0(x) =





1, if x ∈ (−4,−1),

1.5, if x ∈ (0, 3),

0, otherwise

(5.6)
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with the boundary condition u(±6, t) = 0 for all t > 0.

From these simulations, we can see an analogous evolution whether the heights of the two boxes in the

initial condition are the same or not. Two-Box solutions first move outward independently before the

collision, then they join each other to make the temperature smooth, and finally the solution becomes

almost constant in the common support.
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1

(a) t=0.0
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(c) t=0.6
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1

(f) t=1.5

Figure 2 Collision of the two-Box solution with the same height.

Test 3 . To test the waiting time phenomenon [1], i.e, the interface of the support does not move outward

until the waiting time, we consider the PME with m = 8. The initial condition is defined as a fast-varying

solution, namely,

u0(x) =

{
cosx, if x ∈ (−π/2, π/2)
0, otherwise

(5.7)

with the boundary condition u(±π, t) = 0 for all t > 0. We plot in Figure 4 the evolution of the numerical

solutions. We observe that the interface begins to move outward around t = 1.4, before that, the interface

does not move outward, which verifies the waiting-time phenomenon.

From the above experiments, we see that our scheme can simulate the PME accurately. The main

advantage is the fact that larger time steps can be chosen compared with the explicit time discretization

methods, where τ = O(h2) is required.

5.3 Numerical simulation to the high-field model

In this subsection, we apply the proposed scheme to the one-dimensional high-field (HF) model [7, 8] in

semiconductor device simulations, which is a convection-diffusion system coupled with a Poisson potential

equation. The notations for the model are only valid in this subsection. The HF model is described by

the following equation

nt + Jx = 0, x ∈ (0, 0.6) (5.8)

where

J = Jhyp + Jvis,

and

Jhyp = − µnE + γµ
(e
ε

)
n(−µnE + ω),
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Figure 3 Collision of the two-Box solution with different heights.
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Figure 4 Waiting-time phenomenon.
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Jvis = − γ[n(θ + 2µ2E2)]x + γµE(µnE)x.

In the HF model, the unknown variable n is the electron concentration, E = −φx is the electric field,

and φ is the electric potential which is given by the Poisson equation

φxx =
e

ε
(n− nd), (5.9)

with nd being a given doping (also the initial condition for n). The boundary conditions for n and E are

periodic, and for φ is Dirichlet boundary condition which will be given later.

In the above model, the parameter µ is the mobility, e is the electron charge, ε is the dielectric

permittivity, ω = (µnE)|x=0 is taken to be a constant, γ = mµ
e is the relaxation parameter, with m

being the electron effective mass, and θ = k
mT0, where k is the Boltzmann constant and T0 is the lattice

temperature.

The LDG method has been applied to solve problem (5.8) in [19] by Liu and Shu, where they used

the third order explicit RK method in the time discretizaiton. In their later work [20], an IMEX-LDG

method was adopted to solve the drift-diffusion model, for which the coefficient of diffusion is constant. In

[20], the IMEX-LDG method shows good efficiency compared with explicit methods. Here the diffusion

of HF model is nonlinear, we will use the proposed EIN-LDG scheme.

For the convenience of adopting EIN-LDG scheme, we rewrite the HF model (5.8) as

nt +
(
−µnE − γµ2 e

ε
n2E + γµ

e

ε
ωn− 3γµEn(µE)x

)
x
− [(γθ + γµ2E2)nx]x = 0. (5.10)

Using Ex = − e
ε (n− nd), we can write the equation as

nt + f(n,E)x − (a(E)nx)x = 0, (5.11)

where

f(n,E) = γµ2 e

ε
nE(2n− 3nd)− µnE(1 + 3γEµx) + γµ

e

ε
ωn,

a(E) = γθ + γµ2E2.

Then by adding a term a0nxx on both sides of (5.11) we get

nt + f(n,E)x − [(a(E)− a0)nx]x︸ ︷︷ ︸
explicit

= a0nxx︸ ︷︷ ︸
implicit

, (5.12)

with periodic boundary conditions for n and E, where a0 is a properly chosen positive constant. We solve

(5.12) by the standard LDG scheme with the third order IMEX scheme (5.1), where piecewise quadratic

polynomials space is adopted in spatial discretization, Lax-Friedriches numerical flux and alternating

numerical flux are used for the convection and diffusion parts, respectively. We treat the part on the left

hand side explicitly, and the part on the right hand side implicitly.

We point out that the potential equation (5.9) is also solved by the LDG method, i.e, finding (φh, ψh) ∈
Vh × Vh, such that for any (v, r) ∈ Vh × Vh, there holds

(
e

ε
(n− nd), v)j = − (ψh, vx)j + ψ̂hj+1

2
v−
j+1

2

− ψ̂hj−1
2
v+
j−1

2

, (5.13a)

(ψh, r)j = − (φh, rx)j + φ̂hj+1
2
r−
j+1

2

− φ̂hj−1
2
r+
j−1

2

, (5.13b)

for j = 1, 2, · · · , N , where we take the minimal dissipation numerical flux as in [10], specifically

φ̂hj+1
2
=





φa, j = 0,

(φh)
−
j+1

2

, j = 1, 2, · · · , N − 1,

φb, j = N.
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ψ̂hj+1
2
=




(ψh)

+
j+1

2

, j = 0, 1, · · · , N − 1,

(ψh)
−
N+ 1

2

− 1
h

(
(φh)

−
N+ 1

2

− φb

)
, j = N.

Here φa and φb are the given Dirichlet boundary conditions, h is the mesh size. The numerical approxi-

mation of electric field is given by Eh = −ψh.

Next we simulate the HF model with the same parameters as in [19]. The doping nd is a piecewise-

defined function in [0, 0.6], nd = 5×1017cm−3 in [0, 0.1] and [0.5, 0.6], nd = 2×1015cm−3 in [0.15, 0.45], and

a smooth transition in between. The lattice temperature is T0 = 300K. The constants k = 0.138× 10−4,

ε = 11.7× 8.85418, e = 0.1602, m = 0.26× 0.9109× 10−31kg, and the mobility µ = 0.0088
(
1 + 14.2273

1+
nd

143200

)

in our units. The boundary conditions are given as follows: φa = kT
e ln(nd

ni
) at the left boundary, with

ni = 1.4 × 1010cm−3, φb = φa + vbias with the voltage drop vbias = 1.5 at the right boundary for the

potential; T = 300K at both boundaries for the temperature; and n = 5× 1017cm−3 at both boundaries

for the concentration.

In the simulations, we let a0 = max{a(Eh)} in (5.12) and adjust it after every 100 steps, here Eh = −ψh

is solved from (5.13). The code runs until the numerical solution converges to the steady state, we use

‖nnt
h − nnt−1

h ‖L1 < 10−6 as the criterion for stopping computation, where nh is the numerical solution

of the electron concentration n, and nt is the number of time steps. The positivity limiter [29] is not

necessary for this example, since the minimum value of nh will not be below 0 due to the initial setting

of nd defined above.

Table 6 and Table 7 show the time step, the number of time steps, the numerical steady time, and

the CPU time to reach the steady state for the third order explicit RK LDG (EX-RK-LDG) and the

third order EIN-LDG methods when we use 100 mesh cells and 200 mesh cells in [0, 0, 6], respectively.

From these tables, we see that the proposed EIN-LDG scheme can take much larger time steps compared

with the explicit method, and hence it saves in CPU time significantly. On the other hand, due to the

larger time step, the numerical steady time for EIN-LDG scheme is greater than that for the EX-RK-

LDG scheme. Figure 5 plots the simulation results of the HF model with 200 mesh cells, for both the

EX-RK-LDG method and the EIN-LDG method. It shows that the EIN-LDG method gives the same

convergent results as the explicit method. The EIN-LDG scheme is thus a reliable and efficient tool for

the study of models such as the HF model to describe the correct physics.

Table 6 The time step τ , the number of time steps nt, the numerical steady time t, and the CPU time to reach the steady

state for third order EX-RK-LDG and third order EIN-LDG methods with 100 mesh cells in [0, 0.6].

3rd order EX-RK-LDG 3rd order EIN-LDG

τ 4.604E-6 1.2E-4 1.8E-4 2.4E-4 3.0E-4 3.6E-4

nt 265231 13517 9253 7069 5735 4834

t 1.272 1.622 1.666 1.697 1.720 1.740

CPU time 506 59.51 41.39 32.25 27.27 22.99

Table 7 The time step τ , the number of time steps nt, the numerical steady time t, and the CPU time to reach the steady

state for third order EX-RK-LDG and third order EIN-LDG methods with 200 mesh cells in [0, 0.6].

3rd order EX-RK-LDG 3rd order EIN-LDG

τ 1.151E-6 1.2E-4 1.8E-4 2.4E-4 3.0E-4 3.6E-4

nt 930776 13508 9248 7065 5732 4831

t 1.122 1.621 1.665 1.696 1.720 1.739

CPU time 5434.47 205.41 140.76 108.22 85.27 72.04
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Figure 5 The simulation results of HF model in [0, 0.6] with 200 mesh cells, for third order EX-RK-LDG and third order

EIN-LDG methods, τ=3.6E-4 in EIN-LDG method.

6 Conclusion

We have developed a class of EIN-LDG schemes for solving one-dimensional nonlinear diffusion problems,

where a constant diffusion term is added and subtracted to the original equation, and then one of the

terms is treated implicitly and the remaining terms are treated explicitly. We have presented the stability

and error analysis of the first and second order EIN-LDG schemes for a simplified model, and based on

the stability result we have provided a guidance for the choice of a0 to ensure the unconditional stability

of the schemes. Numerical experiments show that the proposed first and second order schemes are stable

and can achieve optimal orders of accuracy when a0 > max{a(u)}/2. A third order time discretization

is also considered numerically. The schemes have good performance and high efficiency for the PME and

the high-field model in semiconductor device simulations. The application of the EIN-LDG schemes to

solve two and higher spatial dimensional problems is straightforward, for which the proposed schemes

will be more efficient compared with explicit or standard implicit schemes. This will be left for our future

work.

Acknowledgements This work was supported by National Natural Science Foundation of China (Grant No.

11601241, 11671199, 11571290, 11672082), Natural Science Foundation of Jiangsu Province grant BK20160877,

ARO grant W911NF-15-1-0226 and NSF grant DMS-1719410.

References

1 Angenent S. Analyticity of the interface of the porous medium equation after waiting time. Proc Am Math Soc, 1998,

102: 329–336

2 Ascher U M, Ruuth S J, Spiteri R J. Implicit-explicit Runge-Kutta methods for time-dependent partial differential

equations. Appl Numer Math, 1997, 25: 151–167

3 Bassi F, Rebay S. A high-order accurate discontinuous finite element method for the numerical solution of the com-

pressible Navier-Stokes equations. J Comput Phys, 1997, 131: 267–279

4 Boscarino S, Russo G. On a class of uniformly accurate IMEX Runge-Kutta schemes and application to hyperbolic

systems with relaxation. SIAM J Sci Comput, 2009, 31: 1926–1945
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