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Abstract In this paper we discuss the local discontinuous Galerkin methods coupled with two specific explicit-
implicit-null time discretizations for solving one-dimensional nonlinear diffusion problems Uy = (a(U)Uz)z. The
basic idea is to add and subtract two equal terms agUz, on the right hand side of the partial differential equation,
then to treat the term aoUs, implicitly and the other terms (a(U)Uyz)s — aoUze explicitly. We give stability
analysis for the method on a simplified model by the aid of energy analysis, which gives a guidance for the
choice of ag, i.e, ap > max{a(u)}/2 to ensure the unconditional stability of the first order and second order
schemes. The optimal error estimate is also derived for the simplified model, and numerical experiments are

given to demonstrate the stability, accuracy and performance of the schemes for nonlinear diffusion equations.
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1 Introduction

Many partial differential equations (PDE) which arise in physics or engineering involve the computation
of nonlinear diffusion, such as the miscible displacement in porous media [16] which is widely used in the
exploration of underground water, oil, and gas, the carburizing model [6] which is derived in the chemical
heat treatment in mechanical industry, the high-field model in semiconductor device simulations [7,8], and
so on. It is well known that the time discretization is a very important issue for such problems containing
complicated nonlinear diffusion coefficients. Explicit time marching always suffer from stringent time step
restriction. Implicit time marching can overcome the constraint of small time step, however, this method
becomes cumbersome if the diffusion coefficients vary in space or depend on the solution (quasi-linear or
nonlinear cases), since a Newton iteration is required at each time step.
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To cope with both the shortcomings of the explicit and implicit time marching methods, we notice that
the implicit time discretization can be actually very efficient for solving diffusion equations with constant
coefficients, since the inverse matrix is only needed to be solved once. This observation inspire us to add
and subtract a term with constant diffusion coefficient agU,, on the right hand side of the considered
PDE

Ui = (a(U)U,), x€Q=/la,b],te(0,T] (1.1)

where a(U) > 0 and a(U) is bounded and smooth, and then apply the implicit-explicit (IMEX) time
marching methods [2] to the equivalent PDE

U= (a(U)U:C):c — agUgs + agUss - (1.2)
———
T T>

Namely, we treat the damping term 75 implicitly and the remaining term 77 explicitly.

Such idea had been adopted by Douglas and Dupont [14] to assure the stability for a nonlinear diffusion
equation on a rectangle. The similar idea has also been adopted, for example, by Smereka [22] in the
context of flow by mean curvature and surface diffusion, by Jin and Filbet [17] in the context of the
Boltzmann equation of rarefied gas dynamics when the Knudsen number is very small, in the context of
hyperbolic systems with diffusive relaxation [4], and for the solution of PDEs on surfaces [21]. In a recent
study, Duchemin and Eggers [15] proposed to call this method as explicit-implicit-null (EIN) method.

In this paper, we exploit EIN method coupled with local discontinuous Galerkin (LDG) spatial dis-
cretization to solve the nonlinear diffusion equation (1.1). The LDG method was introduced by Cockburn
and Shu in [12] for solving convection diffusion equations, motivated by the work of Bassi and Rebay [3]
for the compressible Navier-Stokes equations. The idea of the LDG method is to rewrite the equations
with higher order derivatives into an equivalent first order system, then apply the DG method [11] to
the system, so the LDG scheme shares the advantages of the DG methods. It can easily handle meshes
with hanging nodes, elements of general shapes and local spaces of different types, thus it is flexible for
hp-adaptivity. Besides, a key advantage of the LDG scheme is the local solvability, that is, the auxiliary
variables approximating the derivatives of the solution can be locally eliminated [5,12].

Two EIN time marching schemes with LDG spatial discretization (EIN-LDG) will be analyzed in the
present paper. The first order scheme is a combination of forward Euler discretization and backward
Euler discretization for the explicit part and the implicit part, respectively, which was considered in our
previous work [23,24] for solving one-dimensional convection-diffusion problem and time-dependent fourth
order problem. The second order scheme to be considered in this paper is different from the one we used
in [23,24], the new scheme is a modification of the second order scheme proposed by Cooper and Sayfy
[13]. By the aid of the energy analysis, we show that the proposed schemes are unconditionally stable
provided ag > a/2 for the simplified linear model U; = aU,,, where a > 0 is a constant. The optimal
error estimates will also be given by energy analysis for the simplified model. We would like to point out
that it is necessary to do energy analysis even for the linear model, since the spatial discretization may
result in non-normal systems with a growing dimension, hence the spectral stability analysis based on
scalar eigenvalues arguments may be misleading [18].

Based on the stability and error analysis for the simplified model, we propose a guidance for the choice
of ag for the general model Uy = (a(U)U, ), that is, ag > max{a(u)}/2, where u is the numerical solution.
It is worth pointing out that it is not necessary to scan the maximum of a(u) and adjust ag at every
time level, theoretically we can choose ag as a sufficiently large positive constant. However, too large
ap may cause larger errors and may require a smaller time step from our numerical observation. So in
practical computing, we adjust ag after certain number of time steps to alleviate numerical errors and
to keep high efficiency in the meantime. We point out that the EIN-LDG schemes also work well for
convection-diffusion problems with nonlinear diffusions. To verify the accuracy and performance of the
proposed schemes, we present several numerical experiments, including the simulations for porous media
equations and the high-field model in semiconductor device simulations.
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The paper is organized as follows. In Section 2 we present the semi-discrete LDG scheme and the
time-discretization methods. Sections 3 and 4 are devoted to the stability and error analysis of the EIN-
LDG methods, respectively. In Section 5 we will present numerical results to verify the accuracy and the
performance of the proposed schemes. The conclusion is given in Section 6.

2 The LDG scheme and time-discretization

In this section, we will present the discontinuous finite element space, the semi-discrete LDG scheme,
and the implicit-explicit (IMEX) Runge-Kutta (RK) time-discretization methods.

2.1 The discontinuous finite element space

Let T = {I; = (xj_%,xﬁ_%)};-v:l be a partition of 2, where 1 = a and 1 = b are the two boundary
endpoints. Denote the cell length as h; = z;,1 —x,; 1 for j = 1,..., N, and define h = max; h;. We
2 2
assume 7T is quasi-uniform in this paper, that is, there exists a positive constant p such that for all j
there holds h;/h > p, as h goes to zero.
Associated with this mesh, we define the discontinuous finite element space

VhZ{’UELQ(Q):’UhjEpk(Ij),VjZL...,N}, (2.1)

where Py (I;) denotes the space of polynomials in I; of degree at most k. Note that functions in this
space are allowed to have discontinuities across element interfaces. At each element interface point, for
any piecewise function p, there are two traces along the right-hand and left-hand, denoted by p* and p~,
respectively. The jump is denoted by [p] = p* —p~.

2.2 The semi-discrete LDG scheme

We begin with equation (1.2) to define the LDG scheme. Denote by b(U) = y/a(U), by introducing
P =b(U)U, and Q = U,, the equation can be written as

U + (apQ — b(U)P)z = aoQu, (2.2a)
P—-BU), =0, (2.2b)
Q—-U; =0, (2.2¢)

where B(U) = fU b(s)ds. The semi-discrete LDG scheme is to find w,q,p € Vj, such that for arbitrary
v,r,w € Vp, we have

(utv U) = E(b(u)pv U) - aO‘C(Qa ’l)) + aOE((L U)v (23&)
(q,r) = I?(u7 r), (2.3b)
(p,w) =K(B(u), w), (2.3¢)
where
N
L(g,v) = — Z |:(Q7Ua:)j Qﬁlv;kl +(jj_lv;;%i| ) (2.4a)
g
K(u,r) = — Z [(u,m)j — aﬁ_%rj_% + aj_%rj_%} , (2.4b)
N
Lb(ulp,v) = = 3 | (6w, va); — (B)p) 305, + Glp); vy ], (2.4¢)
N
K(B(w),w) = = 3 [(B(u),wa); = Blu),ywy, + Blu); yw? | (2.4d)
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The “hat” terms are numerical fluxes which are taken as in [12,26,27]
", p=p", da=u, Bu)=Bu")

and

o] BN i Ao
b((ut +u7)/2) otherwise ’

where we omitted the subscripts j f% and j+ % For simplicity of analysis, we consider the periodic

N+d and w;\rprl = w7 for w = u,p,q. For other boundary conditions,
2 2 2

such as Dirichlet boundary condition problems, we refer the readers to [5,25] for the setting of numerical

boundary conditions, i.e, w; = w
2

fluxes.

Y can be taken as any approximation of the initial condition U(x,0), for example

The initial solution
the Gauss-Radau projection of U(z,0).

We have the following lemma which can be obtained easily by integrating by parts, so we omit the
proof and refer the reader to [28].

Lemma 2.1.  For any pairs of (u1,q1) and (u2,q2) belonging to Vi, x Vi, we have

L(qr,uz) = —K(uz,q1) = —(q2,q1), (2.5)

and for any pairs of (u1,p1) and (uz,p2) belonging to Vi, x Vi,, we have

L(b(u1)p2,u1) = —=K(B(u1), p2) = —(p1,p2)- (2.6)

We will discretize the operator L(b(u)p,v) — aoL(g,v) in (2.3a) explicitly and the other operator
apL(q,v) implicitly. The fully discrete scheme will be referred to as EIN-LDG scheme in this paper. In
the next subsection we will give a brief introduction of the IMEX RK time discretizations.

2.3 The IMEX RK time discretizations

For a detailed introduction to IMEX RK schemes, we refer the readers to [2] and [13]. To give a brief
introduction of the scheme, let us consider the system of ordinary differential equations

dy
T~ LEy) +N({y),  y(te) = yo, (2.7)
where y = [y1,%2, -+ ,ya]", L(t,y) and N(t,y) are derived from the spatial discretization of the two

parts of the right hand side of PDEs. By applying the general s-stage IMEX RK time marching scheme,
the solution of (2.7) advanced from time " to t"™! = ¢, + 7 is given by:

Yl =Y¥Yn,

[ 1—1
Yi=yn+7Y ai;L(t),Y;)+ 7> ai;N(t,Y;), 2<i<s+1,
j=1 j=1

s+1 s+1
Yot1 =Yn+T Y bL(th, Yi) +7 Y biN(th, Y),
i=1 i=1

where 7 is the time step, Y; denotes the intermediate stages, ¢; = Z;Zl a;j = Z;;ll aij, and th =

tn + CiT. Denote A = (aij),fi = (dij) S R(s+1)x(s+1), b—r = [bl,"- ,bs+1],i)—r = [(;1,"' ,bs+1] and

¢l = [0,c2,- - ,cs41], then we can express the general s-stage IMEX RK scheme as the following Butcher

tableau

clAlA

e (2.8)
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In the above tableau, the pair (4| b) determines an s-stage diagonally implicit RK method and (A | b)
defines an (s + 1)-stage (s-stage if by 1 = 0) explicit RK method. The first order IMEX RK method is
taking the forward Euler discretization for the explicit part and the backward Euler discretization for the
implicit part, which is expressed in the Butcher tableau

(2.9)
0|0 00[00O
Liotoltoo
20212 (2.10)
113 05/010
1 1
5035|010
which is a modification of the second order scheme
0/000l 0O 0O
L1200 &£ 00
2 f . Mil ) (2.11)
1 lip=l 1
‘202‘ iz uo

given by [13], where 1 # 0. Notice that if we let g = 1, then (2.10) and (2.11) are only different in the
discretization of L(t,y) at the first intermediate stage, scheme (2.11) discretizes L(t,y) explicitly at the
first stage, while the modified scheme (2.10) discretize L(t,y) implicitly at the first stage. Owing to the
implicit discretization at the first stage, the stability of the modified scheme (2.10) is better than the
original one (2.11), especially when adopting it for the convection-diffusion problems. This is why we
consider the modified scheme (2.10) in this paper.

3 Stability analysis

In this section, we will present the stability analysis for the proposed EIN-LDG schemes. We would like
to investigate how to choose ag such that the schemes are stable. For simplicity of analysis, we consider
the simplified equation

Ui = aUyy, (3.1)

with constant diffusion coefficient a > 0. Adding and subtracting a term agU,, we get

Ui = (a — ag)Usz + agUss. (3.2)

Then the LDG scheme reads
(ug,v) =(a — ag)L(g,v) + agL(g,v), (3.3a)
(q,7) =K(u,r), (3.3b)

where £ and K have been defined in Section 2.
3.1 First order scheme

Now we consider the first order EIN-LDG scheme, which is the first order IMEX time discretization (2.9)
coupled with (3.3), i.e,

(w1, v) = (u™,v) + (a — ag)TL(q",v) + aoTL(¢" T, v), (3.4a)
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("¢ r) = K™, r), for £=0,1, (3.4b)

where w™?°

=w" and w™! = W™t for w = u,q.
For the simplified linear model, if we let ag = a then the scheme (3.4) degenerates to backward Euler

scheme, which is unconditionally stable in the sense that
[ < [Ju®ll, V. (3.5)

So we only consider the case ag # a. We state the stability result in the following theorem.

Theorem 3.1.  Ifag = § and ag # a, then the first order EIN-LDG scheme (8.4) is unconditionally

stable in the sense that

[a™[1* + ao7llg"1* < [|u”]|* + ao7lg°[|*- (3.6)
Proof.  Taking v = u™™! in (3.4a), and by the property (2.5) we have
1 1
SR St L = (o ao)r(g ) —aorl T (37)
Rearranging the terms yields
1 1 1
LHS = 3P + 5wt —u|* = Sl + aorllg" | = (a0 — a)7(q",q"*") = RHS.

By simple use of the Cauchy-Schwarz and the Young’s inequalities we get

2
aon apgp — a
RHS < lao = afrla ") < Srla™ 1 + L2

Hence, if we let % < 9 ie, ag > §, then
LHS < 2 7(llg"|1* + [lg"*[?).

As a result, we have

1 1

Sl + §||U"+1 —u"|? - || "+ (||q"+1||2 —llg"*) <0
that is

[ 1% + aor " TH|* < fJu”(|* + aorllg" (|-

And hence we are led to (3.6). O

3.2 Second order scheme

The second order EIN-LDG scheme, which is the second order IMEX scheme (2.10) coupled with the
LDG method (3.3), reads

(u™',v) = (u",v) + %(a —ao)TL(q",v) + %amﬁ(q”’l,v), (3.8a)
(0 0) = (0 0) + (0 — ) £lg™ ) + JaorlE(" ) + L o), (3.8
(™) =KK™, r), for £=0,1,2, (3.8¢)
where w™? = w" and w™? = w"! for w = u, q.

The same as in the first order scheme, we only consider the case ag # a, since in the case ag = a we
can also easily get (3.5) unconditionally. The stability result is given in the following theorem.

Theorem 3.2.  Ifag > § and ao # a, then the second order EIN-LDG scheme (3.8) satisfies

1
a07ll"]1*. (3.9)

1
aoTlad"lI* < u’lf* + 5

n||2
I+ 5
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Proof.  Subtracting (3.8a) from (3.8b) we get

1 3
(u™ ™ —u™ ) = (ag — §a)T£(q",v) + (a— §a0)7£(q”’1, v) + %Tﬁ(q”“,u). (3.10)
Taking v = u™ in (3.8a) we have
1 1 1 1 1
L2 Dt = = Lo 4 2o - aoyrtan ) + 2aorle P =0, @)

where we have used property (2.5). Taking v = u"*! in (3.10) we have

1 1
S 4 S

1 a
2— 5”“"’1”2 + (ao — 5)7'(61”7(1"“)

1
n+1) 4 §a07_||qn+1||2 —0. (3.12)

3
+(a a0l g
Adding (3.11) and (3.12) together, and multiplying by 2, we get

" FHZ ™t = w2+ e = a2 = P+ aor [l 1+ g™

+7[(a—ao)(q", q™") + (2a0 — a)(¢", ") + (2a — 3ao)(¢"™*, ¢" )] = 0.

Then by adding and subtracting d7||¢"||* we obtain

[ [ e e R Tt e [
40l = 1q"*) + 7 [ aThqdz =0, (313)
Q
where g = (¢",¢™",¢""") ", and
) s(a—ag) ap— %
A = %(a —_ ao) aO a — %ao . (314)
ap — 5 af%ao ag — 0
On the other hand, taking v = u™! — u™ in (3.8a) we have
1 1
[t = u”|[* + (0 — ao)(g", g™ = ¢") + Sao(g"" g™ — ¢") =0,
owing to (2.5). That is
lu™t — u™||? + T/ q'Bqdz =0, (3.15)
Q
where
Hao—a) §-% 0
B=| 2a-2 lg 0 (3.16)
0 0 0
Adding (3.13) and 0x(3.15) together leads to
a2+ (14 o) [fu™ =+ a2
+0r(llg" P = llg"1I*) + T/ q' (A+oB)gdz =0. (3.17)
)

Here 0 < 0 < ap and o > —1 are free parameters. For convenience, we let § = %ao. We claim that there
exists 0 > —1 such that the matrix A + ¢B is positive definite for any ag > %a, whose proof will be
deferred to Lemma 3.3. We can also verify that A 4+ oB is semi-positive definite for ag = %a if 0 =0,

since the eigenvalues of the matrix are %a, %a and 0 in this situation. Thus we can get
1

2
And hence we obtain (3.9). O

1
a2 + Saor g™ P < a2 + Saorl”|1 (318)
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Lemma 3.3. Let § = %ao, for any ag > %a and ag # a, there exists o > —1 such that A + oB is

positive definite, where A and B are defined in (3.14) and (3.16) respectively.
Proof.  Assume ag = fa, then
. 0+c(@—1) 1-0+0(5—6)20-1
A+UIEB:§a 1—0+0(1-0) (24 0)0 2—30
20 — 1 2—36 0

To ensure A 4 oB is positive definite, we require all the leading principle minors are positive, namely

o6 —1)+6 >0, (3.19a)
1

f102+(92+971)0+92+29—1>0, (3.19b)
1

— 1902 + (607 — 70 + 2)0 — (46° + 46% — 110 + 4) > 0. (3.19¢)

In what follows, we will prove the solution (o) of (3.19) exists provided that § > % and 6 # 1. From
(3.19b), we get

2002 +60—1) = 2¢/A1 <0 <2(0% 4+ 0 —1) +2y/Aq, (3.20)
where Ay = (62 +60 —1)2+ 624260 — 1 = 0* + 263, which is always positive if § > 1. From (3.19¢) we get

2(662 — 76 + 2) — 2\/A, 2(662 — 760 + 2) + 2\/A,
<o < )
0 0
where Ag = (667 — 70 + 2)? — 0(46% + 46% — 1160 + 4) = 320" — 880° + 8402 — 320 + 4 which is positive if
0> % and 0 # 1.
To simplify the notations, we denote A; = 2(02 + 6 — 1) — 2/Ay, Ay = 2(6% + 6 — 1) + 2/Aq,
By = 2(692—79;2)—2\/5, and By = 2(692—79-52)+2\/A_2. Since

(3.21)

4 1
(41 = Bo)(Az — Bi) = —5 [2 AL g + (126 — 56° — 2462 + 280 — 8)} <0 if 0>,

we can conclude that the intersection of (3.20) and (3.21) is not empty.
In addition, from (3.19a) we get

(3.22)

o>—5z4 if 0>1.

{a<1%9 if 1<6<1,
So, if % < 0 < 1, then we require max{A4;, B1} < %. This condition can be verified by noticing that

0 2(66% — 76 + 2 0
200°+6—-1)— —— <0 and (66" —76+2)

10 9 T
for % <60 <1.1If 0 > 1, we require min{ Ay, Bo} > —%, it holds obviously since
0 2(60% — 76 + 2) 0
2002 +60 —1) + ——
(6= +46 )+971>0 and 7 +971>0,

for > 1. Thus we proved that the solution of (3.19) exists.
Furthermore, we can check that min{As, Bo} > —1 in the case # > 1, and in the case % <6 <1,
min{ Ay, Ba, 1%09} > —1, so we complete the proof of this lemma. O

Remark 3.4. In the above stability analysis for the linear model, it is required to study the positive
definiteness of the matrix A + ¢B which is a constant matrix. The arguments, however, are not easy to
extend to nonlinear problems, since the corresponding matrix will depend on the numerical solutions at
different intermediate time stages, it will be more complicated to study the positive definiteness of the
matrix. So we need to seek new techniques to overcome the difficulties, which will be left for future work.
Even though the analysis for the nonlinear model is not available at present, the stability analysis for the
linear model can provide us with some guidance in designing schemes for nonlinear diffusion problems.
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4 Optimal error estimates

With the stability result in the previous section, it is conceptually straightforward to obtain error esti-
mates for smooth solutions of the simplified model (3.2) with a > 0 being a constant. We will only give
the error estimates for the second order EIN-LDG scheme (3.8) as an example. To this end, we would like
to introduce two Gauss-Radau projections, from H'(T}) = {d) € L*(Q): ¢, e H'(I;),Vj=1,..., N}
to Vi, denoted by 7, and 7r;f respectively. For any function p € H'(7},), the projections wfp are defined
as the unique element in V}, such that

(M p=p,0);, =0, Yo € Pra(l)s (m,p);0 =P (4.1a)
(myp=pv); =0, Vo ePea(ly), (myp), =p) (4.1b)
forany j =1,2,---, N. In view of the exact collocation on one endpoint of each element, the Gauss-Radau

projections provide a great help to obtain the optimal error estimates.
Denote by n = p — ﬂfp the projection error. By a standard scaling argument [9], it is easy to obtain
the following approximation property

Inll < CREHL [p] ., (4.2)

where the bounding constant C' > 0 is independent of h. Furthermore, by the definition of the operators
L and K we have
L(p—mip,v) =K(p—m, p,v) =0 (4.3)
for any p € H 1(771) and v € V},, due to the periodic boundary condition.
Following [23], we introduce three “reference” functions, denoted by W = (U QW) ¢ = 0,1,2,
associated with the second order IMEX RK time discretization (2.10). In detail, U(®) = U is the exact
solution of problem (3.2) and then we define

1 1
U =09+ 2(a-a)rQ + aomQL, (4.42)
1
U® = U + (0~ a0)7Qf" + 5aom(QF + Q). (4.4b)
where
QY =UY, for £=0,1,2. (4.4c)

For any indices n and ¢ under consideration, the reference function at each stage time level is defined as
wnt = (U™ Q™) = WO (2, 7). Here W™ = W and W2 = Wt

At each stage time, we denote the error between the exact (reference) solution and the numerical
solution by e™f = (epf,et) = (U™ —u™*, Q™" — ¢™"). As the standard treatment in finite element
analysis, we would like to divide the error in the form e = & — n, where

n:(nuvnq):(W;U*Uaﬁ}TQ*Q)v 5:(§u,§q):(7r;U7u,7r;:'qu), (4'5)

here we have dropped the superscripts n and ¢ for simplicity.
We would like to assume that the exact solution U satisfies the following smoothness

UecL>0,T; H*?), DU € L>(0,T; H*), and D3U € L>(0,T; L?), (4.6)
where D{U is the (-th order time derivative of U.
By the smoothness assumption (4.6), it follows from (4.2) that the stage projection errors satisfy

< CREF(| U™ gresr + |Q™ | grrsr) < CRFFL, (4.7a)

Y4
e =+ llmg

for any n and ¢ = 0,1,2 under consideration. And owing to the linear structure of the Gauss-Radau
projection, we have

It —npll SCRMFH|IU™! — U™ || grss < CRFF 7, (4.7b)
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2+t — Y| SCRMHY U — U™ i < CREF A7, (4.7¢)

Here the bounding constant C' > 0 depends solely on the smoothness of the exact solution and is inde-
pendent of n, h, 7.

In what follows we will focus on the estimate of the error & Notice that the “reference” function
satisfies the following variational forms

(U™ 0) = (U™ ) + 1 (0 — a0)r£(Q"v) + 2agrL(Q™,v) (180)
(U"0) = (U 0) + (a — ag) L@ v) + Lagrl(@"0) + L@ )] + (), (48b)
Q™ r) =KU™* r), for £=0,1,2, (4.8¢)

where (" = O(7%) by the smoothness assumption (4.6).
Subtracting these variational forms from those in scheme (3.8), in the same order, we obtain the
following error equations

(€0 0) = (€. 0) + (2 =) + 50— )& ) + GaorL(E . v) (4.92)
(€0 v) = (& 0) + (i =i v) + (@ — ao)TL(E )

4 %aor[ﬁ( m0) + LEL )]+ (), (4.9b)

(&) = ) + K€D, r), for €=0,1,2, (4.9¢)

since L£(ng,v) = K(ny,r) = 0 by property (4.3).
Subtracting (4.9a) from (4.9b) we get

(§Z+1 - 537171)) = (a’O - la’)Tﬁ( ;Ia U) + (a - ;ao)Tﬁ(gg’l,’U) + %Tﬁ(€;+l7v)
+ (=it v) + (¢ ). (4.10)

Taking v = £»! in (4.9a), v = 71 in (4.10), then proceeding along the similar line as the stability
analysis in Subsection 3.2, we obtain

s ™12 + gt = &ll* + llent™ — &t = lienl®

T+ or(flent — len?) + 7 / €TAE, dr =T, (4.11)

where &, = (£, &, L ;I‘H)T, A is the same as in (3.14), and

Ty =2yt =, 60t) + (a — ao)T(nZ}’l,E”) + aoT(ny wt 53’1)
+20m =t ) + (2a0 — a)T(ng ™€) + (2a — Bao)T (gL €5
Faor(p g + (¢ 6.

On the other hand, taking v = ™1 — €™ in (4.9a) we get
et~ €l + 7 [ €7Be do =T (412)
where B is the same as in (3.16) and
n,l n ¢n,l n 1 n, n 1 n ¢n,l
T :(nu7 77’ua§u g ) (a—ao) (Uq 777q;§ )+ aOT(ﬂq 777(175(1’ ) (413)

A simple use of the Cauchy-Schwarz and Young’s inequalities and the properties (4.7) we have

T+ Tof <er(l€Rl + €01 + 16 H1P) +er (g 11 + NIy 1P + 165 HI%) + C(h**+27 + 70,
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for arbitrary e. So adding (4.11) and ox(4.12) together leads to
s 17 + (L + o)l — &nll? + llen™ — &t II” = ll€ull®
+ 81 IP ~ 1E5I1P) + 7 [ €] (At 0B — el da

er(IERI + €M 12 + €5 1P) + C(h3+2r + %)

<
<er(l€nl® + gt — &ll® + llgs™ — &) + C(W*+2r + 7). (4.14)

Here 0 < § < ap and 0 > —1 are free parameters, I is the identity matrix.

As in the stability analysis, we let 6 = %ao. Since the matrix A 4 oB is symmetric, from Lemma 3.3 we
conclude that, for ag > %a there exists o > —1 such that the matrix A 4+ oB — ¢l is also positive definite,
by choosing € small enough such that ¢ < %)\, where A is the smallest positive eigenvalue of the matrix
A + oB. Note that in the case ag = %a, we are not able to ensure the positive definiteness of the matrix
A + 0B — <L, since in this case the matrix A + 0B is only semi-positive definite. Thus for ag > %a, using
the discrete Gronwall’s inequality yields

€12 + Saor g I < €all” + Saorllgg* + C(R# 2 + 7%, (4.15)

Taking u® = 7, U° we get £) = 0 and hence from (4.9¢) we get [|€0]| < [[nd]| < Chk*1 so we are led to
gl < O+ 72). (4.16)

Finally we obtain the following theorem by (4.7), (4.16) and the triangle inequality.

Theorem 4.1.  Let U(x,t) be the exact solution of equation (3.2) satisfying the smoothness assumption
(4.6), and let u™ be the solution of the second order EIN-LDG scheme (8.8). Then if ag > § we have

max ||U(x,t") —u"|| < C(h*! 4 72), (4.17)

nt<T

where C' is a bounding constant independent of n, h,T.

5 Numerical Experiments

In this section, we will numerically validate the accuracy and performance of the LDG spatial discretiza-
tion (2.3) coupled with the first and second order IMEX schemes (2.9) and (2.10). In addition, we would
like to test for a third order IMEX scheme proposed in [2]

0[0 0 0 00[0 00 00
10 3 0003 0000
205 3 00/t 50 00 5.1)
Bo-3 3 3038300
o3 ~§33/4 §8-Fo
03 -144l4 T 140

5.1 The stability and accuracy test

In this subsection we test the stability and accuracy of the proposed schemes. We will consider two
examples. In each example, the source term f(x,t) is chosen properly such that the exact solution
satisfies the given equation. The final computing time is 7' = 10 and uniform meshes are adopted for all
tests in this subsection. In addition, we take piecewise constant, piecewise linear and piecewise quadratic
polynomials in the LDG spatial discretization for the first order, the second order and the third order
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IMEX time discretization, respectively, such that the orders accuracy of errors in space and time match
if the time step 7 = O(h).

Ezample 1. The diffusion equation u; = (a(u)uy), + f(z,t) with exact solution
u(z,t) = sin(z — t)

defined on [—m, 7). We will consider three cases:
(i) a(u) =%, (i) a(u) =u?+1, (iii) a(u) = sin®u.

For this example, the time step is 7 = h, where h = 27/N is the mesh size, N is the number of
elements.

In Tables 1-3, we list the L? errors and orders of accuracy for the three cases. In each table, we display
the numerical results of the three IMEX schemes (2.9), (2.10) and (5.1) coupled with the LDG method
(2.3) with different ag. From these tables, we see that the first and second order EIN-LDG schemes are
stable and can achieve optimal error accuracy in both space and time if ag > max{a(u®)}/2, where u? is
the approximation of the initial solution. From the experiment we also find that the smallest ag to ensure
the stability of the third order EIN-LDG scheme is about 0.54 max{a(u”)}, and we observe optimal error
accuracy in both space and time if ag > 0.54 max{a(u’)}. From the numerical results we can also find
that larger ag may cause larger errors.

Table 1 The L? errors and orders of accuracy for Example 1: a(u) = 1/2.

L? error order L? error  order L? error  order L? error  order
schemes N
ap = 0.24 ap = 0.25 ap =1 ag = 10
80 8.04E-02 - 8.09E-02 - 1.40E-01 - 7.94E-01 -

(2.9) 160 4.02E-02 1.00 4.04E-02 1.00 7.13E-02 0.97 4.84E-01 0.71
with 320 2.01E-02 1.00 2.02E-02 1.00 3.60E-02 0.98 2.73E-01 0.83
k=0 640 1.73E4+11 -42.97 1.01E-02 1.00 1.81E-02 0.99 1.46E-01 0.90
1280 | 4.33E+46  -117.59 | 5.05E-03 1.00 9.08E-03 1.00 7.56E-02 0.95
ag = 0.24 ag = 0.25 ag =1 ag = 10

80 3.90E+-09 - 8.80E-04 - 2.02E-03 - 1.24E-01 -
(2.10) 160 3.09E+25  -52.82 2.19E-04  2.00 5.17E-04 1.97 4.13E-02 1.58
with 320 7.67TE+57 -107.61 | 5.48E-05 2.00 1.31E-04 1.98 1.22E-02 1.76
k=1 640 1.53+123  -216.92 | 1.37E-05 2.00 3.30E-05 1.99 3.33E-03 1.87

1280 Infinity -Inf 3.42E-06 2.00 8.28E-06 1.99 8.73E-04 1.93
ap = 0.26 ag = 0.27 ap =1 ap = 10
80 6.37TE+12 - 6.92E-06 - 5.10E-05 - 3.31E-02 -

(5.1) 160 3.67TE+31  -62.32 8.67E-07  3.00 6.58E-06  2.95 6.49E-03  2.35
with 320 1.26E4+70 -128.01 | 1.09E-07  2.99 8.41E-07  2.97 1.05E-03  2.63
k=2 640 8.64+147  -258.56 | 1.36E-08  3.00 1.06E-07  2.99 1.51E-04  2.80
1280 NaN NaN 1.73E-09  2.98 1.31E-08  3.02 2.03E-05  2.90

Example 2. To test the efficiency of the proposed methods for problems with large variation of diffusion
coefficients, we consider the diffusion equation

Uy = (a(x)ua:)a: + f(l',t)

with the same exact solution as Example 1. We will consider a(z) = 1 + bsin?(z) for b = 10,100 and
1000. Obviously, the diffusion coefficient varies from 1 to 1 4 b, and the variation is larger if b is larger.

The choice of ap and time step in different situations are given in Table 4. We see that the first and
second order schemes are stable if ag > 0.5(1 4 b) and the third order scheme is stable if ag > 0.54(1 +b).
The numerical results are listed in Table 5, from which we can observe optimal orders of accuracy of
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Table 2 The L? errors and orders of accuracy for Example 1: a(u) = u? + 1.

L? error  order | L? error order L? error  order | L? error order
schemes N
ag = 0.85 ag = 0.9 ag =1 ag = 10
80 9.73E-02 - 1.01E-01 - 1.08E-01 - 6.72E-01 -
(2.9) 160 4.90E-02 0.99 5.09E-02 0.99 5.47E-02 0.98 3.91E-01 0.78
with 320 2.46E-02 0.99 2.56E-02 0.99 2.75E-02 0.99 2.11E-01 0.89
k=0 640 NaN NaN 1.28E-02 1.00 1.38E-02 1.00 1.10E-01 0.94
1280 NaN NaN | 6.42E-03 1.00 6.90E-03 1.00 5.61E-02 0.97
ag = 0.95 ag = 0.98 ag =1 ag = 10
80 1.04E-03 - 1.03E-03 - 1.02E-03 - 8.64E-02 -
(2.10) 160 2.62E-04 1.99 2.59E-04 1.99 2.57TE-04 1.98 2.83E-02 1.61
with 320 6.65E-05 1.98 6.61E-05 1.97 6.56E-05 1.97 8.32E-03 1.76
k=1 640 NaN NaN 1.65E-05 2.00 1.64E-05 2.00 2.27E-03 1.88
1280 NaN NaN | 4.12E-06 2.00 4.13E-06 1.99 5.95E-04 1.93
ap =1 ap = 1.05 ap=1.1 ap =10
80 3.56E-05 - 3.88E-05 - 4.23E-05 - 2.17E-02 -
(5.1) 160 4.73E-06 2.91 5.23E-06 2.89 5.77E-06 2.87 4.25E-03 2.35
with 320 NaN NaN | 7.45E-07  2.81 8.30E-07  2.80 6.97E-04 2.61
k=2 640 NaN NaN | 9.52E-08 2.97 1.07E-07  2.96 1.01E-04 2.79
1280 NaN NaN 1.27E-08 2.91 1.40E-08 2.93 1.37E-05 2.88
Table 3 The L? errors and orders of accuracy for Example 1: a(u) = sin? u.
L? error order L? error  order | L? error  order L? error order
schemes N
ap = 0.5sin?1 - 0.1 ap = 0.5sin?1 ap =1 ap =10
80 9.68E-02 - 1.05E-01 - 1.73E-01 - 1.06E+4-00 -
(2.9) 160 4.89E-02 0.99 5.34E-02 0.98 8.99E-02 0.95 5.89E-01 0.85
with 320 1.14E+4-00 -4.54 2.70E-02 0.99 4.60E-02 0.97 3.20E-01 0.88
k=0 640 1.54E+4-00 -0.43 1.35E-02 0.99 2.34E-02 0.98 1.71E-01 0.91
1280 | 1.44E400 0.09 6.80E-03 1.00 1.18E-02 0.99 8.93E-02 0.93
ao = 0.5sin?1—0.1 ao = 0.5sin?1 ao =1 ag =10
80 2.41E+01 - 1.01E-03 - 3.41E-03 - 1.49E-01 -
(2.10) 160 3.67E4-01 -0.61 2.58E-04 1.97 9.05E-04 1.91 5.05E-02 1.56
with 320 7.41E+01 -1.01 6.55E-05 1.98 2.34E-04 1.95 1.52E-02 1.73
k=1 640 1.52E+402 -1.04 1.65E-05 1.99 5.97E-05 1.97 4.22E-03 1.85
1280 | 3.34E402 -1.13 4.14E-06 1.99 1.51E-05 1.99 1.12E-03 1.92
ap = 0.5sin?1 ap = 0.54sin? 1 ap =1 ap =10
80 4.01E-05 - 4.27E-05 - 1.87E-04 - 4.11E-02 -
(5.1) 160 5.81E-06 2.79 6.26E-06 2.77 2.98E-05 2.65 8.28E-03 2.31
with 320 1.01E+03  -27.37 8.78E-07 2.83 4.39E-06 2.76 1.38E-03 2.59
k=2 640 1.88E+4-03 -0.90 1.16E-07 2.92 6.01E-07  2.87 2.03E-04 2.77
1280 | 3.25E4-03 -0.79 1.49E-08 2.95 7.92E-08 2.93 2.78E-05 2.87

13
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Table 4 The constant ap and time step taken in the experiments.

b

10 100 1000
scheme

(2.9) with k=0 ap = 6,7 =0.1h ap = 51,7 =0.1h ap = 501, 7 = 0.01h
(2.10) with k=1 | ap = 6,7 =0.1h | ao=51,7=0.1h | ag = 501,7 = 0.01h
(51) withk=2 | ap = 6,7 =0.1h | ap = 55,7 = 0.05h | ao = 540, 7 = 0.01h

Table 5 The L? errors and orders of accuracy for Example 2: a(z) = 1 + bsin?(z).

b=10 b =100 b = 1000
schemes N
L2 error  order L? error  order L? error  order
80 4.66E-02 - 8.66E-02 - 5.19E-02 -
(2.9) 160 2.33E-02 1.00 4.73E-02 0.87 2.63E-02 0.98

with 320 1.17E-02 1.00 2.48E-02  0.93 1.34E-02  0.97
k=0 640 5.84E-03 1.00 1.27E-02  0.96 6.76E-03  0.99
1280 | 2.92E-03 1.00 6.46E-03  0.98 3.40E-03  0.99
80 6.92E-04 - 5.02E-03 - 2.06E-03 -
(2.10) 160 1.74E-04 1.99 1.56E-03 1.69 6.40E-04 1.69
with 320 | 4.36E-05 2.00 4.49E-04 1.79 1.84E-04 1.80

k= 640 1.09E-05 2.00 1.23E-04 1.87 | 5.01E-05 1.88
1280 | 2.73E-06  2.00 3.24E-05 1.92 1.32E-05 1.93

80 5.60E-06 - 1.58E-04 - 3.65E-04 -
(5.1) 160 7.40E-07  2.92 2.79E-05  2.50 7.41E-05 2.30

with 320 9.66E-08  2.94 | 4.36E-06  2.68 1.30E-05 2.51
k=2 640 1.23E-08  2.97 | 6.28E-07  2.80 2.04E-06  2.67
1280 | 1.46E-09  3.08 8.35E-08  2.91 2.88E-07  2.82

the proposed schemes. We also note that, small mesh size and small time step are required to observe
optimal error accuracy for large b.

From the stability analysis in Section 3 and the numerical experiments in this subsection, we propose
a guidance for the choice of ag for general model Uy = (a(U)Uy )4, that is, ag > max{a(u)}/2 for the first
and second order schemes, and ag > 0.54 max{a(u)} for the third order scheme, where v is the numerical
solution at the corresponding time level. In our experiments, the LU factorization is used as the linear
solver, it will cost more computation to solve a linear system with different coefficient matrix at each
time level. Actually in practical computing, it is not necessary to scan the maximum of a(u) and adjust
ap at every time step. In the next two subsections, we will simulate the porous medium equation and the
high-field model, where we adjust ag after every 100 time steps.

5.2 Numerical simulation to the porous medium equation

To further validate the performance of the proposed schemes, we consider the porous medium equation
(PME)

m
Ut = (U )xxv (5'2)
in which m is a constant greater than one. This equation often occurs in nonlinear problems of heat
and mass transfer, combustion theory, and flow in porous media, where w is either a concentration or a

temperature required to be non negative. We assume the initial solution ug(z) is a bounded non negative
continuous function, then (5.2) can be written as

up = (a(u)ug)q, (5.3)
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with a(u) = mu™"1. Tt is a degenerate parabolic equation since u may be 0 at some points. The
LDG schemes coupled with the explicit third order RK time marching for solving this kind of problems
were studied in [29], where a slope limiter was introduced to ensure the non negativity of the numerical
solutions.

In this subsection, we present the numerical results given by the EIN-LDG schemes. In all the following
experiments, we adopt k& = 2 for the spatial discretization, and the second order scheme (2.10) for the
time discretization. The same slope limiter as in [29] is adopted at each intermediate stage. Thanks to
the limiter, we can ensure the non negativity of numerical solutions, and thus can ensure the diffusion
coefficient a(u) is non negative. Moreover, the physical meaning of u can be maintained, and the possible
numerical oscillation near discontinuous interfaces can be eliminated. All the experiments are tested on
uniform mesh with mesh size h = 0.02, the time step is 7 = O(h). In the experiments of this subsection,
we adjust ag after every 100 time steps, according to the maximum of a(u). We take ag = maxa(u)/2 at
the corresponding time levels.

Test 1. Equation (5.3) with the Barenblatt solution

) 1/(m—1)
Bo(o,t) = - Kl _sm—1) |« ) ] | (5.4)
+

2m 2

where uy = max{u,0} and s = 1/(m + 1). We begin the computation from ¢ = 1 in order to avoid
the singularity of the Barenblatt solution near ¢ = 0. The boundary condition is u(£6,t) = 0 for t > 1.
We plot in Figure 1 the numerical results for m = 2,3,5,8 at t = 2. From this figure, we see that our
scheme can simulate the Barenblatt solution accurately and sharply, without noticeable oscillations near
the interface.

- 4 2 0 2 4 [3 - 4 2

(©m=5 (dm=8

Figure 1 Numerical results for the Barenblatt solution: ¢t = 2.

Test 2. The collision of two-Box solutions with the same or different heights. If the variable w is regarded
as the temperature, this model can be used to describe how the temperature changes when two hot spots
are suddenly put in the computation domain. In Figure 2 we plot the evolution of the numerical solution
for the PME with m = 5. The initial condition is the two-Box solution with the same height, namely

() 1, ifz e (-3.7,—-0.7)U(0.7,3.7) (5.5)
up(x) = .
0 0, otherwise

with the boundary condition u(£5.5,%) = 0 for all ¢ > 0.
In Figure 3 we plot the evolution of the numerical solution for the PME with parameter m = 8. The

initial condition is defined as
1, ifze(—4,-1),

up(z) = { 1.5, if z € (0,3), (5.6)

0, otherwise
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with the boundary condition u(£6,t) = 0 for all ¢ > 0.

From these simulations, we can see an analogous evolution whether the heights of the two boxes in the
initial condition are the same or not. Two-Box solutions first move outward independently before the
collision, then they join each other to make the temperature smooth, and finally the solution becomes
almost constant in the common support.

R
o

0 —— — — 0] o— e e
6 E) B 0 2 T 6 E) B 0 2 T

(a) t=0.0 (b) t=0.3
0] o— £ F— JY — [—
-6 -4 -2 0 2 4 -6 -4 -2 0 2 4

(c) t=0.6 (d) t=0.9

6 E) B 0 ] i 6 E) B 0 2 T

(e) t=1.2 (f) t=1.5

Figure 2 Collision of the two-Box solution with the same height.

Test 3. To test the waiting time phenomenon [1], i.e, the interface of the support does not move outward
until the waiting time, we consider the PME with m = 8. The initial condition is defined as a fast-varying
solution, namely,

(5.7)

(@) cosz, ifxe(—m/2,7/2)
ug(z) =
0 0, otherwise

with the boundary condition u(+m,t) = 0 for all £ > 0. We plot in Figure 4 the evolution of the numerical
solutions. We observe that the interface begins to move outward around ¢ = 1.4, before that, the interface
does not move outward, which verifies the waiting-time phenomenon.

From the above experiments, we see that our scheme can simulate the PME accurately. The main
advantage is the fact that larger time steps can be chosen compared with the explicit time discretization
methods, where 7 = O(h?) is required.

5.3 Numerical simulation to the high-field model

In this subsection, we apply the proposed scheme to the one-dimensional high-field (HF) model [7,8] in
semiconductor device simulations, which is a convection-diffusion system coupled with a Poisson potential
equation. The notations for the model are only valid in this subsection. The HF model is described by
the following equation

ny +Jp =0, z € (0,0.6) (5.8)

where
J = Jhyp + Jvi37

and

e
Ihyp = — unE +yp (g) n(—unk + w),
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(a) t=0.0

— < —_—
(c) t=0.08

— ——
(e) t=0.14

(i) t=0.50

Sci China Math

0 2 T

(b) t=0.05

o

o
a —

0 2 T

(d) t=0.11

0 2 T

(f) t=0.17

0 2 T

(h) t=0.23

(i) t=1.00

Figure 3 Collision of the two-Box solution with different heights.
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(i) t=1.6 () t=1.8

Figure 4 Waiting-time phenomenon.
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Jvis = — (0 + 24 E?)], + yuE(unkE),.

In the HF model, the unknown variable n is the electron concentration, £ = —¢, is the electric field,
and ¢ is the electric potential which is given by the Poisson equation

Gow = g(n — ng), (5.9)

with ng4 being a given doping (also the initial condition for n). The boundary conditions for n and E are
periodic, and for ¢ is Dirichlet boundary condition which will be given later.

In the above model, the parameter p is the mobility, e is the electron charge, € is the dielectric
permittivity, w = (unE)|.—o is taken to be a constant, v = % is the relaxation parameter, with m
being the electron effective mass, and 6 = %TO, where k is the Boltzmann constant and 7} is the lattice
temperature.

The LDG method has been applied to solve problem (5.8) in [19] by Liu and Shu, where they used
the third order explicit RK method in the time discretizaiton. In their later work [20], an IMEX-LDG
method was adopted to solve the drift-diffusion model, for which the coefficient of diffusion is constant. In
[20], the IMEX-LDG method shows good efficiency compared with explicit methods. Here the diffusion
of HF model is nonlinear, we will use the proposed EIN-LDG scheme.

For the convenience of adopting EIN-LDG scheme, we rewrite the HF model (5.8) as

e e
ng + (—;mE - 'yMQEnQE + THown = 3’qun(uE)z) —[(v8 + Y2 E*)ny). = 0. (5.10)
x
Using E, = —<(n —ng), we can write the equation as
ne + f(n, E)y — (a(E)ng). =0, (5.11)

where

e e
F(n, B) =y —nB(2n = 3nq) — pnE (1 + 37Bp,) + yu-wn,
a(E) =~0 + yu*E?%

Then by adding a term agn., on both sides of (5.11) we get

ne + f(n, E)y — [(a(E) — ag)ng|e = aonas (5.12)
explicit implicit

with periodic boundary conditions for n and E, where aq is a properly chosen positive constant. We solve
(5.12) by the standard LDG scheme with the third order IMEX scheme (5.1), where piecewise quadratic
polynomials space is adopted in spatial discretization, Lax-Friedriches numerical flux and alternating
numerical flux are used for the convection and diffusion parts, respectively. We treat the part on the left
hand side explicitly, and the part on the right hand side implicitly.

We point out that the potential equation (5.9) is also solved by the LDG method, i.e, finding (¢p, 9p) €
V3, x Vi, such that for any (v,r) € V;, x V},, there holds

e — _ —
(g(n —ng),v); = — (¥n, 'U;c)j + whﬁ_%vﬂ% - whj—%v;‘ié7 (5.13a)
Wn,)j = = (PnTa)j + Phjig T — ¢hj—%rj_%7 (5.13b)
for j =1,2,---, N, where we take the minimal dissipation numerical flux as in [10], specifically
¢a; .7 =0,

¢hj+§ = (¢h);%7 ]:172a aNf]-a
d)ba j:N
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+ P = _
(wh)]_i_%7 J = 0) 17 aN 1)

(Wn) i1 — N <(¢h);,+% - ¢b) » J=N.

Here ¢, and ¢y are the given Dirichlet boundary conditions, A is the mesh size. The numerical approxi-

Vhjyr =

mation of electric field is given by Ej, = —1y,.

Next we simulate the HF model with the same parameters as in [19]. The doping ng is a piecewise-
defined function in [0, 0.6], ng = 5x10*em ™3 in [0, 0.1] and [0.5, 0.6], ng = 2x 10*®cm =3 in [0.15, 0.45], and
a smooth transition in between. The lattice temperature is Ty = 300K. The constants k = 0.138 x 1074,
e =11.7x8.85418, e = 0.1602, m = 0.26 x 0.9109 x 10~3'kg, and the mobility ; = 0.0088 (1 + %)

1+ 133500
in our units. The boundary conditions are given as follows: ¢, = ]%T In(%4) at the left boundary, with

n; = 1.4 x 10"%m™3, ¢, = ¢y + Vpias With the voltage drop vpies = 1.5 at the right boundary for the
potential; T = 300K at both boundaries for the temperature; and n = 5 x 10 7cm ™3 at both boundaries
for the concentration.

In the simulations, we let ag = max{a(FE})} in (5.12) and adjust it after every 100 steps, here Ej, = —1)y,
is solved from (5.13). The code runs until the numerical solution converges to the steady state, we use
|t — nzt_lﬂ 1 < 1079 as the criterion for stopping computation, where n;, is the numerical solution
of the electron concentration n, and nt is the number of time steps. The positivity limiter [29] is not
necessary for this example, since the minimum value of n;, will not be below 0 due to the initial setting
of ng defined above.

Table 6 and Table 7 show the time step, the number of time steps, the numerical steady time, and
the CPU time to reach the steady state for the third order explicit RK LDG (EX-RK-LDG) and the
third order EIN-LDG methods when we use 100 mesh cells and 200 mesh cells in [0, 0, 6], respectively.
From these tables, we see that the proposed EIN-LDG scheme can take much larger time steps compared
with the explicit method, and hence it saves in CPU time significantly. On the other hand, due to the
larger time step, the numerical steady time for EIN-LDG scheme is greater than that for the EX-RK-
LDG scheme. Figure 5 plots the simulation results of the HF model with 200 mesh cells, for both the
EX-RK-LDG method and the EIN-LDG method. It shows that the EIN-LDG method gives the same
convergent results as the explicit method. The EIN-LDG scheme is thus a reliable and efficient tool for
the study of models such as the HF model to describe the correct physics.

Table 6 The time step 7, the number of time steps nt, the numerical steady time ¢, and the CPU time to reach the steady
state for third order EX-RK-LDG and third order EIN-LDG methods with 100 mesh cells in [0, 0.6].

3rd order EX-RK-LDG 3rd order EIN-LDG
T 4.604E-6 1.2E-4 | 1.8E-4 | 2.4E-4 | 3.0E-4 | 3.6E-4
nt 265231 13517 9253 7069 5735 4834
t 1.272 1.622 1.666 1.697 1.720 1.740
CPU time 506 59.51 41.39 32.25 27.27 22.99

Table 7 The time step 7, the number of time steps nt, the numerical steady time ¢, and the CPU time to reach the steady
state for third order EX-RK-LDG and third order EIN-LDG methods with 200 mesh cells in [0, 0.6].

3rd order EX-RK-LDG 3rd order EIN-LDG
T 1.151E-6 1.2E-4 | 1.8E-4 | 2.4E-4 | 3.0E-4 | 3.6E-4
nt 930776 13508 9248 7065 5732 4831
t 1.122 1.621 1.665 1.696 1.720 1.739
CPU time 5434.47 205.41 140.76 | 108.22 85.27 72.04




Haijin Wang et al. Sci China Math 21

500000 r
C EX-RK-LDG f of
L EIN-LDG ¢ |5 EX-RK-LDG
400000 i o EIN-LDG
i 4k
300000 [~ I
I _2 T
c i w [
200000 [~ 3 E
i af
100000 [
: _5 ?
ol vy —————— P e v
0 0.1 0.2 0.3 0.4 05 0.6 0 0.1 0.2 03 04 05 0.6
X X
(a) electron concentration n (10'2cm™3) (b) electric field E (V/pm)

Figure 5 The simulation results of HF model in [0, 0.6] with 200 mesh cells, for third order EX-RK-LDG and third order
EIN-LDG methods, 7=3.6E-4 in EIN-LDG method.

6 Conclusion

We have developed a class of EIN-LDG schemes for solving one-dimensional nonlinear diffusion problems,
where a constant diffusion term is added and subtracted to the original equation, and then one of the
terms is treated implicitly and the remaining terms are treated explicitly. We have presented the stability
and error analysis of the first and second order EIN-LDG schemes for a simplified model, and based on
the stability result we have provided a guidance for the choice of ag to ensure the unconditional stability
of the schemes. Numerical experiments show that the proposed first and second order schemes are stable
and can achieve optimal orders of accuracy when ag > max{a(u)}/2. A third order time discretization
is also considered numerically. The schemes have good performance and high efficiency for the PME and
the high-field model in semiconductor device simulations. The application of the EIN-LDG schemes to
solve two and higher spatial dimensional problems is straightforward, for which the proposed schemes
will be more efficient compared with explicit or standard implicit schemes. This will be left for our future
work.
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