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Abstract. In this paper we present a discontinuous Galerkin (DG) method to approximate
stochastic conservation laws, which is an efficient high-order scheme. We study the stability for the
semi-discrete DG methods for fully nonlinear stochastic equations. Error estimates are obtained
for smooth solutions of semi-linear stochastic equations with variable coefficients. We also estab-
lish a derivative-free second order time discretization scheme for matrix-valued stochastic ordinary
differential equations. Numerical experiments are performed to confirm the analytical results.
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1. Introduction. Conservation laws are considered to be governing principles
in fluid mechanics to describe the evolution of conserved quantities such as mass,
momentum and energy. In reality, physical and engineering phenomena may involve
some levels of stochastic influences. Recently, there has been an increased inter-
est in stochastic partial differential equations (SPDEs) as stochastic counterparts of
well-known deterministic partial differential equations to incorporate such stochastic
effects, such as stochastic Navier-Stokes equation (e.g. [25]) and its limiting case (the
viscous term equals to zero), stochastic Euler equation (e.g. [7, 16]). As the generaliza-
tion of stochastic Euler equations, the stochastic conservation laws with multiplicative
noise then have been introduced and studied as a model problem. However, since it is
not available to get an explicit formula for solutions of general stochastic conservation
laws, numerical solution are becoming very appealing.

In this paper we present a discontinuous Galerkin (DG) method for nonlinear
stochastic hyperbolic scalar conservation laws with a periodic boundary condition
and a multiplicative stochastic perturbation of the type:

du + f(u)x dt = g(ω,x, t, u) dWt in Ω × [0, 2π] × (0, T ),
u(ω, x, 0) = u0(x), ω ∈ Ω, x ∈ [0, 2π],

(1.1)

where the terminal time T > 0 is a fixed real number and {Wt, 0 ≤ t ≤ T } is a
standard one-dimensional Brownian motion on a given probability space (Ω,F , P) with
a filtration {Ft, 0 ≤ t ≤ T } satisfying the usual conditions. The real scalar stochastic
function g(ω, x, t, u) is F ⊗ B([0, 2π]) ⊗ B([0, T ]) ⊗ B(R)-measurable. We make the
following hypotheses:
(H1) The initial condition u0 ∈ L2(0, 2π).
(H2) The functions f and g are locally Lipschitz continuous, i.e., for any M ∈ N+,
there exists a positive constant L(M) such that, for all (ω, x, t) ∈ Ω × [0, 2π] × [0, T ]
and all (u, u′) ∈ R

2 with |u| ∨ |u′| ≤ M ,˛̨
f(u) − f(u′)

˛̨
∨
˛̨
g(ω,x, t, u) − g(ω,x, t, u

′)
˛̨
≤ L(M)

˛̨
u − u

′
˛̨
.

(H3) The functions f and g are at most linear growing, i.e. there exists a constant
C > 0 such that for any (ω, x, t, u) ∈ Ω × [0, 2π] × [0, T ]× R,

|f(u)| ∨ |g(ω,x, t, u)| ≤ C(1 + |u|).

†Department of Finance and Control Sciences, School of Mathematical Sciences, Fudan Univer-
sity, Shanghai 200433, China. E-mail: 15110180027@fudan.edu.cn.

‡Division of Applied Mathematics, Brown University, Providence, RI 02912, USA. E-mail: chi-
wang shu@brown.edu. Research supported by ARO grant W911NF-16-1-0103 and NSF grant DMS-
1719410.

§Department of Finance and Control Sciences, School of Mathematical Sciences, Fudan Uni-
versity, Shanghai 200433, China. E-mail: sjtang@fudan.edu.cn. Research partially supported by
National Science Foundation of China (Grant No. 11631004) and National Key R&D Program of
China (Grant No. 2018YFA0703903)

1



2 Y. Li, C.-W. Shu, and S. Tang

There are several papers on scalar conservation laws with a multiplicative stochastic
forcing term involving a white noise in time. Feng and Nualart [15] discussed the
spatially one-dimensional case, in which a notion of entropy solution is introduced to
prove the existence and uniqueness of the solution. Later, much effort has been given
to extend their results to the more general spatially multi-dimensional cases and to
more extensive initial-boundary conditions. See e.g. [8, 14, 5, 6, 17]. In this article, we
mainly consider the convergence of numerical methods for classical strong solutions
with enough smoothness and integrability.

Concerning the study of numerical schemes for stochastic conservation laws with
multiplicative noises, let us first mention that Bauzet, Charrier and Gallouët proposed
several finite volume schemes. In [2], they studied the convergence of an explicit flux-
splitting finite volume discretization, but with a more restrictive time step stability
condition ( ∆t

∆x
→ 0 as ∆x → 0). Then they investigated the case of a more general

flux in [3]. In [4], they studied the convergence of the scheme when the stochastic con-
servation law is defined on a bounded domain with inhomogeneous Dirichlet bound-
ary conditions. Let us also mention the convergence results of time-discretization
of Holden and Risebro [18] and Bauzet [1] on a bounded domain of R

d, as well as
the papers of Kröker [21], and Kroker and Rohde [22] of finite volume schemes in
the one-dimensional case. But none of these articles gives the order of accuracy for
numerical solutions. Also, there seems to be very little attention paid to the inves-
tigation of high-order approximation schemes for stochastic conservation laws. Note
that our high-order approximation scheme can be more efficient for high-accurate
computation of the smooth case, which is rather attractive in applications. However,
for the non-smooth case, our scheme loses the high order of accuracy, which could be
observed from the numerical experiments.

The DG method we discuss is a class of high-order finite element methods using
completely discontinuous piecewise polynomial space for the numerical solution and
the test functions in the spatial variables, coupled with an explicit and nonlinear stable
high-order time discretization. It was first introduced in 1973 by Reed and Hill [29], in
the framework of neutron transport, which is a deterministic time-independent linear
hyperbolic equation. It was later developed for nonlinear hyperbolic conservation
laws containing first derivatives by Cockburn et al. in a series of papers [10, 11, 12,
13], in which a framework is given to efficiently solve deterministic nonlinear time-
dependent equations. Since the basis functions can be discontinuous, the DG methods
have certain advantage and flexibility which are not shared by typical finite element
methods such as: (1) it is easy to design locally high order approximations, thus
allowing for efficient p adaptivity; (2) it is flexible on complicated geometries and
meshes with hanging nodes, thus allowing for efficient h adaptivity; (3) it is local
in data communications, thus allowing for efficient parallel implementations. In this
paper, we shall consider stochastic counterparts of these works and propose a DG
scheme for stochastic conservation laws (1.1) and (3.12), respectively.

Jiang and Shu [19] proved a cell entropy inequality for the semidiscrete DG
method to possibly nonsmooth solutions of nonlinear conservation laws, which gives
the stability result for the numerical solutions. We shall consider possibly nonsmooth
solutions of nonlinear stochastic equations, and prove that the numerical solutions of
the DG scheme are stable. By similar method, we could also prove the stability of
approximate solutions for semilinear variable-coefficient stochastic conservation laws.

Following the ideas for the deterministic case [32], we give the optimal error
estimates (O(hk+1) for the one-dimensional case) for the semilinear stochastic con-
servation laws with variable coefficients. Zhang and Shu [33] presented a priori error
estimates for fully discrete Runge-Kutta DG methods with smooth solutions of scalar
nonlinear conservation laws. Unfortunately, the unboundedness nature of the stochas-
tic process driven by a Brownian motion prevents us from applying their method to
get the error estimates for the fully nonlinear stochastic equation.

The DG method is a scheme for spatial discretization, which needs to be coupled
with a high-order time discretization. Unlike the deterministic case, there is no simple
heuristic generalizations of deterministic Runge-Kutta schemes to stochastic differen-
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tial equations (SDEs). Kloeden and Platen [20] presented an explicit order 1.5 strong
scheme for vector-valued SDEs. Milstein and Tretyakov [27] gave an implementable
way to model Itô integrals, which is essential to construct an order 2.0 (second order)
scheme. Combining these methods, in this paper we establish an explicit order 2.0
strong scheme for matrix-valued SDEs, which seems to be new.

It should be pointed out that our effective computational methods for SPDEs
have to face new difficulties. The solutions of SPDEs, when they do exist, are not
naturally time-differentiable, and are not bounded in the path variable. These new
features complicate the calculation and analysis in our stochastic context.

Our high-order approximation scheme can be more efficient for high-accurate
computation of the smooth case, which is rather attractive in applications. However,
for the non-smooth case, our scheme loses the high order of accuracy due to the lack of
regularity, which is a limitation of the numerical approach and could be observed from
Table 4.3. To see the behaviors of approximating solutions for discontinuous cases, we
plot the approximating solution to get Figures 4.1 and 4.2. In view of these figures,
we could see that the DG scheme still works nicely for the discontinuous solutions.

The paper is organized as follows. In Section 2, we introduce notations, definitions
and auxiliary results used in the paper. In Section 3, we present the DG schemes
for (1.1) and (3.12) respectively, and investigate the stability and error estimates of
the schemes. In Section 4, we give a series of numerical experiments on some model
problems which confirm the analytical results. Finally, in the appendix, we establish
a derivative-free second order time discretization to collaborate with the semi-discrete
scheme presented before.

2. Notations, definitions and auxiliary results. In this section, we intro-
duce notations, definitions, and also some auxiliary results.

2.1. Notations. We denote the mesh by Ij =
[
xj− 1

2
, xj+ 1

2

]
, for j = 1, ..., N .

The nodes are denoted by {xj+ 1
2
, j = 0, 1, ..., N} with x 1

2
= 0 and xN+ 1

2
= 2π. The

mesh size is denoted by hj = xj+ 1
2
− xj− 1

2
, with h = max

1≤j≤N
hj being the maximum

mesh size. We assume that the mesh is regular, namely the ratio between the maxi-
mum and the minimum mesh sizes stays bounded during mesh refinements. We define
the piecewise-polynomial space Vh as the space of polynomials of the degree up to k
in each cell Ij , i.e.

Vh =
n

v : v ∈ P
k(Ij) for x ∈ Ij , j = 1, ..., N

o
.

Note that functions in Vh are allowed to have discontinuities across element interfaces.
We denote by ‖ · ‖ and ‖ · ‖Hm , the L2(0, 2π) norm and the Sobolev norm with

respect to the spatial variable x, respectively. The solution of the numerical scheme is
denoted by uh, which belongs to the finite element space Vh. We denote by u+

j+ 1
2

and

u−
j+ 1

2

the values of the function u at xj+ 1
2
, from the right cell Ij+1, and from the left

cell Ij , respectively. An element of R
k×d is a k × d matrix, and its Euclidean norm is

given by |y| :=
√

trace(yy∗) for y ∈ R
k×d.

By C > 0, we denote a generic constant, which in particular does not depend
on the discretization width h and possibly changes from line to line. Since the Itô
integral is not defined path-wisely, the argument ω of the integrand as a stochastic
process will be omitted in the rest of this paper if there is no danger of confusion.

2.2. Properties of Itô formula. Next we list some properties of the stochastic
calculus. If X and Y are continuous semimartingales, then Itô formula tells us that

XtYt = X0Y0 +

Z t

0

Xs dYs +

Z t

0

Ys dXs + 〈X, Y 〉
t
,

where 〈X, Y 〉 is the quadratic covariation process of X and Y . Note that 〈X, Y 〉 =
〈Y, X〉. For any locally bounded adapted process H , we have

(2.1)

fiZ ·

0

Hs dXs, Y

fl

t

=

Z t

0

Hs d 〈X, Y 〉
s
.
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Moreover, if Y has bounded total variation, it holds
(2.2) 〈X, Y 〉

t
≡ 0.

For example, we have 〈W, t〉 = 0. For more details of these properties of Itô formula,
we refer to Protter [28].

2.3. The numerical flux. For notational convenience we would like to intro-
duce the following numerical flux related to the DG spatial discretization. The given

monotone numerical flux f̂ (q−, q+) depends on the two values of the function q at

the discontinuity point xj+ 1
2
, namely q±

j+ 1
2

= q
(
x±

j+ 1
2

)
. The numerical flux f̂ (q−, q+)

satisfies the following conditions:
(a) it is locally Lipschitz continuous and linear growing;

(b) it is consistent with the physical flux f(q), i.e., f̂ (q, q) = f(q);
(c) it is nondecreasing in the first argument, and nonincreasing in the second

argument.

2.4. Inverse property. Finally we list an inverse property of the finite element
space Vh that will play a basic role in our error analysis. There exists a positive
constant C such that for any q ∈ Vh,

(2.3)

‚‚‚‚
∂q

∂x

‚‚‚‚ ≤ Ch
−1 ‖q‖ ,

where C is independent of q and h. For more details, see Ciarlet [9].

3. The DG method for stochastic conservation laws and the stability
analysis and error estimates.

3.1. The DG method for fully nonlinear stochastic conservation laws.
We present the DG method to approximate equation (1.1). For any (ω, t) ∈ Ω× [0, T ],
find uh(ω, ·, t) ∈ Vh such that for any v ∈ Vh,

Z

Ij

v(x)duh(ω,x, t) dx =

 Z

Ij

f (uh(ω,x, t)) vx(x) dx − bfj+ 1
2
v
−

j+ 1
2

+ bfj− 1
2
v
+

j− 1
2

!
dt

+

 Z

Ij

g (ω, x, t, uh(ω,x, t)) v(x) dx

!
dWt,(3.1)

where f̂j+ 1
2

:= f̂
(
uh(ω, x−

j+ 1
2

, t), uh(ω, x+
j+ 1

2

, t)
)

for j = 0, 1, ..., N , and f̂(·, ·) is a

monotone numerical flux related to the physical flux f .
For x ∈ Ij , the approximating solution should have the form

uh(ω,x, t) =

kX

l=0

ul,j(ω, t)ϕj
l (x),

where {ϕj
l , l = 0, 1, ..., k} is an arbitrary basis of P k(Ij). By periodicity, we define

the “ghost” coefficients as follows
ul,0(ω, t) := ul,N (ω, t), ul,N+1(ω, t) := ul,1(ω, t).

Our aim is to get the coefficient matrix u(ω, t) = [ul,j(ω, t)]l∈{0,...,k},j∈{0,...,N+1} by

solving (3.1) . Taking v := ϕj
m, m = 0, 1, ..., k, we have

kX

l=0

 Z

Ij

ϕ
j
m(x)ϕj

l (x) dx

!
dul,j(ω, t)

=

 Z

Ij

f

 
kX

l=0

ul,j(ω, t)ϕj
l (x)

!
ϕ

j
mx(x) dx − bfj+ 1

2
ϕ

j
m(xj+ 1

2
) + bfj− 1

2
ϕ

j
m(xj− 1

2
)

!
dt

+

 Z

Ij

g

 
ω,x, t,

kX

l=0

ul,j(ω, t)ϕj
l (x)

!
ϕ

j
m(x) dx

!
dWt.

The mass matrix Aj := [Aj
ml] with

A
j
ml :=

Z

Ij

ϕ
j
m(x)ϕj

l (x) dx
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is invertible, and its inverse is denoted by Aj,−1.

Then the problem is reduced to solve the following (k + 1)× (N + 2)-dimensional
stochastic differential equation (SDE):
(3.2) du(ω, t) = F (u(ω, t)) dt + G (ω, t,u(ω, t)) dWt,
where

Fl,j(u) :=

Z

Ij

f

 
kX

n=0

un,j ϕ
j
n(x)

!
kX

m=0

A
j,−1
lm ϕ

j
mx(x) dx

− bf
 

kX

n=0

un,j ϕ
j
n(xj+ 1

2
),

kX

n=0

un,j+1 ϕ
j+1
n (xj+ 1

2
)

!
kX

m=0

A
j,−1
lm ϕ

j
m(xj+ 1

2
)

+ bf
 

kX

n=0

un,j−1 ϕ
j−1
n (xj− 1

2
),

kX

n=0

un,j ϕ
j
n(xj− 1

2
)

!
kX

m=0

A
j,−1
lm ϕ

j
m(xj− 1

2
),

and

Gl,j (ω, t,u) :=

Z

Ij

g

 
ω,x, t,

kX

n=0

un,j ϕ
j
n(x)

!
kX

m=0

A
j,−1
lm ϕ

j
m(x) dx.

The initial value of u is determined by u0 as follows:

ul,j(ω, 0) :=
kX

m=0

A
j,−1
lm

Z

Ij

u0(x)ϕj
m(x) dx.(3.3)

Remark 3.1. Note that the noise in Equation (1.1) is a time white noise. If the
spatial noise enters into the equation, since it is difficult to approximate the spatial
stochastic integrals with high order, a high order spatial discretization seems to be
elusive. This remains to be an interesting problem to be considered in the future.

Lemma 3.1. Let Assumption (H2) hold. Then for any fixed N ∈ N+, F and
G are locally Lipschitz continuous in the variable u, i.e., for any M ∈ N+, there
exists a positive constant LN (M) such that, for all (ω, t) ∈ Ω × [0, T ] and all u,u′ ∈
R

(k+1)×(N+2) with |u| ∨ |u′| ≤ M ,˛̨
F (u) − F

`
u
′
´˛̨

∨
˛̨
G (ω, t,u) − G

`
ω, t,u

′
´˛̨

≤ LN (M)
˛̨
u − u

′
˛̨
,

where the constant LN (M) may depend on N .

Proof. We only show the locally Lipschitz continuity of F for fixed N ∈ N, and
that of G can be proved in a similar way.

Fix u,u′ ∈ R
(k+1)×(N+2) with |u| ∨ |u′| ≤ M , l = 0, 1, ..., k, and j = 1, 2, ..., N .

We have
Fl,j(u) − Fl,j(u

′) = El,j + Jl,j + Kl,j ,

where

El,j :=

Z

Ij

(
f

 
kX

n=0

un,j ϕ
j
n(x)

!
− f

 
kX

n=0

u
′
n,j ϕ

j
n(x)

!)
kX

m=0

A
j,−1
lm ϕ

j
mx(x) dx,

Jl,j := −

bf
 

kX

n=0

un,j ϕ
j
n(xj+ 1

2
),

kX

n=0

un,j+1 ϕ
j+1
n (xj+ 1

2
)

!

− bf
 

kX

n=0

u
′
n,j ϕ

j
n(xj+ 1

2
),

kX

n=0

u
′
n,j+1 ϕ

j+1
n (xj+ 1

2
)

!ff kX

m=0

A
j,−1
lm ϕ

j
m(xj+ 1

2
),

Kl,j :=


bf
 

kX

n=0

un,j−1 ϕ
j−1
n (xj− 1

2
),

kX

n=0

un,j ϕ
j
n(xj− 1

2
)

!

− bf
 

kX

n=0

u
′
n,j−1 ϕ

j−1
n (xj− 1

2
),

kX

n=0

u
′
n,j ϕ

j
n(xj− 1

2
)

!ff kX

m=0

A
j,−1
lm ϕ

j
m(xj− 1

2
).

Set Mh :=
√

k + 1max
n,j

∥∥ϕj
n

∥∥
∞

< ∞. Since f is locally Lipschitz continuous in the



6 Y. Li, C.-W. Shu, and S. Tang

variable u, we have

|El,j | ≤
Z

Ij

L(MhM)

˛̨
˛̨
˛

kX

n=0

`
un,j − u

′
n,j

´
ϕ

j
n(x)

˛̨
˛̨
˛
‚‚‚Aj,−1

‚‚‚
∞

kX

m=0

˛̨
˛ϕj

mx(x)
˛̨
˛ dx

≤ L(MhM)

 
kX

n=0

˛̨
un,j − u

′
n,j

˛̨2
! 1

2 ‚‚‚Aj,−1
‚‚‚
∞

Z

Ij

 
kX

n=0

˛̨
˛ϕj

n(x)
˛̨
˛
2
! 1

2 kX

m=0

˛̨
˛ϕj

mx(x)
˛̨
˛dx

≤ LN (M)

 
kX

n=0

˛̨
un,j − u

′
n,j

˛̨2
! 1

2

,

where L(MhM) is the locally Lipschitz constant of f in the Assumption (H2), and
LN(M) is a positive constant which depends on N and M . Then we have

|E|2 =

kX

l=0

N+1X

j=0

|El,j |2 ≤
kX

l=0

N+1X

j=0

LN (M)2
kX

n=0

`
un,j − u

′
n,j

´2
= (k + 1)LN (M)2(u − u

′)2.

Since f̂ is locally Lipschitz continuous, we have

|Jl,j | ≤ (k + 1)
‚‚‚Aj,−1

‚‚‚
∞

max
m,i

‚‚‚ϕi
m

‚‚‚
∞

×L bf
(MhM)

 ˛̨
˛̨
˛

kX

n=0

`
un,j − u

′
n,j

´
ϕ

j
n(xj+ 1

2
)

˛̨
˛̨
˛+
˛̨
˛̨
˛

kX

n=0

`
un,j+1 − u

′
n,j+1

´
ϕ

j+1
n (xj+ 1

2
)

˛̨
˛̨
˛

ff

≤ (k + 1)
3
2

‚‚‚Aj,−1
‚‚‚
∞

„
max
m,i

‚‚‚ϕi
m

‚‚‚
∞

«2

×L bf
(MhM)

 kX

n=0

˛̨
un,j − u

′
n,j

˛̨2
! 1

2

+

 
kX

n=0

˛̨
un,j+1 − u

′
n,j+1

˛̨2
! 1

2 ff

≤ LN (M)

 kX

n=0

˛̨
un,j − u

′
n,j

˛̨2
! 1

2

+

 
kX

n=0

˛̨
un,j+1 − u

′
n,j+1

˛̨2
! 1

2 ff
,

where L bf
(MhM) is the local Lipschitz constant of f̂ . Then we have

|J |2 =
kX

l=0

N+1X

j=0

|Jl,j |2 ≤
kX

l=0

N+1X

j=0

2LN (M)2
 

kX

n=0

˛̨
un,j − u

′
n,j

˛̨2
+

kX

n=0

˛̨
un,j+1 − u

′
n,j+1

˛̨2
!

= 4(k + 1)LN (M)2
˛̨
u − u

′
˛̨2

.

By similar calculation, we could get that

|K|2 ≤ 4(k + 1)LN (M)2
˛̨
u − u

′
˛̨2

.

Thus ˛̨
F (u) − F (u′)

˛̨2 ≤ 3
`
|E|2 + |J |2 + |K|2

´
≤ LN (M)

˛̨
u − u

′
˛̨2

.

This completes the proof.
Similar to the proof of Lemma 3.1, by the linear growth of the functions f , g

and f̂ , we could obtain that the coefficients F and G of SDE (3.2) satisfy the linearly
growing condition as follows.

Lemma 3.2. Let Assumption (H3) hold. Then for any N ∈ N+, F and G are
linearly growing in the variable u, i.e., there exists a positive constant CN such that,
for all (ω, t) ∈ Ω × [0, T ] and all u ∈ R

(k+1)×(N+2),
|F (u)| ∨ |G (ω, t,u)| ≤ CN (1 + |u|) ,

where the constant CN may depend on N .

Since u0 is deterministic, by (3.3) we know that u(0) is a deterministic matrix,
which is Lp(Ω)-integrable for any p ≥ 1. According the classical results of stochastic
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differential equations (see Mao [24]), if the initial value of the SDE is Lp(Ω)-integrable
and the coefficients of the SDE are locally Lipschitz continuous and linearly growing,
then the considered SDE admits a unique Lp-solution. Thus, for any fixed N ∈ N+,
SDE (3.2) has a unique solution {u(t)}0≤t≤T such that for any p ≥ 1,

E

»
sup

0≤t≤T

|u(t)|p
–

< ∞.(3.4)

We have the following stability result for the numerical solutions.

Theorem 3.3. If the assumptions (H1)-(H3) hold, then there exists a constant
C > 0 which is independent of h, such that for any t ∈ [0, T ],

E
ˆ
‖uh(·, t)‖2˜ ≤

`
C + ‖uh(·, 0)‖2´

e
Ct

.

Proof. For any N ∈ N+ and (ω, t) ∈ Ω× [0, T ], by (3.1) we have for any v ∈ Vh,Z

Ij

v(x)uh(x, t) dx =

Z

Ij

v(x)u0(x) dx +

Z t

0

Z

Ij

g
`
x, s, uh(x, s)

´
v(x) dx dWs

+

Z t

0

„Z

Ij

f (uh(x, s)) vx(x) dx − bfj+ 1
2
v
−

j+ 1
2

+ bfj− 1
2
v
+

j− 1
2

«
ds.

Thus by (2.2), for any continuous semimartingale Y , we obtain
Z

Ij

v(x) 〈uh(x, ·), Y 〉
t

dx =

*Z

Ij

v(x)uh(x, ·) dx, Y

+

t

=

*Z ·

0

Z

Ij

g
`
x, s, uh(x, s)

´
v(x) dx dWs, Y

+

t

.(3.5)

It turns out thatZ

Ij

〈uh(x, ·), uh(x, ·)〉t dx =

Z

Ij

*
uh(x, ·),

kX

l=0

ul,j(·)ϕj
l (x)

+

t

dx

=

kX

l=0

Z

Ij

ϕ
j
l (x) 〈uh(x, ·),ul,j(·)〉t dx =

kX

l=0

*Z ·

0

Z

Ij

g
`
x, s, uh(x, s)

´
ϕ

j
l (x) dx dWs,ul,j(·)

+

t

.

According to (2.1) and the properties of the L2 projection, we have
Z

Ij

〈uh(x, ·), uh(x, ·)〉
t

dx =
kX

l=0

Z t

0

Z

Ij

g
`
x, s, uh(x, s)

´
ϕ

j
l (x) dx d 〈W,ul,j(·)〉s

=
kX

l=0

Z t

0

Z

Ij

Q
ˆ
g
`
·, s, uh(·, s)

´˜
(x)ϕ

j
l (x) dx d 〈W,ul,j(·)〉s

=

Z

Ij

Z t

0

kX

l=0

Q
ˆ
g
`
·, s, uh(·, s)

´˜
(x)ϕ

j
l (x) d 〈W,ul,j(·)〉s dx

=

Z

Ij

Z t

0

Q
ˆ
g
`
·, s, uh(·, s)

´˜
(x) d

*
W,

kX

l=0

ul,j(·)ϕj
l (x)

+

s

dx

=

Z

Ij

fiZ ·

0

Q
ˆ
g
`
·, s, uh(·, s)

´˜
(x) dWs, uh(x, ·)

fl

t

dx,

where Q is the L2 projection onto Vh. Since Q
[
g
(
·, s, uh(·, s), vh(·, s)

)]
∈ Vh for any

(ω, s) ∈ Ω × [0, T ], we have

Q
ˆ
g
`
ω, x, s, uh(ω,x, s)

´˜
=

kX

l=0

gl,j(ω, s)ϕ
j
l (x), x ∈ Ij .

By (3.5), we get
Z

Ij

〈uh(x, ·), uh(x, ·)〉
t

dx =

Z

Ij

*Z ·

0

kX

l=0

gl,j(s) ϕ
j
l (x) dWs, uh(x, ·)

+

t

dx
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=
kX

l=0

Z

Ij

ϕ
j
l (x)

fi
uh(x, ·),

Z ·

0

gl,j(s) dWs

fl

t

dx

=
kX

l=0

*Z ·

0

Z

Ij

g
`
x, s, uh(x, s)

´
ϕ

j
l (x) dx dWs,

Z ·

0

gl,j(s) dWs

+

t

=
kX

l=0

Z t

0

Z

Ij

g
`
x, s, uh(x, s)

´
ϕ

j
l (x) dxgl,j(s) d 〈W,W 〉

s

=

Z t

0

Z

Ij

g
`
x, s, uh(x, s)

´ kX

l=0

gl,j(s)ϕ
j
l (x) dx ds

=

Z t

0

Z

Ij

g
`
x, s, uh(x, s)

´
Q
ˆ
g
`
·, s, uh(·, s)

´˜
(x) dx ds.(3.6)

After summarizing over j from 1 to N , by Cauchy-Schwarz inequality and (H3)
we have Z 2π

0

〈uh(x, ·), uh(x, ·)〉
t

dx ≤
Z t

0

Z 2π

0

˛̨
g
`
x, s, uh(x, s)

´˛̨2
dx ds

≤ C + C

Z t

0

‖uh(·, s)‖2
ds.(3.7)

According to the Itô formula, we have

(3.8) |uh(x, t)|2 − |uh(x, 0)|2 = 2

Z t

0

uh(x, s) duh(x, s) + 〈uh(x, ·), uh(x, ·)〉
t
.

Taking v = uh(ω, ·, t) in (3.1), we obtain
Z

Ij

uh(x, t)duh(x, t) dx =

 Z

Ij

f (uh(x, t)) uhx(x, t) dx − bfj+ 1
2
u
−

h,j+ 1
2

+ bfj− 1
2
u

+

h,j− 1
2

!
dt

+

 Z

Ij

g (x, t, uh(x, t)) uh(x, t) dx

!
dWt.(3.9)

Combining (3.7), (3.8) and (3.9), we have for t ∈ [0, T ],

‖uh(·, t)‖2 ≤ ‖uh(·, 0)‖2 + C + C

Z t

0

‖uh(·, s)‖2
ds + 2

Z t

0

Z 2π

0

h
g
`
·, uh(·)

´
uh

i
(x, s)dxdWs

+2

Z t

0

NX

j=1

„Z

Ij

h
f (uh) uhx

i
(x, s) dx − bfj+ 1

2
u
−

h,j+ 1
2

+ bfj− 1
2
u

+

h,j− 1
2

«
ds.(3.10)

From (3.4), we have that for any p ≥ 1,

E

»Z T

0

Z 2π

0

|uh(x, s)|p dx ds

–
< ∞,

and thus that the process
Z t

0

Z 2π

0

g (x, s, uh(x, s)) uh(x, s) dx dWs, 0 ≤ t ≤ T

ff

is a martingale. Taking expectation on both sides of inequality (3.10), we have

E
ˆ
‖uh(·, t)‖2

˜
≤ ‖uh(·, 0)‖2 + C + C

Z t

0

E
ˆ
‖uh(·, s)‖2

˜
ds

+2E

"Z t

0

NX

j=1

“
φ
“
u
−

h,j+ 1
2

”
− φ

“
u

+

h,j− 1
2

”
− bfj+ 1

2
u
−

h,j+ 1
2

+ bfj− 1
2
u

+

h,j− 1
2

”
ds

#

≤ C + ‖uh(·, 0)‖2 + C

Z t

0

E
ˆ
‖uh(·, s)‖2

˜
ds

+2E

"Z t

0

NX

j=1

“
bFj+ 1

2
− bFj− 1

2
+ Θj− 1

2

”
ds

#
,(3.11)
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where φ(u) =
∫ u

f(a) da, F̂j+ 1
2

=
(
φ(u−

h ) − f̂u−
h

)

j+ 1
2

, and

Θj− 1
2

=
“
φ(u−

h ) − φ(u+
h ) + bfu

+
h − bfu

−
h

”
j− 1

2

.

By periodicity, we have
NX

j=1

“
bFj+ 1

2
− bFj− 1

2

”
= 0.

Note that
Θ = φ(u−

h ) − φ(u+
h ) + bfu

+
h − bfu

−
h = −φ

′(ξ)(u+
h − u

−
h ) + bf

`
u

+
h − u

−
h

´

=
“
bf(u−

h , u
+
h ) − bf(ξ, ξ)

” `
u

+
h − u

−
h

´

=
“
bf(u−

h , u
+
h ) − bf(u−

h , ξ) + bf(u−
h , ξ) − bf(ξ, ξ)

”`
u

+
h − u

−
h

´
≤ 0.

Then by (3.11), we have

E
ˆ
‖uh(·, t)‖2

˜
≤ C + ‖uh(·, 0)‖2 + C

Z t

0

E
ˆ
‖uh(·, s)‖2

˜
ds.

Using Gronwall’s inequality, we have

E
ˆ
‖uh(·, t)‖2˜ ≤

`
C + ‖uh(·, 0)‖2´

e
Ct

.

This completes the proof.

3.2. The DG method for variable-coefficient semi-linear stochastic con-
servation laws. The physical flux f in Equation (1.1) depends only on the variable
u. Now we consider a more general case where the physical flux depends on u linearly
via the variable coefficient a(ω, x, t) as follows:

du + (a(ω,x, t)u)x dt = g(ω,x, t, u) dWt in Ω × [0, 2π] × (0, T ),
u(ω, x, 0) = u0(x), ω ∈ Ω, x ∈ [0, 2π],(3.12)

where a satisfies the following assumption,
(H4) The function a(ω, ·, t) is periodic and smooth for any (ω, t) ∈ Ω× [0, T ] and any
positive integer l,

sup
(ω,x,t)∈Ω×[0,2π]×[0,T ]

(
|a(ω,x, t)|+

lX

m=1

˛̨
˛̨d

ma

dxm
(ω, x, t)

˛̨
˛̨
)

< ∞.

Analogous to the deterministic case, we present the DG method for variable-
coefficient semi-linear stochastic conservation laws. For any (ω, t) ∈ Ω × [0, T ], find
uh(ω, ·, t) ∈ Vh such that for any v ∈ Vh,
Z

Ij

v(x)duh(ω, x, t) dx =

 Z

Ij

a(ω,x, t)uh(ω, x, t)vx(x) dx − baj+ 1
2
v
−

j+ 1
2

+ baj− 1
2
v
+

j− 1
2

!
dt

+

 Z

Ij

g (ω,x, t, uh(ω, x, t)) v(x) dx

!
dWt(3.13)

with
baj+ 1

2
:= a+(ω,xj+ 1

2
, t)uh(ω, x

−

j+ 1
2

, t) − a−(ω,xj+ 1
2
, t)uh(ω, x

+

j+ 1
2

, t),

where a+ and a− are the positive and negative parts of the real number a, and thus
a = a+ − a−.

Similar to the above subsection, for x ∈ Ij , the approximating solution should
have the form

uh(ω,x, t) =

kX

l=0

ul,j(ω, t)ϕj
l (x).

We want to get the coefficient matrix u(ω, t) = [ul,j(ω, t)]l∈{0,...,k},j∈{0,...,N+1}

via solving (3.13). Taking v = ϕj
m, m = 0, 1, ..., k, we obtain

kX

l=0

 Z

Ij

ϕ
j
m(x)ϕj

l (x) dx

!
dul,j(ω, t)
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=

 Z

Ij

a(ω,x, t)

 
kX

l=0

ul,j(ω, t)ϕj
l (x)

!
ϕ

j
mx(x) dx − baj+ 1

2
ϕ

j
m(xj+ 1

2
) + baj− 1

2
ϕ

j
m(xj− 1

2
)

!
dt

+

 Z

Ij

g

 
ω,x, t,

kX

l=0

ul,j(ω, t)ϕj
l (x)

!
ϕ

j
m(x) dx

!
dWt.

Then the problem is reduced to solve a (k + 1) × (N + 2)-dimensional SDE as
follows
(3.14) du(ω, t) = F (ω, t,u(ω, t)) dt + G (ω, t,u(ω, t)) dWt,
where

Fl,j(ω, t,u) =

Z

Ij

a(ω,x, t)

 
kX

n=0

un,jϕ
j
n(x)

!
kX

m=0

A
j,−1
lm ϕ

j
mx(x) dx

−a+(ω,xj+ 1
2
, t)

 
kX

n=0

un,jϕ
j
n(xj+ 1

2
)

!
kX

m=0

A
j,−1
lm ϕ

j
m(xj+ 1

2
)

+a−(ω,xj+ 1
2
, t)

 
kX

n=0

un,j+1ϕ
j+1
n (xj+ 1

2
)

!
kX

m=0

A
j,−1
lm ϕ

j
m(xj+ 1

2
)

+a+(ω,xj− 1
2
, t)

 
kX

n=0

un,j−1ϕ
j−1
n (xj− 1

2
)

!
kX

m=0

A
j,−1
lm ϕ

j
m(xj− 1

2
)

−a−(ω,xj− 1
2
, t)

 
kX

n=0

un,jϕ
j
n(xj− 1

2
)

!
kX

m=0

A
j,−1
lm ϕ

j
m(xj− 1

2
),

and

Gl,j (ω, t,u) =

Z

Ij

g

 
ω,x, t,

kX

n=0

un,jϕ
j
n(x)

!
kX

m=0

A
j,−1
lm ϕ

j
m(x) dx.

Again we use the L2-projection coefficients of u0 as the initial value of u,

ul,j(ω, 0) =
kX

m=0

A
j,−1
lm

Z

Ij

u0(x)ϕj
m(x) dx.

Similar to Lemma 3.1 and Lemma 3.2, from Hypotheses (H2)-(H4), we have that
F and G are locally Lipschitz-continuous and linearly growing in the variable u. Since
u0 is a deterministic function, then u(0) is a deterministic matrix, which is Lp(Ω)-
integrable for any p ≥ 1. Thus according to classical results of stochastic differential
equations, SDE (3.14) has a unique solution {u(t)}0≤t≤T such that for any p ≥ 1,

(3.15) E

»
sup

0≤t≤T

|u(t)|p
–

< ∞.

Similar to Theorem 3.3, we could also obtain that the scheme (3.13) is stable.

Theorem 3.4. If the assumptions (H1)-(H4) hold, then there exists a constant
C > 0, which is independent with h, such that for any t ∈ [0, T ],

E
ˆ
‖uh(·, t)‖2˜ ≤

`
C + ‖uh(·, 0)‖2´

e
Ct

.

Proof. For any N ∈ N+ and (ω, t) ∈ Ω × [0, T ], we define a bilinear functional on
piecewisely smooth function space. For any piecewise smooth functions u, v, define

Hj(a,ω, t; u, v) :=

Z

Ij

a(ω, x, t)u(x)vx(x) dx

−
“
a+(ω, xj+ 1

2
, t)u−

j+ 1
2

− a−(ω,xj+ 1
2
, t)u+

j+ 1
2

”
v
−

j+ 1
2

+
“
a+(ω, xj− 1

2
, t)u−

j− 1
2

− a−(ω, xj− 1
2
, t)u+

j− 1
2

”
v
+

j− 1
2

.

Note thatZ

Ij

a(ω,x, t)u(x)ux(x) dx = −1

2

Z

Ij

ax(ω,x, t) |u(x)|2 dx+
1

2

»
aj+ 1

2

˛̨
˛u−

j+ 1
2

˛̨
˛
2

− aj− 1
2

˛̨
˛u+

j− 1
2

˛̨
˛
2
–

,
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where aj+ 1
2

= a(ω, xj+ 1
2
, t), j = 0, 1, ..., N . Then

Hj(a, ω, t; u, u) = −1

2

Z

Ij

ax(ω, x, t) |u(x)|2 dx +
1

2

»
aj+ 1

2

˛̨
˛u−

j+ 1
2

˛̨
˛
2

− aj− 1
2

˛̨
˛u+

j− 1
2

˛̨
˛
2
–

−aj+ 1
2

,+

˛̨
˛u−

j+ 1
2

˛̨
˛
2

+aj+ 1
2

,−u
+

j+ 1
2

u
−

j+ 1
2

+aj− 1
2

,+u
−

j− 1
2

u
+

j− 1
2

−aj− 1
2

,−

˛̨
˛u+

j− 1
2

˛̨
˛
2

= −1

2

Z

Ij

ax(ω, x, t) |u(x)|2 dx + aj+ 1
2

,−u
+

j+ 1
2

u
−

j+ 1
2

− 1

2
aj+ 1

2
,−

˛̨
˛u−

j+ 1
2

˛̨
˛
2

−1

2
aj+ 1

2
,+

˛̨
˛u−

j+ 1
2

˛̨
˛
2

+aj− 1
2

,+u
+

j− 1
2

u
−

j− 1
2

− 1

2
aj− 1

2
,+

˛̨
˛u+

j− 1
2

˛̨
˛
2

− 1

2
aj− 1

2
,−

˛̨
˛u+

j− 1
2

˛̨
˛
2

= −1

2

Z

Ij

ax(ω, x, t) |u(x)|2 dx − bFj+ 1
2

+ bFj− 1
2

+aj+ 1
2

,−u
+

j+ 1
2

u
−

j+ 1
2

− 1

2
aj+ 1

2
,−

˛̨
˛u−

j+ 1
2

˛̨
˛
2

− 1

2
aj+ 1

2
,+

˛̨
˛u−

j+ 1
2

˛̨
˛
2

+aj+ 1
2

,+u
+

j+ 1
2

u
−

j+ 1
2

− 1

2
aj+ 1

2
,+

˛̨
˛u+

j+ 1
2

˛̨
˛
2

− 1

2
aj+ 1

2
,−

˛̨
˛u+

j+ 1
2

˛̨
˛
2

= −1

2

Z

Ij

ax(ω, x, t) |u(x)|2 dx − bFj+ 1
2

+ bFj− 1
2
− 1

2

˛̨
˛aj+ 1

2

˛̨
˛ · [u]2

j+ 1
2

≤ ‖ax‖∞
2

Z

Ij

|u(x)|2 dx −
“
bFj+ 1

2
− bFj− 1

2

”
,

where
bFj+ 1

2
= aj+ 1

2
,+u

+

j+ 1
2

u
−

j+ 1
2

− 1

2
aj+ 1

2
,+

˛̨
˛u+

j+ 1
2

˛̨
˛
2

− 1

2
aj+ 1

2
,−

˛̨
˛u+

j+ 1
2

˛̨
˛
2

.

By periodicity we know that
N∑

j=1

(
F̂j+ 1

2
− F̂j− 1

2

)
= 0. Thus

NX

j=1

Hj(a, ω, t;u, u) ≤ 1

2
‖ax‖∞ ‖u‖2

.(3.16)

For any N ∈ N+ and (ω, t) ∈ Ω × [0, T ), take v = uh(ω, ·, t) in (3.13) and do the
summation from j = 1 to j = N ,
Z 2π

0

uh(x, t)duh(x, t)dx =
NX

j=1

Hj(a, ω, t;uh(·, t), uh(·, t))dt +

Z 2π

0

g (x, t, uh(x, t)) uh(x, t)dxdWt

≤ 1

2
‖ax‖∞ ‖uh(·, t)‖2

dt +

Z 2π

0

g (x, t, uh(x, t)) uh(x, t) dx dWt.

Similar to the calculation for (3.7) in Theorem 3.3, we haveZ 2π

0

d 〈uh(x, ·), uh(x, ·)〉
t

dx ≤ C

Z 2π

0

`
1 + |uh(x, t)|2

´
dx dt.

According to the Itô formula (3.8) we haveZ 2π

0

`
d |uh(x, t)|2

´
dx ≤ ‖ax‖∞ ‖uh(·, t)‖2

dt + 2

Z 2π

0

g (x, t, uh(x, t))uh(x, t) dx dWt

+C

Z 2π

0

`
1 + |uh(x, t)|2

´
dx dt.(3.17)

By similar arguments in Theorem 3.3 we know thatZ t

0

Z 2π

0

g (x, s, uh(x, s)) uh(x, s) dx dWs, 0 ≤ t ≤ T

ff

is a martingale. Integrating from t = 0 and taking expectation on both sides of (3.17)
we have

E
ˆ
‖uh(·, t)‖2˜ ≤ C + ‖uh(·, 0)‖2 + C

Z t

0

E
ˆ
‖uh(·, s)‖2˜

ds.
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Lastly Gronwall’s inequality tells us that

E
ˆ
‖uh(·, t)‖2˜ ≤

`
C + ‖uh(·, 0)‖2´

e
Ct

.

This completes the proof.
Now we state the error estimates of the DG method (3.13).

Theorem 3.5. Suppose that u0 ∈ Hk+1, assumption (H4) holds, the function
g is globally Lipschitz continuous in the variable u and equation (3.12) has a unique
strong solution u(·) such that

(H5) u(·) ∈ L2
`
Ω × [0, T ]; Hk+2

´T
L4 (Ω × [0, 2π] × [0, T ]; R)

T
L∞

`
0, T ; L2(Ω; Hk+1)

´
;

(H6) g (·, u(·)) ∈ L2
`
Ω × [0, T ]; Hk+1

´
.

Then there exists a constant C > 0, which is independent with h, such that for any
t ∈ [0, T ],

`
E
ˆ
‖u(·, t) − uh(·, t)‖2

˜´ 1
2 ≤ Ce

Ct
h

k+1
.

Proof. Notice that the scheme (3.13) is also satisfied when the numerical solution
uh(·) is replaced by the exact solution u(·), for any v ∈ Vh,
Z

Ij

v(x)du(ω,x, t)dx =

 Z

Ij

a(ω,x, t)u(ω,x, t)vx(x) dx −cau
j+ 1

2
v
−

j+ 1
2

+cau
j− 1

2
v
+

j− 1
2

!
dt

+

 Z

Ij

g (ω, x, t, u(ω,x, t)) v(x) dx

!
dWt,(3.18)

with
cau

j+ 1
2

= a+(ω,xj+ 1
2
, t)u(ω,x

−

j+ 1
2

, t) − a−(ω, xj+ 1
2
, t)u(ω,x

+

j+ 1
2

, t).

Define
e(ω,x, t) = u(ω, x, t) − uh(ω, x, t) = ξ(ω, x, t) − η(ω,x, t),

with
ξ(ω, x, t) = Pu(ω, x, t) − uh(ω, x, t), η(ω,x, t) = Pu(ω,x, t) − u(ω, x, t),

where P is a projection from Hk+1 onto Vh, which will be specified later.
By (3.13) and (3.18), we have the error equation
Z

Ij

v(x)de(ω,x, t)dx =

 Z

Ij

a(ω,x, t)e(ω,x, t)vx(x) dx − bae
j+ 1

2
v
−

j+ 1
2

+ bae
j− 1

2
v
+

j− 1
2

!
dt

+

Z

Ij

˘
g (ω,x, t, u(ω, x, t)) − g (ω,x, t, uh(ω, x, t))

¯
v(x) dx dWt,

with
bae

j+ 1
2

= a+(ω, xj+ 1
2
, t)e(ω,x

−

j+ 1
2

, t) − a−(ω,xj+ 1
2
, t)e(ω,x

+

j+ 1
2

, t).

It turns out thatZ

Ij

v(x)dξ(x, t)dx =

 Z

Ij

v(x)dη(x, t)dx + Hj(a, ω, t; ξ(·, t), v)−Hj(a, ω, t; η(·, t), v)

!
dt

+

Z

Ij

˘
g (x, t, u(x, t))) − g (x, t, uh(x, t))

¯
v(x) dx dWt.

Taking v = ξ(·, t) and doing the summation from j = 1 to j = N we have
Z 2π

0

ξ(x, t)dξ(x, t) dx

=

Z 2π

0

ξ(x, t)dη(x, t) dx +

Z 2π

0

˘
g (x, t, u(x, t))) − g (x, t, uh(x, t))

¯
ξ(x, t) dx dWt

+
NX

j=1

„
Hj(a, ω, t; ξ(·, t), ξ(·, t)) − Hj(a,ω, t; η(·, t), ξ(·, t))

«
dt.
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According to Itô formula (3.8) we get

E
ˆ
‖ξ(·, t)‖2˜ = ‖ξ(·, 0)‖2 + T1(t) + T2(t) + T3(t) + T4(t) + T5(t) ,

where

T1(t) = −2E

"Z t

0

NX

j=1

Hj(a, ω, s; η(·, s), ξ(·, s)) ds

#
,

T2(t) = E

»Z 2π

0

〈ξ(x, ·), ξ(x, ·)〉
t

dx

–
,

T3(t) = 2E

»Z 2π

0

Z t

0

ξ(x, s)dη(x, s) dx

–
,

T4(t) = 2E

"Z t

0

NX

j=1

Hj(a, ω, s; ξ(·, s), ξ(·, s)) ds

#
,

T5(t) = 2E

»Z t

0

Z 2π

0

˘
g (x, s, u(x, s))) − g (x, s, uh(x, s))

¯
ξ(x, s) dx dWs

–

will be estimated separately later.

• The T1(t) term.
We define the projection P on piecewise smooth function space as follows. For

any fixed (ω, t) ∈ Ω × [0, T ], j ∈ {1, 2, ..., N} and piecewise smooth function u,
Case 1: If a(ω, xj− 1

2
, t) < 0 and a(ω, xj+ 1

2
, t) > 0,

8
>>><
>>>:

R
Ij

(Pu − u) (x) · v(x) dx = 0, ∀v ∈ P k−2(Ij)

(Pu − u)−
j+ 1

2

= 0,

(Pu − u)+
j− 1

2

= 0.

Case 2: If a(ω, xj− 1
2
, t) > 0 and a(ω, xj+ 1

2
, t) > 0,8

<
:

R
Ij

(Pu − u) (x) · v(x) dx = 0, ∀v ∈ P k−1(Ij)

(Pu − u)−
j+ 1

2

= 0.

Case 3: If a(ω, xj− 1
2
, t) < 0 and a(ω, xj+ 1

2
, t) < 0,8

<
:

R
Ij

(Pu − u) (x) · v(x) dx = 0, ∀v ∈ P k−1(Ij)

(Pu − u)+
j− 1

2

= 0.

Case 4: If a(ω, xj− 1
2
, t) > 0 and a(ω, xj+ 1

2
, t) < 0,Z

Ij

(Pu − u) (x) · v(x) dx = 0, ∀v ∈ P
k(Ij).

Then according to the classical projection theory (c.f. [9]) and (H4), we know that
there is a constant C > 0 that is independent with ω, t, u and h, such that
(3.19) ‖u − Pu‖ ≤ C ‖u‖

Hk+1 h
k+1

.

Note that

Hj(a, ω, t; η(·, s), ξ(·, s)) =

Z

Ij

a(ω,x, t)η(ω,x, s)ξx(ω, x, s) dx

−
“
a+(ω, xj+ 1

2
, t)η−

j+ 1
2

− a−(ω,xj+ 1
2
, t)η+

j+ 1
2

”
ξ
−

j+ 1
2

+
“
a+(ω, xj− 1

2
, t)η−

j− 1
2

− a−(ω, xj− 1
2
, t)η+

j− 1
2

”
ξ
+

j− 1
2

.

By the properties of the projection P , we can verify that for all j ∈ {1, 2, ..., N}
−
“
a+(ω, xj+ 1

2
, t)η−

j+ 1
2

− a−(ω, xj+ 1
2
, t)η+

j+ 1
2

”
ξ
−

j+ 1
2

+
“
a+(ω, xj− 1

2
, t)η−

j− 1
2

− a−(ω, xj− 1
2
, t)η+

j− 1
2

”
ξ
+

j− 1
2

= 0.
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For the term
∫

Ij
a(ω, x, t)η(ω, x, s)ξx(ω, x, s) dx, we study it case by case.

Case 1 & Case 4: Since a(ω, xj− 1
2
, t) · a(ω, xj+ 1

2
, t) < 0, there must exist yj ∈ Ij

such that a(ω, yj , t) = 0. Then according to (H4) we have

|a(ω, x, t)| = |a(ω, yj , t) + ax(ω, ξ1, t)(x − yj)| ≤ Ch.

By the inverse inequality (2.3), we have˛̨
˛̨
˛

Z

Ij

a(ω,x, t)η(ω,x, s)ξx(ω,x, s) dx

˛̨
˛̨
˛ ≤ Ch

Z

Ij

|η(ω, x, t)ξx(ω,x, t)|dx

≤ Ch‖η(ω, ·, t)‖Ij
‖ξx(ω, ·, t)‖Ij

≤ Ch‖η(ω, ·, t)‖Ij
Ch

−1‖ξ(ω, ·, t)‖Ij

≤ C‖η(·, t)‖2
Ij

+ C‖ξ(·, t)‖2
Ij

.

Case 2 & Case 3: Note that
a(ω, x, t) = a(ω,xj , t) + ax(ω, ξ2, t)(x − xj).

It follows that ˛̨
˛̨
˛

Z

Ij

a(ω,x, t)η(ω,x, t)ξx(ω,x, t)dx

˛̨
˛̨
˛

≤
˛̨
˛̨
˛a(ω,xj , t)

Z

Ij

(ηξx) (ω,x, t)dx

˛̨
˛̨
˛+ Ch

Z

Ij

| (ηξx) |(ω,x, t)dx

= Ch

Z

Ij

| (ηξx) |(ω,x, t)dx ≤ Ch‖η(ω, ·, t)‖Ij
‖ξx(ω, ·, t)‖Ij

≤ Ch‖η(ω, ·, t)‖Ij
Ch

−1‖ξ(ω, ·, t)‖Ij
≤ C‖η(·, t)‖2

Ij
+ C‖ξ(·, t)‖2

Ij
.

Then we have from (H5) and (3.19),

T1(t) ≤ CE

»Z t

0

‖η(·, s)‖2
ds

–
+ CE

»Z t

0

‖ξ(·, s)‖2
ds

–

≤ CE

»Z t

0

‖u(·, s)‖2
Hk+1 ds

–
h

2k+2 + CE

»Z t

0

‖ξ(·, s)‖2
ds

–

≤ Ch
2k+2 + C

Z t

0

E
ˆ
‖ξ(·, s)‖2

˜
ds.

• The T2(t) term.
Since

dt(Pu)(ω,x, t) = P(dtu)(ω,x, t)

= −P
`
(au)x

´
(ω, x, t) dt + P

`
g(ω, ·, t, u(ω, ·, t))

´
(x) dWt,(3.20)

we haveZ

Ij

v(x)dPu(ω,x, t)dx =

 Z

Ij

−P
`
(au)x

´
(ω, x, t) · v(x) dx

!
dt

+

 Z

Ij

P
`
g (ω, ·, t, u(ω, ·, t))

´
(x) · v(x) dx

!
dWt.(3.21)

From (3.13) and (3.21), we have
Z

Ij

(dξ(x, t)) · v(x) dx =

 Z

Ij

−P
`
(au)x

´
(ω,x, t) · v(x) dx − Hj(a, ω, t;uh(·, t), v)

!
dt

+

 Z

Ij

„
P
`
g (·, t, u(·, t))

´
− g (·, t, uh(·, t))

«
(x) · v(x)dx

!
dWt.(3.22)

Since ξ(ω, ·, t) ∈ Vh for any (ω, t) ∈ Ω × [0, T ], similar to (3.6), it holds thatZ

Ij

〈ξ(x, ·), ξ(x, ·)〉
t

dx =

Z t

0

Z

Ij

„
Q
˘
P
ˆ
g(·, s, u(·, s))

˜
− g
`
·, s, uh(·, s)

´¯
(x)
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×
˘
P
ˆ
g(·, s, u(·, s))

˜
− g
`
·, s, uh(·, s)

´¯
(x)

«
dx ds

≤
Z t

0

Z

Ij

˛̨
P
ˆ
g(·, s, u(·, s))

˜
− g
`
·, s, uh(·, s)

´˛̨2
(x) dx ds.

By (H5) and (H6), it follows that

T2(t) = E

»Z 2π

0

〈ξ(x, ·), ξ(x, ·)〉
t

dx

–

≤ E

»Z t

0

Z 2π

0

˛̨
P
ˆ
g(·, s, u(·, s), v(·, s))

˜
− g
`
·, s, uh(·, s), vh(·, s)

´˛̨2
(x) dx ds

–

≤ CE

»Z t

0

Z 2π

0

˛̨
P
`
g (·, s, u(·, s))

´
− g (·, s, u(·, s))

˛̨2
(x) dx ds

–

+CE

»Z t

0

Z 2π

0

|η(x, s)|2 dx ds

–
+ CE

»Z t

0

Z 2π

0

|ξ(x, s)|2 dx ds

–

≤ CE

»Z t

0

`
‖g(·, s, u(·, s))‖2

Hk+1 + ‖u(·, s)‖2
Hk+1

´
h

2k+2
ds

–
+ CE

»Z t

0

‖ξ(·, s)‖2
ds

–

≤ Ch
2k+2 + C

Z t

0

E
ˆ
‖ξ(·, s)‖2˜

ds.

• The T3(t) term.
By (3.12) and (3.20), we have

dη(ω,x, t) =
˘

(au)
x

(ω,x, t) − P
`
(au)

x

´
(ω,x, t)

¯
dt

+
˘
P
`
g(ω, ·, t, u(ω, ·, t))

´
(x) − g(ω,x, t, u(ω,x, t))

¯
dWt.

ThusZ 2π

0

Z t

0

ξ(x, s)dη(x, s) dx =

Z 2π

0

Z t

0

˘
(au)

x
(x, s) − P

`
(au)

x

´
(x, s)

¯
ξ(x, s)dsdx

+

Z t

0

Z 2π

0

˘
P
`
g(·, t, u(·, t))

´
(x) − g(x, s, u(x, s))

¯
ξ(x, s) dxdWs.

According to (3.15) and u ∈ L4 (Ω × [0, 2π]× [0, T ]; R), we know that the process
Z t

0

Z 2π

0

˘
P
`
g(·, t, u(·, t))

´
(x) − g(x, s, u(x, s))

¯
ξ(x, s) dxdWs, 0 ≤ t ≤ T

ff

is a martingale. Then

T3(t) = 2E

»Z 2π

0

Z t

0

ξ(x, s)dη(x, s) dx

–

= 2E

»Z 2π

0

Z t

0

˘
(au)

x
(x, s) −P

`
(au)

x

´
(x, s)

¯
ξ(x, s)dsdx

–

≤ E

»Z t

0

Z 2π

0

˛̨
(au)

x
(x, s) − P

`
(au)

x

´
(x, s)

˛̨2
dxds

–
+

Z t

0

E
ˆ
‖ξ(·, s)‖2˜

ds

≤ CE

»Z t

0

‖(au)x(·, s)‖2
Hk+1 ds

–
h

2k+2 +

Z t

0

E
ˆ
‖ξ(·, s)‖2˜

ds.

Since
‖(au)x(·, s)‖Hk+1 ≤ C‖(au)(·, s)‖Hk+2 ≤ C‖u(·, s)‖Hk+2

and u(·) ∈ L2
(
Ω × [0, T ]; Hk+2

)
, we get

T3(t) ≤ Ch
2k+2 + C

Z t

0

E
ˆ
‖ξ(·, s)‖2˜

ds.

• The T4(t) term.
According to (3.16), we get

T4(t) = 2E

"Z t

0

NX

j=1

Hj(a, ω, s; ξ(·, s), ξ(·, s)) ds

#
≤ ‖ax‖∞

Z t

0

E
ˆ
‖ξ(·, s)‖2˜

ds.
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• The T5(t) term.
By virtue of (H5) and (3.15), we know that the processZ t

0

Z 2π

0

`
g (x, s, u(x, s))) − g (x, s, uh(x, s))

´
ξ(x, s) dxdWs, 0 ≤ t ≤ T

ff

is a martingale. Then

T5(t) = 2E

»Z t

0

Z 2π

0

`
g (x, s, u(x, s))) − g (x, s, uh(x, s))

´
ξ(x, s) dxdWs

–
= 0.

Concluding the above arguments, we have

E
ˆ
‖ξ(·, t)‖2

˜
≤ Ch

2k+2 + C

Z t

0

E
ˆ
‖ξ(·, s)‖2

˜
ds.

Using Gronwall’s inequality, we have
`
E
ˆ
‖ξ(·, t)‖2

˜´ 1
2 ≤ Ch

k+1
e

Ct
.

According to (3.19) and u ∈ L∞
(
0, T ; L2(Ω; Hk+1)

)
, we have

`
E
ˆ
‖η(·, t)‖2

˜´ 1
2 ≤ C

`
E
ˆ
‖u(·, t)‖2

Hk+1

˜´ 1
2 h

k+1 ≤ Ch
k+1

.

It turns out that
`
E
ˆ
‖u(·, t) − uh(·, t)‖2˜´ 1

2 ≤
`
E
ˆ
‖ξ(·, t)‖2˜´ 1

2 +
`
E
ˆ
‖η(·, t)‖2˜´ 1

2 ≤ Ce
Ct

h
k+1

.

This completes the proof.
Remark 3.2. The solution of a stochastic conservation law usually does not

have a uniform bound with respect to the variable ω ∈ Ω. Thus we could not gener-
alize the method in Zhang and Shu [33] to get the error estimates for fully nonlinear
stochastic conservation laws, in which they made use of the uniform boundedness of
the approximate solutions. But interestingly, numerical examples in Section 4.3 verify
the optimal order O(hk+1) for nonlinear stochastic equations.

Remark 3.3. Theorem 3.5 relies on the high-regularity (H5), whose integrability
and differentiability are used to derive our error estimate. We find no literature on the
regularity of a strong solution to stochastic conservation laws. However, our examples
(see (4.1), (4.2) and (4.4)) demonstrate that there is a sufficiently broad class of
problems satisfying Assumption (H5), as long as the solutions to the corresponding
deterministic equations (4.3) and (4.5) have enough regularities.

4. Numerical experiments. In this section we consider the application of the
numerical methods, which we have defined in section 3, on some model problems. The
details of time discretization are presented in the appendix. Here, M is the number
of realizations. The positive real number T is the terminal time. In Theorem 3.5,
the error estimate is given by using the L2(Ω × [0, 2π] × [0, T ])-norm. Since the
mathematical expectation could not be calculated exactly, the L2(Ω× [0, 2π]× [0, T ])-
errors are approximated by the Monte Carlo technique

E
ˆ
‖uh(·, ·, T ) − u(·, ·, T )‖2

L2(0,2π)

˜
≈ e

2
2 ± V ,

with

e2 :=

 
1

M

MX

i=1

zi

! 1
2

, V :=
2√
M

2
4 1

M

MX

i=1

z
2
i −

 
1

M

MX

i=1

zi

!2
3
5

1
2

,

where zi := ‖uh(ωi, ·, T ) − u(ωi, ·, T )‖2
L2(0,2π), uh(ωi, ·, T ) is one simulation from M

paths, and u(ωi, ·, T ) is the exact solution with the corresponding path ωi. We use e2

to approximate the L2 error. The quantity V is called the Monte Carlo error. The
run-time TR (in seconds) shown in all tables is the CPU running time for computation
of M realizations (with 16 cores for parallel computing). The degree of the piecewise-
polynomial space Vh is k. In all experiments of DG scheme with k = 1, we set
∆t = ∆x

2k+1 so that scheme (A.9) is efficiently second-order and the CFL condition is
satisfied. In all experiments of DG scheme with k = 2, we have adjusted the time
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step to ∆t ∼ (∆x)
3
2 so that the scheme in time is effectively third-order.

4.1. Constant-coefficient linear stochastic equation. We consider the fol-
lowing linear equation

du + ux dt = bu dWt in Ω × [0, 2π] × (0, T ),
u(ω,x, 0) = u0(x), ω ∈ Ω, x ∈ [0, 2π].

(4.1)

The exact solution of (4.1) is

u(ω,x, t) = u0(x − t)ebWt(ω)− 1
2

b2t
.

The numerical flux is taken as the simple upwind flux f̂ (u−, u+) = u−. In
Table 4.1, we show the errors of DG scheme (3.1) with M = 10000, u0(x) = sin(x),
b = 0.5 and T = 0.5. We could see that the order of accuracy of the DG scheme (3.1)
for L2-error e2 is k+1, which is consistent with the result in Theorem 3.5. The results
on the run-time show clearly that the DG scheme with k = 2 is more efficient than
the one with k = 1 to reach the same error levels.

Table 4.1: Accuracy on (4.1) with M = 10000, u0(x) = sin(x), b = 0.5, T = 0.5

k = 1 k = 2
N e2 order V TR e2 order V TR

10 4.38E-02 - 3.15E-05 3.74 2.30E-03 - 8.39E-08 4.63
20 1.12E-02 1.97 2.02E-06 6.40 2.94E-04 2.97 1.47E-09 17.60
40 2.84E-03 1.98 1.27E-07 12.64 3.67E-05 3.00 2.29E-11 90.95
80 7.10E-04 2.00 8.30E-09 31.75 4.57E-06 3.01 3.36E-13 510.03
160 1.77E-04 2.01 5.11E-10 93.20 5.70E-07 3.00 5.44E-15 2886.54
320 4.43E-05 2.00 3.20E-11 281.18 7.14E-08 3.00 8.70E-17 15812.50

We also consider the case that initial condition is discontinuous

u0(x) =


1, if π

2
≤ x ≤ 3π

2
,

0, if 0 ≤ x < π
2

or 3π
2

< x ≤ 2π.

In discontinuous cases, our scheme does not have high order of accuracy due to the
lack of regularity. To see the behaviors of approximating solutions for discontinuous
cases, we plot the approximating solution and the true solution at T = 2π with
only one realization M = 1 in Figure 4.1. In view of these figures, we could see
that the DG scheme still works nicely for the discontinuous solutions. The numerical
solution approximates the true solution more accurately when k and N become larger.
Similar to the deterministic cases, there are oscillations arising near discontinuities of
the solution.

Remark 4.1. For the discontinuous cases, the L2-stability, although helpful, is
not enough to control spurious numerical oscillations near discontinuities. In practice,
especially for problems containing strong discontinuities, it is worth trying to apply
nonlinear limiters to control these oscillations, which is an interesting future work to
accomplish.

4.2. Linear stochastic equation with a variable coefficient. In the fol-
lowing we test the accuracy of the DG scheme (3.13) for the linear equation with a
variable coefficient

du + ∂
∂x

`
a(x) · u

´
dt = bu dWt in Ω × [0, 2π] × (0, T ),

u(ω, x, 0) = u0(x), ω ∈ Ω, x ∈ [0, 2π].
(4.2)

The exact solution of (4.2) is

u(ω, x, t) = v(x, t)ebWt(ω)− 1
2

b2t
,

where v is the unique solution of the following deterministic equation
vt + ∂

∂x

`
a(x) · v

´
= 0 in [0, 2π] × (0, T ),

v(x, 0) = u0(x), x ∈ [0, 2π].
(4.3)

We take a(x) = u0(x) = sin(x). In Table 4.2, we show the error of the DG
scheme (3.13) with M = 10000, b = 0.5 and T = 0.6. By Table 4.2, we observe that
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Fig. 4.1: Figures on (4.1) with M = 1, b = 0.5.

the order of accuracy for all kinds of errors converges to k +1 when N increases. The
scheme with k = 2 is more efficient than the one with k = 1 to reach the same error
level. All of these results are consistent with Theorem 3.5.

Table 4.2: Accuracy on (4.2) with M = 10000, b = 0.5, T = 0.6

k = 1 k = 2
N e2 order V TR e2 order V TR

10 1.14E-01 - 2.31E-04 15.35 1.31E-02 - 3.14E-06 22.87
20 3.17E-02 1.84 1.81E-05 30.79 2.24E-03 2.55 9.11E-08 53.13
40 8.83E-03 1.84 1.39E-06 65.31 3.05E-04 2.87 1.66E-09 158.93
80 2.36E-03 1.90 1.01E-07 152.37 4.15E-05 2.88 3.12E-11 617.45
160 6.17E-04 1.94 6.95E-09 391.66 5.46E-06 2.93 5.27E-13 2871.33
320 1.57E-04 1.98 4.51E-10 1126.14 7.11E-07 2.94 9.06E-15 14941.39

4.3. Stochastic Burgers equation. Although we cannot give the error esti-
mates for the fully nonlinear problems with locally Lipschitz-continuous physical flux,
it is worth trying to apply the DG scheme (3.1) to some nonlinear equation. So the
next example is stochastic Burgers equation

du + ∂
∂x

`
1
2
u2
´

dt = b dWt in Ω × [0, 2π] × (0, T ),

u(ω, x, 0) = sin(x), ω ∈ Ω, x ∈ [0, 2π].
(4.4)

The exact solution of (4.4) is

u(ω,x, t) = v

„
x − b

Z t

0

Ws ds, t

«
+ bWt(ω),

where v is the solution of the following deterministic equation
vt + ∂

∂x

`
1
2
v2
´

= 0 in [0, 2π] × (0, T ),

v(x, 0) = sin(x), x ∈ [0, 2π],
(4.5)

and the random variable
∫ t

0
Ws ds could be computed exactly by (A.7).
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We use the simple Lax-Friedrichs flux
bf
`
u
−

, u
+´ =

1

4

n`
u
−
´2

+
`
u

+´2o− 1

2
α
`
u

+ − u
−
´
,

where
α = max

j

n˛̨
˛u−

j+ 1
2

˛̨
˛ ,
˛̨
˛u+

j+ 1
2

˛̨
˛
o

.

In Table 4.3, we show the errors of the DG scheme (3.1) with M = 100 and b = 2.0.

Table 4.3: Accuracy on (4.4) with M = 100, b = 2.0

k = 1 k = 2
N e2 order V TR e2 order V TR

T = 0.1

10 3.19E-02 - 2.39E-06 1.56 1.72E-03 - 4.86E-08 1.89
20 9.21E-03 1.79 5.43E-07 2.18 2.52E-04 2.77 1.32E-09 3.31
40 2.52E-03 1.87 8.83E-08 3.95 3.55E-05 2.83 1.24E-11 11.12
80 6.54E-04 1.94 5.66E-09 8.70 4.61E-06 2.95 2.23E-13 48.19
160 1.66E-04 1.98 2.96E-10 21.50 5.85E-07 2.98 2.36E-15 243.20
320 4.15E-05 2.00 1.88E-11 58.70 7.29E-08 3.00 2.45E-17 1296.93

T = 0.5

10 5.38E-02 - 9.71E-05 1.64 7.79E-03 - 6.46E-06 1.89
20 1.53E-02 1.82 5.79E-06 2.08 1.08E-03 2.85 4.35E-08 3.42
40 4.03E-03 1.92 3.47E-07 3.97 1.49E-04 2.86 5.99E-10 11.12
80 1.06E-03 1.93 1.81E-08 8.70 1.96E-05 2.92 6.34E-12 49.29
160 2.69E-04 1.98 1.02E-09 21.41 2.52E-06 2.96 5.89E-14 308.16
320 6.88E-05 1.97 5.04E-11 57.89 3.22E-07 2.97 7.49E-16 1301.48

T = 0.9

10 1.94E-01 - 2.41E-03 1.71 9.86E-02 - 8.78E-04 1.85
20 8.61E-02 1.17 5.51E-04 2.15 3.51E-02 1.49 1.28E-04 3.30
40 3.43E-02 1.33 1.12E-04 4.04 1.12E-02 1.65 1.51E-05 11.36
80 1.23E-02 1.48 1.58E-05 8.71 2.40E-03 2.23 6.74E-07 49.48
160 3.30E-03 1.90 9.13E-07 21.39 3.88E-04 2.63 1.41E-08 241.83
320 8.70E-04 1.92 5.99E-08 58.17 5.01E-05 2.95 8.02E-11 1296.55

T = 1.5

10 4.45E-01 - 7.24E-03 1.58 3.58E-01 - 4.71E-03 1.91
20 3.13E-01 0.51 2.96E-03 2.13 2.41E-01 0.57 2.56E-03 3.43
40 2.06E-01 0.60 1.48E-03 3.97 1.64E-01 0.55 1.51E-03 11.14
80 1.34E-01 0.62 6.20E-04 8.68 1.05E-01 0.64 8.91E-04 48.10
160 8.18E-02 0.71 2.44E-04 21.37 7.69E-02 0.45 5.83E-04 241.70
320 6.49E-02 0.33 2.18E-04 57.95 9.18E-02 -0.26 8.16E-04 1295.66

Note that the solution of (4.5) has an infinite slope - the wave “breaks” and a
shock forms at Tb = −1

min v′

0
(x) = 1 , see [23]. Thus the exact solution of the stochastic

Burgers equation (4.4) also has a shock at Tb.
From Table 4.3, we observe that the order of accuracy converges to k + 1 when

N increases for the case that T < Tb. The scheme with k = 2 is more efficient than
the one with k = 1 to reach the same error level.

Unlike the diffusion effect of the stochastic terms on the solutions of (4.1) and (4.2),
here the stochastic term only has the drift effect on the solution of (4.4) since the
stochastic perturbation in (4.4) is additive. Thus M = 100 is good enough to approx-
imate the mathematical expectation.

When T increases, the scheme converges slowly and becomes more inefficient.
When T > Tb, the DG scheme loses its order of accuracy. To see the behaviour of
the approximate solution with T > Tb, we plot the approximate solution and the true
solution at T = 1.5 with b = 2.0 and only one realization M = 1 in Figure 4.2. We
could see that the DG schemes work well and the numerical solution approximates
the true solution more accurately when k and N increase.

5. Concluding remarks. In this article, we present semi-discrete DG schemes
for fully nonlinear stochastic equations and semilinear variable-coefficient stochastic
equations. We obtain the L2-stability results of the schemes, and prove the optimal
error estimates of order O(hk+1) for semilinear stochastic conservation laws with
variable coefficients. We also establish an explicit derivative-free second order time
discretization scheme and perform several numerical experiments on model problems
to confirm the analytical results. Even though we have only considered the case with
one spatial dimension, the generalization to multi-dimensions is straightforward. It is
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Fig. 4.2: Figuers on (4.4) with M = 1, b = 2.0.

more challenging to investigate error estimates for fully nonlinear stochastic equations
and to apply the DG type schemes to SPDEs with high-order spatial derivatives, which
will be carried out in the future.

A. Time discretization. The DG method only involves the spatial discretiza-
tion, and transfers the primal SPDE into a SDE. Thus we need to derive an imple-
mentable high-order time discretization. For notational simplicity, we shall mainly
state the schemes for the autonomous case. Consider the following matrix-valued
SDE: 8

<
:

dX
i,j
t = a

i,j(Xt) dt + b
i,j(Xt) dWt, t > 0

X
i,j
0 = x

i,j
0 ,

where i = 0, 1, ..., k and j = 0, 1, ..., N + 1. We aim to use Y i,j
n to approximate

X
i,j
tn

. Define Y
i,j
0 := x

i,j
0 . Suppose we already have {Y i,j

n : i = 0, 1, ..., k and j =
0, 1, ..., N + 1}.

A.1. Taylor order 2.0 strong scheme. Define the following operators

L0
f :=

N+1X

j=0

kX

i=0

a
i,j ∂f

∂xij

+
1

2

N+1X

l,j=0

kX

m,i=0

b
i,j

b
m,l ∂2f

∂xij∂xml

, L1
f :=

N+1X

j=0

kX

i=0

b
i,j ∂f

∂xij

,

where f : R
(k+1)×(N+2) −→ R is twice differentiable.

According to [20, Theorem 11.5.1, page 391], the order 2.0 strong Taylor scheme
is

Y
i,j

n+1 = Y
i,j

n + a
i,j(Yn)(tn+1 − tn) + b

i,j(Yn)(Wtn+1
− Wtn) (order 0.5)

+L1
b
i,j(Yn)

Z tn+1

tn

Z s

tn

dWrdWs (order 1.0)

+
1

2
L0

a
i,j(Yn) (tn+1 − tn)2 + L0

b
i,j(Yn)

Z tn+1

tn

Z s

tn

drdWs
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+L1
a

i,j(Yn)

Z tn+1

tn

Z s

tn

dWrds + L1L1
b
i,j(Yn)

Z tn+1

tn

Z s

tn

Z r

tn

dWudWrdWs

(order 1.5)

+L1L0
b
i,j(Yn)

Z tn+1

tn

Z s

tn

Z r

tn

dWudrdWs

+L1L1
a

i,j(Yn)

Z tn+1

tn

Z s

tn

Z r

tn

dWudWrds

+L0L1
b
i,j(Yn)

Z tn+1

tn

Z s

tn

Z r

tn

dudWrdWs

+L1L1L1
b
i,j(Yn)

Z tn+1

tn

Z s

tn

Z r

tn

Z u

tn

dWvdWudWrdWs. (order 2.0)(A.1)

Define ∆n = tn+1 − tn, ∆Wn = Wtn+1
− Wtn

, ∆Zn =
∫ tn+1

tn
(Ws − Wtn

) ds and

∆Un =
∫ tn+1

tn
(Ws − Wtn

)
2
ds. By Itô formula we haveZ tn+1

tn

Z s

tn

dWrdWs =
1

2

˘
(∆Wn)2 − ∆n

¯
,

Z tn+1

tn

Z s

tn

drdWs = ∆Wn∆n − ∆Zn,

Z tn+1

tn

Z s

tn

Z r

tn

dWudWrdWs =
1

6

˘
(∆Wn)2 − 3∆n

¯
∆Wn,

Z tn+1

tn

Z s

tn

Z r

tn

dWudrdWs = −∆Un + ∆Wn∆Zn,

Z tn+1

tn

Z s

tn

Z r

tn

dWudWrds =
1

2
∆Un − 1

4
∆2

n,

Z tn+1

tn

Z s

tn

Z r

tn

dudWrdWs =
1

2
∆Un − ∆Wn∆Zn +

1

2
(∆Wn)2 ∆n − 1

4
∆2

n,

Z tn+1

tn

Z s

tn

Z r

tn

Z u

tn

dWvdWudWrdWs =
1

24

˘
(∆Wn)4 − 6 (∆Wn)2 ∆n + 3∆2

n

¯
.

Thus we could rewrite the Taylor scheme (A.1) as follows,

Y
i,j

n+1 = Y
i,j
n + a

i,j(Yn)∆n + b
i,j(Yn)∆Wn +

1

2
L1

b
i,j(Yn)

˘
(∆Wn)2 − ∆n

¯

+
1

2
L0

a
i,j(Yn)∆2

n + L0
b
i,j(Yn) {∆Wn∆n − ∆Zn}

+L1
a

i,j(Yn)∆Zn +
1

6
L1L1

b
i,j(Yn)

˘
(∆Wn)2 − 3∆n

¯
∆Wn

+L1L0
b
i,j(Yn) {−∆Un + ∆Wn∆Zn} + L1L1

a
i,j(Yn)


1

2
∆Un − 1

4
∆2

n

ff

+L0L1
b
i,j(Yn)


1

2
∆Un − ∆Wn∆Zn +

1

2
(∆Wn)2 ∆n − 1

4
∆2

n

ff

+
1

24
L1L1L1

b
i,j(Yn)

˘
(∆Wn)4 − 6 (∆Wn)2 ∆n + 3∆2

n

¯
,(A.2)

where the method of modeling the stochastic variables ∆Wn, ∆Zn and ∆Un will be
specified later.

A.2. Explicit order 2.0 strong scheme. A disadvantage of the strong Taylor
approximations is that the derivatives of various orders of the drift and diffusion
coefficients must be evaluated at each step, in addition to the coefficients themselves.
This can make implementation of such schemes a complicated undertaking. In this
subsection we will propose a strong scheme which avoids the usage of derivatives in
much the same way that Runge-Kutta schemes do in the deterministic setting.

A.2.1. Derivative-free scheme. Following the idea of [20], we could derive a
derivative-free scheme of order 2.0 by replacing the derivatives in the strong Taylor
scheme (A.2) by corresponding finite differences. We set

γ
m,l
± = Y

m,l
n + a

m,l(Yn)∆n ± b
m,l(Yn)

√
∆n, η

m,l
± = Y

m,l
n ± b

m,l(Yn)∆n;
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φ
m,l
+,± = γ

m,l
+ + a

m,l(γ+)∆n ± b
m,l(γ+)

√
∆n, φ

m,l
−,± = γ

m,l
− + a

m,l(γ−)∆n ± b
m,l(γ−)

√
∆n;

β
m,l
+,± = φ

m,l
+,+ ± b

m,l(φ+,+)
√

∆n, β
m,l
−,± = φ

m,l
+,− ± b

m,l(φ+,−)
√

∆n.(A.3)

One could easily verify that

L1
b
i,j(Yn) =

1

2∆n

n
b
i,j(η+) − b

i,j(η−)
o

+ O(∆2
n),

L0
a

i,j(Yn) =
1

2∆n

n
a

i,j(γ+) − 2a
i,j(Yn) + a

i,j(γ−)
o

+ O(∆n),

L0
b
i,j(Yn) =

1

2∆n

n
b
i,j(γ+) − 2b

i,j(Yn) + b
i,j(γ−)

o
+ O(∆n),

L1
a

i,j(Yn) =
1

2
√

∆n

n
a

i,j(γ+) − a
i,j(γ−)

o
+ O(∆n),

L1L1
b
i,j(Yn) =

1

4∆n

n
b
i,j(φ+,+) − b

i,j(φ+,−) − b
i,j(φ−,+) + b

i,j(φ−,−)
o

+ O(∆n),

L1L0
b
i,j(Yn) =

1

2∆
3
2
n


b
i,j(φ+,+) + b

i,j(φ+,−) − 3b
i,j(γ+) − b

i,j(γ−) + 2b
i,j(Yn)

ff
+ O(

√
∆n),

L1L1
a

i,j(Yn) =
1

2∆n

n
a

i,j(φ+,+) − a
i,j(φ+,−) − a

i,j(γ+) + a
i,j(γ−)

o
+ O(

√
∆n),

L0L1
b
i,j(Yn) =

1

4∆
3
2
n


b
i,j(φ+,+) − b

i,j(φ+,−) + b
i,j(φ−,+) − b

i,j(φ−,−)

−2b
i,j(γ+) + 2b

i,j(γ−)

ff
+ O(

√
∆n),

L1L1L1
b
i,j(Yn) =

1

4∆
3
2
n


b
i,j(β+,+) − b

i,j(β+,−) − b
i,j(β−,+) + b

i,j(β−,−) − b
i,j(φ+,+)

+b
i,j(φ+,−) + b

i,j(φ−,+) − b
i,j(φ−,−)

ff
+ O(

√
∆n).

Then we could rewrite scheme (A.2) as the following scheme

Y
i,j

n+1 = Y
i,j

n + a
i,j(Yn)∆n + b

i,j(Yn)∆Wn +
1

4∆n

n
b
i,j(η+) − b

i,j(η−)
o˘

(∆Wn)2 − ∆n

¯

+
1

4

n
a

i,j(γ+) − 2a
i,j(Yn) + a

i,j(γ−)
o

∆n +
1

2
√

∆n

n
a

i,j(γ+) − a
i,j(γ−)

o
∆Zn

+
1

2∆n

n
b
i,j(γ+) − 2b

i,j(Yn) + b
i,j(γ−)

o
{∆Wn∆n − ∆Zn}

+
1

8∆n

n
b
i,j(φ+,+) − b

i,j(φ+,−) − b
i,j(φ−,+) + b

i,j(φ−,−)
o1

3
(∆Wn)2 − ∆n

ff
∆Wn

+
1

2∆
3
2
n

n
b
i,j(φ+,+) + b

i,j(φ+,−) − 3b
i,j(γ+) − b

i,j(γ−) + 2b
i,j(Yn)

o
{−∆Un + ∆Wn∆Zn}

+
1

2∆n

n
a

i,j(φ+,+) − a
i,j(φ+,−) − a

i,j(γ+) + a
i,j(γ−)

o1

2
∆Un − 1

4
∆2

n

ff

+
1

4∆
3
2
n

n
b
i,j(φ+,+) − b

i,j(φ+,−) + b
i,j(φ−,+) − b

i,j(φ−,−) − 2b
i,j(γ+) + 2b

i,j(γ−)
o

×


1

2
∆Un − ∆Wn∆Zn +

1

2
(∆Wn)2 ∆n − 1

4
∆2

n

ff

+
1

96∆
3
2
n


b
i,j(β+,+) − b

i,j(β+,−) − b
i,j(β−,+) + b

i,j(β−,−) − b
i,j(φ+,+) + b

i,j(φ+,−)

+b
i,j(φ−,+) − b

i,j(φ−,−)

ff
×
˘
(∆Wn)4 − 6 (∆Wn)2 ∆n + 3∆2

n

¯
.(A.4)

Remark A.1. Using finite differences (FD) for approximating derivatives in a
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Taylor-type scheme is relatively easy to design high order (order 2.0) time discretiza-
tion. But it is well known from deterministic ODEs that it typically leads to poor
stability - that is why RK schemes are used, instead of Taylor schemes with FD approx-
imation of derivatives. There are some RK schemes for SDEs (See Rössler [30, 31]
and references therein) which have good stabilities. These RK schemes are either or-
der 1.5 or only for weak approximation or for Stratonovich SDEs. Thus they are not
proper to use for our problems. However, it is worth trying to get such RK schemes
of order 2.0 for achieving strong stability, which could be our future work.

A.2.2. Modeling of the Itô integrals. We have proposed a derivative-free
scheme (A.4). Now it remains to model at each step three random variables ∆Wn,
∆Zn and ∆Un. In [26], the characteristic function of these random variables is found.
However, it is very complicated and is not very useful in practice. Thus, the exact
modeling does not have good perspectives, and therefore we need to model these
variables approximately. The method of modeling can be found in [27]. For the
convenience of the reader, we give a full detailed description of the modeling algorithm
here.

We introduce the new process

v(s) =
Wtn+∆ns − Wtn√

∆n

, 0 ≤ s ≤ 1.

It is obvious that {v(s), 0 ≤ s ≤ 1} is a standard Wiener process. We have

∆Wn = ∆
1
2
n v(1), ∆Zn = ∆

3
2
n

Z 1

0

v(s) ds, ∆Un = ∆2
n

Z 1

0

v
2(s) ds.

Then the problem of modeling the random variables ∆Wn, ∆Zn and ∆Un could

be reduced to that of modeling the variables v(1),
∫ 1

0 v(s) ds and
∫ 1

0 v2(s) ds. These
variables are the solution of the system of equations8

<
:

dx = dv(s), x(0) = 0,
dy = x ds, y(0) = 0,

dz = x
2
ds, z(0) = 0,

(A.5)

at the moment s = 1.
Let xk = x̄(sk), yk = ȳ(sk), zk = z̄(sk), 0 = s0 < s1 < · · · < sNn

= 1, sk+1−sk =
δ = 1

Nn
, be an approximate solution of (A.5), where Nn is to be determined. We will

now use a method of order 1.5 to integrate (A.5).8
>>>><
>>>>:

xk+1 = xk + (v(sk+1) − v(sk)),

yk+1 = yk + xkδ +

Z sk+1

sk

(v(θ) − v(sk)) dθ,

zk+1 = zk + x
2
kδ + 2xk

Z sk+1

sk

(v(θ) − v(sk)) dθ +
δ2

2
.

(A.6)

Here the additional random variable
∫ sk+1

sk
(v(θ) − v(sk)) dθ is normally distributed

with mean, variance and correlation

E

»Z sk+1

sk

(v(θ) − v(sk)) dθ

–
= 0, E

"„Z sk+1

sk

(v(θ) − v(sk)) dθ

«2
#

=
1

3
δ
3
,

E

»„
v(sk+1) − v(sk)

«
·
„Z sk+1

sk

(v(θ) − v(sk)) dθ

«–
=

1

2
δ
2
,

respectively. We note that there is no difficulty in generating the pair of correlated
normally distributed random variables v(sk+1)−v(sk) and

∫ sk+1

sk
(v(θ)−v(sk)) dθ using

the transformation

(A.7) v(sk+1) − v(sk) = ζk,1δ
1
2 ,

Z sk+1

sk

(v(θ) − v(sk)) dθ =
1

2

„
ζk,1 +

1√
3
ζk,2

«
δ

3
2 ,

where ζk,1 and ζk,2 are independent normally N(0; 1) distributed random variables.
The method (A.6) has the following properties. Firstly xk and yk are equal

to v(sk) and
∫ sk

0 v(θ) dθ exactly. Secondly we have

(
E

[∣∣∣zNn
−

∫ 1

0 v2(s) ds
∣∣∣
2
]) 1

2

=
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O(δ
3
2 ). We choose δ such that δ = O(∆

1
3
n ) i.e.

(A.8) Nn =

‰
∆

− 1
3

n

ı
,

with ⌈·⌉ standing for the ceiling function.

Then we have ∆
1
2
n xNn

= ∆Wn, ∆
3
2
nyNn

= ∆Zn and
(

E

[∣∣∆2
nzNn

− ∆Un

∣∣2
]) 1

2

=

O(∆
5
2
n ). Thus according to [27, Theorem 4.2, page 50], in a method of second order

of accuracy with time step ∆n such as scheme (A.4), we could replace ∆Wn, ∆Zn

and ∆Un by ∆
1
2
nxNn

, ∆
3
2
n yNn

and ∆2
nzNn

independently at each step. Finally, we get
an implementable derivative-free order 2.0 time discretization scheme,

Y
i,j

n+1 = Y
i,j

n + a
i,j(Yn)∆n + b

i,j(Yn)xNn

√
∆n (order 0.5)

+
1

4

n
b
i,j(η+) − b

i,j(η−)
o˘

x
2
Nn

− 1
¯

(order 1.0)

+
1

4

n
a

i,j(γ+) − 2a
i,j(Yn) + a

i,j(γ−)
o

∆n +
1

2

n
a

i,j(γ+) − a
i,j(γ−)

o
yNn∆n

+
1

2

n
b
i,j(γ+) − 2b

i,j(Yn) + b
i,j(γ−)

o
{xNn − yNn}

√
∆n

+
1

8

n
b
i,j(φ+,+) − b

i,j(φ+,−) − b
i,j(φ−,+) + b

i,j(φ−,−)
o1

3
x

2
Nn

− 1

ff
xNn

√
∆n

(order 1.5)

+
1

2

n
b
i,j(φ+,+) + b

i,j(φ+,−) − 3b
i,j(γ+) − b

i,j(γ−) + 2b
i,j(Yn)

o
{xNnyNn − zNn}

√
∆n

+
1

2

n
a

i,j(φ+,+) − a
i,j(φ+,−) − a

i,j(γ+) + a
i,j(γ−)

o1

2
zNn − 1

4

ff
∆n

+
1

4

n
b
i,j(φ+,+) − b

i,j(φ+,−) + b
i,j(φ−,+) − b

i,j(φ−,−) − 2b
i,j(γ+) + 2b

i,j(γ−)
o

×


1

2
zNn − xNnyNn +

1

2
x

2
Nn

− 1

4

ff√
∆n

+
1

96


b
i,j(β+,+) − b

i,j(β+,−) − b
i,j(β−,+) + b

i,j(β−,−) − b
i,j(φ+,+) + b

i,j(φ+,−)

+b
i,j(φ−,+) − b

i,j(φ−,−)

ff
×
˘
x

4
Nn

− 6x
2
Nn

+ 3
¯√

∆n,

(order 2.0)(A.9)
where xNn

, yNn
, zNn

are computed by (A.6), (A.7), (A.8), and γ±, η±, φ±,±, β±,±

are calculated by (A.3).
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[22] I. Kröker and C. Rohde. Finite volume schemes for hyperbolic balance laws with multiplicative
noise. Applied Numerical Mathematics, 62:441–456, 2012.

[23] R. J. LeVeque. Numerical Methods for Conservation Laws, Lectures in Mathematics,
Birkhauser, Basel, 1992.

[24] X. Mao. Stochastic Differential Equations and Applications, 2nd ed., Horwood, Chichester,
2008.

[25] R. Mikulevicius and B. L. Rozovskii Stochastic Navier-Stokes equations for turbulent flows.
SIAM Journal on Mathematical Analysis, 35:1250–1310, 2004.

[26] G.N. Milstein. Numerical Integration of Stochastic Differential Equations, Vol. 313, Ural State
University, Sverdlovsk. English translation by Kluwer Academic Publishers, Mathematics
and its Applications, 1995.

[27] G.N. Milstein and M.V. Tretyakov. Stochastic Numerics for Mathematical Physics, 1st ed.,
Scientific Computation series, Springer-Verlag, Berlin, 2004.

[28] P. E. Protter. Stochastic Integration and Differential Equations, 2nd ed., Springer-Verlag, New
York, 2004.

[29] W. Reed and T. Hill. Triangular Mesh Methods for the Neutrontransport Equation, La-ur-73-
479, Los Alamos Scientific Laboratory, 1973.
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