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Abstract

This paper describes and illustrates new functionality for fitting spatially varying co-
efficients models in the spBayes (version 0.4-2) R package. The new spSVC function uses
a computationally efficient Markov chain Monte Carlo algorithm and extends current sp-
Bayes functions, that fit only space-varying intercept regression models, to fit independent
or multivariate Gaussian process random effects for any set of columns in the regression
design matrix. Newly added OpenMP parallelization options for spSVC are discussed and
illustrated, as well as helper functions for joint and point-wise prediction and model fit
diagnostics. The utility of the proposed models is illustrated using a PM10 analysis over
central Europe.
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1. Introduction

In this paper we describe and illustrate extended functionality of a recent reformulation and
rewrite of core functions in the spBayes (Finley, Banerjee, and Gelfand 2015) R (R Core
Team 2018) package. The spBayes package provides a suite of univariate and multivariate
regression models for both Gaussian and non-Gaussian outcomes that are spatially indexed.
There are, by now, many R packages that provide similar functionality. A recent read of
the “Analysis of Spatial Data” CRAN Task View (Bivand 2019) yielded ∼46 packages listed
for geostatistical analysis—and this is not an exhaustive accounting of packages available
for such analyses. Finley et al. (2015) focused on laying out computationally efficient and
flexible MCMC algorithms for estimating an array of spatio-temporal Gaussian process (GP)
models. However, while the proposed sampling algorithms were quite general, only a narrow
set of models were implemented in spBayes. Specifically, users could only specify univariate
or multivariate GPs on model intercepts. Now, the addition of the spSVC function to spBayes
(version 0.4-2 available on CRAN 3/7/2019) aims to provide additional user options for placing
univariate or multivariate GPs on any set of model regression coefficients.
Such functionality is not unique, there are several R packages capable of fitting spatially
varying coefficient (SVC) models. Some are specifically designed to work with spatial or
spatio-tempral data and others provide flexibility to allow coefficients to vary by some generic
set of variables, which could be indexes in a coordinate system. Most of these packages employ
some flavor of spline or kernel based regression method to allow varying impact of predictors.
Hastie and Tibshirani (1993) and Fan and Zhang (2008) offer a general development of vary-
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2 Spatially varying coefficient in R

ing coefficient models and Gelfand, Kim, Sirmans, and Banerjee (2003a) provide treatment
particular to spatial settings. Regarding implementation in R, the spgwr package (Bivand and
Yu 2017) implements geographically weighted regression as originally detailed in Fothering-
ham, Brunsdon, and Charlton (2002). Key spline-based package options include mgcv (Wood
2017), svcm (Heim 2007), np (Hayfield and Racine 2008), and mboost (Hothorn, Buehlmann,
Kneib, Schmid, and Hofner 2018). Bürgin and Ritschard (2017) recently developed a tree-
based varying coefficient model (TVCM) algorithm and associated vcrpart package. The
packages walker (Helske 2019; Vihola, Helske, and Franks 2017), spTimer Bakar and Sahu
(2018), and spTDyn (Bakar, Kokic, and Jin 2017, 2015a,b) offer Bayesian time and space-
time SVC models. Other Bayesian options include model development using more general
software such as INLA (Rue, Martino, and Chopin 2009; Lindgren and Rue 2015; Bakka, Rue,
Fuglstad, Riebler, Bolin, Illian, Krainski, Simpson, and Lindgren 2018) and Stan (Carpenter,
Gelman, Hoffman, Lee, Goodrich, Betancourt, Brubaker, Guo, Li, and Riddell 2017; Stan
Development Team 2018), which can be called from their respective R packages.
The spSVC function offers Markov chain Monte Carlo (MCMC) based SVC inference using an
efficient sampling algorithm. The algorithm’s efficiency derives from updates to only covari-
ance parameters (i.e., regression coefficients and random effects are integrated out), computing
parallelization, and use of tuned and/or multi-threaded matrix algebra libraries. Subsequent
sections define the model and algorithm specifics, software features, and illustrative analyses
of simulated and real data.

2. Models and software
Let y(s) be the dependent variable (response or outcome) at location s and consider the
spatially varying regression model,

y(s) = (β1 + δ1w1(s)) +
p∑
j=2

xj(s) {βj + δjwj(s)}+ ε(s) , (1)

where xj(s), for each j = 2, . . . , p with p ≥ 1, is the known value of a predictor at location s,
βj is the regression coefficient corresponding to xj(s), β1 is an intercept, and ε(s) is a Gaussian
measurement error process independently distributed for each s. The quantities w1(s) and
wj(s) are spatial processes corresponding to the intercept and predictors, thereby yielding a
spatially varying regression model. We further accommodate the possibility that not all the
predictors will have spatially varying impact on the outcome. Thus, δ’s in (1) are binary
indicators assuming the value 1 if the associated predictor has a spatially varying regression
coefficient and 0 otherwise. For later convenience, when the respective δ = 1 we define
β̃1(s) = β1 + δ1w1(s) and β̃j(s) = βj + δjwj(s) as the space-varying regression coefficients.
Let S = {s1, s2, . . . , sn} be the set of spatial locations from which y(si) and the predictors
have been observed. Let w be the nr× 1 vector obtained by stacking up w(si)’s, where each
w(si) is an r × 1 vector with j-th entry wj(si), j = 1, 2, . . . , r and i = 1, 2, . . . , n. We treat
w(s) as a multivariate Gaussian process (see, e.g., Banerjee, Carlin, and Gelfand 2014) so the
matrix Kθ is an nr×nr spatial covariance matrix constructed as a block matrix with (i, j)-th
block obtained from the r × r cross-covariance matrix Kθ(si, sj) specifying the multivariate
spatial process w(s). In addition, β is the p × 1 regression coefficient corresponding to X,
and θ and τ are the parameters in Kθ and Dτ , respectively.
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Consider the Bayesian hierarchical model built from (1),

p(τ ,θ)×N(β |µβ,Σβ)×N(w |0,Kθ)×N(y |Xβ + Zw,Dτ ) , (2)

where y is n×1 with i-th element y(si), X is n×p with the first column 1 and the remaining
p − 1 columns corresponding to the predictors xj(si) in (1). The matrix Z is n × nr, where
r ≤ p, with precisely those columns of X which have δj = 1.
We will offer users the option to scale and center the matrix X. Note that Z is constructed
from X, and thus, for a scaled and centered X, the predictors used in Z will also be scaled
and centered. Scaling and centering often improves numerical stability and provides more
robust estimation of spatially varying regression models (see, e.g., Gelfand, Kim, Sirmans,
and Banerjee 2003b).
Some further specifications are in order. In spSVC we will fix Dτ = τ2In so τ = {τ2} is
the scalar quantity representing the measurement error variance or “nugget” in geostatistics.
The cross-covariance matrix Kθ(s, t), where t is a generic location, will most generally be
modeled using the Linear Model of Coregionalization (LMC). Here, we will model Kθ(s, t) =
AΓ(s, t)A>, where A is an r × r lower triangular matrix and Γ(s, t) is a diagonal matrix
with ρj(s, t) being the j-th diagonal element, where ρj(s, t) is a spatial correlation function
with parameters specific to wj(s). Here, θ in (2) corresponds to {A, {φj}rj=1} where each
φj is a collection of parameters in the spatial correlation function. For example, with the
Matérn covariance function each φj comprises a spatial decay parameter and a smoothness
parameter.
The covariance structure for w(s) within any location s is captured by AA>, which identifies
with the Cholesky decomposition for var{w(s)}. In general, we will specify priors as

p(τ2,θ) = IG(τ2 | aτ , bτ )× IW (AA> | ra,Sa)×
r∏
j=1

p(φj) , (3)

where IG is inverse-Gamma, IW is inverse-Wishart, and each p(φj) can be one of the several
distributions provided by spBayes. Another particular choice offered by spSVC specifies A =
diag(σ1, . . . , σr), so that Kθ(s, t) is diagonal with entries σ2

j ρj(s, t), in which case we assume
IG(σ2

j | aσ, bσ) for j = 1, 2, . . . , r. Choices for ρj include any of the standard correlation
functions offered by spBayes.

2.1. Parameter estimation and computational considerations

Bayesian inference for (1) involves sampling the parameters θ, β and w from their marginal
posterior distributions. Such sampling algorithms require expensive operations on dense ma-
trices such as decomposition and multiplication. Therefore, as we have outlined below, care
is needed to use efficient numerical algorithms such as Cholesky factorizations, working with
triangular systems, and avoiding redundant operations.

Sampling the process parameters

Sampling from (2) employs MCMC methods, in particular Gibbs sampling and random walk
Metropolis steps (e.g., Robert and Casella 2004). For faster convergence, we integrate out
β and w from the model and first sample from p(θ |y) ∝ p(θ) × N(y |Xµβ,Σy | θ), where
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Σy | θ = XΣβX>+ ZKθZ>+ Dτ . This matrix needs to be constructed for every update of θ.
Dτ is diagonal and XΣβX> is fixed, so the computation involves the matrix ZKθZ> which
requires rn2 flops (floating point operations).
We adopt a random-walk Metropolis step with a multivariate normal proposal (same dimen-
sion as there are parameters in θ) after transforming parameters to have support over the
entire real line. This involves evaluating

log p(θ |y) = const + log p(θ)− 1
2 log |Σy | θ| −

1
2Q(θ) , (4)

where Q(θ) = (y −Xµβ)>Σ−1
y | θ(y −Xµβ). Generally, we compute L = chol(Σy | θ), where

chol(Σy | θ) returns the lower-triangular Cholesky factor L of Σy | θ. This involves O(n3/3)
flops. Next, we obtain u = trsolve(L,y −Xµβ), which solves the triangular system Lu =
y − Xµβ. This involves O(n2) flops and Q(θ) = u>u requires another 2n flops. The log-
determinant in (4) is evaluated as 2

∑n
i=1 log li,i, where li,i are the diagonal entries in L. Since

L has already been obtained, the log-determinant requires another n steps. Therefore, the
Cholesky factorization dominates the work and computing (4) is achieved in O(n3) flops.
If β is flat, i.e., Σ−1

β = O, the analogue of distribution (4) is

log p(θ |y) = constant + log p(θ)− 1
2 log |X>Σ−1

y |β,θX| −
1
2 log |Σy |β,θ| −

1
2Q(θ), (5)

where Σy |β,θ = ZKθZ> + Dτ and Q(θ) = y>Σ−1
y |β,θy − b>(X>Σ−1

y |β,θX)−1b and b =
X>Σ−1

y |β,θy. Computations proceed similar to the above. We first evaluate L = chol(Σy |β,θ)
and then obtain [v : U] = trsolve(L, [y : X]), so Lv = y and LU = X. Next, we evaluate
W = chol(U>U), b = U>v and solve b̃ = trsolve(W,b). Finally, (5) is evaluated as

log p(θ)−
p∑
i=1

logwi,i −
n∑
i=1

log li,i −
1
2(v>v− b̃>b̃),

where wi,i’s and li,i’s are the diagonal elements in W and L respectively. The number of flops
is again of cubic order in n.
Importantly, our strategy above avoids computing inverses. We use Cholesky factorizations
and solve only triangular systems. If n is not large, say ∼102, this strategy is feasible. As
described in Section 2.2 and illustrated in Section 3, use of efficient and parallelized numerical
linear algebra routines yields substantial gains in computing time.

Sampling the slope and the random effects
Once we have obtained marginal posterior samples θ from p(θ |y), we can draw posterior
samples of β and w using composition sampling. Suppose {θ(1),θ(2), . . . ,θ(M)} areM samples
from p(θ |y). Drawing β(k) ∼ p(β |θ(k),y) and w(k) ∼ p(w |θ(k),y) for k = 1, 2, . . .M results
in M samples from p(β |y) and p(w |y) respectively. Only the samples of θ obtained after
convergence (i.e., post burn-in) of the MCMC algorithm need to be stored.
To elucidate further, note that β |θ,y ∼ Np(Bb,B) with mean Bb and variance-covariance
matrix B, where

b = Σ−1
β µβ + X>Σ−1

y |β,θy and B =
(
Σ−1
β + X>Σ−1

y |β,θX
)−1

. (6)
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For each k = 1, 2, . . . ,M , we compute B and b at the current value θ(k) and draw β(k) ∼
Np(Bb,B). This is achieved by computing b = Σ−1

β µβ+U>v, where L = chol(Σy |β,θ(k)) and
[v : U] = trsolve(L, [y : X]). Next, we generate p independent standard normal variables,
collect them into z and set

β(k) = trsolve
(
L>B, trsolve(LB,b)

)
+ trsolve(L>B, z) , (7)

where LB = chol
(
Σ−1
β + U>U

)
. This completes the k-th iteration. After M iterations, we

obtain {β(1),β(2), . . . ,β(M)}, which are samples from p(β |y).
Mapping point or interval estimates of spatial random effects is often helpful in identifying
missing regressors and/or building a better understanding of model adequacy. Σy |w,θ =
XΣβX> + Dτ and note that w |θ,y ∼ N(Bb,B), where

b = Z>Σ−1
y |w,θ(y−Xµβ) and B =

(
K−1
θ + Z>Σ−1

y |w,θZ
)−1

. (8)

The vector b here is computed analogously as for β. For each k = 1, 2, . . . ,M we now evaluate
L = chol(Σy |w,θ(k)), [v : U] = trsolve(L, [y − Xµβ : Z(θ(k))]) and set b = U(θ(k))>v.
For computing B, one could proceed as for β but that would involve chol(K(θ)), which
may become numerically unstable for certain covariance functions (e.g., the Gaussian or the
Matérn with large ν). For robust software performance we define G−1

θ = Z′Σ−1
y |w,θZ and

utilize the identity (Henderson and Searle 1981)(
K−1
θ + G−1

θ

)−1
= Gθ −Gθ (Kθ + Gθ)−1 Gθ

to devise a numerically stable algorithm. For each k = 1, 2, . . . ,M , we evaluate L =
chol(K(k)

θ + G(k)
θ ), W = trsolve(L,G(k)

θ ) and LB = chol(G(k)
θ −W>W). If z is a r × 1

vector of independent standard normal variables, then we set w(k) = LBL>Bb + LBz. The
resulting {w(1),w(2), . . . ,w(M)} are samples from p(w |y).

Spatial predictions

To predict a random n0 × 1 vector y0 associated with a n0 × p matrix of predictors, X0, we
assume that [

y
y0

] ∣∣∣∣β,θ ∼ Nn0+n

([
X
X0

]
β,

[
C11(θ) C12(θ)

C12(θ)> C22(θ)

])
, (9)

where C11(θ) = Σy |β,θ, C12(θ) is the n × n0 cross-covariance matrix between y and y0,
and C22(θ) is the variance-covariance matrix for y0. A valid joint distribution will supply a
conditional distribution p(y0 |y,β,θ), which is normal with mean and variance

µp = X0β + C12(θ)>C11(θ)−1(y−Xβ) and Σp = C22(θ)−C12(θ)>C11(θ)−1C12(θ)
(10)

Bayesian prediction proceeds by sampling from the posterior predictive distribution p(y0 |y) =∫
p(y0 |y,β,θ)p(β,θ |y)dβdθ. For each posterior sample of {β,θ}, we draw a corresponding

y0 ∼ N(µp,Σp). This produces samples from the posterior predictive distribution.
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The posterior predictive computations involve only the retained MCMC samples after con-
vergence. For any posterior sample {β(k),θ(k)}, we solve [u : V] = trsolve(L, [y −Xβ(k) :
C12(θ(k))]), where L = chol(C11(θ(k))). Next, we set µ

(k)
p = X0β(k) + V>u and Σ(k)

p =
C22(θ(k))−V>V and draw y(k)

0 ∼ N(µ(k)
p ,Σ(k)

p ).

Updating y(k)
0 ’s requires Cholesky factorization of Σp, which is n0×n0 and can be expensive

if n0 is large. In most practical settings, it is sufficient to take n0 = 1 and perform point-wise
predictions.

2.2. Software features

The spSVC function accommodates the spLM function in spBayes and offers additional user
options to simplify analysis and inference. The list below highlights some of these new options.

1. Any set of predictors can receive either independent univariate GPs or a multivariate
GP.

2. Prediction can be done by sampling from either the joint or point-wise (marginal)
posterior predictive distribution.

3. openMP (Dagum and Menon 1998) support is available via the n.omp.threads ar-
gument for parameter estimation, composition sampling, model fit diagnostics, and
prediction functions.

4. Matrix operation parallelization is available via multi-threaded implementations of Ba-
sic Linear Algebra Subprograms (BLAS; www.netlib.org/blas) and Linear Algebra
Package (LAPACK; www.netlib.org/lapack).

5. Coordinate system used to index observed and prediction locations can be of arbitrary
dimension—users were previously restricted to using 2-dimensional systems.

6. Univariate and multivariate random effect samples and space-varying coefficients are
returned as lists with element names corresponding to the given predictor.

3. Illustrations
We consider two analyses to illustrate key features of spSVC along with supporting functions.
The first analysis is of a simulated dataset and second is of an air pollution dataset that was
previously analyzed in Hamm, Finley, Schaap, and Stein (2015) and Datta, Banerjee, Finley,
Hamm, and Schaap (2016).

3.1. Analysis of simulated data

The simulated data mvSVCData is available in spBayes and comprises n=500 observations
distributed within a 2-dimensional unit square spatial domain. At generic location s the
outcome was generated following

y(s) = β0 + w0(s) + a(s) {βa + wa(s)}+ b(s) {βb + wb(s)}+ ε(s) . (11)

www.netlib.org/blas
www.netlib.org/lapack
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The predictors a(s) and b(s) were drawn from independent normal distributions with mean
zero and variance one. The regression coefficients β0, βa, and βb equaled 1, 10, and -10,
respectively. The r=3 spatial random effects associated with the intercept and predictors
were generated from a non-separable multivariate GP. The cross-covariance function used to
construct the (i, j)-th r × r block in the multivariate GP’s nr × nr covariance matrix, i.e.,
Kθ(si, sj) = AΓ(si, sj)A>, was 1 0 0

−1 1 0
0 1 0.1


exp(−4di,j) 0 0

0 exp(−6di,j) 0
0 0 exp(−6di,j)


1 −1 0

0 1 1
0 0 0.1

 , (12)

where di,j is the euclidean distance between location si and sj , and diagonal elements of
Γ(si, sj) are the exponential correlation function exp(−φkdi,j) for k = 1, 2, . . . , r. Figure 2(a)-
(c) display the realizations of w0, wa, and wb. The residual term ε(s) was simulated from a
Normal distribution with mean zero and variance τ2 = 0.1.
The code below specifies the model covariance parameters’ prior distributions, and MCMC
sampler starting and Metropolis proposal variance values. Here, we use a Uniform prior
for the spatial decay parameters each with support from 1 to 10. The prior for the cross-
covaraince matrix is an IW with degrees of freedom r and identity scale matrix. The prior
for the measurement error (or nugget variance) follows an IG with shape 2 and scale 1.
The parameter priors, starting values, and Metropolis sampler proposal variances are passed
to spSVC via the priors, starting, and tuning arguments, respectively. The proposed
model is specified via the formula argument using syntax like that used in base R’s lm, with
the addition of the svc.cols argument that accepts a vector of either integer indexes or
character names to indicate the space-varying design matrix columns (i.e., the columns of
X with δj = 1). For example, in the call to spSVC below, the vector passed to svc.cols
indicates we want the intercept and columns labeled a and b to follow a multivariate GP (or,
equivalently, one could use the argument value c(1,2,3)).

data(SVCMvData.dat)

r <- 3

n.ltr <- r*(r+1)/2

priors <- list("phi.Unif"=list(rep(1,r), rep(10,r)),
"K.IW"=list(r, diag(rep(1,r))),
"tau.sq.IG"=c(2, 1))

starting <- list("phi"=rep(3/0.5,r), "A"=c(1,0,0,1,0,1), "tau.sq"=1)

tuning <- list("phi"=rep(0.1,r), "A"=rep(0.01, n.ltr), "tau.sq"=0.01)

sim.m <- spSVC(y~a+b, coords=c("x.coords","y.coords"), data=SVCMvData.dat,
starting=starting, svc.cols=c("(Intercept)","a","b"),
tuning=tuning, priors=priors, cov.model="exponential",
n.samples=10000, n.report=5000, n.omp.threads=4)
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----------------------------------------
General model description
----------------------------------------
Model fit with 200 observations.

Number of covariates 3.

Number of space varying covariates 3.

Using the exponential spatial correlation model.

Number of MCMC samples 10000.

Priors and hyperpriors:
beta flat.
K IW hyperpriors:
df: 3.00000
S:
1.000 0.000 0.000
0.000 1.000 0.000
0.000 0.000 1.000

phi Unif lower bound hyperpriors: 1.000 1.000 1.000
phi Unif upper bound hyperpriors: 10.000 10.000 10.000

tau.sq IG hyperpriors shape=2.00000 and scale=1.00000

Source compiled with OpenMP, posterior sampling is using 4 thread(s).
-------------------------------------------------
Sampling
-------------------------------------------------
Sampled: 5000 of 10000, 50.00%
Report interval Metrop. Acceptance rate: 34.64%
Overall Metrop. Acceptance rate: 34.64%
-------------------------------------------------
Sampled: 10000 of 10000, 100.00%
Report interval Metrop. Acceptance rate: 34.24%
Overall Metrop. Acceptance rate: 34.44%
-------------------------------------------------

As described in Section 2, spSVC computes and returns MCMC samples for only model co-
variance parameters. If verbose=TRUE, basic model specifications are written to the terminal
followed by updates on the sampler’s progress and Metropolis algorithm acceptance rate.
The sampler progress report interval is controlled using the n.report argument. One should
adjust the Metropolis sampler proposal variances to achieve an acceptance rate between ∼30-
50% (see, e.g., Gelman, Carlin, Stern, Dunson, Vehtari, and Rubin 2013, for model fitting
best practices). If it proves difficult to maintain an acceptable acceptance rate, the amcmc ar-
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gument can be added to invoke an adaptive MCMC algorithm (Roberts and Rosenthal 2009)
that automatically adjusts the tuning to achieve a target acceptance rate (see the manual
page for more details).
The n.omp.threads argument in spSVC call above requests that key for loops within a given
MCMC iteration use 4 threads via openMP (Dagum and Menon 1998). If the user’s R is set
up to use a parallelized version of BLAS then n.omp.threads will also control the number
of threads in some LAPACK matrix operations. Such parallelization can greatly reduce the
sampler’s runtime.
The computer used to conduct this analysis has an Intel(R) Core(TM) i7-8550U CPU @
1.80GHz chip with 4 cores and R compiled with openMP, as confirmed in the “General
model description” printed after calling spSVC, which notes Source compiled with OpenMP,
posterior sampling is using 4 thread(s). spSVC will throw a warning if R was not com-
piled with openMP support and n.omp.threads is set to a value greater than 1. In addition
to openMP support, the current implementation of R uses openBLAS (Zhang 2016) which is a
version of BLAS capable of exploiting multiple processors. Figure 1 shows the runtime needed
to complete 10000 MCMC iterations across the number of available CPUs.

●

●

●

●

Number of CPU

M
in

ut
es

1 2 3 4

1
2

3
4

5
6

Figure 1: Simulated data analysis assessment of optimal runtime.

Following execution of spSVC, the sim.m object holds MCMC samples for covariance parame-
ters (p.theta.samples) along with data and model fitting details. Using, possibly post burn-
in and thinned, p.theta.samples, the spRecover function conducts composition sampling to
generate samples from the regression coefficients β (p.beta.recover.samples), spatial ran-
dom effects w (p.w.recover.samples), and model fitted values (p.y.samples). spRecover
also returns the subset of p.theta.samples (p.theta.recover.samples) used in the com-
position sampling. Further, for convenience, spRecover returns samples of the space-varying
regression coefficients β̃(s)’s. spRecover appends these various composition sampling outputs
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to the spSVC input object, i.e., the sim.m object returned by spRecover below is identical to
the sim.m object returned by spSVC except for the addition of the composition sampling re-
sults. In addition to providing posterior samples for all model parameters, a call to spRecover
is necessary for subsequent prediction and model fit diagnostics, via spPredict and spDiag
respectively. Like spSVC, spRecover takes advantage of multiple CPUs via openMP when
available.

sim.m <- spRecover(sim.m, start=5000, thin=2, n.omp.threads=4, verbose=FALSE)

spSVC and spRecover return samples as coda objects to simplify posterior summaries. Output
below provides the post burn-in and thinned median with lower and upper 95% credible
bounds for β’s, cross-covariance matrix used to construct Kθ, spatial decays φ’s, and τ2.
These summaries show the model captures well the parameter values used to simulate the
data.

round(summary(sim.m$p.beta.recover.samples)$quantiles[,c(3,1,5)],2)

50% 2.5% 97.5%
(Intercept) 0.20 -1.05 1.16
a 10.53 9.37 11.92
b -10.20 -11.08 -9.31

Note, following the notation in Section 2 the cross-covaraince matrix used to simulated the
data is

Kθ = AA>

 1 0 0
−1 1 0
0 1 0.1


1 −1 0

0 1 1
0 0 0.1

 =

 1 −1 0
−1 2 1
0 1 1.01

 . (13)

The posterior summary of the covariance parameters is below. Observed versus estimated
random effects are given Figure 2(d)-(f).

round(summary(sim.m$p.theta.recover.samples)$quantiles[,c(3,1,5)],2)

50% 2.5% 97.5%
K[1,1] 1.11 0.58 2.78
K[2,1] -1.00 -2.49 -0.46
K[3,1] -0.06 -0.52 0.35
K[2,2] 1.89 1.17 3.60
K[3,2] 0.90 0.35 1.76
K[3,3] 1.14 0.63 2.03
tau.sq 0.18 0.10 0.33
phi.(Intercept) 4.16 1.57 8.65
phi.a 4.98 2.09 9.81
phi.b 6.13 1.55 9.89

3.2. Analysis of air pollution data
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Figure 2: Simulated data analysis, observed (true) and model estimated (fitted) random effect
values. Figures (d)-(f) posterior median and 95% credible interval shown as point and bars,
respectively.

Increases in human morbidity and mortality is a known outcome to airborne particulate mat-
ter (PM) exposure (Brunekreef and Holgate 2002; Loomis, Grosse, Lauby-Secretan, El Ghissassi,
Bouvard, Benbrahim-Tallaa, Guha, Baan, Mattock, and Straif 2013; Hoek, Krishnan, Bee-
len, Peters, Ostro, Brunekreef, and Kaufman 2013). In response, regulatory agencies have
instigated monitor programs and regulate PM concentrations. One such regulation by the
European Commission’s air quality standards limits PM10 (PM<10 µm in diameter) concen-
trations to 50 µg m−3 average over 24 hours and 40 µg m−3 over a year (European Commission
2015).
Measurements made with instruments at monitoring stations are considered authoritative;
however, these observations are often too sparse to deliver regional maps at sufficient res-
olution to assess progress with mitigation strategies and for monitoring compliance. One
solution is to couple spatially sparse monitoring station observations with spatially complete
chemistry transport model (CTM) output, (see, e.g., van de Kassteele and Stein 2006; Denby,
Schaap, Segers, Builtjes, and Horalek 2008; Candiani, Carnevale, Finzi, Pisoni, and Volta
2013). In such settings, monitoring station observations serve as a regression model outcome
with CTM output set as a predictor.

PM10(s) = β0 + w0(s) + CTM(s) {βCTM + wCTM (s)}+ ε(s) . (14)
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This illustration draws on data and analyses presented in (Hamm et al. 2015; Datta et al.
2016). We consider April 6, 2010, PM10 measurements across central Europe with corre-
sponding output from the LOTOS-EUROS (Schaap, Timmermans, Roemer, Boersen, Built-
jes, Sauter, Velders, and Beck 2008) CTM. Following (Hamm et al. 2015) we hypothesis a
space-varying relationship between the PM10 measurements observed at monitoring stations
and CTM output. In what follows, we compare fit metrics for three candidate models derived
from (14): 1) a non-spatial regression; 2) space-varying intercept; 3) space-varying intercept
and CTM output. Resulting model objects are called pm.1, pm.2, and pm.3, respectively. For
brevity, code only for fitting pm.3 is shown. We then consider parameter estimates and as-
sociated plots of the spatial random effects from pm.3, followed by development of predictive
maps of both the space-varying coefficients and PM10 prediction for a grid over the study
area.
We begin by loading the data and separating it into a “model” set PM10.mod comprising
locations where both PM10 measurements and CTM values are available, and a “prediction”
set PM10.pred where only CTM values are available. Here too, we calculated the maximum
distance between any two monitoring stations which will help with setting prior distributions
for spatial decay parameters.

data(PM10.dat)

PM10.mod <- PM10.dat[!is.na(PM10.dat$pm10.obs),]
PM10.pred <- PM10.dat[is.na(PM10.dat$pm10.obs),]

d.max <- max(iDist(PM10.mod[,c("x.coord","y.coord")]))
d.max #km

[1] 2929.193

The code below specifies the model covariance parameters’ prior distributions, and MCMC
sampler starting and Metropolis proposal variance values. Unlike the simulated data analysis,
here we demonstrate placing independent GPs on the intercept and CTM predictor. This
requires priors for a process specific spatial decay parameter φ and variance σ2. We again
use a Uniform prior for the process’ decay parameters that provides support for an effective
spatial range between ∼ 3 and 2197 km, given an exponential covariance function. The two
spatial variances and single observational variance τ2 each are assumed to follow an IG with
shape 2 and scale 1. We center the IG’s on 1, because it is approximately equal to the
residual variance from the first candidate model, i.e., the non-spatial regression. One should
generally do careful exploratory data analysis to arrive at a robust set of prior distributions
and hyperparameters

r <- 2

priors <- list("phi.Unif"=list(rep(3/(0.75*d.max), r), rep(3/(0.001*d.max), r)),
"sigma.sq.IG"=list(rep(2, r), rep(1, r)),
"tau.sq.IG"=c(2, 1))
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starting <- list("phi"=rep(3/(0.1*d.max), r), "sigma.sq"=rep(1, r), "tau.sq"=1)

tuning <- list("phi"=rep(0.1, r), "sigma.sq"=rep(0.05, r), "tau.sq"=0.1)

n.samples <- 10000

m.3 <- spSVC(pm10.obs ~ pm10.ctm, coords=c("x.coord","y.coord"),
data=PM10.mod, starting=starting, svc.cols=c(1,2),
tuning=tuning, priors=priors, cov.model="exponential",
n.samples=n.samples, n.report=5000, n.omp.threads=4)

----------------------------------------
General model description
----------------------------------------
Model fit with 256 observations.

Number of covariates 2.

Number of space varying covariates 2.

Using the exponential spatial correlation model.

Number of MCMC samples 10000.

Priors and hyperpriors:
beta flat.
Diag(K) IG hyperpriors
parameter shape scale
K[1,1] 2.000000 1.000000
K[2,2] 2.000000 1.000000

phi Unif lower bound hyperpriors: 0.001 0.001
phi Unif upper bound hyperpriors: 1.024 1.024

tau.sq IG hyperpriors shape=2.00000 and scale=1.00000

Source compiled with OpenMP, posterior sampling is using 4 thread(s).
-------------------------------------------------
Sampling
-------------------------------------------------
Sampled: 5000 of 10000, 50.00%
Report interval Metrop. Acceptance rate: 36.84%
Overall Metrop. Acceptance rate: 36.84%
-------------------------------------------------
Sampled: 10000 of 10000, 100.00%
Report interval Metrop. Acceptance rate: 36.08%
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Overall Metrop. Acceptance rate: 36.46%
-------------------------------------------------

We again pass the spSVC object to spRecover for composition sampling of the remaining
model parameters needed for posterior summaries, model assessment, and subsequent predic-
tion.

m.3 <- spRecover(m.3, start=floor(0.75*n.samples), thin=2,
n.omp.threads=4, verbose=FALSE)

Passing the spRecover object to spDiag yields several popular model fit diagnostics, two of
which are summarized in Tables 1 and 2. Table 1 shows the deviance information criterion
(DIC) and associated effective number of parameters pD (Spiegelhalter, Best, Carlin, and
van der Linde 2001), while Table 2 presents a posterior predictive loss metric D = G+P
proposed by (Gelfand and Ghosh 1998), where G measures goodness of fit and P penalizes
complexity. Models with lower values of DIC or D are preferred over those with higher
values. Both metrics favor Model 3 which allows both the intercept and CTM predictor to
vary spatially over the study area.

pD DIC

Model 1 2.99 363.35
Model 2 84.61 188.88
Model 3 160.53 81.55

Table 1: Model fit using DIC.

G P D

Model 1 380.53 389.12 769.65
Model 2 94.23 189.33 283.56
Model 3 22.74 122.94 145.68

Table 2: Model fit using GPD.
Again, passing spRecover’s coda objects to summary provides posterior summaries of regres-
sion coefficients and covariance parameters.

round(summary(m.3$p.beta.recover.samples)$quantiles[,c(3,1,5)],3)

50% 2.5% 97.5%
(Intercept) 3.189 2.105 4.286
pm10.ctm 0.324 -0.087 0.726

round(summary(m.3$p.theta.recover.samples)$quantiles[,c(3,1,5)],3)

50% 2.5% 97.5%
sigma.sq.(Intercept) 0.278 0.146 0.480
sigma.sq.pm10.ctm 0.103 0.066 0.153
tau.sq 0.286 0.137 0.463
phi.(Intercept) 0.426 0.072 0.909
phi.pm10.ctm 0.001 0.001 0.002

Given the spatial decay parameter estimates, the corresponding effective spatial range (defined
as the distance at which the correlation drops to 0.05) posterior median and 95% CI for
the intercept and CTM processes are approximately 7.03 (3.3, 41.82) km and 2005.4 (1330,
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2183.12) km, respectively. While the CTM predictor does have a long spatial range relative
to the size of the study area, model fit metrics and the magnitude of its process variance
sigma.sq.pm10.ctm estimates relative to the intercept process and nugget variance, offer
evidence for a space-varying relationship with the outcome variable. This conclusion is further
reinforced by Figure 3(b), which shows the posterior median for the CTM predictor regression
coefficient, β̃CTM (s)’s, over observed monitoring locations. These posterior samples, along
with those of the space-varying intercept, β̃0(s)’s, are extracted from m.3 and summarized in
the code below (tilde.beta.0 and tilde.beta.ctm are displayed in Figure 3(a)-(b)).

tilde.beta.0 <- apply(
m.3$p.tilde.beta.recover.samples[["tilde.beta.(Intercept)"]],
1, median)

tilde.beta.ctm <- apply(
m.3$p.tilde.beta.recover.samples[["tilde.beta.pm10.ctm"]],
1, median)

We next turn to prediction over the grid of 2336 CTM output locations via a call to spPredict.
As illustrated below, this call uses samples from a spRecover object along with the predic-
tion locations (pred.coords) and associated design matrix (pred.covars). The argument
joint specifies if posterior predictive samples should be drawn from the joint or point-wise
distribution.

m.3.pred <- spPredict(m.3, pred.covars=cbind(1, PM10.pred$pm10.ctm),
pred.coords=PM10.pred[,1:2], thin=25,
joint=TRUE, n.omp.threads=4, verbose=FALSE)

If the number of prediction locations is large, joint prediction can be prohibitively expensive.
Even here with 2336 locations, 51 samples, and using 4 CPUs, joint posterior sampling takes
3.53 minutes verses 0.72 minutes for point-wise sampling.
Joint prediction results are given in the bottom row of Figure 3. The posterior predictive
distribution median map (Figure 3(c)) shows three distinct zones of high PM10 values over
Central Europe. A compelling quality of MCMC-based inference is access to the posterior
predictive distribution. This access facilitates summaries like that given in Figure 3(d) which
identifies the probability that a given location will exceed a PM10 value 50 µg m−3 (as further
explored in Hamm et al. (2015) and Datta et al. (2016)).

4. Summary
The new spSVC function more fully implements the computationally efficient MCMC algo-
rithm detailed in Finley et al. (2015) and provides a flexible software tool for fitting spatially
varying coefficient models. While other software, some of which are noted in Section 1, offer
similar spatially adaptive regression, few provide both univariate and multivariate GP speci-
fications and the computational efficiency delivered by the proposed sampling algorithm and
use of OpenMP parallelization in combination with optional calls to multi-lower-level BLAS
and LAPACK multi-threaded matrix algebra libraries. Future work will focus on extending
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(d) Probability of PM10 > 50 µg m−3

Figure 3: Estimated space-varying intercept (a) and CTM regression coefficient (b) over
observed monitoring locations. PM10 posterior predictive distribution median (c) and prob-
ability of regulatory exceedance (d).

this function to accommodate non-Guassian and multivariate outcomes, as well as for settings
where the number of locations precluded the use of full-rank spatial GPs.



Andrew O. Finley, Sudipto Banerjee 17

Acknowledgments
Finley was supported by National Science Foundation (NSF) EF-1253225 and DMS-1916395,
and National Aeronautics and Space Administration’s Carbon Monitoring System project.
Banerjee was supported by NSF DMS-1513654, IIS-1562303, and DMS-1916349.

References

Bakar KS, Kokic P, Jin H (2015a). “Hierarchical spatially varying coefficient and temporal
dynamic process models using spTDyn.” Journal of Statistical Computation and Simulation.
URL 10.1080/00949655.2015.1038267.

Bakar KS, Kokic P, Jin H (2015b). “A spatio-dynamic model for assessing frost risk in south-
eastern Australia.” Journal of the Royal Statistical Society, Series C. URL 10.1111/rssc.
12103.

Bakar KS, Kokic P, Jin H (2017). Spatially varying and spatio-temporal dynamic linear
models. R package version 2.0.

Bakar KS, Sahu SK (2018). Spatio-Temporal Bayesian Modeling. R package version 3.3.

Bakka H, Rue H, Fuglstad GA, Riebler AI, Bolin D, Illian J, Krainski E, Simpson DP,
Lindgren FK (2018). “Spatial modelling with INLA: A review.” ArXiv e-prints. 1802.
06350.

Banerjee S, Carlin BP, Gelfand AE (2014). Hierarchical Modeling and Analysis for Spatial
Data. Second edition. Chapman & Hall/CRC, Boca Raton, FL.

Bivand R (2019). CRAN Task View: Analysis of Spatial Data. 2019-02-25, URL https:
//cran.r-project.org/web/views/Spatial.html.

Bivand R, Yu D (2017). spgwr: Geographically Weighted Regression. R package version 0.6-32,
URL https://CRAN.R-project.org/package=spgwr.

Brunekreef B, Holgate ST (2002). “Air Pollution and Health.” The Lancet, 360(9341), 1233–
1242.

Bürgin R, Ritschard G (2017). “Coefficient-Wise Tree-Based Varying Coefficient Regression
with vcrpart.” Journal of Statistical Software, Articles, 80(6), 1–33. ISSN 1548-7660.
doi:10.18637/jss.v080.i06.

Candiani G, Carnevale C, Finzi G, Pisoni E, Volta M (2013). “A Comparison of Reanalysis
Techniques: Applying Optimal Interpolation and Ensemble Kalman Filtering to Improve
Air Quality Monitoring at Mesoscale.” Science of the Total Environment, 458-460(0), 7–14.

Carpenter B, Gelman A, Hoffman M, Lee D, Goodrich B, Betancourt M, Brubaker M, Guo
J, Li P, Riddell A (2017). “Stan: A Probabilistic Programming Language.” Journal of
Statistical Software, Articles, 76(1), 1–32. ISSN 1548-7660. doi:10.18637/jss.v076.i01.
URL https://www.jstatsoft.org/v076/i01.

10.1080/00949655.2015.1038267
10.1111/rssc.12103
10.1111/rssc.12103
1802.06350
1802.06350
https://cran.r-project.org/web/views/Spatial.html
https://cran.r-project.org/web/views/Spatial.html
https://CRAN.R-project.org/package=spgwr
http://dx.doi.org/10.18637/jss.v080.i06
http://dx.doi.org/10.18637/jss.v076.i01
https://www.jstatsoft.org/v076/i01


18 Spatially varying coefficient in R

Dagum L, Menon R (1998). “OpenMP: an industry standard API for shared-memory pro-
gramming.” Computational Science & Engineering, IEEE, 5(1), 46–55.

Datta A, Banerjee S, Finley A, Hamm N, Schaap M (2016). “Nonseparable dynamic nearest
neighbor Gaussian process models for large spatio-temporal data with an application to
particulate matter analysis.” Annals of Applied Statistics, 10(3), 1286–1316. ISSN 1932-
6157.

Denby B, Schaap M, Segers A, Builtjes P, Horalek J (2008). “Comparison of Two Data As-
similation Methods for Assessing PM10 Exceedances on the European Scale.” Atmospheric
Environment, 42(30), 7122–7134.

European Commission (2015). “European Union Air Quality Standards.”
http://ec.europa.eu/environment/air/quality/standards.htm.

Fan J, Zhang W (2008). “Statistical Methods with Varying Coefficient Models.” Statistics
and its interface, 1 1, 179–195.

Finley A, Banerjee S, Gelfand A (2015). “spBayes for Large Univariate and Multivariate
Point-Referenced Spatio-Temporal Data Models.” Journal of Statistical Software, Articles,
63(13), 1–28. ISSN 1548-7660.

Fotheringham A, Brunsdon C, Charlton M (2002). Geographically Weighted Regression: The
Analysis of Spatially Varying Relationships. Wiley. ISBN 9780471496168.

Gelfand AE, Ghosh SK (1998). “Model choice: A minimum posterior predictive loss ap-
proach.” Biometrika, 85(1), 1–11.

Gelfand AE, Kim HJ, Sirmans CF, Banerjee S (2003a). “Spatial Modeling With Spatially
Varying Coefficient Processes.” Journal of the American Statistical Association, 98(462),
387–396.

Gelfand AE, Kim HJ, Sirmans CF, Banerjee S (2003b). “Spatial Modeling With Spatially
Varying Coefficient Processes.” Journal of the American Statistical Association, 98(462),
387–396.

Gelman A, Carlin J, Stern H, Dunson D, Vehtari A, Rubin D (2013). Bayesian Data Analysis,
Third Edition. Chapman & Hall/CRC Texts in Statistical Science. Taylor & Francis. ISBN
9781439840955.

Hamm N, Finley A, Schaap M, Stein A (2015). “A Spatially Varying Coefficient Model
for Mapping PM10 Air Quality at the European scale.” Atmospheric Environment, 102,
393–405.

Hastie T, Tibshirani R (1993). “Varying-Coefficient Models.” Journal of the Royal Statistical
Society. Series B (Methodological), 55(4), 757–796.

Hayfield T, Racine JS (2008). “Nonparametric Econometrics: The np Package.” Journal of
Statistical Software, 27(5). URL http://www.jstatsoft.org/v27/i05/.

Heim S (2007). svcm: 2d and 3d space-varying coefficient models in R. R package version
0.1.2.

http://www.jstatsoft.org/v27/i05/


Andrew O. Finley, Sudipto Banerjee 19

Helske J (2019). walker: Bayesian Regression with Time-Varying Coefficients. R package
version 0.2.4-1, URL http://github.com/helske/walker.

Henderson HV, Searle SR (1981). “On deriving the inverse of a sum of matrices.” SIAM
Review, 23(1), 53–60.

Hoek G, Krishnan RM, Beelen R, Peters A, Ostro B, Brunekreef B, Kaufman JD (2013).
“Long-term air pollution exposure and cardio- respiratory mortality: a review.” Environ-
mental Health, 12, 43.

Hothorn T, Buehlmann P, Kneib T, Schmid M, Hofner B (2018). mboost: Model-Based
Boosting. R package version 2.9-1, URL https://CRAN.R-project.org/package=mboost.

Lindgren F, Rue H (2015). “Bayesian Spatial Modelling with R-INLA.” Journal of Statistical
Software, 63(19), 1–25. URL http://www.jstatsoft.org/v63/i19/.

Loomis D, Grosse Y, Lauby-Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L,
Guha N, Baan R, Mattock H, Straif S (2013). “The Carcinogenicity of Outdoor Air Pollu-
tion.” The Lancet Oncology, 14(13), 1262–1263.

R Core Team (2018). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Robert C, Casella G (2004). Monte Carlo Statistical Methods. Springer Texts in Statistics,
second edition. Springer-Verlag.

Roberts GO, Rosenthal JS (2009). “Examples of Adaptive MCMC.” Journal of Computational
and Graphical Statistics, 18(2), 349–367.

Rue H, Martino S, Chopin N (2009). “Approximate Bayesian Inference for Latent Gaussian
Models Using Integrated Nested Laplace Approximations (with discussion).” Journal of the
Royal Statistical Society B, 71, 319–392.

Schaap M, Timmermans RMA, Roemer M, Boersen GAC, Builtjes P, Sauter F, Velders G,
Beck J (2008). “The LOTOS-EUROS Model: Description, Validation and Latest Develop-
ments.” International Journal of Environment and Pollution, 32(2), 270–290.

Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2001). “Bayesian Measures of Model
Complexity and Fit.”

Stan Development Team (2018). “RStan: the R interface to Stan.” R package version 2.18.2,
URL http://mc-stan.org/.

van de Kassteele J, Stein A (2006). “A Model for External Drift Kriging with Uncertain
Covariates applied to Air Quality Measurements and Dispersion Model Output.” Environ-
metrics, 17(4), 309–322.

Vihola M, Helske J, Franks J (2017). “Importance Sampling Type Estimators Based on
Approximate Marginal MCMC.” ArXiv e-prints. 1609.02541.

Wood S (2017). Generalized Additive Models: An Introduction with R. 2 edition. Chapman
and Hall/CRC.

http://github.com/helske/walker
https://CRAN.R-project.org/package=mboost
http://www.jstatsoft.org/v63/i19/
https://www.R-project.org/
http://mc-stan.org/
1609.02541


20 Spatially varying coefficient in R

Zhang X (2016). “An Optimized BLAS Library Based on GotoBLAS2.” https://github.
com/xianyi/OpenBLAS/. Accessed 2015-06-01.

Affiliation:
Andrew Finley
Department of Forestry
Michigan State University
Natural Resources Building
480 Wilson Road, Room 126
East Lansing, MI 48824-6402
E-mail: finleya@msu.edu
URL: https://www.finley-lab.com

Sudipto Banerjee
Fielding School of Public Health
University of California, Los Angeles
650 Charles E. Young Dr. South
Los Angeles, CA 90095-1772
E-mail: sudipto@ucla.edu
URL: https://ph.ucla.edu/faculty/banerjee

https://github.com/xianyi/OpenBLAS/
https://github.com/xianyi/OpenBLAS/
mailto:finleya@msu.edu
https://www.finley-lab.com
mailto:sudipto@ucla.edu
https://ph.ucla.edu/faculty/banerjee

	Introduction
	Models and software
	Parameter estimation and computational considerations
	Sampling the process parameters
	Sampling the slope and the random effects
	Spatial predictions

	Software features

	Illustrations
	Analysis of simulated data
	Analysis of air pollution data

	Summary

