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Abstract

In this paper, we study the optimal error estimates of the classical discontinuous

Galerkin method for time-dependent 2-D hyperbolic equations using P k elements on

uniform Cartesian meshes, and prove that the error in the L2 norm achieves optimal

(k + 1)-th order convergence when upwind fluxes are used. For the linear constant

coefficient case, the results hold true for arbitrary piecewise polynomials of degree k ≥ 0.

For variable coefficient and nonlinear cases, we give the proof for piecewise polynomials

of degree k = 0, 1, 2, 3 and k = 2, 3, respectively, under the condition that the wind

direction does not change. The theoretical results are verified by numerical examples.
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1 Introduction

In this paper, we study the semi-discrete discontinuous Galerkin (DG) method for

solving 2-D hyperbolic equations on Cartesian meshes. The optimal error estimates can

be obtained based on tensor-product polynomials for solving hyperbolic conservation

laws in previous analysis [4]. We prove optimal error estimates of the DG approximation

based on P k, the piecewise polynomials of degree at most k under suitable restrictions.

We consider the hyperbolic conservation laws




ut + f(u)x + g(u)y = 0, (x, y) ∈ Ω, t ≥ 0

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω,
(1.1)

where Ω is a rectangular domain in R
2 and periodic boundary condition or inflow-outflow

boundary conditions. The initial condition u0(x, y) is a given smooth function. For

simplicity, in the following we will only discuss the case with periodic boundary condition,

although this is not essential for the analysis; inflow-outflow boundary conditions can

also be considered along the same lines. We assume the exact solution of (1.1) is smooth,

this is true for all time t for the linear case with smooth coefficients, and when t is small

for the nonlinear case, since we assume the initial condition u0(x, y) is smooth.

The first version of the DG method was introduced in 1973 by Reed and Hill [13] in

the framework of neutron linear transport. It was later developed into the Runge-Kutta

DG (RKDG) methods by Cockburn et al [4, 5, 6, 8]. For one-dimensional and some

multidimensional cases, optimal a priori error estimates of order k + 1 can be obtained

for the DG schemes when upwind fluxes are used [3, 7, 14, 16]. In [11], Meng et al.

obtained similar optimal a priori error estimates when upwind-biased fluxes are used.

For higher order equations by utilizing and fully making use of the so called Gauss-Radau

projections, Xu and Shu [15] introduced a general approach for proving optimal error

estimates.

However, for multidimensional Cartesian meshes, the above optimal results are based

on using Qk, the space of tensor-product polynomials of degree at most k in each variable.
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The numerical results show that the optimal accuracy (k + 1)-th convergence order

holds true using the P k space. The number of degrees of freedom of the space P k is

(k + 1)(k + 2)/2, which is only about half of that for the space Qk for large k. The most

critical point to obtain the optimal error estimates is to construct a suitable projection.

The projection can help us to deal with the troublesome terms in the analysis. However,

since the number of degrees of freedom of P k is only about half of that for Qk, a suitable

projection is elusive for this case. Recently, we have constructed a special projection

to obtain the optimal error estimate for the central DG scheme by using a shifting

technique [10]. We continue to use this technique to construct a special projection to

obtain optimal error estimates for the DG methods based on the P k space over uniform

Cartesian meshes. We separately give the analysis of optimal error estimates in three

cases, namely the case with linear constant coefficients, the case with linear variable

coefficients, and the nonlinear case. First, the optimal (k + 1)-th order is proved for

smooth solutions of linear constant coefficient conservation laws when upwind numerical

fluxes are used. This proof holds true for uniform meshes and for polynomials of arbitrary

degree k ≥ 0. For linear variable coefficient and nonlinear equations, we give the proof

of optimal convergence results for k = 0, 1, 2, 3 and k = 2, 3, respectively, under the

condition that f ′(u), g′(u) do not change sign. Let us emphasize that this restriction

appears to be artificial due to the limitation of our techniques in the proof; the optimal

(k + 1)-th order convergence appears to hold true for nonlinear conservation laws with

general flux functions; see our numerical results in section 5. As far as we know, this

is the first optimal error estimate proof for DG methods applied to time-dependent

nonlinear hyperbolic equations using P k elements on Cartesian meshes. To deal with

the nonlinearity of the flux, Taylor expansion and an a priori assumption about the

numerical solution are used.

The remainder of the paper is organized as follows. In section 2, we give the proof of

the optimal error estimates for the semi-discrete DG scheme solving linear constant coef-
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ficient hyperbolic equations. In section 3, we provide the proof of the uniform bounded-

ness and superconvergence properties of a special projection and the proof of the optimal

error estimates for linear variable coefficients case. In section 4, we analyze nonlinear

hyperbolic equations. Some numerical examples are provided in section 5. Finally, we

conclude and give a few perspectives for future work in section 6. Some technical proof

of the error estimates is provided in the Appendix.

2 Linear constant coefficients

In this section, we consider the two-dimensional scalar linear constant coefficient

conservation law equation




ut + aux + buy = 0, (x, y) ∈ Ω, t ≥ 0

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω,
(2.1)

with periodic boundary condition, where a and b are constants. Without loss of gener-

ality, we assume Ω = [0, 1]2 and a, b > 0.

We recall the two-dimensional formulation of the DG scheme in [4]. Let {Ki,j =

[xi− 1
2
, xi+ 1

2
] × [yj− 1

2
, yj+ 1

2
]}, i = 1, . . . , N1, j = 1, . . . , N2 be a partition of Ω into rectan-

gular cells. Let Vh := {v ∈ L2(Ω) : v|Ki,j
∈ P k(Ki,j) ∀i, j}, where P k(Ki,j) denotes the

space of polynomials of degrees at most k defined on Ki,j; no continuity is assumed across

cell boundaries. We denote hi
x = (xi+ 1

2
−xi− 1

2
), hj

y = (yj+ 1
2
−yj− 1

2
) and h = max(hi

x, h
j
y).

We also introduce some standard Sobolev spaces notations. For any integer m > 0, let

W m,p(D) be the standard Sobolev spaces on sub-domain D ⊂ Ω equipped with the norm

‖ · ‖m,p,D and semi-norm | · |m,p,D. When D = Ω, we omit the index D; and if p = 2, we

set W m,p(D) = Hm(D), ‖ · ‖m,p,D = ‖ · ‖m,D, and | · |m,p,D = | · |m,D.

The semidiscrete DG method with the upwind flux is described as follows: We seek

an approximate solution uh ∈ Vh such that for all admissible test function v ∈ Vh and

Ki,j,

((uh)t, v)Ki,j
− (uh, vβ)Ki,j
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+

∫ y
j+ 1

2

y
j− 1

2

a
(
uh(x

−

i+ 1
2

, y)v(x−

i+ 1
2

, y) − uh(x
−

i− 1
2

, y)v(x+
i− 1

2

, y)
)

dy

+

∫ x
i+ 1

2

x
i− 1

2

b
(
uh(x, y−

j+ 1
2

)v(x, y−

j+ 1
2

) − uh(x, y−

j− 1
2

)v(x, y+
j− 1

2

)
)

dx = 0, (2.2)

where (·, ·) denotes the L2(Ki,j)-inner product. Here we have used the notation vβ

for the (unnormalized) directional derivative of v with respect to β = (a, b), namely

vβ = avx + bvy, and,

uh(x, y±

j+ 1
2

) = lim
ε→0+

uh(x, yj+ 1
2
± ε), ∀x ∈ (xi− 1

2
, xi+ 1

2
), (2.3)

uh(x
±

i+ 1
2

, y) = lim
ε→0+

uh(xi+ 1
2
± ε, y), ∀y ∈ (yj− 1

2
, yj+ 1

2
). (2.4)

For the initial condition, we simply take uh(0) = Phu0, where Ph is the L2 projection

into Vh, and we have

‖u0 − Phu0‖ ≤ Chk+1‖u0‖k+1, (2.5)

where the constant C depends on k. Here and below, an unmarked norm ‖ · ‖ denotes

the L2 norm.

The DG scheme using the upwind numerical fluxes for the two-dimensional linear

conservation laws satisfies the following L2-stability (e.g. [11]).

Proposition 2.1. The solution of the semidiscrete DG method defined by (2.2) satisfies

1

2

d

dt
‖uh‖2 +

a

2

N2∑

j=1

∫ y
j+ 1

2

y
j− 1

2

N1∑

i=1

(
uh(x

+
i+ 1

2

, y) − uh(x
−

i+ 1
2

, y)
)2

dy

+
b

2

N1∑

i=1

∫ x
i+1

2

x
i− 1

2

N2∑

j=1

(
uh(x, y+

j+ 1
2

) − uh(x, y−

j+ 1
2

)
)2

dx = 0. (2.6)

2.1 A priori error estimates

Now, we only consider uniform meshes, i.e. hx = hi
x and hy = hj

y. Let us now state

our main result as a theorem, whose proof will be given in the next subsection.
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Theorem 2.1. Suppose uh is the approximate solution of the DG scheme(2.2) using

uniform meshes for (2.1) with a smooth initial condition u(·, 0) ∈ Hk+2 and u is the

exact solution of (2.1), then the scheme satisfies the following L2 error estimate:

‖u(·, T ) − uh(·, T )‖ ≤ Chk+1, (2.7)

where k is the degree of the piecewise polynomials in the finite element spaces Vh, and

the constant C depends on the (k + 2)-th order Sobolev norm of the initial condition

‖u(·, 0)‖k+2 as well as on the final time T but is independent of the mesh size h.

Let us first introduce a few notations. We define

Bi,j(uh, v; a, b) =((uh)t, v)Ki,j
− (uh, vβ)Ki,j

+

∫ x
i+1

2

x
i−1

2

b
(
uh(x, y−

j+ 1
2

)v(x, y−

j+ 1
2

) − uh(x, y−

j− 1
2

)v(x, y+
j− 1

2

)
)

dx

+

∫ y
j+ 1

2

y
j− 1

2

a
(
uh(x

−

i+ 1
2

, y)v(x−

i+ 1
2

, y) − uh(x
−

i− 1
2

, y)v(x+
i− 1

2

, y)
)

dy. (2.8)

We also define

B̃i,j(uh, v; a, b) = − (uh, vβ)Ki,j

+

∫ x
i+1

2

x
i−1

2

b
(
uh(x, y−

j+ 1
2

)v(x, y−

j+ 1
2

) − uh(x, y−

j− 1
2

)v(x, y+
j− 1

2

)
)

dx

+

∫ y
j+ 1

2

y
j− 1

2

a
(
uh(x

−

i+ 1
2

, y)v(x−

i+ 1
2

, y) − uh(x
−

i− 1
2

, y)v(x+
i− 1

2

, y)
)

dy. (2.9)

Clearly, we have:

Bi,j(uh, v; a, b) = 0, (2.10)

for all i, j and all v ∈ Vh. It is also clear that the exact solution u of the PDE (2.1)

satisfies

Bi,j(u, v; a, b) = 0, (2.11)

for all i, j and all v ∈ Vh. Subtracting (2.10) from (2.11), we obtain the error equation

Bi,j(u − uh, v; a, b) = 0, (2.12)

for all i, j and all v ∈ Vh.
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2.2 Proof of the error estimates

In this subsection, we divide it into several steps to prove Theorem 2.1. First, we

construct the special local projection P
⋆ and prove the projection is well defined and

has the optimal approximation properties. Next, we prove a few propositions and su-

perconvergence properties of the special projection. Finally, the proof of Theorem 2.1 is

completed in subsection 2.2.3.

2.2.1 The special projection P
⋆

We now define P
⋆ as the following projection into Vh. For each Ki,j,

∫

Ki,j

P
⋆ω(x)dx =

∫

Ki,j

ω(x)dx, (2.13a)

P̃h(P
⋆ω, v; a, b)i,j = P̃h(ω, v; a, b)i,j ∀v ∈ P k(Ki,j), (2.13b)

where P̃h(ω, v; a, b)i,j is defined as follows

P̃h(ω, v; a, b)i,j = −(ω, vβ)Ki,j
+

∫ x
i+ 1

2

x
i− 1

2

bω(x, y−

j+ 1
2

)(v(x, y−

j+ 1
2

) − v(x, y+
j− 1

2

)) dx

+

∫ y
j+1

2

y
j− 1

2

aω(x−

i+ 1
2

, y)(v(x−

i+ 1
2

, y) − v(x+
i− 1

2

, y)) dy. (2.14)

Next, we prove the projection P
⋆ is well defined. Note that P

⋆ is a local projection, so

we only consider the projection defined on the reference cell [−1, 1] × [−1, 1].

Remark 2.1. We could also similarly define the projection P
⋆ for different signs of a, b,

by simply changing the definition of P̃h(ω, v; a, b)i,j. We list the other cases below for

completeness:

P̃h(ω, v; a, b)i,j = − (ω, vβ)Ki,j
+

∫ x
i+ 1

2

x
i− 1

2

bω(x, y−

j+ 1
2

)(v(x, y−

j+ 1
2

) − v(x, y+
j− 1

2

)) dx

+

∫ y
j+ 1

2

y
j− 1

2

aω(x+
i− 1

2

, y)(v(x−

i+ 1
2

, y) − v(x+
i− 1

2

, y)) dy, if a < 0 and b > 0;

(2.15)

P̃h(ω, v; a, b)i,j = − (ω, vβ)Ki,j
+

∫ x
i+ 1

2

x
i− 1

2

bω(x, y+
j− 1

2

)(v(x, y−

j+ 1
2

) − v(x, y+
j− 1

2

)) dx
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+

∫ y
j+ 1

2

y
j− 1

2

aω(x−

i+ 1
2

, y)(v(x−

i+ 1
2

, y) − v(x+
i− 1

2

, y)) dy, if a > 0 and b < 0;

(2.16)

P̃h(ω, v; a, b)i,j = − (ω, vβ)Ki,j
+

∫ x
i+ 1

2

x
i− 1

2

bω(x, y+
j− 1

2

)(v(x, y−

j+ 1
2

) − v(x, y+
j− 1

2

)) dx

+

∫ y
j+ 1

2

y
j− 1

2

aω(x+
i− 1

2

, y)(v(x−

i+ 1
2

, y) − v(x+
i− 1

2

, y)) dy, if a < 0 and b < 0.

(2.17)

Lemma 2.1. The projection P
⋆ defined by (2.13) on the cell [−1, 1]× [−1, 1] exists and

is unique for any smooth function ω, and the projection is bounded in the L∞ norm, i.e.

‖P
⋆ω‖∞ ≤ C(k, a, b)‖ω‖∞, (2.18)

where C(k,a,b) is a constant that only depends on k, a, b but is independent of ω.

Proof. The proof of this lemma is provided in the Appendix; see section A.1.

Since the projection is a k-th degree polynomial preserving local projection, standard

approximation theory [2] implies, for a smooth function ω,

‖ω − P
⋆ω‖L2(Ki,j) ≤ Chk+1‖ω‖k+1,Ki,j

, (2.19)

where C = C(k, a, b) is independent of the element Ki,j and the mesh size h.

We also recall that [2], for any ωh ∈ Vh, there exists a positive constant C independent

of ωh and h, such that

‖∂xωh‖ ≤ Ch−1‖ωh‖, ‖ωh‖L2(∂Ki,j) ≤ Ch−1/2‖ωh‖, ‖ωh‖∞ ≤ Ch−1‖ωh‖ (2.20)

where ∂Ki,j is the boundary of cell Ki,j.

Remark 2.2. In fact, we can prove the bounding constant C only depends on k and is

independent of a, b. Hence the projection P
⋆ is uniformly bounded for (a, b). We give the

proof of this property in section 3 for k = 0, 1, 2, 3.
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2.2.2 Properties of the projection P
⋆

To obtain the optimal L2 error estimate, we need the following lemmas.

Lemma 2.2. Assume that u = xk+1−lyl, l = 0, 1, . . . , k + 1. Let u(i,j) = P
⋆
Ki,j

u. Then

∀(x, y) ∈ Ki,j we have following relationship:

xk+1−lyl − u(i,j)(x, y) =(x − hx)
k+1−lyl − u(i−1,j)(x − hx, y)

=xk+1−l(y − hy)
l − u(i,j−1)(x, y − hy), (2.21)

where P
⋆
Ki,j

u means that the projection of u is defined on the element Ki,j and u(i−1,j)(x−

hx, y), u(i,j−1)(x, y − hy) refer to the projection of u on the element Ki−1,j and Ki,j−1,

respectively, since (x, y) ∈ Ki,j implies (x − hx, y) ∈ Ki−1,j and (x, y − hy) ∈ Ki,j−1.

Proof. The details of the proof for this lemma are provided in the Appendix; see section

A.2.

Besides the standard approximation results (2.19), we also can prove the following

superconvergence result of the special projection P
⋆.

Proposition 2.2. Assume that u is a (k +1)-th degree polynomial function in P k+1(Ω).

For a uniform partition on the domain Ω, we have

B̃i,j(P
⋆u, v; a, b) = B̃i,j(u, v; a, b) ∀v ∈ P k(Ki,j), (2.22)

where B̃ is defined by (2.9)

Proof. The proof of this proposition is provided in the Appendix; see section A.3.

2.2.3 Proof of Theorem 2.1

We now take

ξ = P
⋆u − uh; η = P

⋆u − u. (2.23)

From the error equation (2.12), we have

Bi,j(ξ, v; a, b) = Bi,j(η, v; a, b). (2.24)
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For the left-hand side of (2.24), we can use the stability result (2.6) to obtain

∑

i,j

Bi,j(ξ, ξ; a, b) =
1

2

d

dt
‖ξ‖2 +

a

2

N2∑

j=1

∫ y
j+ 1

2

y
j− 1

2

N1∑

i=1

(
ξ(x+

i+ 1
2

, y)− ξ(x−

i+ 1
2

, y)
)2

dy

+
b

2

N1∑

i=1

∫ x
i+1

2

x
i− 1

2

N2∑

j=1

(
ξ(x, y+

j+ 1
2

) − ξ(x, y−

j+ 1
2

)
)2

dx, (2.25)

here we have already taken the test function v = ξ ∈ Vh. From Proposition 2.2, we know

that on an arbitrary element Ki,j, we have the following results

B̃i,j(P
⋆u, v; a, b) = B̃i,j(u, v; a, b), ∀u ∈ P k+1(Ki,j ∪ Ki−1,j ∪ Ki,j−1). (2.26)

Next, on each element Ki,j, we consider the Taylor expansion of u around (xi, yj):

u = Tu + Ru,

where

Tu =
k+1∑

l=0

l∑

m=0

1

(l − m)!m!

∂lu(xi, yj)

∂xl−m∂ym
(x − xi)

l−m(y − yj)
m,

Ru = (k + 2)
k+2∑

m=0

(x − xi)
k+2−m(y − yj)

m

(k + 2 − m)!m!

∫ 1

0

(1 − s)
∂k+2u(xs

i , y
s
j )

∂xk+2−m∂ym
ds.

with xs
i = xi + s(x− xi), ys

j = yj + s(y − yj). Clearly, Tu ∈ P k+1(Ki,j ∪Ki−1,j ∪Ki,j−1),

Note that the operator P
⋆ is linear, and thus P

⋆u = P
⋆Tu + P

⋆Ru. From (2.26), we then

get

B̃i,j(η, v; a, b) = B̃i,j(P
⋆Tu − Tu, v; a, b) + B̃i,j(P

⋆Ru − Ru, v; a, b)

= B̃i,j(P
⋆Ru − Ru, v; a, b). (2.27)

Again recalling the Bramble-Hilbert lemma in [2], we have

‖Ru‖L∞(Ki,j) ≤ Chk+1|u|Hk+2(Ki,j). (2.28)

Next, using the simple inequality

µν ≤ 1

2
(µ2 + ν2), (2.29)
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and standard approximate proposition of the projection (2.19), the property (2.28) for

Ru, and the inequality in (2.20) for ξ, we have

∑

i,j

Bi,j(η, ξ; a, b) ≤ Ch2k+2|u|2Hk+2 + C‖ξ‖2. (2.30)

Combining (2.24), (2.25), and (2.30), we obtain

1

2

d

dt
‖ξ‖ ≤ C‖ξ‖ + Ch2k+2|u|2Hk+2. (2.31)

An application Gronwall’s inequality together with the approximation result (2.19) give

us the desired error estimate (2.7).

3 Linear variable coefficients

In this section, we consider the two-dimensional scalar variable coefficient conserva-

tion law equation





ut + (a(x, y)u)x + (b(x, y)u)y = 0, (x, y) ∈ Ω, t ≥ 0

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω
(3.1)

with periodic boundary condition. The functions a(x, y), b(x, y) are smooth periodic

functions in Ω. The semidiscrete DG method with upwind flux is described as follows:

We seek an approximate solution uh ∈ Vh such that for all admissible test functions

v ∈ Vh and Ki,j,

∫

Ki,j

(uh)tv dxdy =

∫

Ki,j

a(x, y)uhvx + b(x, y)uhvy dxdy

−
∫ y

j+ 1
2

y
j− 1

2

a(xi+ 1
2
, y)ûh(xi+ 1

2
, y)v(x−

i+ 1
2

, y)− a(xi− 1
2
, y)ûh(xi− 1

2
, y)v(x+

i− 1
2

, y) dy

−
∫ x

i+ 1
2

x
i− 1

2

b(x, yj+ 1
2
)ũh(x, yj+ 1

2
)v(x, y−

j+ 1
2

) − b(x, yj− 1
2
)ũh(x, yj− 1

2
)v(x, y+

j− 1
2

) dx, (3.2)

where the upwind fluxes ûh, ũh are defined as follows

ûh(xi+ 1
2
, y) =

{
uh(x

−

i+ 1
2

, y), if a(xi+ 1
2
, y) ≥ 0

uh(x
+
i+ 1

2

, y), if a(xi+ 1
2
, y) < 0

(3.3)
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ũh(x, yj+ 1
2
) =

{
uh(x, y−

j+ 1
2

), if b(x, yj+ 1
2
) ≥ 0

uh(x, y+
j+ 1

2

), if b(x, yj+ 1
2
) < 0.

(3.4)

For the initial condition, we simply take the L2 projection into Vh, uh(0) = Phu0, and

we have

‖u0 − Phu0‖ ≤ Chk+1‖u0‖k+1. (3.5)

The DG scheme satisfies the following L2-stability,

Proposition 3.1. The solution of the semidiscrete DG method defined by (3.2) satisfies

1

2

d

dt
‖uh‖2 ≤ C‖uh‖2, (3.6)

where the constant C = max{‖ax‖∞, ‖by‖∞}.

Proof. The proof is similar to that for the linear constant coefficient case (e.g. in [11]),

by taking the test function v = uh and applying integration by parts. �

3.1 A priori error estimates

Firstly, we state the a priori error estimates as a theorem whose proof will given in the

next subsection. Here we assume that a(x, y) and b(x, y) do not change sign. Without

loss of generality, we assumed a(x, y) ≥ 0 and b(x, y) ≥ 0.

Theorem 3.1. The numerical solution uh of the DG scheme (3.2)-(3.4) using uniform

meshes for (3.1) with a smooth exact condition u(·, t) ∈ Hk+2 satisfies the following L2

error estimate:

‖u(·, T ) − uh(·, T )‖ ≤ Chk+1, (3.7)

where u is the exact solution of (3.1), k = 0, 1, 2, 3 is the degree of the piecewise poly-

nomials in the finite element spaces Vh, and the constant C depends on the (k + 2)-th

order Sobolev norm of the solution ‖u(·, t)‖k+2, the H1 norm of the coefficients a, b and

the final time T , but is in dependent of the mesh size h.

12



3.2 Proof of the error estimates

To prove Theorem 3.1 for the k = 0, 1, 2, 3 cases stated in the previous subsection,

we proceed as follows. First, in subsection 3.2.1, we prove the uniform boundedness

properties with respect to the coefficients a, b of the projection P
⋆ which is defined in

(2.13) and a superconvergence result of the special projection. Then, we complete the

proof of Theorem 3.1 in subsection 3.2.2.

3.2.1 The special projection

Notice that the definition of the special projection P
⋆ in (2.13) depends on the con-

stants a, b. Thus, we use the new notation P
a,b
h to denote this projection. To obtain the

optimal L2 error estimate, we need the following results.

Lemma 3.1. For k = 0, 1, 2, 3, the projection P
a,b
h defined by (2.13) on the reference cell

[−1, 1]× [−1, 1] is uniformly bounded in the L∞ norm with respect to the coefficients a, b,

i.e.

‖P
a,b
h ω‖∞ ≤ C(k)‖ω‖∞, (3.8)

where C(k) is constant that only depends on k and not on a, b.

Proof. The proof of this lemma is provided in the Appendix; see section A.4.

From Lemma 3.1, we have the straightforward corollary as following.

Corollary 3.1. For k = 0, 1, 2, 3, the projection P
a,b
h has the optimal approximation, for

a smooth function ω,

‖ω − P
a,b
h ω‖L2(Ki,j) ≤ C(k)hk+1‖ω‖k+1,Ki,j

. (3.9)

Besides the standard approximation results (3.9), the special projection P
a,b
h also has

the following superconvergence result.

13



Proposition 3.2. For k = 0, 1, 2, 3, if a1a2 > 0, b1b2 > 0 and |a1 − a2|+ |b1 − b2| ≤ Ch,

then the projections P
al,bl

h , l = 1, 2 defined by (2.13) on the rectangular cell Ki,j have

max
l

(|al|, |bl|)‖P
a1,b1
h ω − P

a2,b2
h ω‖L∞(Ki,j) ≤ Chk+2|ω|Hk+1(Ki,j). (3.10)

Proof. The proof of this proposition is provided in the Appendix; see section A.5.

Remark 3.1. Lemma 3.1 shows that the projection is uniformly bounded with respect

to a, b. Since P
a,b
h ω is a polynomial of degree at most k, we only need to check that the

coefficients for a particular set of basis functions, such as the Legendre polynomials, are

uniformly bounded by ω. Also, the coefficients should be homogeneous rational functions

in a, b. Thus Proposition 3.2 can be viewed as a corollary of Lemma 3.1. We will give

more details in section A.4.

Remark 3.2. Here, we only provide the proof of the uniform boundedness of the special

projection for k = 0, 1, 2, 3. In fact, it is straightforward to verify this property for any

finite k. We have verified this until k = 7, without giving details here to save space. For

a general proof for arbitrary k, it is challenging to find a unified general formula of the

coefficients for a particular set of basis functions.

3.2.2 Proof of Theorem 3.1

Now, we begin the proof of Theorem 3.1. Let us first introduce a few notations. We

define

Ai,j(uh, v) =

∫

Ki,j

(uh)tv dxdy −
∫

Ki,j

a(x, y)uhvx + b(x, y)uhvy dxdy

+

∫ y
j+1

2

y
j− 1

2

a(xi+ 1
2
, y)uh(x

−

i+ 1
2

, y)v(x−

i+ 1
2

, y) − a(xi− 1
2
, y)uh(x

−

i− 1
2

, y)v(x+
i− 1

2

, y) dy

+

∫ x
i+1

2

x
i− 1

2

b(x, yj+ 1
2
)uh(x, y−

j+ 1
2

)v(x, y−

j+ 1
2

) − b(x, yj− 1
2
)uh(x, y−

j− 1
2

)v(x, y+
j− 1

2

) dx.

We also define

Ãi,j(uh, v) = −
∫

Ki,j

a(x, y)uhvx + b(x, y)uhvy dxdy
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+

∫ y
j+1

2

y
j− 1

2

a(xi+ 1
2
, y)uh(x

−

i+ 1
2

, y)v(x−

i+ 1
2

, y) − a(xi− 1
2
, y)uh(x

−

i− 1
2

, y)v(x+
i− 1

2

, y) dy

+

∫ x
i+1

2

x
i− 1

2

b(x, yj+ 1
2
)uh(x, y−

j+ 1
2

)v(x, y−

j+ 1
2

) − b(x, yj− 1
2
)uh(x, y−

j− 1
2

)v(x, y+
j− 1

2

) dx.

Thus,

Ai,j(uh, v) =

∫

Ki,j

(uh)tv dxdy + Ãi,j(uh, v). (3.11)

Clearly, we have

Ai,j(uh, v) = 0, (3.12)

for all i, j and v ∈ Vh. It is also clear that the exact solution u of the PDE (3.1) satisfies

Ai,j(u, v) = 0, (3.13)

for all i, j and v ∈ Vh. Subtracting (3.12) from (3.13), we obtain the error equation

Ai,j(u − uh, v) = 0, (3.14)

for all i, j and v ∈ Vh.

We now define P as the projection into Vh. We denote aij = a(xi, yj), bij = b(xi, yj),

then, for cell Ki,j

Pu|Ki,j
= P

aij ,bij

h u. (3.15)

Remark 3.3. Under our assumption, we have aij ≥ 0, bij ≥ 0. If aij or bij = 0, then

‖a‖L∞(Ki,j) = O(h) or ‖b‖L∞(Ki,j) = O(h). We can just set aij = h or bij = h to make

sure that all aij and bij > 0 and then apply the projection P
aij ,bij

h .

We now take the test function v = Pu − uh in the error equation (3.14) and define

η = Pu − u (3.16)

to obtain

Ai,j(v, v) = Ai,j(η, v). (3.17)
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For the left-hand side of (3.17), we use Proposition 3.1 to conclude

1

2

d

dt
‖v‖2 ≤ C‖v‖2 + |

∑

i,j

Ai,j(η, v)|. (3.18)

We then write the right-hand side of (3.17) as a sum of two terms

Ai,j(η, v) = A1
i,j + A2

i,j, (3.19)

where

A1
i,j =

∫

Ki,j

(η)tv dxdy,

A2
i,j = Ãi,j(η, v),

and we will estimate each term separately.

By using the simple inequality (2.29) and the special projection properties (3.9) for

∂tη, we have

∑

i,j

|A1
i,j| ≤

1

2
‖v‖2 + Ch2k+2. (3.20)

For A2
i,j, from Taylor expansion,

‖a(x, y) − aij‖L∞(Ki,j) = O(h), ‖b(x, y) − bij‖L∞(Ki,j) = O(h), (3.21)

then

A2
i,j = −

∫

Ki,j

(a(x, y) − aij)ηvx + (b(x, y) − bij)ηvy dxdy

+

∫ y
j+ 1

2

y
j− 1

2

(a(xi+ 1
2
, y) − aij)η(x−

i+ 1
2

, y)v(x−

i+ 1
2

, y) − (a(xi− 1
2
, y) − aij)η(x−

i− 1
2

, y)v(x+
i− 1

2

, y) dy

+

∫ x
i+1

2

x
i−1

2

(b(x, yj+ 1
2
) − bij)η(x, y−

j+ 1
2

)v(x, y−

j+ 1
2

) − (b(x, yj− 1
2
) − bij)η(x, y−

j− 1
2

)v(x, y+
j− 1

2

) dx

+ B̃i,j(u − P
aij ,bij

h u, v; aij, bij)

+

∫ y
j+ 1

2

y
j− 1

2

aij

(
P

ai−1j ,bi−1j

h u − P
aij ,bij

h u
)

(x−

i− 1
2

, y)v(x+
i− 1

2

, y) dy

+

∫ x
i+1

2

x
i−1

2

bij

(
P

aij−1,bij−1

h u − P
aij ,bij

h u
)

(x, y−

j− 1
2

)v(x, y+
j− 1

2

) dx
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≤ Ch2k+2‖u‖2
k+2,Ki,j∪Ki−1,j∪Ki,j−1

+ ‖v‖2
0,Ki,j

, (3.22)

where we have used the inequalities (2.29), (2.20) and (3.21) for the first three terms.

For B̃i,j, we have used the same argument as for the linear constant coefficient case.

Finally, for the last two terms, we have used the superconvergence result of the special

projection (3.10). We now sum over all i, j to obtain

∑

i,j

|A2
i,j| ≤ Ch2k+2 + ‖v‖2. (3.23)

Combining (3.20), (3.23) with (3.18), we obtain

1

2

d

dt
‖v‖2 ≤ C‖v‖2 + Ch2k+2‖u‖2

k+2,Ω. (3.24)

This together with the approximation results (3.5), implies the desired error estimate

(3.7).

4 The nonlinear case

In this section, we consider the two-dimensional scalar nonlinear conservation law

equation 



ut + f(u)x + g(u)y = 0, (x, y) ∈ Ω, t ≥ 0

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω
(4.1)

The semidiscrete DG method with upwind fluxes is described as follows: We seek an

approximate solution uh ∈ Vh such that for all admissible test functions v ∈ Vh and Ki,j:

∫

Ki,j

(uh)tv dxdy = Hi,j(uh, v), (4.2)

where

Hi,j(uh, v) =

∫

Ki,j

f(uh)vx + g(uh)vy dxdy

−
∫ y

j+ 1
2

y
j− 1

2

f̂(uh)(xi+ 1
2
, y)v(x−

i+ 1
2

, y) − f̂(uh)(xi− 1
2
, y)v(x+

i− 1
2

, y) dy

−
∫ x

i+ 1
2

x
i− 1

2

g̃(uh)(x, yj+ 1
2
)v(x, y−

j+ 1
2

) − g̃(uh)(x, yj− 1
2
)v(x, y+

j− 1
2

) dx, (4.3)
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where

f̂(uh)(xi+ 1
2
, y) ≡ f̂(uh(x

−

i+ 1
2

, y), uh(x
+
i+ 1

2

, y)), g̃(uh)(x, yj+ 1
2
) ≡ g̃(uh(x, y−

j+ 1
2

), uh(x, y+
j+ 1

2

))

are upwind monotone numerical fluxes that depend on the two values of the function uh

at the element interface point. For more details, see, for example, [12].

4.1 A priori error estimates

Let us state the a priori error estimate for the two-dimensional nonlinear equations.

Here we assume that f ′(u) and g′(u) do not change sign. Without loss of generality,

we assume f ′(u) ≥ 0 and g′(u) ≥ 0. In this case, all upwind monotone fluxes become

f̂(u−, u+) = f(u−) and ĝ(u−, u+) = g(u−). To deal with the nonlinearity of the flux

f(u) and g(u), we could adopt the a priori assumption that, for e = u − uh,

‖e‖∞ ≤ h, (4.4)

which holds for h small enough. We will justify this assumption for piecewise polynomials

of degree k > 1. This assumption is frequently used in the DG error analysis for nonlinear

problems; see, e.g., [11, 1].

Theorem 4.1. Let u(·, t) ∈ Hk+2 be the solution of (4.1) with the flux function f(u)

and g(u) sufficiently smooth such that |f (m)(u)| . 1, |g(m)(u)| . 1 (m = 1, 2) and

|(ln(f ′(u)))t| . 1, |(ln(g′(u)))t| . 1. Suppose uh is the numerical solution of the DG

scheme (4.2) using uniform meshes satisfying the error assumption (4.4). If the initial

discretization satisfies (2.5) then

‖(u − uh)(·, T )‖ ≤ Chk+1, (4.5)

where k = 2, 3, and the constant C depends on the exact solution u, the polynomial degree

k, the final time T , and the maximum of |f (m)|, |g(m)| (m = 1, 2) and |(ln(f ′(u)))t|,

|(ln(g′(u)))t| but is independent of h and the approximate solution uh.
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Remark 4.1. We remark that the bounds we take for |f (m)| and |g(m)| are over [m −

h, M + h], m and M are the minimum and maximum of the initial condition u0(x, y)

respectively.

4.2 Proof of the error estimates

As before, we have the error equation,

∫

Ki,j

(u − uh)tv dxdy = Hi,j(u, v) −Hi,j(uh, v). (4.6)

We now define the projection Pu into Vh. We denote ui,j = u(xi, yj, t), then, for the

element Ki,j

Pu|Ki,j
= P

f ′(ui,j),g′(ui,j)
h u. (4.7)

Now, we take the test function v = uh − Pu in the error equation (4.6) and denote

η = u−Pu. Then the error e = η−v. To deal with the nonlinearity of the flux functions

f, g, we used the Taylor expansion for f(u) and g(u),

f(u) = f(uh) + f ′(u)(u − uh) −
f̄ ′′

u

2
(u − uh)

2,

g(u) = g(uh) + g′(u)(u − uh) −
ḡ′′

u

2
(u − uh)

2, (4.8)

where f̄ ′′

u = f ′′(θ1u+(1−θ1)uh) and ḡ′′

u = g′′(θ2u+(1−θ2)uh) with 0 ≤ θ1, θ2 ≤ 1. Then,

we have

Hi,j(u, v) −Hi,j(uh, v) = Bi,j(e, η; v) − Bi,j(e, v; v), (4.9)

where

Bi,j(e, η; v) =

∫

Ki,j

(
f ′(u)η − f̄ ′′

u

2
eη

)
vx +

(
g′(u)η − ḡ′′

u

2
eη

)
vy dxdy

−
∫ y

j+ 1
2

y
j− 1

2

(
f ′(u)η − f̄ ′′

u

2
eη

)
(x−

i+ 1
2

, y)v(x−

i+ 1
2

, y) −
(

f ′(u)η − f̄ ′′

u

2
eη

)
(x−

i− 1
2

, y)v(x+
i− 1

2

, y) dy

−
∫ x

i+ 1
2

x
i− 1

2

(
g′(u)η − ḡ′′

u

2
eη

)
(x, y−

j+ 1
2

)v(x, y−

j+ 1
2

) −
(

g′(u)η − ḡ′′

u

2
eη

)
(x, y−

j− 1
2

)v(x, y+
j− 1

2

) dx.

(4.10)
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By the assumption (4.4) and ‖f ′(u) − f ′(ui,j)‖ = O(h), ‖g′(u) − g′(ui,j)‖ = O(h), we

have

Bi,j(e, η; v) ≤ Ch2k+2‖u‖2
k+1,Ki,j

+ ‖v‖2
0,Ki,j

− B̃i,j(η, v; f ′(ui,j), g
′(ui,j))

≤ Ch2k+2‖u‖2
k+2,Ki,j

+ ‖v‖2
0,Ki,j

, (4.11)

where for the last inequality we have used the same argument as that for the variable

coefficient case (3.22). For Bi,j(e, v; v), we have the following estimate

−Bi,j(e, v; v) ≤C‖v‖2
0,Ki,j

− f ′(ui,j)




∫ y
j+ 1

2

y
j− 1

2

1

2
v(x−

i+ 1
2

, y)2 − v(x−

i− 1
2

, y)v(x+
i− 1

2

, y) +
1

2
v(x+

i− 1
2

, y)2 dy




− g′(ui,j)




∫ x
i+ 1

2

x
i− 1

2

1

2
v(x, y−

j+ 1
2

)2 − v(x, y−

j− 1
2

)v(x, y+
j− 1

2

) +
1

2
v(x, y−

j− 1
2

)2 dx


 .

Summing over i, j and using the periodic boundary condition,

∑

i,j

−Bi,j(e, v; v) ≤C‖v‖2 −
∑

i,j

f ′(ui,j)

2

∫ y
j+ 1

2

y
j− 1

2

(
v(x−

i− 1
2

, y) − v(x+
i− 1

2

, y)
)2

dy

−
∑

i,j

g′(ui,j)

2

∫ x
i+ 1

2

x
i− 1

2

(
v(x, y−

j− 1
2

) − v(x, y+
j− 1

2

)
)2

dx

≤C‖v‖2, (4.12)

where we have used the inverse inequality (2.20) and the fact |f ′(ui,j)−f ′(ui−1,j)| = O(h)

and |g′(ui,j) − g′(ui,j−1)| = O(h). For the estimation of ‖ηt‖, we denote a = f ′(ui,j) and

b = g′(ui,j) and take time derivative on the both sides of (2.13) to obtain

P̃h((P
a,b
h u)t, v; a, b)i,j + P̃h(P

a,b
h u, v; at, bt)i,j = P̃h(ut, v; a, b)i,j + P̃h(u, v; at, bt)i,j

= P̃h(P
a,b
h ut, v; a, b)i,j + P̃h(u, v; at, bt)i,j

(4.13)

then

P̃h(P
a,b
h ut − (Pa,b

h u)t, v; a, b)i,j = P̃h(P
a,b
h u − u, v; at, bt)i,j. (4.14)

20



From the proof of lemma 3.1, there holds

‖P
a,b
h ut − (Pa,b

h u)t‖ . ‖P
a,b
h u − u‖ . hk+1 (4.15)

if |at

a
| . 1 and | bt

b
| . 1. Thus

‖ηt‖ ≤ ‖ut − P
a,b
h ut‖ + ‖P

a,b
h ut − (Pa,b

h u)t‖ . hk+1. (4.16)

Combining (4.6), (4.11), (4.12) and (4.16), we obtain

1

2

d

dt

∫

Ω

v2 dxdy ≤ C‖v‖2 + Ch2k+2‖u‖2
k+2,Ω. (4.17)

An application of Gronwall’s inequality together with the fact that ‖v(·, 0)‖ ≤ Chk+1

give us,

‖v(·, t)‖ ≤ Chk+1. (4.18)

This, together with the approximation results (3.9), implies the desired error estimate

(4.5).

Remark 4.2. Let us justify the a priori assumption (4.4) for k > 1. Actually, we note

that we only need to justify that

‖Pu(t) − uh(t)‖ ≤ h
5
2 (4.19)

holds for t ∈ [0, T ]. If (4.19) holds for t ∈ [0, T ], then

‖u(t) − uh(t)‖∞ ≤ ‖u(t) − Pu(t)‖∞ + ‖Pu(t) − uh(t)‖∞

≤ ‖u(t) − Pu(t)‖∞ + C1h
−1‖Pu(t) − uh(t)‖

≤ ‖u(t) − Pu(t)‖∞ + C1h
3
2

≤ C2h
k + C1h

3
2

≤ h, (4.20)
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when h is small enough and k > 1. Therefore, the assumption (4.4) holds for t ∈ [0, T ].

In the derivation above, C1 is the constant in the third inequality in (2.20) and C2 is the

constant for the estimate of ‖u(t) − Pu(t)‖∞, which is obtained as follows

‖u(t) − Pu(t)‖∞ ≤ ‖u(t) − Ihu(t)‖∞ + ‖P(u(t) − Ihu(t))‖∞

≤ ‖u(t) − Ihu(t)‖∞ + C‖u(t) − Ihu(t)‖∞ from (3.8)

≤ (1 + C)C3h
k (4.21)

where Ihu is the interpolation of u and C3 is the constant for the interpolation error.

Next we justify (4.19). First, (4.19) is satisfied at t = 0 since uh(0) = Phu0,

‖Pu(0) − uh(0)‖ = ‖Pu0 − Phu0‖ ≤ Chk+1 ≤ h
5
2 (4.22)

when k > 1 and h is small enough. Define t⋆ = sup{s ≤ T : ‖Pu(t) − uh(t)‖ ≤

h
5
2 for all t ∈ [0, s]}, then we have ‖Pu(t⋆) − uh(t

⋆)‖ = h
5
2 by continuity if t⋆ < T .

Clearly, (4.18) holds for t = t⋆. Since k > 1, when h is small enough we have Chk+1 ≤
1
2
h

5
2 , where C is the constant in (4.18) determined by the time t⋆. Therefore, ‖Pu(t⋆) −

uh(t
⋆)‖ ≤ Chk+1 ≤ 1

2
h

5
2 which is a contraction. Thus we have t⋆ = T , and the a priori

assumption (4.4) is justified.

Remark 4.3. We should remark that the restriction, k > 1, for the nonlinear case is

artificial due to the technique in the proof. In our numerical example 5.3, we observe

optimal convergence also for k = 0 and 1.

5 Numerical examples

In this section, we present some numerical examples to verify our theoretical findings.

In our numerical experiments, we presents the E1, E2, and E∞ errors, respectively. They

are defined by

E1 =

∫

Ω

|(u − uh)(x, y, T )| dxdy, (5.1)
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E2 =

(∫

Ω

|(u − uh)(x, y, T )|2 dxdy

)1
2

, (5.2)

E∞ = max
Ω

|(u − uh)(x, y, T )|. (5.3)

In our all experiments, we used the DG scheme (2.2) using P k polynomials with k =

0, 1, 2, 3 respectively. The computational domain, [0, 2π]× [0, 2π], is equally divided into

N × N rectangles with N = 10, 20, 40, 80, 160 in our experiments. To reduce the time

discretization error, the seventh-order strong stability-preserving Runge-Kutta method

[9] with the time step ∆t = 0.05h, h = 2π
N

is used.

Example 5.1. We firstly consider a linear constant coefficient equation with periodic

boundary condition:





ut + ux + uy = 0, (x, y, t) ∈ [0, 2π] × [0, 2π] × (0, 2π)
u(x, y, 0) = sin(x + y),
u(0, y, t) = u(2π, y, t), u(x, 0, t) = u(x, 2π, t).

(5.4)

The exact solution to this problem is

u(x, y, t) = sin(x + y − 2t). (5.5)

Table 5.1 shows that the order of convergence of the error achieves the expected (k+1)-th

order of accuracy.

Example 5.2. Next, we consider the linear variable coefficients equation with periodic

boundary condition:





ut + (a(x, y)u)x + (b(x, y)u)y = f, (x, y, t) ∈ [0, 2π] × [0, 2π] × (0, 2π)
u(x, y, 0) = sin(x + y),
u(0, y, t) = u(2π, y, t), u(x, 0, t) = u(x, 2π, t).

(5.6)

where a(x, y) = sin(x + y), b(x, y) = cos(x + y) and f = cos(x + y − t) − 2 cos(x + y −

2t) + sin(2(x + y − t)).

The exact solution to this problem is

u(x, y, t) = sin(x + y − 2t). (5.7)
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Table 5.1. The errors and corresponding convergence rates for the cases k = 0, 1, 2, 3.
T = 2π for Example 5.1

k = 0

N × N E1 Rate E2 Rate E∞ Rate
10 × 10 5.63E+00 – 2.09E+00 – 9.88E-01 –
20 × 20 4.95E+00 0.19 1.83E+00 0.19 8.76E-01 0.17
40 × 40 3.61E+00 0.46 1.34E+00 0.46 6.35E-01 0.46
80 × 80 2.24E+00 0.69 8.29E-01 0.69 3.94E-01 0.69

160 × 160 1.26E+00 0.83 4.65E-01 0.83 2.21E-01 0.84
320 × 320 6.67E-01 0.91 2.47E-01 0.91 1.17E-01 0.92

k = 1

10 × 10 8.28E-01 – 3.14E-01 – 1.67E-01 –
20 × 20 1.28E-01 2.70 4.94E-02 2.67 2.87E-02 2.54
40 × 40 2.07E-02 2.63 8.51E-03 2.54 5.80E-03 2.30
80 × 80 3.94E-03 2.39 1.83E-03 2.22 1.79E-03 1.69

160 × 160 9.51E-04 2.05 4.41E-04 2.05 4.91E-04 1.87
320 × 320 2.34E-04 2.02 1.10E-04 2.00 1.28E-04 1.94

k = 2

10 × 10 3.18E-02 – 1.31E-02 – 1.33E-02 –
20 × 20 3.48E-03 3.19 1.57E-03 3.06 1.77E-03 2.91
40 × 40 4.28E-04 3.02 1.96E-04 3.00 2.22E-04 2.99
80 × 80 5.34E-05 3.00 2.45E-05 3.00 2.78E-05 3.00

160 × 160 6.67E-06 3.00 3.07E-06 3.00 3.48E-06 3.00
320 × 320 8.34E-07 3.00 3.83E-07 3.00 4.35E-07 3.00

k = 3

10 × 10 1.52E-02 – 3.67E-03 – 3.38E-03 –
20 × 20 9.66E-04 3.98 2.33E-04 3.98 2.23E-04 3.92
40 × 40 6.06E-05 3.99 1.46E-05 3.99 1.40E-05 3.99
80 × 80 3.79E-06 4.00 9.15E-07 4.00 8.78E-07 4.00

160 × 160 2.37E-07 4.00 5.72E-08 4.00 5.49E-08 4.00
320 × 320 1.48E-08 4.00 3.58E-09 4.00 3.43E-09 4.00

The results in Table 5.2 show that the order of convergence of the error, ‖u−uh‖L2(Ω),

achieves the expected (k + 1)-th order of accuracy. We note that the coefficients a(x, y)

and b(x, y) do change signs in this example, thus this example is not covered by our

analysis. This indicates that probably the restriction in our analysis is artificial and due

to the technique in our proof.

Example 5.3. Finally, we consider the following nonlinear equation with periodic bound-

ary condition:




ut + (u3)x + (exp(u))y = f, (x, y, t) ∈ [0, 2π] × [0, 2π] × (0, 2π)
u(x, y, 0) = sin(x + y),
u(0, y, t) = u(2π, y, t), u(x, 0, t) = u(x, 2π, t).

(5.8)

where f = cos(2t − x − y) (−2 + exp(− sin(2t − x − y)) + 3 sin(2t − x − y)2).
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Table 5.2. The errors and corresponding convergence rates in cases k = 0, 1, 2, 3.
T = 2π for Example 5.2

k = 0

N × N E1 Rate E2 Rate E∞ Rate
10 × 10 1.43E+01 – 2.25E+00 – 8.22E-01 –
20 × 20 7.67E+00 0.90 1.23E+00 0.87 5.13E-01 0.68
40 × 40 3.98E+00 0.95 6.44E-01 0.93 2.84E-01 0.85
80 × 80 2.03E+00 0.97 3.31E-01 0.96 1.51E-01 0.92

160 × 160 1.03E+00 0.98 1.68E-01 0.98 7.93E-02 0.93
320 × 320 5.16E-01 0.99 8.46E-02 0.99 4.14E-02 0.94

k = 1

10 × 10 1.97E+00 – 3.41E-01 – 2.00E-01 –
20 × 20 4.92E-01 2.00 8.69E-02 1.97 5.04E-02 1.99
40 × 40 1.20E-01 2.04 2.18E-02 2.00 1.34E-02 1.91
80 × 80 2.95E-02 2.02 5.44E-03 2.00 3.37E-03 1.99

160 × 160 7.34E-03 2.01 1.36E-03 2.00 8.36E-04 2.01
320 × 320 1.84E-03 2.00 3.42E-04 2.00 2.08E-04 2.01

k = 2

10 × 10 2.34E-01 – 4.13E-02 – 2.60E-02 –
20 × 20 2.60E-02 3.17 4.93E-03 3.07 3.59E-03 2.86
40 × 40 3.12E-03 3.06 6.05E-04 3.03 4.43E-04 3.02
80 × 80 3.81E-04 3.03 7.51E-05 3.01 5.52E-05 3.00

160 × 160 4.73E-05 3.01 9.37E-06 3.00 7.06E-06 2.97
320 × 320 5.90E-06 3.00 1.17E-06 3.00 9.07E-07 2.96

k = 3

10 × 10 2.08E-02 – 3.91E-03 – 3.39E-03 –
20 × 20 1.12E-03 4.22 2.34E-04 4.06 2.32E-04 3.87
40 × 40 6.57E-05 4.09 1.44E-05 4.02 1.44E-05 4.00
80 × 80 4.06E-06 4.02 8.99E-07 4.00 9.02E-07 4.00

160 × 160 2.53E-07 4.01 5.62E-08 4.00 5.57E-08 4.02
320 × 320 1.58E-08 4.00 3.51E-09 4.00 3.45E-09 4.01

The exact solution to this problem is

u(x, y, t) = sin(x + y − 2t). (5.9)

The results in Table 5.3 also show the expected optimal order of convergence.

6 Concluding remarks

In this paper, optimal L2 error estimates to DG methods applied to 2D hyperbolic

equations are proved. Our analysis is carried out for both linear and nonlinear cases for

uniform Cartesian meshes and piecewise P k polynomial spaces. The result is valid for

arbitrary polynomial degree k ≥ 0 for linear constant coefficient equations. For variable
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Table 5.3. The errors and corresponding convergence rates in cases k = 0, 1, 2, 3. T = 1
for Example 5.3

k = 0

N × N E1 Rate E2 Rate E∞ Rate
10 × 10 1.30E+01 – 2.41E+00 – 8.59E-01 –
20 × 20 7.22E+00 0.85 1.42E+00 0.77 6.18E-01 0.48
40 × 40 3.79E+00 0.93 7.99E-01 0.83 4.30E-01 0.52
80 × 80 1.96E+00 0.95 4.43E-01 0.85 2.78E-01 0.63

160 × 160 1.02E+00 0.95 2.45E-01 0.86 1.76E-01 0.66
320 × 320 5.33E-01 0.93 1.34E-01 0.86 1.10E-01 0.68

k = 1

10 × 10 2.84E+00 – 4.54E-01 – 2.16E-01 –
20 × 20 6.14E-01 2.21 1.02E-01 2.16 5.28E-02 2.03
40 × 40 1.35E-01 2.18 2.34E-02 2.12 1.32E-02 2.00
80 × 80 3.14E-02 2.11 5.62E-03 2.06 3.30E-03 2.00

160 × 160 7.52E-03 2.06 1.38E-03 2.02 8.27E-04 2.00
320 × 320 1.84E-03 2.03 3.44E-04 2.01 2.07E-04 2.00

k = 2

10 × 10 2.34E-01 – 4.56E-02 – 3.70E-02 –
20 × 20 2.78E-02 3.08 5.72E-03 3.00 5.18E-03 2.84
40 × 40 3.39E-03 3.03 7.04E-04 3.02 6.24E-04 3.05
80 × 80 4.19E-04 3.02 8.69E-05 3.02 7.58E-05 3.04

160 × 160 5.21E-05 3.01 1.08E-05 3.01 9.17E-06 3.05
320 × 320 6.51E-06 3.00 1.34E-06 3.01 1.12E-06 3.04

k = 3

10 × 10 1.75E-02 – 4.15E-03 – 3.91E-03 –
20 × 20 1.06E-03 4.04 2.43E-04 4.09 2.29E-04 4.10
40 × 40 6.48E-05 4.04 1.49E-05 4.03 1.41E-05 4.02
80 × 80 4.01E-06 4.01 9.23E-07 4.01 8.79E-07 4.01

160 × 160 2.50E-07 4.01 5.76E-08 4.00 5.49E-08 4.00
320 × 320 1.56E-08 4.00 3.60E-09 4.00 3.43E-09 4.00

coefficients and nonlinear equations, it holds true for polynomial degree k = 0, 1, 2, 3

and k = 2, 3, respectively, under the condition that f ′(u), g′(u) do not change sign. The

main ingredients in the proof are the construction and analysis of a special projection.

The numerical examples also verify the results of our theoretical analysis. Extension of

this work to nonuniform meshes and to arbitrary polynomial degree k for the variable

coefficient and nonlinear equations is interesting and challenging, and constitutes our

future work.
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A Appendix: Proof of a few technical lemmas and

propositions

In this appendix, we collect the proof of some of the technical lemmas and proposi-

tions in the error estimates.

A.1 Proof of Lemma 2.1

Proof. Note that the procedure to find P
⋆ω ∈ P k([−1, 1]2) is to solve a linear system, so

the existence and uniqueness are equivalent. Thus, we only prove the uniqueness of the

projection P
⋆. We set ωI(x) = P

⋆ω(x) with ω(x) = 0, and would like to prove ωI(x) = 0.

By the definition of the projection P
⋆, we have

P̃h(ωI , v; a, b) = −
∫ 1

−1

∫ 1

−1

ωIvβ dxdy +

∫ 1

−1

bωI(x, 1)(v(x, 1) − v(x,−1)) dx

+

∫ 1

−1

aωI(1, y)(v(1, y)− v(−1, y)) dy = 0, ∀v ∈ P k([−1, 1]2), (A.1)

and

∫ 1

−1

∫ 1

−1

ωI(x, y) dxdy = 0. (A.2)

Specially, we set v = ωI ∈ P k([−1, 1]2) to get

P̃h(ωI , ωI ; a, b) =
b

2

∫ 1

−1

(ωI(x, 1) − ωI(x,−1))2 dx +
a

2

∫ 1

−1

(ωI(1, y)− ωI(−1, y))2 dy = 0.

(A.3)

Thus

ωI(x, 1) = ωI(x,−1), ∀x ∈ [−1, 1]; (A.4)

ωI(1, y) = ωI(−1, y), ∀y ∈ [−1, 1]. (A.5)

Then, we set v = (ωI)β ∈ P k([−1, 1]2) and use (A.4) and (A.5) to obtain

∫ 1

−1

∫ 1

−1

(ωI)
2
β dxdy = 0. (A.6)
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Therefore, we have:

(ωI)β = a(ωI)x + b(ωI)y = 0. (A.7)

This, together with (A.4), (A.5) and β 6= (0, 1) or (1, 0), implies ωI(x, y) ≡ C. Finally,

(2.13a) implies ωI ≡ 0. We have now finished the proof of uniqueness.

We now move to the proof of the second part (2.18). We denote

P
⋆ω(x, y) = ωI(x, y) =

M∑

i=1

aivi(x, y). (A.8)

where M = (k+1)(k+2)
2

is the number of the basis functions of P k([−1, 1]2), {v1, v2, . . . , vM} =

{1, x, y, . . . , xmyl−m, . . . , yk}, then we set the test function v = vi, 2 ≤ i ≤ M . Thus:

P̃h(ωI , vi; a, b) =

M∑

l=1

αilal, 2 ≤ i ≤ M, (A.9)

∫ 1

−1

∫ 1

−1

ωI(x, y) dxdy =

M∑

l=1

α1lal. (A.10)

It is easy to prove |P̃h(ω, vi; a, b)| ≤ C‖ω‖∞, and the coefficients αil, 1 ≤ i ≤ M, 1 ≤

l ≤ M are independent of ω. We denote ζ = (a1, a2, . . . , aM)T , Ail = αil, and b1 =
∫ 1

−1

∫ 1

−1
ω(x, y) dxdy, bl = P̃h(ω; vl), l = 2, . . . , M , γ = (b1, b2, . . . , bM )T . We can solve

the following linear system:

Aζ = γ (A.11)

to get ζ = A−1γ. Since each component of γ is bounded by ‖ω‖∞ and each component

of A is dependent on the constants a, b, k, each component of ζ is bounded by ‖ω‖∞,

i.e. |ai| . ‖ω‖∞, i = 1, 2, . . . , M . Thus ‖P
⋆
hω‖∞ ≤ C‖ω‖∞, where C is dependent on

a, b, k.

A.2 Proof of Lemma 2.2

Proof. We just need to prove xk+1−lyl − u(i,j)(x, y) = (x − hx)
k+1−lyl − u(i−1,j)(x −

hx, y), ∀(x, y) ∈ Ki,j. We set ṽ(x, y) = xk+1−lyl − (x − hx)
k+1−lyl + u(i−1,j)(x − hx, y),
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then we just need to prove u(i,j)(x, y) = ṽ(x, y). By the uniqueness of the projection P
⋆,

we just need to check the following equations:

∫

Ki,j

ṽ(x, y) dxdy =

∫

Ki,j

u(x, y) dxdy, (A.12)

P̃h(ṽ, v; a, b)i,j = P̃h(u, v; a, b)i,j ∀v ∈ P k(Ki,j). (A.13)

The first equation can be checked as follows

∫ y
j+ 1

2

y
j− 1

2

∫ x
i+1

2

x
i− 1

2

ṽ(x, y) dxdy

=

∫ y
j+ 1

2

y
j− 1

2

∫ x
i+ 1

2

x
i− 1

2

u(i−1,j)(x − hx, y) − (x − hx)
k+1−lyl + xk+1−lyl dxdy

=

∫ y
j+ 1

2

y
j− 1

2

∫ x
i− 1

2

x
i− 3

2

u(i−1,j)(x, y) − xk+1−lyl + (x + hx)
k+1−lyl dxdy

=

∫ y
j+ 1

2

y
j− 1

2

∫ x
i− 1

2

x
i− 3

2

u(i−1,j)(x, y) − xk+1−lyl dxdy +

∫ y
j+ 1

2

y
j− 1

2

∫ x
i+ 1

2

x
i− 1

2

xk+1−lyl dxdy

=

∫ y
j+ 1

2

y
j− 1

2

∫ x
i+ 1

2

x
i− 1

2

xk+1−lyl dxdy,

where we have used the definition of projection P
⋆ in (2.13a). The second equation can

be checked as follows

P̃h(ṽ, v; a, b)i,j = P̃h(u(i−1,j)(x, y) − u(x, y), v(x + hx, y); a, b)i−1,j + P̃h(x
k+1−lyl, v; a, b)i,j

= P̃h(x
k+1−lyl, v; a, b)i,j ∀v ∈ P k(Ki,j),

where we have used the fact v(x + hx, y) ∈ P k(Ki−1,j). Therefore the uniqueness of the

projection P
⋆ implies that ui,j(x, y) = ṽ(x, y).

A.3 Proof of Proposition 2.2

Proof. We just prove one case B̃i,j(P
⋆u, v; a, b) = B̃i,j(u, v; a, b), where u = xk+1−lyl, as

the other cases follow the same lines. We use Lemma 2.2 to B̃i,j(P
⋆u, v; a, b):

B̃i,j(P
⋆u, v; a, b) = − (P⋆u, vβ)Ki,j

+

∫ x
i+1

2

x
i− 1

2

b
(

P
⋆u(x, y−

j+ 1
2

)v(x, y−

j+ 1
2

) − P
⋆u(x, y−

j− 1
2

)v(x, y+
j− 1

2

)
)

dx

29



+

∫ y
j+ 1

2

y
j− 1

2

a
(
P

⋆u(x−

i+ 1
2

, y)v(x−

i+ 1
2

, y) − P
⋆u(x−

i− 1
2

, y)v(x+
i− 1

2

, y)
)

dy

=P̃h(P
⋆u − u, v; a, b)i,j + B̃i,j(u, v; a, b)

=B̃i,j(u, v; a, b) ∀v ∈ P k(Ki,j).

A.4 Proof of Lemma 3.1

Proof. Without loss of generality, we assume a, b > 0. Firstly, we denote {ϕl(x, y)}10
l=1 as

the standard orthogonal basis functions on [−1, 1]2, which are defined as follows for P 3,

ϕ1(x, y) =
1

2
; ϕ2(x, y) =

√
3

2
x; ϕ3(x, y) =

√
3

2
y; ϕ4(x, y) =

3

2
xy;

ϕ5(x, y) =

√
5

4
(3x2 − 1); ϕ6(x, y) =

√
5

4
(3y2 − 1); ϕ7(x, y) =

√
7

4
(−3x + 5x3);

ϕ8(x, y) =

√
15

4
(−1 + 3x2)y; ϕ9(x, y) =

√
15

4
(−1 + 3y2)x; ϕ10(x, y) =

√
7

4
(−3y + 5y3).

Since P
a,b
h ω ∈ P k, we have the following representation,

P
a,b
h ω =

(k+1)(k+2)
2∑

i=1

αiϕi(x, y). (A.14)

It is easy to see that we just need to verify the coefficients are uniformly bounded by

‖ω‖∞ with a constant which does not depend on a, b. Next, we give the coefficients for

k = 0, 1, 2, 3.

For k = 0,

α1 =
1

2

∫ 1

−1

∫ 1

−1

ω(x, y) dxdy. (A.15)

For k = 1,

α1 =

∫ 1

−1

∫ 1

−1
ω(x, y) dxdy

2
; α2 =

∫ 1

−1

√
3ω(1, y) dy − 1

2

√
3
∫ 1

−1

∫ 1

−1
ω(x, y)dydx

3
;

α3 =

∫ 1

−1

√
3ω(x, 1) dx− 1

2

√
3
∫ 1

−1

∫ 1

−1
ω(x, y)dydx

3
. (A.16)
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For k = 2,

α1 =

∫ 1

−1

∫ 1

−1
ω(x, y) dxdy

2
; α2 =

√
3
∫ 1

−1

∫ 1

−1
xω(x, y)dydx

2
;

α3 =

√
3
∫ 1

−1

∫ 1

−1
yω(x, y)dydx

2
;

α4 =

∫ 1

−1
3ayω(1, y) dy +

∫ 1

−1
3bxω(x, 1) dx− 3

2

∫ 1

−1

∫ 1

−1
(bx + ay)ω(x, y)dydx

3(a + b)
;

α5 =
2
√

3
∫ 1

−1

√
3ω(1, y) dy − 3

(∫ 1

−1

∫ 1

−1
ω(x, y)dydx + 3

∫ 1

−1

∫ 1

−1
xω(x, y)dydx

)

6
√

5
;

α6 =
2
√

3
∫ 1

−1

√
3ω(x, 1) dx− 3

(∫ 1

−1

∫ 1

−1
ω(x, y)dydx + 3

∫ 1

−1

∫ 1

−1
yω(x, y)dydx

)

6
√

5
. (A.17)

Since a
a+b

≤ 1 and b
a+b

≤ 1, α4 is uniformly bounded by ‖ω‖∞.

For k = 3,

α1 =

∫ 1

−1

∫ 1

−1
ω(x, y) dxdy

2
; α2 =

√
3
∫ 1

−1

∫ 1

−1
xω(x, y)dydx

2
;

α3 =

√
3
∫ 1

−1

∫ 1

−1
yω(x, y)dydx

2
;

α4 =
1

12 (5a3 + 3a2b + 3ab2 + 5b3)

(
36a2b

∫ 1

−1

yω(1, y) dy − 30ab2

∫ 1

−1

(
−1 + 3y2

)
ω(1, y) dy

+36ab2

∫ 1

−1

xω(x, 1) dx− 30a2b

∫ 1

−1

(
−1 + 3x2

)
ω(x, 1) dx

−18ab

∫ 1

−1

∫ 1

−1

(bx + ay)ω(x, y)dydx + 15a2

∫ 1

−1

∫ 1

−1

(
b
(
−1 + 3x2

)
+ 6axy

)
ω(x, y)dydx

+15b2

∫ 1

−1

∫ 1

−1

(
6bxy + a

(
−1 + 3y2

))
ω(x, y)dydx

)
;

α5 =
1

84
√

5

(
−42

∫ 1

−1

∫ 1

−1

ω(x, y)dydx + 63

∫ 1

−1

∫ 1

−1

(
−1 + 5x2

)
ω(x, y)dydx

)
;

α6 =
1

84
√

5

(
−42

∫ 1

−1

∫ 1

−1

ω(x, y)dydx + 63

∫ 1

−1

∫ 1

−1

(
−1 + 5y2

)
ω(x, y)dydx

)
;

α7 =

∫ 1

−1

√
7ω(1, y) dy

7
− 3

4
√

7

(
2

∫ 1

−1

∫ 1

−1

xω(x, y)dydx +

∫ 1

−1

∫ 1

−1

(
−1 + 5x2

)
ω(x, y)dydx

)
;

α8 =
1

12 (5a3 + 3a2b + 3ab2 + 5b3)

(
12
√

15a3

∫ 1

−1

yω(1, y) dy − 10
√

15a2b

∫ 1

−1

(
−1 + 3y2

)
ω(1, y) dy

+2
√

15b
(
3a2 + 3ab + 5b2

) ∫ 1

−1

(
−1 + 3x2

)
ω(x, 1) dx +

√
15

(
12a2b

∫ 1

−1

xω(x, 1) dx

−6a2

∫ 1

−1

∫ 1

−1

(bx + ay)ω(x, y)dydx−
(
3a2 + 3ab + 5b2

) ∫ 1

−1

∫ 1

−1

(
b
(
−1 + 3x2

)
+ 6axy

)
ω(x, y)dydx
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+5ab

∫ 1

−1

∫ 1

−1

(
6bxy + a

(
−1 + 3y2

))
ω(x, y)dydx

))
;

α9 =
1

12 (5a3 + 3a2b + 3ab2 + 5b3)

(
12
√

15ab2

∫ 1

−1

yω(1, y) dy − 10ab2

∫ 1

−1

(
−1 + 3x2

)
ω(x, 1) dx

+2
√

15a
(
5a2 + 3ab + 3b2

) ∫ 1

−1

(
−1 + 3y2

)
ω(1, y) dy +

√
15

(
12b3

∫ 1

−1

xω(x, 1) dx

−6b2

∫ 1

−1

∫ 1

−1

(bx + ay)ω(x, y)dydx + 5ab

∫ 1

−1

∫ 1

−1

(
b
(
−1 + 3x2

)
+ 6axy

)
ω(x, y)dydx

−
(
5a2 + 3ab + 3b2

) ∫ 1

−1

∫ 1

−1

(
6bxy + a

(
−1 + 3y2

))
ω(x, y)dydx

))
;

α10 =

∫ 1

−1

√
7ω(x, 1) dx

7
− 3

4
√

7

(
2

∫ 1

−1

∫ 1

−1

yω(x, y)dydx +

∫ 1

−1

∫ 1

−1

(
−1 + 5y2

)
ω(x, y)dydx

)
.

(A.18)

We just need to check α4, α8, α9 which are homogeneous rational functions of a, b > 0.

Thus by the Young inequality,

albk−l ≤ l

k
ak + (1 − l

k
)bk, 0 ≤ l ≤ k, (A.19)

these coefficients are uniformly bounded by ‖ω‖∞.

A.5 Proof of Proposition 3.2

Proof. We consider the projection on the reference cell [−1, 1]2. From the proof of Lemma

3.1, we can see that the coefficients are the homogeneous rational functions of a, b > 0

and the denominators of the rational functions are positive. By the Young inequality

(A.19), we can prove

|max(a, b)
∂αi

∂a
| ≤ C, |max(a, b)

∂αi

∂b
| ≤ C, (A.20)

where C is constant which depends on ‖ω‖∞. Thus, we have

‖max
l=1,2

(al, bl)(P
a1,b1
h ω − P

a2,b2
h ω)‖∞ = ‖max

l=1,2
(al, bl)(P

a1,b1
h (ω − Iω) − P

a2,b2
h (ω − Iω))‖∞

≤ Ch‖ω − Iω‖∞, (A.21)

where Iω ∈ P k is the interpolation approximation of ω. We finished the proof by the

scaling argument.
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