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1. Introduction

Statistical modeling and analysis for spatial and spatial-temporal data continue to receive much
attention due to enhancements in computerized Geographic Information Systems (GIS) and accom-
panying technologies. Bayesian hierarchical spatiotemporal process models have become widely
deployed statistical tools for researchers to better understand the complex nature of spatial
and temporal variability. See, for example, the books Cressie (1993), Stein (1999), Moller and
Waagepetersen (2003), Schabenberger and Gotway (2004), Gelfand et al. (2010), Cressie and Wikle
(2011) and Banerjee et al. (2014) for a variety of statistical methods in diverse applications domains.

Spatial data analysis is conveniently carried out by embedding a spatial process within the
familiar hierarchical modeling paradigm,

[data | process] x [process | parameters] x [parameters]. (1)

Modeling for point-referenced data, which refers to data referenced by points with coordinates
(latitude-longitude, Easting-Northing etc.), proceeds from a random field that introduces depen-
dence among any finite collection of random variables. Formally, the random field is a stochastic
process defined as an uncountable set of random variables, say {w(£) : £ € £}, over a domain of
interest £. This uncountable set is endowed with a probability law specifying the joint distribution
for any finite subset of random variables. Spatial processes are usually constructed assuming £ € 3¢
(usually d = 2 or 3) or, perhaps, as a subset of points on a sphere or ellipsoid. In spatiotemporal
settings £ = S x T, where S C %Y and 7 C [0, oo) are the space and time domains, respectively,
and £ = (s, t) is a space-time coordinate with spatial location s € S and time point t € T (see, e.g.,
Gneiting and Guttorp, 2010, for details).

Probability laws over random fields are specified with a covariance function cov{w(¢), w(¢')} =
Ky(£, €") for any two points € and ¢’ in £. If & and V are finite sets comprising n and m points in
L, respectively, then Ky(i/, V) denotes the n x m matrix whose (i, j)th element is evaluated using
the covariance function Ky(-, -) between the ith point ¢/ and the jth point in V. If &/ or V comprises
a single point, Ky(i/, V) is a row or column vector, respectively. A valid spatiotemporal covariance
function ensures that Ky (14, i) is positive definite for any finite set ¢/, which we will denote simply
as Ky if the context is clear. A customary specification models {w(¢) : ¢ € L} as a zero-centered
Gaussian process, denoted as w(£) ~ GP(0, Ky(-, -)). For any finite collection &/ = {£1, 4¢3, ..., {,}
in £, the n x 1 random vector wy, = (w(£1)), w(€s), ..., (w(£,))" is distributed as N(0, K;), where
Ky = Ko(U, U). Further details on valid spatial (and spatiotemporal) covariance functions can be
found in Gneiting and Guttorp (2010), Cressie (1993), Stein (1999), Gelfand et al. (2010), Cressie
and Wikle (2011) and Banerjee et al. (2014) and numerous references therein.

If y(£) represents a variable of interest at point ¢, then a customary spatial regression model at
£ is

y(£) =xT(0)B + w(l) + (L), (2)

where x(£) is a p x 1 (p < n) vector of spatially referenced predictors, 8 is the p x 1 vector of slopes,
and w(€) ~ GP(0, Ky(-, -)) is the spatial or spatiotemporal process and (£) is a white noise process
modeling measurement error or fine scale variation attributed to disturbances at distances smaller
than the minimum observed separations in space and/or time. We now embed (2) and the spatial
process within the Bayesian hierarchical model

p(@, B, ) x N(w | 0,Kp) x N(y | XB + w, D), 3)
where y = (y(£1), ¥(£2), ..., y(£,))T is the n x 1 vector of observed outcomes, X is the n x p matrix
of regressors with ith row x'(¢;) and D; is the covariance matrix for €(£) over {¢1, {2, ..., ¢,}. A

common specification is D, = t2I,, where 72 is called the “nugget”. The hierarchy is completed by
assigning prior distributions to 8, 6 and .

For fitting (3) to large spatial datasets, a substantial computational expense is incurred from
the size of Ky. Since 6 is unknown, each iteration of the model fitting algorithm will involve
decomposing or factorizing Ky, which typically requires ~n> floating point operations (flops) and
order of ~n? for memory requirements. In geostatistical settings, data are almost never observed on
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regular grids and the configuration of points are typically highly irregular. The covariance models
that have been demonstrated to be most effective for inference do not, in general, result in any
computationally exploitable structure for Ky, which makes the matrix computations prohibitive for
large values of n. For Gaussian likelihoods, one can integrate out the random effects w from (3) and
work with the posterior

p(e,ﬂ,f|y)0(p(0,,3,f)XN(y|X,3,I<9+Df) (4)

This reduces the parameter space to {t2, 8, 8} by excluding the high-dimensional vector w, but one
still needs to work with Ky+D., which is nxn. These are referred to as “big-n” or “high-dimensional”
problems in geostatistics.

There is already a substantial literature on high-dimensional spatial and spatiotemporal model-
ing and we do not attempt to undertake a comprehensive review here; see, e.g., Banerjee (2017) for
a focused review on some popular Bayesian approaches and Heaton et al. (2019) for a comparative
evaluation for a variety of contemporary statistical methods. These papers, and the references
therein, offer a variety of algorithmic and model-based approaches for large data. Some published
methods have scalable implementations into the millions (see, e.g., Katzfuss, 2017; Abdulah et al.,
2018; Huang and Sun, 2018; Finley et al,, 2019; Zhang et al., 2019) but often require specialized
high-performance computer architectures and libraries harnessing parallel processing or graphical
processing units. Also, uncertainty quantification on the spatial process while maintaining fidelity
to the underlying probability model may also be challenging. With the advent of a new generation
of data products, there is a need for some simpler implementations that can be run on modest
computing architectures by practicing spatial analysts. This requires new directions in thinking
about high-dimensional spatial problems. Here, we will show how some elementary conjugate
Bayesian linear regression models can be exploited to conduct Bayesian analysis for massive spatial
datasets. While a common underlying idea is to approximate the underlying spatial process with a
scalable alternative, we will ensure that such approximations will result in well-defined probability
models. In this sense, these approaches can be described as model-based solutions for very large
spatial datasets that can be executed on modest computing environments. One exception to the
fully model-based approach will be a divide and conquer approach that we briefly review, where
an approximation to the full posterior distribution for the entire data is constructed from several
posterior distributions of smaller subsets of the data.

The balance of the paper proceeds as follows. The next section briefly reviews dimension
reduction and sparsity inducing spatial models. Section 3 presents some standard distribution
theory for Bayesian linear regression and outlines how scalable spatial process models can be cast
into such frameworks. A synopsis of some simulation experiments and data analysis examples
are provided in Section 4. Section 5 presents an alternative approach based upon dividing and
conquering the data, known as meta-kriging. The paper concludes with some further discussion
in Section 6.

2. Dimension reduction and sparsity

Dimension reduction (Wikle and Cressie, 1999) is among the most conspicuous of approaches
for handling large spatial datasets. This customarily proceeds by representing or approximating the
spatial process in terms of the realizations of a latent process over a smaller set of points, often
referred to as knots. Thus,

)~ () = Zbg (€. €)2(€) = by (0)z, (5)

where z(£) is a well-defined (usually unobserved) process and by (-, -) is a family of basis functions or
kernels, possibly depending upon some parameters 6. The collection of r locations {7, (5, ..., £;}
are the knots, bg(£) and z are r x 1 vectors with components by(¢, Z;‘) and z(ﬁ;‘), respectively.
Therefore, @ = Byz, where @ = (W(£1), W(£a), ..., w(£L,))" and By is n x r with (i, j)th element
bo (i, E;‘). We work with r (instead of n) z(ij)'s and the n x r matrix By. Choosing r <« n effectuates
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dimension reduction because w(¢), as defined in (5), spans only an r-dimensional space. When
n > r, the joint distribution of w is singular. Nevertheless, we construct a valid stochastic process
with covariance function

cov((£), (€") = by (£)V;bs(¢') , (6)

where V, is the variance-covariance matrix (also depends upon parameter 6) for z. From (6), we
see that, even if by(-, -) is stationary, the induced covariance function is not. If the z’s are Gaussian,
then w(¢) is a Gaussian process. Every choice of basis functions yields a process and there are too
many choices to enumerate here. Wikle (2010) offers an excellent overview of low rank models.

Some choices of basis functions can be more computationally efficient than others depending
upon the specific application. For example, Cressie and Johannesson (2008) (also see Shi and Cressie,
2007) discuss “Fixed Rank Kriging” (FRK) by constructing By using very flexible families of non-
stationary covariance functions to carry out high-dimensional kriging, Cressie et al. (2010) extend
FRK to spatiotemporal settings calling the procedure “Fixed Rank Filtering” (FRF), Katzfuss and
Cressie (2012) provide efficient constructions for By for massive spatiotemporal datasets, and Katz-
fuss (2013) uses spatial basis functions to capture medium to long range dependence and tapers the
residual w(£)—w(£) to capture fine scale dependence. Multiresolution basis functions (Nychka et al.,
2002, 2015) have been shown to be effective in building computationally efficient nonstationary
models. These papers amply demonstrate the versatility of low-rank approaches using different
basis functions. An alternative approach specifies z(£) itself as a spatial process. This process is
called the “parent process” and one can derive a low-rank process w(¢) from the parent. One
such derivation emerges from truncating the Karhunen-Loéve (infinite) basis expansion for a
Gaussian process to a finite number of terms to obtain a low-rank process (see, e.g., Rasmussen
and Williams, 2005; Banerjee et al., 2014). This is equivalent to projecting the parent process
on a lower-dimensional subspace determined by a partial realization of the parent over r knots
of the process. This yields the predictive process and several variants aimed at improving the
approximation (Banerjee et al., 2008, 2010; Sang et al.,, 2011; Sang and Huang, 2012; Katzfuss,
2017); also see Finley et al. (2015) and Banerjee (2017) for computational details on efficiently
implementing Gaussian predictive processes.

While dimension reduction methods have been applied extensively and effectively to analyze
spatial data sets in the order of n ~ 104, their computational efficiency and inferential performance
tend to struggle at even larger scales (Banerjee, 2017). More recently, there has been substantial
developments in full rank models that exploit sparsity. We introduce sparsity either in the covari-
ance matrix or its inverse (the precision matrix). Covariance tapering (Furrer et al., 2006; Kaufman
et al,, 2008; Du et al., 2009) is in the spirit of the former by modeling var{w} = Ky © Ktap,,, Where
Ktap,, is a sparse covariance matrix formed from a compactly supported, or tapered, covariance
function with tapering parameter v and © denotes the element wise (or Hadamard) product of two
matrices. The Hadamard product retains positive definiteness, so Ky © Ktap,, is positive definite.
Furthermore, Ktap,» is sparse because a tapered covariance function is equal to 0 for all pairs of
locations separated by a distance beyond a threshold v. Covariance tapering is undoubtedly an
attractive approach for constructing sparse covariance matrices, but its practical implementation for
full Bayesian inference will generally require efficient sparse Cholesky decompositions, numerically
stable determinant computations and, perhaps most importantly, effective memory management.
These issues are yet to be tested for truly massive spatiotemporal datasets with n ~ 10° or more.

One could also devise models with sparse precision matrices. For finite-dimensional distribu-
tions conditional and simultaneous autoregressive (CAR and SAR) models (see, e.g., Cressie, 1993;
Banerjee et al., 2014, and references therein) adopt this approach for areally referenced datasets.
The CAR models are special instances of Gaussian Markov random fields or GMRFs (Rua and Held,
2005) that have led to the popular quadrature based Integrated Nested Laplace Approximation
(INLA) algorithms (Rue et al., 2009) for Bayesian inference and to the approximation of Gaussian
processes (Lindgren et al., 2011). These approaches can be computationally efficient for certain
classes of covariance functions with stochastic partial differential equations (SPDE) representations
(including the versatile Matérn class), but their inferential performance on spatiotemporal or
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multivariate Gaussian processes (perhaps specified through more general covariance or cross-
covariance functions) embedded within Bayesian hierarchical models is yet to be fully developed
or assessed for massive datasets.

One could also construct massively scalable sparsity-inducing Gaussian processes using essen-
tially the techniques used in graphical Gaussian models by exploiting the relationship between
the Cholesky decomposition of a positive definite matrix and conditional independence. For Gaus-
sian processes in particular, recent developments on the Nearest Neighbor Gaussian Processes
(NNGP) (Datta et al., 2016a,b; Banerjee, 2017; Finley et al., 2019) have proceeded from GP like-
lihoods using directed acyclic graphs (or DAGs) as used by Vecchia (1988) and Stein et al. (2004).
The NNGP is a Gaussian process whose finite-dimensional realizations will have sparse precision
matrices. Other related papers using the approximation in Vecchia (1988) include Stroud et al.
(2017), Guinness (2018), Katzfuss and Guinness (2017), Katzfuss et al. (2018). Shi et al. (2017)
recently used the NNGP for uncertainty quantification and Ma and Kang (2017) used it as a part
of a rich class of fused Gaussian process models.

Full Bayesian inference for low-rank and sparse Gaussian process models require iterative
algorithms such as Markov chain Monte Carlo (MCMC) or INLA. Details of these implementations
can be found in the aforementioned references. In the following section, we will discuss how these
spatial models can be embedded within a Bayesian linear regression framework and provide some
practical strategies for inference based upon direct (exact) sampling from the posterior distribution.

3. Conjugate Bayesian models for massive datasets
3.1. Conjugate Bayesian linear geostatistical models

A conjugate Bayesian linear regression model is written as
y1B, 0% ~N(XB,0%Vy); Blo*~N(B|up 0o’Vg); o ~IGa,,b,), (7)

where y is an n x 1 vector of observations of the dependent variable, X is an n x p matrix (assumed
to be of rank p) of independent variables (covariates or predictors) and its first column is usually
taken to be the intercept, V, is a fixed (i.e., known) n x n positive definite matrix, ug, Vg, a, and
b, are assumed to be fixed hyper-parameters specifying the prior distributions on the regression
slopes B and the scale o2. This model is easily tractable and the posterior distribution is

p(B.o* | y) =IG(o? | &}, b}) x N(B | Mm, o*M) (8)

o

plo?ly) p(Blo2.y)

where @} = a, +n/2, b} = by + (1/2){uj Vs 'ug +y "V, ly —m"™Mm}, M~' = v 4 XTV, X
and m = Vﬂ’luﬂ + XTVy”y. Sampling from the joint posterior distribution of {8, o2} is achieved
by first sampling o? ~ IG(a, b} ) and then sampling 8 ~ N(Mm, o2M) for each sampled o2. This
yields marginal posterior samples from p(8 | y), which is a non-central multivariate t distribution
but we do not need to work with its complicated density function. See Gelman et al. (2013) for
further details on the conjugate Bayesian linear regression model and sampling from its posterior.

We will adapt (7) to accommodate (3) or (4). Let us first consider (4) with the customary
specification D, = 72 and let Ky = o%R(¢), where R(¢) is a correlation matrix whose entries
are given by a correlation function p(¢; ¢;, ¢;). Thus, 8 = {02, ¢}, where o2 is the spatial variance
component and ¢ is a spatial decay parameter controlling the rate at which the spatial correlation
decays with separation between points. A simple example is p(¢; €, €;) = exp(—|l¢; — &ll),
although much richer choices are available (see, e.g., Ch 3 in Banerjee et al., 2014). Therefore, we can
write Ky = o2V, where V, = R(¢) + 8% and §% = t%/0? is the ratio between the “noise” variance
and “spatial” variance. If we assume that ¢ and 82 are fixed and that the prior on {8, o2} are as
in (7), then we have reduced (4) to (7) and direct sampling from its posterior is easily achieved as
described below (8). We will return to the issue of fixing {¢, 2} shortly.
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Let us turn to accommodating (3) within (7), which would include directly sampling the spatial
random effects w from their marginal posterior p(w | y). Here, it is instructive to write the joint
distribution of y and w in (3) as a linear model,

]l ] 7]
Iz = I, O ]+ n |
o[3 51n | v ni , 9)

——— —_—— — ——
62, 0 o0
where n ~ N(0,02Vy,)and V,, = | O Vg O |[.If we assume that §° and ¢ are fixed at
0 0 R¢9)

known values, then Vj, is fixed. We have a conjugate Bayesian linear regression model y, = X,y +n,
where y has a flat prior and 2 ~ IG(a,, by ). Thus,

ply,o? |y)=1G(c? | @, b%) x N(B | Mym,, 0*M.) , (10)

plo]y) plylo?.y)
where @ = a, + (2n + p)/2, b¥ = b, + (1/2){y*TVy;1y* - mIM*m*}, M = X*TVij* and
m, = XV, 'y.. The posterior mean of y is y = M,m, = (X*TVij*)*]XJVyjy*, which is the
generalized least squares estimate obtained from the augmented linear system in (9). Sampling
from the posterior proceeds analogous to that described below (8).

From the preceding account we see that fixing the spatial range decay parameter ¢ and the
noise-to-spatial variance ratio 82 casts the Bayesian geostatistical model into a conjugate framework
that will allow inference on {8, w, o%}. Note that multiplying the posterior samples of o by the
fixed quantity 82 fetches us the posterior samples of 72. Therefore, we neglect uncertainty in ¢
and, partially, for one of the variance components due to fixing their ratio. This, however, provides
the computational advantage that inference can be carried out without resorting to expensive
iterative algorithms such as MCMC that require several iterations before sampling from the posterior
distribution. This computational benefit becomes especially relevant when handling massive spatial
data. Furthermore, fixing the values of 8> and ¢ is not entirely unreasonable given that these
parameters are weakly identified by the data (Zhang, 2004) and difficult to learn from the posterior.
Nevertheless, the inference will depend upon these fixed parameters so we discuss a practical
approach to fix ¢ and 82 at reasonable values.

3.2. Choosing ¢ and §2

We can set values for ¢ and 8% by conducting some simple spatial exploratory data analysis
using the “variogram”. Several practical algorithms exist for empirically calculating the variogram
(or semivariogram) from observations using finite sample moments. Many of these methods for
variograms are now offered in user-friendly R packages hosted by the Comprehensive R Archive
Network (CRAN) (https://cran.r-project.org). As one example, Finley et al. (2019) investigate the
impact of tree cover and occurrence of forest fires on forest height. They first fit an ordinary linear
regression of the form ypy = Bo + BiXtree + P2Xfire + € and then compute a variogram for the
residuals from the ordinary linear regression.

Fig. 1 depicts the variogram, which informs about the process parameters. The lower horizontal
line represents the “nugget” or the micro-scale variation captured by the measurement error
variance component t2. The top horizontal line represents the “sill” (or ceiling) which is the total
variation captured by o2 4 t2. Therefore, the difference between the two horizontal lines is called
the “partial sill” and is captured by 2. Finally, the vertical line represents the distance beyond
which the variogram flattens or the covariance tends to zero. One can provide “eye-ball” estimates
for these quantities and, in particular, fix the values of ¢ and 82 = t2?/02. Fixing these values from
the variogram yields the desired highly accessible conjugate framework and the models can be
estimated without resorting to Markov chain Monte Carlo (MCMC) as described earlier. Note that
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Fig. 1. Variogram of the residuals from non-spatial regression indicates strong spatial pattern.

instead of {¢, 62}, we could also have fixed ¢ and any one of the variance components, ¢ or 72,
which would also yield a conjugate model with exact distribution theory. The one slight advantage
of fixing 82 is that we will get the posterior samples of both ¢% and 72, the latter obtained simply
as 0282,

The above crude estimates can be improved using a K-fold cross-validation. We split the data
randomly into K different folds. Let S[k] be the kth folder of observed points and let S[—k] denote the
observed points outside of S[k]. For each k, we compute the predictive mean E[y(S[k]) | y(S[—k])].
We then compute the “Root Mean Square Predictive Error” (RMSPE) (Yeniay and Goktas, 2002)
and choose the value of {¢, 82} corresponding to the smallest RMSPE from a grid of candidate
values. The range of the grid is based on interpretation of the hyper-parameters. We suggest a
reasonably wide range for 82 (e.g., [0.001, 1000]), which accommodates one variance component
substantially dommatmg the other in either direction. For the spatial decay ¢ we suggest a lower
bound of mmmummter siedistance> Which, based upon the exponential covariance function, indicates
that the spatial correlation drops below 0.05 at the maximum inter-site distance, and an upper
bound that can be initially set as 100 times of the lower bound. Functions like variofit in the
R package geoR (Ribeiro and Diggle, 2012) can provide empirical estimates for {¢, §?} from an
empirical variogram. After initial fitting, we can shrink the range and refine the grid of the candidate
values for more precise estimators.

3.3. Conjugate Bayesian geostatistical models for massive spatial data

Conjugate models can be estimated by sampling directly from their joint posterior density
and, therefore, completely obviate problems associated with MCMC convergence. This is a major
computational benefit. However, the challenges in analyzing massive spatial data do not quite end
here. When the number of spatial locations providing measurements are in the order of millions as
in Finley et al. (2019), then the matrices Ky, V, or V,, that we encountered earlier in different model
parametrizations will be too massive to be efficiently loaded on to the machine’s memory, let alone
be computed with. This precludes efficient likelihood computations and has led several researchers
to propose models specifically adapted for spatial analysis. We briefly present adaptations of (9)
using two different classes of models for massive spatial data: (i) low-rank process models and
(ii) NNGP models.

As discussed in Section 2, in low rank models the n x 1 spatial effect w in (3) is replaced by Byz,
where By is the n x r matrix whose ith row is bg(ﬁi). Dimension reduction is achieved by fixing r
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to be much smaller than n so that we only deal with r random effects instead of n. The framework
in (9) can be easily adapted to this situation as below:

y X By B M
-l )
0 o I 73 , (11)

——— ———— ——
82, 0 0
where n ~ N(O, azvy*) andV,, =| O Vg O |is(n+p+r)x(n+p+r)and fixed, and V,
o oV,

is now r x r instead of the n x n matrix R(¢) in (9). Computations for (11) proceed analogous to
those for (8), but benefits accrue in terms of storage and the number of floating point operations
(flops) when conducting the exact conjugate Bayesian analysis for this model.

We now outline the construction of sparse NNGP models. These can be regarded as a special
case of Gaussian Markov Random Fields (GMRFs) with a neighborhood structure specified using a
directed acyclic graph (DAG). The computational benefits for NNGP models accrue from the ease of
inverting sparse matrices. This is immediate from noting that the expense to obtain Vyj in (10) is
dominated by R(¢)~!. Therefore, if R(¢)~! is easily available then the inference for y = {8, w} will
be inexpensive. Modeling sparse R(¢)~! can be easily achieved as follows. Writing N(w | 0, 0%Ry)
as p(wl)H?:2 p(w; | wi, wa, ..., wj_1) is equivalent to the following set of linear models,

wy =04 n and wi = Gj1w1 + Apwr + - - + G i—qWi—1 + 7 fori=2,...,n,

or, more compactly, simply w = Aw + 5, where A is n x n strictly lower-triangular with elements
a;j = 0 whenever j > i and n ~ N(0, D) and D is diagonal with diagonal entries dy; = var{w} and
di = var{w; | wj : j < i} fori = 2, ..., n. From the structure of A it is evident that I — A is unit
lower-triangular, hence nonsingular, and R, = (I — A)~'D(I — A)~".

We now introduce sparsity in R;] = (I — A)TD(I — A) by letting a; = 0 whenever j > i (since
A is strictly lower-triangular) and also whenever ¢; is not among the m nearest neighbors of ¢;,
where m is fixed by the user to be a small number. It turns out that a very effective approximation
emerges by recognizing that the lower-triangular elements of A are precisely the coefficients of a
linear combination of w(¢;)'s equating to the conditional expectation E[w(¢;) | {w(¢;) : j < i}].
Thus, the m x 1 vector @; of non-zero entries in the ith row of A are obtained by solving the m x m
linear system Ry n; n;Gi = Ry n,i» where Ry n; v, is the m x m principal submatrix extracted from
R, corresponding to the m neighbors of i (indexed by elements of a neighbor set N;) and Ry y;, ;i is
the m x 1 vector extracted by choosing the m indices in N; from the ith column of Rg. Once g; is
obtained, the ith diagonal entry of D is obtained as d; = Ry[i, il — ?11.T Ry.n;,i- These computations
need to be carried out for each i = 2, ..., n (note that for i = 1, dy; = 2 and a;; = 0), but m can
be kept very small (say 5 or 10 even if n 107) so that the expense is O(nm?) and still feasible. The
details can be found in Banerjee (2017). This notion is familiar in Gaussian Graphical models and
have been used in Vecchia (1988) and, more recently, in Datta et al. (2016a) and Finley et al. (2019)
to tackle massive amounts of spatial locations.

The framework in (9) now assumes the form

y X I B m
I’Lﬂ = Ip 1/20 [ w } + n2 s (12)
0 0 D YVXI-A) 13 ,
—— — ——
82, 0 0
where n ~ N(O, aZVy*) and V,, = O Vg Ofis(2n+4 p) x (2n + p) and fixed with much
0} o I

greater sparsity. While this approach can also be subsumed into the framework of (9), its efficient
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implementation on standard computing architectures needs careful consideration and involves
solving a large linear system with (n + p) x (n + p) coefficient matrix X, X,. This matrix is large,
but is sparse because of (I — A)"D~'(I — A). Since (I — A) has at most m 4+ 1 nonzero entries in
each row, an upper bound of nonzero entries in (I — A) is n(m + 1) and, therefore, the upper bound
in (I —A)TD~!(I — A) is n(m + 1)%. This sparsity can be exploited by sparse linear solvers such as
conjugate gradient methods that can be implemented on modest computing environments.
Sampling from the joint posterior distribution p(y,o? | y,) is achieved in the following
manner. First, the least-squares estimate 7 is obtained using a sparse least-square solver using
a preconditioned conjugate gradient algorithm. Subsequently, o2 is sampled from its marginal
posterior density IG(a,, b,), where a, = a, + n/2 and b, = b, + (1/2)(¥s — Xu7) (V5 — XuP)

and then for each sampled o2, y is sampled from N (f/, o? (xjvij*)‘l). In general, solving

X[ X.7 =Xy, requires O(3(n + p)*) flops, but when p < n, the structure of X, and X, X, ensures
memory requirements in the order of n(m + 1)> and the computational complexity in the order
of nm+n(m + 1)? flops. Details on such implementations on modest computing platforms can be
found in Zhang et al. (2019).

3.4. Spatial prediction

Let £ = {£1, 0, ..., ls} be a set of fi locations where we wish to predict the outcome y(¢). Let

Y be an # x 1 vector with ith element Y(¢;) and let W be the i x 1 vector with elements w(¢;). The
predictive model augments the joint distribution p(6, w, 8, t, y) to

po, 7, B, w,y, »,Y)=p, 7, ) x plw | 0)x pli | w,0) xp(y | B, w, 7)x p(Y | B, b, 7).
(13)

The factorization in (13) also implies that Y and w are conditionally independent of each other
given w and B. Predictive inference for spatial data evaluates the posterior predictive distribution
p(Y,® | y). This is the joint posterior distribution for the outcomes and the spatial effects at
locations in Z. This distribution is easily derived from (13) as

p(Y, i, B, w, 0,7 |y) o p(B, w,0,7|y)xp(i|w,0)xp(Y|B,ib,1). (14)

Sampling from (14) is achieved by first sampling {8, w, 6, t} from p(8, w, 6, T | y). For each drawn
sample, we make one draw of the i1 x 1 vector w from p(w | w, #) and then, using this sampled
, we make one draw of Y from p(Y | B, W, t). The resulting samples of & and Y will be draws
from the desired posterior predictive distribution p(w, Y | y). This delivers inference on both the
latent spatial random effect @ and the outcome Y at arbitrary locations since £ can be any finite
collection of samples. Summarizing these distributions by computing their sample means, standard
errors, and the 2.5th and 97.5th quantiles (to produce a 95% credible interval) yields point estimates
with associated uncertainty quantification.

It is instructive to see how the entire inference for Gaussian outcomes can be cast into an
augmented linear regression model. The predictive model for Y can be written as a spatial regression

Y=XB+w+¢; v=Cw+tow, (15)

where X is the 7 x p matrix of predictors observed at locations in £ and € ~ N(O, D, ), where € is the
i1 x 1 vector with elements e(zi). The second equation in (15) expresses the relationship between
the spatial effects w across the unobserved locations in £ and the spatial effects across the observed
locations in £. Since there is one underlying random field over the entire domain, the covariance
function for the random field specifies the f1 x n coefficient matrix C. In particular, if w ~ N(0, Ky),

then C = Ky(Z, £)K; ' and w ~ N(0, Fp), where Fy = Ky(L, £) — Ko(Z, £L)K; 'Ky(£, £). The model



10 S. Banerjee / Spatial Statistics 37 (2020) 100417
Table 1
Simulation study summary table: posterior mean (2.5%, 97.5%) percentiles.
True Full GP NNGP Conj NNGP
Bo 1 1.07(0.72, 1.42) 1.10 (0.74, 1.43) 1.06 (0.76, 1.46)
B -5 —4.97 (—5.02, —4.91) —497 (—5.02, —491)  —4.97 (—5.02, —4.91)
o? 2 1.94 (1.63, 2.42) 1.95 (1.63, 2.41) 1.94 (1.77, 2.12)
2 0.2 0.14 (0.07, 0.23) 0.15 (0.06, 0.24) 0.17 (0.16, 0.19)
@ 16 19.00 (13.92, 23.66) 18.53 (14.12, 24.17) 17.65
KL-D - 4.45(1.16, 9.95) 5.13(1.66, 11.39) 3.58(1.27, 8.56)
MSE(w) - 297.45(231.62, 444.79 ) 303.38(228.18, 429.54)  313.28 (258.96, 483.75)
RMSPE - 0.94 0.94 0.94
Time (s) - 2499 + 23147 109.5 12 + 06
for the data and the predictions is combined into
y X I, 0 O B m
Wl _ | ko o o0 w 2
0 = |loc - o b7 I IUER B (16)
0 X 0 I -l y Z;‘ ’
—— ~————
Vi = X* Y + n
D, O O O O
0O Vg 0 0 O
wheren ~N]0,{ O O Ky O O | [.]If locations where predictions are sought are fixed
O O O F O
0O O O O D,

by study design, then fitting (16) using the Bayesian conjugate framework can be beneficial. On the
other hand, one can first estimate {8, w, 0%} and store samples from their posterior distribution.
Then, for any arbitrary set of points in £, for each stored sample of the parameters we draw one
sample of w ~ N(Cw, Fy) followed by one draw of Y ~ N(X8 4 w, D.). The resulting {w, Y} will be
the desired posterior predictive samples for the latent spatial process and the unobserved outcomes.
Again, the advantage of this formulation is that an efficient least squares algorithm to solve (16) that
can exploit the sparsity of the design matrix X, will immediately deliver inference on the regression
slopes (), the spatial process (w) at observed points, the interpolated process (w) at unobserved
points, and the predicted response (Y) all at once.

4. Illustrative examples

We present a part of some simulation experiments conducted in Zhang et al. (2019), where we
generated data using the spatial regression model in (2) over a set of n = 1200 spatial locations
within a unit square and using an exponential covariance function to specify the spatial process.
While 1200 spatial locations may seem too modest, we use this to draw comparisons with a full GP
model that will be too expensive for large datasets. The model included an intercept and a single
predictor generated from a standard normal distribution.

We fit a full Gaussian process based model (labeled as full GP in Table 1) using the spBayes
package in R, a latent NNGP model with m = 10 neighbors using the sequential MCMC algorithm
described in Datta et al. (2016a) (using the spNNGP package), and the conjugate latent NNGP model
described in the preceding section with m = 10 neighbors. We will refer to the latent NNGP model
fitted using MCMC (with all process parameters unknown) as simply the NNGP or latent NNGP
model, while we will explicitly use “conjugate” to describe the conjugate latent NNGP model.

These models were trained using n = 1000 observations, while the remaining 200 observations
were withheld to assess predictive performance. The fixed parameters {¢, 8%} for the conju-
gate latent NNGP model were picked through the K-fold cross-validation algorithm described in
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Section 3.2. The intercept and slope parameters in 8 were assigned improper flat priors and an
IG(2, b) (mean b) prior was used for . For the latent NNGP and full GP models, the spatial decay ¢
was modeled using a fairly wide uniform prior U(2.2, 220) prior and Inverse-Gamma priors IG(2, b)
(mean b) were used for the nugget (t2) and the partial sill (¢2) in order to compare the conjugate
Bayesian models with other models. The shape parameter was fixed at 2 and the scale parameter
was set from the empirical estimate provided by the variogram using the geoR package (Ribeiro and
Diggle, 2012). The parameter estimates and performance metrics are provided in Table 1. Table 1
presents parameter estimates and performance metrics for the candidate models. The inference for
B is almost indistinguishable across the three models. The full GP and the NNGP fully estimate
{02, T2, ¢} using MCMC and yield very similar results. The conjugate NNGP does not estimate ¢
and estimates {02, T2} subject to the constraint that their ratio §? is fixed. This results, expectedly,
in slightly narrower credible intervals for o2 and 2. Overall, the parameter estimates are very
comparable across the models.

Turning to model comparisons, Zhang et al. (2019) computed the posterior distribution of the
Kullback-Leibler divergence (KL-D) by computing it between each candidate model and the full GP
for each posterior sample. The KL-D values presented in Table 1 show no significant differences
between the three models in their separation from the true full GP model. The root mean-squared
prediction error (RMSPE) values (computed from the hold-out set of 200 locations) across all
three models are also similar, further corroborating the comparable predictive performance of the
conjugate model with the full Gaussian process.

In terms of timing (presented in seconds in Table 1), the recorded time of the conjugate models
includes the time for choosing hyper-parameters through cross-validation and (“+”) the time for
sampling from the posterior distribution. The recorded time of the full GP model consists of the time
for MCMC sampling and (“+”) the time for recovering the regression coefficients and predictions.
The full latent NNGP model is 200 times faster than the full Gaussian process based model, while
the conjugate latent NNGP model uses one tenth of the time required by the latent NNGP model
to obtain similar inference on the regression coefficients and latent process. Further simulation
experiments conducted by Zhang et al. (2019) also show that interpolation of the latent process
is almost indistinguishable between the conjugate and full models.

Next, we present a second simulation example using exactly the same setup as in the preceding
example, but with n = 12,000 spatial locations. Here, we fit a latent NNGP model using the MCMC
algorithm in Datta et al. (2016a) and the conjugate latent NNGP model. We used 10,000 locations
for training the models while the remaining 2000 locations were used for predictive assessment.
We summarized the results from the latent NNGP model using a post burn-in posterior sample for
10,000 iterations. This was deemed adequate based upon the customary convergence diagnostics
available in the coda and mcse packages within the R computing environment (Plummer et al.,
2006; Flegal and Jones, 2011). The inference from the conjugate latent NNGP model were based
on 300 samples. This is sufficient for the conjugate latent NNGP model since the conjugate model
provides independent samples from the exact posterior distribution. The full MCMC-based NNGP
model took about 1268 s to deliver full Bayesian inference, while the conjugate model took only
99+ 14 = 113 s (99 s for the cross-validation to fix {¢, 82} and 13 s for sampling from the posterior
distribution). We found that the RMSPE values for the full latent NNGP and the conjugate model
computed using the 2000 hold-out locations were almost identical (0.67 up to 2 decimal places).

The parameter estimates from the full NNGP and conjugate NNGP models in this larger simu-
lation experiment reveal essentially the same story as in Table 1 so we do not repeat them here.
Instead, we focus on the estimation of the latent process and the predictive performance for the two
models. Fig. 2 shows interpolated surfaces from the simulation example: 2(a) shows an interpolated
map of the “true” spatial latent process w, while 2(b) and 2(c) present the posterior means of w(s)
over the entire domain obtained from the full latent NNGP model and the conjugate latent NNGP
model, respectively. The recovered spatial residual surfaces are almost indistinguishable, and are
comparable to the true interpolated surface of w(s). Fig. 2(d)-(e) present the 95% credible intervals
for the spatial effects w from the latent NNGP model and the conjugate latent NNGP model. These
intervals are plotted against the true values of w from the generated model. We found that 9567
out of 10000 credible intervals successfully included the true value for the conjugate model, while
the corresponding number was a very comparable 9584 for the full NNGP model.
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Fig. 2. Interpolated maps of (a) the true generated surface, (b) the posterior means of the spatial latent process w(s) for
the NNGP and (c) posterior means of w(s) for the conjugate latent NNGP. The 95% confidence intervals for the spatial
effects w from (d) the NNGP and (e) the conjugate NNGP. The NNGP models were all fit using m = 10 nearest neighbors.

Turning to a real example, we present a synopsis of the analysis in Zhang et al. (2019) of a spatial
dataset from NASA comprising sea surface temperature (in degrees Centigrade) observations over
2,827,252 spatial locations of which approximately 90% (2,544,527) were used for model fitting
and the rest were withheld for cross-validatory predictive assessment. Details of the dataset can
be found in http://modis-atmos.gsfc.nasa.gov/index.html and details on the analysis can be found
in Zhang et al. (2019). The salient feature of the analysis is that a conjugate Bayesian framework
for the NNGP model as in (12) was able to deliver full inference including the estimation of the
spatial latent effects in about 2387 s. Sampling from the posterior distribution was achieved using
direct sampling as described below (12). Since this algorithm is fast and directly samples from the
posterior, hence there is no burn-in period for convergence, it was run over a grid of values of
{82, ¢}. For each such value, a posterior predictive assessment over the cross-validatory hold-out
set was carried out and the value of {62, ¢} producing the least RMSPE was selected as optimal
inputs for which the posterior predictive maps are presented in Fig. 3.

5. Spatial meta-kriging

A different approach toward BIG DATA problems relies upon divide and conquer methods. The
idea here is divide and conquer (or map and reduce) by pooling posterior inference across a partition
of data subsets. Once again consider the Bayesian linear regression model

p(B.0? | y) < IG(6? | a5, by) x N(B | up, 0*Vg) x N(y | XB, 0*V,) , (17)

where y is N x 1, X is N x p, Bisp x 1, V, is a fixed N x N covariance matrix, ug is a fixed
p x 1 vector and Vp is a fixed p x p matrix. The joint posterior density p(8, o? | y) is available
in closed form as p(B8,02 | y) = p(c? | y) x p(B | o2,y) , where the marginal posterior density
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(a) Posterior mean of sea-surface temperature (b) Posterior predictive mean of latent spatial effects

Fig. 3. Posterior predictive maps of sea-surface temperature (in degree centigrade) and latent spatial effects. The land is
colored in gray, locations in the ocean without observations are indicated in yellow. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

p(o? | y) = IG(c? | a*, b*) and the conditional posterior density p(8 | o2,y) = N(B | Mm, 6*M)
with a* = a; + N/2, b* = by +¢/2,m = Vy'ug + X'V, ly, M~ = V' + X7V, 'X and
c = M;Vﬂ‘ Tug + y'V; 'y — m"Mm. Therefore, exact posterior inference can be carried out by
first sampling o2 from IG(a*, b*) and then sampling 8 from N(Mm, o2M) for each sampled value
of ¢2. This results in samples from p(8, 2 | y). Besides the fixed hyperparameters in the prior
distributions, this exercise requires computing m, M and c.

Now consider a situation where N is large enough so that memory requirements for computing
(17) is unfeasible. One possible resolution is to replace the likelihood in (17) with a composite
likelihood that assumes independence across blocks formed by partitioning the data into K subsets.
We partition the N x 1 vector y into K subvectors with y, as the n, x 1 subvector forming the
kth subvector, where 25:1 n, = N. The size of the kth subset is n,. These sizes need not be the
same across k, but will be chosen in a manner so that each of the subsets can be fitted easily with
the computational resources available. Also, let X} be the n; x p matrix of predictors corresponding
to yx and let Vy, be the marginal correlation matrix for y;. The conjugate Bayesian model with a

block-independent composite likelihood assumes that y, = X8 + €, where ¢ S N(O, azvyk ).
The Bayesian specification is completed by assigning priors to o2 and g as in (17). If we distribute
the analysis to K different computing cores, where the kth core fits the above model but only
with the likelihood N(y; | Xkﬁ,crzvyk), then the quantities needed for sampling from the full
p(B,0?% | y) can be computed entirely using quantities obtained from the individual subsets of
the data. For each k = 1,2,...,K we independently compute m;, = Vﬁ’luﬂ + XkTVy‘kly,< and
M, " = V' + XV, X based upon the kth subset of the data. We then combine them to obtain
m= ZI,;](mk—(l—l/K)Vﬁ’]uﬁ) and M~ = Zfﬂ(Mk’]—(l—l/K)Vﬁ’]). Subsequently, we compute
c = /L;V/;],uﬁ + Zf:1 y,—(rVy_klyk — m"Mm. Therefore, sampling from the posterior distribution of
B and o2 given the entire dataset can be achieved using quantities computed independently from
each of the K smaller subsets of the data. There is no need to interact between the subsets and
one does not require to store or compute with large objects based upon the entire dataset. This
computation can also be done sequentially. We first obtain the posterior distribution p(8, o | y1)
based only upon the first data set. This posterior becomes the prior for the next step and we
obtain p(B, 62 | y1,¥2) o« p(B,02 | y1) x p(y2 | B,c?) and so on until we arrive at p(8, o2 |
V1. Y2 - Yk) X DB, 0% | Y1, Y2, - Yk—1) X DYk | B.0?).

Clearly such exact recovery of the full posterior crucially depends on the conditional inde-
pendence across the different data blocks (e.g., p(vk | B,0%, ¥1,...,¥k-1) = pyx | B,0?) for
each k = 2, ..., K). While this works for uncorrelated outcomes, as in standard linear regression,
such recovery is precluded for spatial and spatiotemporal process models and, more generally, for
correlated data. Nevertheless, we can develop a general approximation framework for obtaining
the full posterior from posterior densities calculated over smaller subsets. One general way to pool
information across these individual posteriors is to use the unique Geometric Median (GM) of the
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subset posteriors, as developed by Minsker (2015). Assume that the individual posterior densities

pr = p(£2 | yi) reside on a Banach space H equipped with norm || - |. The GM is defined as
K

T y) = arg min Z lpk — 7 ll,, where y = (], y;,...,¥¢)". The norm quantifies the distance
k=1

between any two posterior densities 1(-) and () as |71 — mall, =

[ p(2. oty — ﬂz)(Q)H.

where p(-) is a positive-definite kernel function. Assume p(z1,z,) = exp(—|lz1 — z2]|?). The GM
is unique and lies in the convex hull of the individual posteriors, so 7*(£2 | y) is a legitimate
probability density. Specifically, 7*(£2 | y) = Z'k(:] ap (YD, Zle a,k(y) = 1, each «, ((y) being
a function of p, y, so that fg *($2 | y)d$2 = 1. Computing the GM =* = 7*(§2 | y) is achieved by
an iterative algorithm that estimates «, x(y) from the subset posteriors py for eact}(k =1,2, s K.
To further elucidate, we use a well known result that the GM 7* satisfies 7* = W
k=1 - P

. There is no apparent closed-form solution for «, ((y) satisfying this

SO

_ ekt
that (X/),k(y) = m
equation, so Weiszfeld’s algorithm (Minsker, 2015) is used to estimate these functions.

This approach has been extended to spatial process settings by Guhaniyogi and Banerjee (2018,
2019). The advantage here is that one can use existing Bayesian geostatistical software to sample
from the posterior distributions of the different subsets. This can be performed either in parallel over
multiple cores or across different machines altogether. One then needs to save only the post burn-in
samples and execute Weiszfeld’s algorithm to these samples. Weiszfeld’s algorithm is extremely fast
and easy to program.

6. Discussion

This article has attempted to provide a brief overview of how some Bayesian geostatistical
models designed for large spatial and/or spatiotemporal datasets can be further scaled up to
analyze massive datasets with observed locations in the order of 10° or more by exploiting the
familiar theory of conjugate Bayesian linear regression models and adapting them to incorporate
latent spatial processes. The resulting distribution theory is available in closed form, thereby
circumventing the need for iterative algorithms such as MCMC or INLA. We have also provided a
brief overview of a distributed approach (spatial meta-kriging) that relies upon analyzing exclusive
subsets of the data and combining them to approximate the full posterior in the spirit of a spatial
meta-analysis.

Of course, this requires some compromise in terms of full Bayesian inference. Some parameters
need to be provided as fixed inputs for the distribution theory to be available in closed form.
Learning about these input parameters will be done using exploratory data analysis and cross-
validation methods. A practical approach that seems to be quite effective for analyzing massive
datasets in modest computing environments is to choose the optimal value of the process pa-
rameters based upon the minimum RMSPE over hold-out locations. While such approaches may
produce slightly shrunk credible and prediction intervals due to the effect of fixing a parameter,
the effect is seen to be moderate in practical spatial analysis and the approach could form a useful
tool for quick spatial analysis within the Bayesian paradigm for massive spatial datasets. However,
the method of learning about these parameters is still ad-hoc and can possibly be improved with
more sophisticated optimization methods. Nevertheless, the approach outlined here can be a useful
tool in the spatial analyst’s toolbox for exploring Bayesian spatial regression at massive scales. We
also point out that the conjugate Bayesian linear regression framework can accommodate almost all
of the model-based GP approximations for dimension reduction or sparsity induction. Any spatial
covariance structure that leads to efficient computations can, in principle, be used.

While the article has focused on the NNGP as a choice for introducing sparsity in the model,
more general GMRF specifications are also admissible here. In fact, there has been much recent
activity within the framework of Vecchia approximations (see, e.g., Katzfuss and Guinness, 2017;
Katzfuss et al., 2018), where the models are being derived using DAGs over the expanded set of
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observations and process realizations. While certainly promising, their benefits and improvements
over GMRFs are yet to be demonstrated in large scale case studies. For Vecchia type of likelihoods,
there is also interest in choosing the number of neighbors. First, it should be intuitively clear that
DAGs constructed using shrunk neighbor sets will yield probability models farther away from the
full model as the neighbor sets get smaller. To see this, consider a random vector w = (w/;r, wl;r)T
where A and B are mutually exclusive sets containing indices for the elements of w, and let
p(w) = p(wa)p(wp | wya) denote the joint probability density for w. Consider two submodels
pi(w) = p(wa) x p(wp | wyy,) and pa(w) = p(wa) x p(wp | wny,), where Npp C Nig C A. The
model p, will be farther than p; from p in the terms of the Kullback-Leibler divergence:

KL(p I [p2) — KL(plIp1) = f {log (M> ~log (Mﬂp(w)dw
pa(w) pi(w)
= / log <p1(w)> p(w)dw = /log (M> p(w)dw
p2(w) plwp | wi,,)

p(wp | wnyp)
= /log (W) p(wp | Wy )p(wn,p )dwpdwy,,

= / {/ log <M> p(wsg | leg)de} p(wn,g)dwn,; > 0,
p(wB | wNZB)

(18)

)

where we have used the fact that A \ Nyp is mutually exclusive of Nqig and, crucially, also of Ny
(since Nog C Nyp) to legitimately integrate out wa\w, ;. The final conclusion follows from a customary
application of Jensen’s inequality to show that the inner integral in the last equation is non-negative.
Eq. (18) provides an alternate distribution-free proof of a result for Gaussian likelihoods by Guinness
(Theorem 1 in Guinness, 2018). These results also indicate that the ordering of the variables to
construct the approximation can affect model performance and certain designs to determine the
ordering can produce improved results (as demonstrated in Guinness, 2018). Datta et al. (2016b)
argued against fixing the neighborhoods in spatiotemporal contexts (since neighbors in space and
neighbors in time may not align) and demonstrate a computationally efficient method to learn about
neighbors in spatiotemporal domains.

Finally, we point toward a few future directions of research in this domain. Much of the spatial
literature on modeling massive spatial data have focused upon scalability of models and algorithms.
There is still work to be done on evaluating the inferential performance of these models at such
massive scales. How important is uncertainty quantification at such scales? How do GP based
approaches compare with deep learning with neural networks in spatial analysis? Another area
where the cross-validatory learning approaches for process hyperparameters will struggle is in
multivariate contexts, where the number of hyperparameters is higher than here. These are some
areas of research where we believe the statistical community still has much to offer.
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