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Abstract

In this paper, an ultra-weak discontinuous Galerkin (DG) method is developed to

solve the generalized stochastic Korteweg-de Vries (KdV) equations driven by a mul-

tiplicative temporal noise. This method is an extension of the DG method for purely

hyperbolic equations and shares the advantage and flexibility of the DG method. Sta-

bility is analyzed for the general nonlinear equations. The ultra-weak DG method is

shown to admit the optimal error of order k + 1 in the sense of the spatial L2(0, 2π)-

norm for semi-linear stochastic equations, when polynomials of degree k ≥ 2 are used

in the spatial discretization. A second order implicit-explicit derivative-free time dis-

cretization scheme is also proposed for the matrix-valued stochastic ordinary differen-

tial equations derived from the spatial discretization. Numerical examples using Monte

Carlo simulation are provided to illustrate the theoretical results.
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1 Introduction

The Korteweg-de Vries (KdV) equations were introduced in 1895 by Korteweg and de

Vries [20] to model long, unidirectional, dispersive waves of small amplitude. It was gen-

eralized to study the nonlinear anharmonic lattices [34]. The equations turn out to be not

only good models for water waves, but also very useful approximation models in nonlin-

ear studies which incorporate and balance a weak nonlinearity and weak dispersive effects.

The stochastic KdV equations arise in the propagation of weakly nonlinear waves in a noisy

plasma [6, 18, 30]. It is also of interest in any circumstances when the KdV equations

are used, since the stochastic forcing may represent terms that have been neglected in the

derivation of this ideal model. In this paper we present an ultra-weak discontinuous Galerkin

(DG) method for the following stochastic generalized KdV equation with a periodic boundary

condition and a multiplicative temporal noise:





du = − [uxxx + f(u)x] dt+ g(·, x, t, u) dWt, (x, t) ∈ [0, 2π]× (0, T ];

u(x, 0) = u0(x), x ∈ [0, 2π],
(1.1)

where the terminal time T > 0 is a fixed real number, and {Wt, 0 ≤ t ≤ T} is a standard

one-dimensional Brownian motion on a given probability space (Ω,F ,P). We denote by

{Ft, 0 ≤ t ≤ T} the augmented natural filtration of W . We make the following hypotheses:

(H1) The initial condition u0 ∈ L2(0, 2π).

(H2) The functions f and g are locally Lipschitz continuous, i.e., for any M ∈ N+, there

exists a positive constant L(M) such that, for all (ω, x, t) ∈ Ω × [0, 2π] × [0, T ] and all

(u, u′) ∈ R
2 with |u| ∨ |u′| ≤ M ,

|f(u)− f(u′)| ∨ |g(ω, x, t, u)− g(ω, x, t, u′)| ≤ L(M) |u− u′| .
(H3) The functions f and g are at most linearly growing, i.e. there exists a constant C > 0

such that for any (ω, x, t, u) ∈ Ω× [0, 2π]× [0, T ]× R,

|f(u)| ∨ |g(ω, x, t, u)| ≤ C(1 + |u|).
The existence and uniqueness of solutions for the stochastic KdV equations with a mul-

tiplicative stochastic forcing term involving a temporal white noise was established by de

Bouard and Debussche in [3] (cf. also [4, 15, 17, 18] and the references therein). In most

cases, it is not possible to have explicit solutions to these problems. Thus numerical solutions

of these stochastic partial differential equations (SPDEs) naturally receive a lot of attention.

Concerning numerical schemes for stochastic KdV equations, Debussche and Printems [16]

numerically investigated the influence of an additive noise on the evolution of solutions based

on finite elements and least-squares. By a modified Zabusky-Kruskal finite difference scheme,

Rose [29] discussed the large time behavior of the stochastic KdV equations and verified the

diffusion of solitons. Lin et al. [23] gave numerical solutions of the stochastic KdV equations

for the three cases of additive time-dependent noise, multiplicative space-dependent noise,

and a combination of both, but lacked of any result on stability and error. They employed
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polynomial chaos for discretization in random space, and local discontinuous Galerkin (LDG)

and finite difference for discretization in the physical space. Unlike the plethora of the theo-

retical and perturbation-based works, little attention seemed to be paid to the stability and

error of the high-order approximation schemes for stochastic KdV equations, which are the

main objective of our current paper.

The first DG method was presented by Reed and Hill in [28] for a deterministic time-

independent linear hyperbolic equation in the framework of neutron transport. A major

development of the DG method is the Runge-Kutta DG (RKDG) framework introduced for

nonlinear hyperbolic conservation laws of first order spatial derivatives in a series of papers

by Cockburn et al. [11, 12, 10, 9, 13]. Subsequently, the method was extended to partial

differential equations of order higher than one (e.g. [2, 7, 14, 33]).

In this paper, we extend the ultra-weak DG method to stochastic generalized KdV equa-

tions (1.1). The ultra-weak DGmethod refers to the DG method [31] in which the integration

by parts formula is used repeatedly to transfer all the spatial derivatives from the solution

to the test function in the weak formulations. It can be dated back at least to [5]. In [7],

Cheng and Shu developed an ultra-weak DG method for general time-dependent problems

with higher order spatial derivatives, which can be used to numerically solve the determin-

istic generalized KdV equations. They obtained the L2-norm stability results by carefully

choosing the numerical fluxes resulting from integration by parts. With the help of the local

Gauss-Radau projection, they proved error estimates for nonlinear deterministic equation.

Our numerical scheme is the stochastic counterpart of the above work and shares the fol-

lowing advantages and flexibilities of the classical DG method: (1) it is easy to design high

order approximations, thus allowing efficient p-adaptivity; (2) it is flexible on complicated

geometries, thus allowing efficient h-adaptivity; (3) it is local in data communications, thus

allowing efficient parallel implementations.

There are also some types of DG methods for SPDEs (see [22] and the references therein).

Recently, Li et al. proposed a DG method [21] for nonlinear stochastic hyperbolic conser-

vation laws and an LDG method [22] for nonlinear parabolic SPDEs. By estimating the

quadratic variation process of the approximate solution, they investigated the stability for

fully nonlinear equations and the error estimates for semi-linear equations. Motivated by

these earlier results, in this paper we study the stability for nonlinear KdV equations and

error estimates for semi-linear third-order SPDEs.

The ultra-weak DG method is a scheme for spatial discretization, which needs to be cou-

pled with a high-order time discretization. The explicit methods used in [21, 22] are efficient

for solving first-order SPDEs and are tolerable for second-order SPDEs. However, since the

KdV equations contain third-order spatial derivative, explicit time discretization will suffer

from a stringent time-step restriction ∆t ∼ (∆x)3 for stability. Thus it is natural to consider

an implicit time-marching to get rid of this time-step restriction. In many applications,

the convection terms f(·) are often nonlinear; hence we would like to treat them explicitly

while using implicit time discretization only for the third-order term in the KdV equations.

Such time discretizations are called implicit-explicit (IMEX) time discretizations [1]. Wang
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et al. [32] proposed an IMEX time discretization scheme for LDG method, which is uncon-

ditionally stable for the nonlinear problems. Inspired by them, we give an implementable

second order time discretization for the matrix-valued SDE (6.1), which coincides with the

one for ODEs in [32] for the degenerate case that b(·) ≡ 0.

The paper is organized as follows. In Section 2, we introduce notations, definitions and

auxiliary results used in the paper. In Section 3, we present the ultra-weak DG method for

nonlinear KdV equations (1.1), and study the existence and uniqueness of the solution to the

stochastic differential equations (SDEs) obtained after the spatial discretization. In Section

4, we investigate the L2-stability for the fully nonlinear stochastic equations. In Section

5, we obtain the optimal error estimates (O(hk+1)) for semilinear SPDEs with respect to

spatial L2(0, 2π)-norm. In Section 6, we establish a second-order IMEX derivative-free time

discretization for matrix-valued SDEs to collaborate with the semi-discrete ultra-weak DG

scheme. Finally in Section 7 the paper ends with a series of numerical experiments on some

model problems, which confirm our analytical results.

2 Notations, definitions and auxiliary results

In this section, we introduce notations, definitions, and some auxiliary results.

2.1 Notations

We denote the mesh by Ij =
[
xj− 1

2

, xj+ 1

2

]
, for j = 1, ..., N . The mesh size is denoted by

hj = xj+ 1

2

− xj− 1

2

, with h = max
1≤j≤N

hj being the maximum mesh size. We assume that the

mesh is regular, namely the ratio between the maximum and the minimum mesh sizes stays

bounded during mesh refinements. Denote by P k(I) the totality of all polynomials on I of

the degree up to k for any interval I. We define the piece-wisely polynomial space Vh as

follows:

Vh :=
{
v : v restricted on each Ij lies in P k(Ij) for j = 1, ..., N

}
.

Note that functions in Vh might have discontinuities on an element interface.

We denote by ‖ · ‖ and ‖ · ‖Hm,p, the L2(0, 2π) norm and the Sobolev norm with respect to

the spatial variable x, respectively. For simplicity, by ‖ · ‖Hm , it means ‖ · ‖Hm,2 . We denote

by Sp(Ω× [0, T ];L2(0, 2π)), the space of all adapted continuous processes φ : Ω× [0, T ] −→

L2(0, 2π) such that

(
E

[
sup

0≤t≤T

‖φ(t)‖p
]) 1

p

< ∞. An element of Rk×d is a k × d matrix, and

its Euclidean norm is given by |y| :=
√

trace(yy∗) for y ∈ R
k×d.

The solution of the numerical scheme is denoted by uh, which belongs to the finite element

space Vh. Set u
+
j+ 1

2

:= u(xj+ 1

2

+) and u−
j+ 1

2

:= u(xj+ 1

2

−) .

By C > 0, we denote a generic constant, which in particular does not depend on the

discretization width h and possibly changes from line to line. Since the Itô integral is not
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defined path-wisely, the argument ω of the integrand as a stochastic process will be omitted

in the rest of this paper if there is no danger of confusion.

2.2 The numerical flux

For the convenience of notation we would like to introduce the following numerical flux

related to the ultra-weak DG spatial discretization. The given monotone numerical flux

f̂ (q−, q+) depends on the two values of the function q at the discontinuity point xj+ 1

2

,

namely q±
j+ 1

2

= q
(
x±
j+ 1

2

)
. The numerical flux f̂ (q−, q+) satisfies the following conditions:

(a) it is locally Lipschitz continuous and linearly growing;

(b) it is consistent with the physical flux f(q), i.e., f̂ (q, q) = f(q);

(c) it is nondecreasing in the first argument, and nonincreasing in the second argument.

2.3 Projection properties

Consider the standard L2-projection of a function u with (k + 1)-th continuous derivatives

into space Vh, denoted by P, i.e., for each j,

∫

Ij

[Pu(x)− u(x)] v(x) dx = 0, ∀v ∈ P k(Ij),

and the local Gauss-Radau projection Q into space Vh, which satisfies, for k = 2,





Qu
(
x−
j+ 1

2

)
= u

(
x−
j+ 1

2

)
,

(Qu)x

(
x+
j− 1

2

)
= ux

(
x+
j− 1

2

)
,

(Qu)xx

(
x+
j− 1

2

)
= uxx

(
x+
j− 1

2

)
,

and for k ≥ 3,





∫

Ij

[Qu(x)− u(x)] r(x) dx = 0, ∀r ∈ P k−3(Ij),

Qu
(
x−
j+ 1

2

)
= u

(
x−
j+ 1

2

)
,

(Qu)x

(
x+
j− 1

2

)
= ux

(
x+
j− 1

2

)
,

(Qu)xx

(
x+
j− 1

2

)
= uxx

(
x+
j− 1

2

)
.

(2.1)

In view of Ciarlet [8], we have

‖Pu− u‖+ ‖Qu− u‖ ≤ C ‖u‖Hk+1 h
k+1 (2.2)

for a positive constant C independent of both u and h.
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2.4 Properties of the Itô formula

Finally we list some properties of the stochastic calculus. If X and Y are continuous semi-

martingales, then the Itô formula tells us that

XtYt = X0Y0 +

∫ t

0

Xs dYs +

∫ t

0

Ys dXs + 〈X, Y 〉t ,

where 〈X, Y 〉 is the quadratic covariation process of X and Y . Note that 〈X, Y 〉 = 〈Y,X〉.
For any locally bounded adapted process H , we have

〈∫ ·

0

Hs dXs, Y

〉

t

=

∫ t

0

Hs d 〈X, Y 〉s . (2.3)

Moreover, if X has bounded total variation, we have

〈X, Y 〉 = 0. (2.4)

One can prove the following lemma easily by using the dominated convergence theorem and

the Burkhöder-Davis-Gundy (abbreviated as BDG) inequality.

Lemma 2.1. If E

[(∫ T

0
H2

s ds
) 1

2

]
< ∞, then

{∫ t

0
Hs dWs, 0 ≤ t ≤ T

}
is a martingale.

For more details on the Itô formula, the reader is referred to [27].

3 The ultra-weak DG method for the generalized stochas-

tic KdV equations

3.1 The semi-discrete ultra-weak DG method

In this subsection, we formulate the ultra-weak DG method for the generalized stochastic

KdV equations. We seek an approximation uh to the exact solution u such that for any

(ω, t) ∈ Ω×[0, T ], uh(ω, ·, t) belongs to the finite dimensional space Vh. In order to determine

the approximate solution uh, we first note that by multiplying (1.1) with arbitrary smooth

functions v and q, and integrating over Ij with j = 1, 2, ..., N , we get, after a simple formal

integration by parts,

∫

Ij

v(x)du(ω, x, t) dx =

{∫

Ij

u (ω, x, t) vxxx (x) dx

−uxx

(
ω, xj+ 1

2

, t
)
v
(
x−
j+ 1

2

)
+ uxx

(
ω, xj− 1

2

, t
)
v
(
x+
j− 1

2

)

+ux

(
ω, xj+ 1

2

, t
)
vx

(
x−
j+ 1

2

)
− ux

(
ω, xj− 1

2

, t
)
vx

(
x+
j− 1

2

)

−u
(
ω, xj+ 1

2

, t
)
vxx

(
x−
j+ 1

2

)
+ u

(
ω, xj− 1

2

, t
)
vxx

(
x+
j− 1

2

)
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+

∫

Ij

f (u (ω, x, t)) vx (x) dx

−f
(
u
(
ω, xj+ 1

2

, t
))

v
(
x−
j+ 1

2

)
+ f

(
u
(
ω, xj− 1

2

, t
))

v
(
x+
j− 1

2

)}
dt

+

∫

Ij

g
(
ω, x, t, u(ω, x, t)

)
v(x) dx dWt,

∫

Ij

u(ω, x, 0) q(x) dx =

∫

Ij

u0(x) q(x) dx.

Next, we replace the smooth functions v and q with test functions vh and qh, respectively,

in the finite element space Vh and the exact solution u with the approximation uh. Since the

functions in Vh might have discontinuities on an element interface, we must also replace the

physical fluxes

u
(
ω, xj+ 1

2

, t
)
, ux

(
ω, xj+ 1

2

, t
)
, uxx

(
ω, xj+ 1

2

, t
)

and f
(
u
(
ω, xj+ 1

2

, t
))

with the numerical fluxes

ûj+ 1

2

(ω, t) , ũx,j+ 1

2

(ω, t) , ǔxx,j+ 1

2

(ω, t) and f̂j+ 1

2

(ω, t)

respectively, which will be suitably chosen later. Thus, the approximate solution given by

the ultra-weak DG method is defined as the solution of the following weak formulation:

∫

Ij

vh(x)duh(ω, x, t) dx =

{∫

Ij

uh (ω, x, t) (vh)xxx (x) dx

−ǔxx,j+ 1

2

(ω, t) vh

(
x−
j+ 1

2

)
+ ǔxx,j− 1

2

(ω, t) vh

(
x+
j− 1

2

)

+ũx,j+ 1

2

(ω, t) (vh)x

(
x−
j+ 1

2

)
− ũx,j− 1

2

(ω, t) (vh)x

(
x+
j− 1

2

)

−ûj+ 1

2

(ω, t) (vh)xx

(
x−
j+ 1

2

)
+ ûj− 1

2

(ω, t) (vh)xx

(
x+
j− 1

2

)

+

∫

Ij

f (uh (ω, x, t)) (vh)x (x) dx

−f̂j+ 1

2

(ω, t) vh

(
x−
j+ 1

2

)
+ f̂j− 1

2

(ω, t) vh

(
x+
j− 1

2

)}
dt

+

∫

Ij

g
(
ω, x, t, uh(ω, x, t)

)
vh(x) dx dWt,

∫

Ij

uh(ω, x, 0) qh(x) dx =

∫

Ij

u0(x) qh(x) dx. (3.1)

It only remains to choose suitable numerical fluxes. For j = 0, 1, ..., N , we choose

f̂j+ 1

2

(ω, t) := f̂
(
uh(ω, x

−
j+ 1

2

, t), uh(ω, x
+
j+ 1

2

, t)
)
,
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where the numerical flux f̂(·, ·) is a monotone flux as described in Section 2.2. We also

choose the other numerical fluxes as

ũx,j+ 1

2

(ω, t) := (uh)x

(
ω, x+

j+ 1

2

, t
)
, (3.2)

and

ûj+ 1

2

(ω, t) := uh

(
ω, x−

j+ 1

2

, t
)
, ǔxx,j+ 1

2

(ω, t) := (uh)xx

(
ω, x+

j+ 1

2

, t
)
. (3.3)

Note that, by periodicity, we have

û 1

2

= ûN+ 1

2

, ũx,N+ 1

2

= ũx, 1
2

, ǔxx,N+ 1

2

= ǔxx, 1
2

,

and

f̂ 1

2

= f̂N+ 1

2

= f̂
(
uh(ω, x

−
N+ 1

2

, t), uh(ω, x
+
1

2

, t)
)
.

For simplicity of notation, for j = 1, 2, ..., N and piece-wisely smooth functions u and v,

we define

Hj(u, v) :=

∫

Ij

u (x) vxxx(x) dx− u
(
x−
j+ 1

2

)
vxx

(
x−
j+ 1

2

)
+ u

(
x−
j− 1

2

)
vxx

(
x+
j− 1

2

)

+ux

(
x+
j+ 1

2

)
vx

(
x−
j+ 1

2

)
− ux

(
x+
j− 1

2

)
vx

(
x+
j− 1

2

)

−uxx

(
x+
j+ 1

2

)
v
(
x−
j+ 1

2

)
+ uxx

(
x+
j− 1

2

)
v
(
x+
j− 1

2

)
, (3.4)

and

Hf
j (u, v) :=

∫

Ij

f (u) vxdx− f̂
(
u(x−

j+ 1

2

), u(x+
j+ 1

2

)
)
v
(
x−
j+ 1

2

)

+f̂
(
u(x−

j− 1

2

), u(x+
j− 1

2

)
)
v
(
x+
j− 1

2

)
(3.5)

with the numerical flux f̂(·, ·) being defined in Section 2.2. Then the approximate scheme (3.1)

now reads
∫

Ij

vh(x)duh(ω, x, t) dx =

[
Hj

(
uh(ω, ·, t), vh

)
+Hf

j

(
uh(ω, ·, t), vh

)]
dt

+

∫

Ij

g
(
ω, x, t, uh(ω, x, t)

)
vh(x) dx dWt. (3.6)

Remark 3.1. We could also define the numerical flux (3.3) in an alternative way as follows:

ûj+ 1

2

(ω, t) := uh

(
ω, x+

j+ 1

2

, t
)
, ǔxx,j+ 1

2

(ω, t) := (uh)xx

(
ω, x−

j+ 1

2

, t
)
.

It is crucial that we take the flux ũx as in (3.2) and û, ǔxx from the opposite directions.
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3.2 The stochastic ordinary differential equation derived from the

spatial discretization

The ultra-weak DG method as a spatial discretization, transfers the primal problem into a

system of ordinary stochastic differential equations, which will be specified in this subsection.

For x ∈ Ij with j = 1, 2, ..., N , the numerical solution should have the form

uh(ω, x, t) =

k∑

l=0

ul,j(ω, t)ϕ
j
l (x),

where {ϕj
l , l = 0, 1, ..., k} is an arbitrary basis of P k(Ij).

By periodicity, we define the “ghost” coefficients as follows:

ul,0 = ul,N , ul,N+1 = ul,1.

Our aim is to solve (3.1) to get the coefficients u(ω, t) = [ul,j(ω, t)]l∈{0,...,k},j∈{0,...,N+1}.

For j = 1, 2, ..., N , by taking vh := ϕj
m for m = 0, 1, ..., k in equality (3.1), we have

k∑

n=0

(∫

Ij

ϕj
m(x)ϕ

j
n(x) dx

)
dun,j(ω, t)

=

{∫

Ij

k∑

n=0

un,j(ω, t)ϕ
j
n(x)

(
ϕj
m

)
xxx

(x) dx

−
k∑

n=0

[
un,j+1(ω, t)

(
ϕj+1
n

)
xx

(
xj+ 1

2

)
ϕj
m

(
xj+ 1

2

)
− un,j(ω, t)

(
ϕj
n

)
xx

(
xj− 1

2

)
ϕj
m

(
xj− 1

2

)]

+
k∑

n=0

[
un,j+1(ω, t)

(
ϕj+1
n

)
x

(
xj+ 1

2

) (
ϕj
m

)
x

(
xj+ 1

2

)
− un,j(ω, t)

(
ϕj
n

)
x

(
xj− 1

2

) (
ϕj
m

)
x

(
xj− 1

2

)]

−
k∑

n=0

[
un,j(ω, t)ϕ

j
n

(
xj+ 1

2

) (
ϕj
m

)
xx

(
xj+ 1

2

)
− un,j−1(ω, t)ϕ

j−1
n

(
xj− 1

2

) (
ϕj
m

)
xx

(
xj− 1

2

)]

+

∫

Ij

f

(
k∑

n=0

un,j(ω, t)ϕ
j
n(x)

)
ϕj
mx(x) dx

−f̂

(
k∑

n=0

un,j(ω, t)ϕ
j
n(xj+ 1

2

),
k∑

n=0

un,j+1(ω, t)ϕ
j+1
n (xj+ 1

2

)

)
ϕj
m(xj+ 1

2

)

+f̂

(
k∑

n=0

un,j−1(ω, t)ϕ
j−1
n (xj− 1

2

),
k∑

n=0

un,j(ω, t)ϕ
j
n(xj− 1

2

)

)
ϕj
m(xj− 1

2

)

}
dt

+

∫

Ij

g

(
ω, x, t,

k∑

n=0

un,j(ω, t)ϕ
j
n(x)

)
ϕj
m(x) dx dWt.

The mass matrix Aj := [Aj
nm] with

Aj
nm :=

∫

Ij

ϕj
n(x)ϕ

j
m(x) dx

9



is invertible, and its inverse is denoted by Aj,−1.

Then we obtain the following SDE of u:

du(t) = F
(
u(t)

)
dt+G

(
·, t,u(t)

)
dWt, (3.7)

where for j = 1, 2, ..., N and l = 0, 1, ..., k,

Fl,j (u) :=

∫

Ij

k∑

n=0

un,jϕ
j
n(x)

k∑

m=0

Aj,−1
lm

(
ϕj
m

)
xxx

(x) dx

−
k∑

m=0

Aj,−1
lm

k∑

n=0

[
un,j+1

(
ϕj+1
n

)
xx

(
xj+ 1

2

)
ϕj
m

(
xj+ 1

2

)
− un,j

(
ϕj
n

)
xx

(
xj− 1

2

)
ϕj
m

(
xj− 1

2

)]

+

k∑

m=0

Aj,−1
lm

k∑

n=0

[
un,j+1

(
ϕj+1
n

)
x

(
xj+ 1

2

) (
ϕj
m

)
x

(
xj+ 1

2

)
− un,j

(
ϕj
n

)
x

(
xj− 1

2

) (
ϕj
m

)
x

(
xj− 1

2

)]

−
k∑

m=0

Aj,−1
lm

k∑

n=0

[
un,jϕ

j
n

(
xj+ 1

2

) (
ϕj
m

)
xx

(
xj+ 1

2

)
− un,j−1ϕ

j−1
n

(
xj− 1

2

) (
ϕj
m

)
xx

(
xj− 1

2

)]

+

∫

Ij

f

(
k∑

n=0

un,jϕ
j
n(x)

)
k∑

m=0

Aj,−1
lm ϕj

mx(x) dx

−f̂

(
k∑

n=0

un,jϕ
j
n(xj+ 1

2

),

k∑

n=0

un,j+1ϕ
j+1
n (xj+ 1

2

)

)
k∑

m=0

Aj,−1
lm ϕj

m(xj+ 1

2

)

+f̂

(
k∑

n=0

un,j−1ϕ
j−1
n (xj− 1

2

),

k∑

n=0

un,jϕ
j
n(xj− 1

2

)

)
k∑

m=0

Aj,−1
lm ϕj

m(xj− 1

2

)

and

Gl,j (ω, t,u) :=

∫

Ij

g

(
ω, x, t,

k∑

n=0

un,jϕ
j
n(x)

)
k∑

m=0

Aj,−1
lm ϕj

m(x) dx,

with periodic settings Fl,0 = Fl,N , Fl,N+1 = Fl,1, Gl,0 = Gl,N , and Gl,N+1 = Gl,1.

Lemma 3.1. Let Assumption (H2) hold. Then for any N ∈ N+, F and G are locally

Lipschitz continuous in the variable u, i.e., for any M ∈ N+, there exists a positive constant

LN (M) such that, for all (ω, t) ∈ Ω× [0, T ] and all u,u′ ∈ R
(k+1)×(N+2) with |u| ∨ |u′| ≤ M ,

|F (u)− F (u′)| ∨ |G (ω, t,u)−G (ω, t,u′)| ≤ LN (M) |u− u′| ,

where the constant LN(M) may depend on N .

Proof. We only show the locally Lipschitz continuity of G for fixed N ∈ N, and that

of F can be proved in a similar way. Note that for any l = 0, 1, ..., k, j = 1, 2, ..., N ,

u,u′ ∈ R
(k+1)×(N+2) with |u| ∨ |u′| ≤ M ,

|Gl,j(ω, t,u)−Gl,j(ω, t,u
′)|

10



=

∣∣∣∣∣

∫

Ij

[
g

(
ω, x, t,

k∑

n=0

un,jϕ
j
n(x)

)
− g

(
ω, x, t,

k∑

n=0

u′
n,jϕ

j
n(x)

)]
×

k∑

m=0

Aj,−1
lm ϕj

m(x) dx

∣∣∣∣∣

≤ CN(M)

k∑

n=0

∫

Ij

∣∣ϕj
n(x)

∣∣
k∑

m=0

∣∣ϕj
m(x)

∣∣ dx
∥∥Aj,−1

∥∥
∞

∣∣un,j − u′
n,j

∣∣

≤ CN(M)
k∑

n=0

∣∣un,j − u′
n,j

∣∣ ≤ CN(M)

(
k∑

n=0

∣∣un,j − u′
n,j

∣∣2
) 1

2

,

where CN(M) is a constant depending on N and M , and possibly changes from line to line.

It leads to that

|G (ω, t,u)−G (ω, t,u′)|2 =
k∑

l=0

N+1∑

j=0

|Gl,j(ω, t,u)−Gl,j(ω, t,u
′)|2

≤
k∑

l=0

N+1∑

j=0

CN(M)2
k∑

n=0

∣∣un,j − u′
n,j

∣∣2 = (k + 1)CN(M)2 |u− u′|2 .

Thus for any N,M ∈ N+, there exists a constant LN (M) such that, for all (ω, t) ∈
Ω× [0, T ] and all u,u′ ∈ R

(k+1)×(N+2) with |u| ∨ |u′| ≤ M ,

|G (ω, t,u)−G (ω, t,u′)| ≤ LN(M) |u− u′| .

The proof is complete.

Similar to the proof of Lemma 3.1, we could obtain that the coefficients of SDE (3.7)

satisfy the linearly growing condition.

Lemma 3.2. Let Assumption (H3) hold. Then for any N ∈ N+, F and G are linearly

growing in the variable u, i.e., there exists a positive constant CN such that, for all (ω, t) ∈
Ω× [0, T ] and all u ∈ R

(k+1)×(N+2),

|F (u)| ∨ |G (ω, t,u)| ≤ CN (1 + |u|) ,

where the constant CN may depend on N .

By (3.1), the initial condition of the SDE (3.7) is determined by u0 as follows:

ul,j(ω, 0) :=
k∑

m=0

Aj,−1
lm

∫

Ij

u0(x)ϕ
j
m(x) dx. (3.8)

In the assumption (H1), u0 is assumed to be a deterministic function. Then we know

that u(0) is a deterministic matrix, which is Lp(Ω)-integrable for any p ≥ 1. According to

the classical results of stochastic differential equations (see Mao [24]), if the initial value of

the SDE is Lp(Ω)-integrable and the coefficients of the SDE are locally Lipschitz continuous

and linearly growing, then the considered SDE admits a unique Lp-solution. Thus, for any

fixed N ∈ N+, SDE (3.7) has a unique solution {u(t)}0≤t≤T such that for any p ≥ 1,

E

[
sup

0≤t≤T

|u(t)|p
]
< ∞. (3.9)

11



4 Stability analysis for the fully nonlinear equations

We have known that the approximating equation (3.1) has a unique solution uh ∈ Vh for any

fixed N ∈ N+. Next we give the stability result for the numerical solutions.

Theorem 4.1. Suppose that the assumptions (H1)-(H3) are satisfied. Then there exists a

constant C > 0 which is independent of h, such that

sup
0≤t≤T

E
[
‖uh(·, t)‖2

]
≤ C

(
1 + ‖uh(·, 0)‖2

)
,

where the constant C may depend on the terminal time T .

Proof. For any N ∈ N+ and (ω, t) ∈ Ω× [0, T ], by setting vh = uh(ω, ·, t) in (3.6) we have

∫

Ij

uh(ω, x, t)duh(ω, x, t) dx =

[
Hj

(
uh(ω, ·, t), uh(ω, ·, t)

)
+Hf

j

(
uh(ω, ·, t), uh(ω, ·, t)

)]
dt

+

∫

Ij

g
(
ω, x, t, uh(ω, x, t)

)
uh(ω, x, t) dx dWt, (4.1)

where the functionals Hj and Hf
j are defined by (3.4) and (3.5), respectively.

According to the Itô formula, we have for any x ∈ [0, 2π],

|uh(x, t)|2 = |uh(x, 0)|2 + 2

∫ t

0

uh(x, s) duh(x, s) + 〈uh(x, ·), uh(x, ·)〉t .

Thus, after summarizing on j from 1 to N in (4.1), integrating in time from 0 to t and

taking expectation we have

E
[
‖uh(·, t)‖2

]
= ‖uh(·, 0)‖2 + T1(t) + T2(t) + T3(t) + T4(t),

where

T1(t) = E

[∫ 2π

0

〈uh(x, ·), uh(x, ·)〉t dx
]
,

T2(t) = 2E

[∫ t

0

∫ 2π

0

g
(
x, s, uh(x, s)

)
uh(x, s) dx dWs

]
,

T3(t) = 2E

[∫ t

0

N∑

j=1

Hj

(
uh (ω, ·, s) , uh (ω, ·, s)

)
ds

]
,

and

T4(t) = 2E

[∫ t

0

N∑

j=1

Hf
j

(
uh (ω, ·, s) , uh (ω, ·, s)

)
ds

]
.

Terms Ti(t) for i = 1, . . . , 4 are estimated as follows.

• Estimate of T1(t).
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Compared with the deterministic case, the quadratic variation term is an essential ad-

ditional term. The approximating solution uh is given by a weak formulation (3.6) and is

not easy to derive an explicit representation. Thus it is difficult to directly estimate the

quadratic variation of uh. However, we could use Fubini theorem and stochastic calculus to

estimate the spatial integral of the quadratic variation. In view of (3.6), we have for any

rh ∈ Vh,

∫

Ij

rh(x)uh(x, t) dx

=

∫

Ij

rh(x)u0(x) dx+

∫ t

0

[
Hj

(
uh(ω, ·, s), rh

)
+Hf

j

(
uh(ω, ·, s), rh

)]
ds

+

∫ t

0

∫

Ij

g
(
x, s, uh(x, s)

)
rh(x) dx dWs.

Thus by (2.4), for any continuous semimartingale Y , we obtain

∫

Ij

rh(x) 〈uh(x, ·), Y 〉t dx =

〈∫

Ij

rh(x)uh(x, ·) dx, Y
〉

t

=

〈∫ ·

0

∫

Ij

g
(
x, s, uh(x, s)

)
rh(x) dx dWs, Y

〉

t

. (4.2)

It turns out that

∫

Ij

〈uh(x, ·), uh(x, ·)〉t dx =

∫

Ij

〈
uh(x, ·),

k∑

l=0

ul,j(·)ϕj
l (x)

〉

t

dx

=

k∑

l=0

∫

Ij

ϕj
l (x) 〈uh(x, ·),ul,j(·)〉t dx=

k∑

l=0

〈∫ ·

0

∫

Ij

g
(
x, s, uh(x, s)

)
ϕj
l (x)dxdWs,ul,j(·)

〉

t

.

According to (2.3) and the properties of the L2 projection, we have

∫

Ij

〈uh(x, ·), uh(x, ·)〉t dx

=
k∑

l=0

∫ t

0

∫

Ij

g
(
x, s, uh(x, s)

)
ϕj
l (x) dx d 〈W,ul,j(·)〉s

=

∫

Ij

∫ t

0

k∑

l=0

P
[
g
(
·, s, uh(·, s)

)]
(x)ϕj

l (x) d 〈W,ul,j(·)〉s dx

=

∫

Ij

∫ t

0

P
[
g
(
·, s, uh(·, s)

)]
(x) d

〈
W,

k∑

l=0

ul,j(·)ϕj
l (x)

〉

s

dx

=

∫

Ij

〈∫ ·

0

P
[
g
(
·, s, uh(·, s)

)]
(x) dWs, uh(x, ·)

〉

t

dx.
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Since P
[
g
(
·, s, uh(·, s)

)]
∈ Vh for any (ω, s) ∈ Ω× [0, T ], we have

P
[
g
(
ω, ·, s, uh(ω, ·, s)

)]
(x) =

k∑

l=0

gl,j(ω, s)ϕ
j
l (x), x ∈ Ij .

By (4.2), we get the spatial integral of quadratic variation of approximating solution uh:

∫

Ij

〈uh(x, ·), uh(x, ·)〉t dx =

∫

Ij

〈∫ ·

0

k∑

l=0

gl,j(s)ϕ
j
l (x) dWs, uh(x, ·)

〉

t

dx

=
k∑

l=0

〈∫ ·

0

∫

Ij

g
(
x, s, uh(x, s)

)
ϕj
l (x) dx dWs,

∫ ·

0

gl,j(s) dWs

〉

t

=

k∑

l=0

∫ t

0

∫

Ij

g
(
x, s, uh(x, s)

)
ϕj
l (x) dxgl,j(s) d 〈W,W 〉s

=

∫ t

0

∫

Ij

g
(
x, s, uh(x, s)

)
P
[
g
(
·, s, uh(·, s)

)]
(x) dx ds. (4.3)

After summarizing over j from 1 to N , by Cauchy-Schwartz’s inequality we have

∫ 2π

0

〈uh(x, ·), uh(x, ·)〉t dx ≤
∫ t

0

∫ 2π

0

∣∣g
(
x, s, uh(x, s)

)∣∣2 dx ds.

According to (H3), after taking expectation, we have

T1(t) = E

[∫ 2π

0

〈uh(x, ·), uh(x, ·)〉t dx
]
≤ E

[∫ t

0

∫ 2π

0

∣∣g
(
x, s, uh(x, s)

)∣∣2 dx ds

]

≤ C + C

∫ t

0

E
[
‖uh(·, s)‖2

]
ds.

• Estimate of T2(t).

From (3.9), we have for any fixed N ∈ N+,

E

[
sup

0≤s≤T

‖uh(·, s)‖2
]
< ∞. (4.4)

Thus by (H3) and Cauchy-Schwartz’s inequality we know that

E



(∫ T

0

∣∣∣∣
∫ 2π

0

g
(
x, s, uh(x, s)

)
uh(x, s) dx

∣∣∣∣
2

ds

) 1

2




≤ E

[(∫ T

0

‖uh(·, s)‖2
∫ 2π

0

∣∣g
(
x, s, uh(x, s)

)∣∣2 dxds

) 1

2

]

≤ CE

[
sup

0≤s≤T

‖uh(·, s)‖
(∫ T

0

∫ 2π

0

(
1 + |uh(x, s)|2

)
dxds

) 1

2

]
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≤ C

(
E

[
sup

0≤s≤T

‖uh(·, s)‖2
]) 1

2
(
E

[∫ T

0

(
1 + ‖uh(·, s)‖2

)
ds

]) 1

2

< ∞.

According to Lemma 2.1, the process

{∫ t

0

∫ 2π

0

g
(
x, s, uh(x, s)

)
uh(x, s) dx dWs, 0 ≤ t ≤ T

}

is a martingale. It turns out that

T2(t) = 2E

[∫ t

0

∫ 2π

0

g
(
x, s, uh(x, s)

)
uh(x, s) dx dWs

]
= 0.

• Estimate of T3(t).

For any u ∈ Vh, we have

Hj(u, u) =

∫

Ij

u (x) uxxx(x) dx− u
(
x−
j+ 1

2

)
uxx

(
x−
j+ 1

2

)
+ u

(
x−
j− 1

2

)
uxx

(
x+
j− 1

2

)

+ux

(
x+
j+ 1

2

)
ux

(
x−
j+ 1

2

)
− ux

(
x+
j− 1

2

)
ux

(
x+
j− 1

2

)

−uxx

(
x+
j+ 1

2

)
u
(
x−
j+ 1

2

)
+ uxx

(
x+
j− 1

2

)
u
(
x+
j− 1

2

)

= −
∫

Ij

ux (x) uxx(x) dx+ u
(
x−
j+ 1

2

)
uxx

(
x−
j+ 1

2

)
− u

(
x+
j− 1

2

)
uxx

(
x+
j− 1

2

)

−u
(
x−
j+ 1

2

)
uxx

(
x−
j+ 1

2

)
+ u

(
x−
j− 1

2

)
uxx

(
x+
j− 1

2

)

+ux

(
x+
j+ 1

2

)
ux

(
x−
j+ 1

2

)
− ux

(
x+
j− 1

2

)
ux

(
x+
j− 1

2

)

−uxx

(
x+
j+ 1

2

)
u
(
x−
j+ 1

2

)
+ uxx

(
x+
j− 1

2

)
u
(
x+
j− 1

2

)

= −1

2

∣∣∣ux

(
x−
j+ 1

2

)∣∣∣
2

+
1

2

∣∣∣ux

(
x+
j− 1

2

)∣∣∣
2

+ u
(
x−
j− 1

2

)
uxx

(
x+
j− 1

2

)

+ux

(
x+
j+ 1

2

)
ux

(
x−
j+ 1

2

)
− ux

(
x+
j− 1

2

)
ux

(
x+
j− 1

2

)
− uxx

(
x+
j+ 1

2

)
u
(
x−
j+ 1

2

)
.

By periodicity, we get

N∑

j=1

Hj(u, u) =

N∑

j=1

[
− 1

2

∣∣∣ux

(
x−
j+ 1

2

)∣∣∣
2

+
1

2

∣∣∣ux

(
x+
j+ 1

2

)∣∣∣
2

+ u
(
x−
j+ 1

2

)
uxx

(
x+
j+ 1

2

)

+ux

(
x+
j+ 1

2

)
ux

(
x−
j+ 1

2

)
−
∣∣∣ux

(
x+
j+ 1

2

)∣∣∣
2

− uxx

(
x+
j+ 1

2

)
u
(
x−
j+ 1

2

)]

=
N∑

j=1

[
− 1

2

∣∣∣ux

(
x−
j+ 1

2

)∣∣∣
2

− 1

2

∣∣∣ux

(
x+
j+ 1

2

)∣∣∣
2

+ ux

(
x+
j+ 1

2

)
ux

(
x−
j+ 1

2

)]

= −1

2

N∑

j=1

∣∣∣ux

(
x−
j+ 1

2

)
− ux

(
x+
j+ 1

2

)∣∣∣
2

.
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Thus for any u ∈ Vh

N∑

j=1

Hj(u, u) ≤ 0. (4.5)

It gives that

T3(t) = 2E

[∫ t

0

N∑

j=1

Hj

(
uh (ω, ·, s) , uh (ω, ·, s)

)
ds

]
≤ 0.

• Estimate of T4(t).

For any u ∈ Vh, we have

N∑

j=1

Hf
j

(
u, u

)
=

N∑

j=1

[∫

Ij

f (u)uxdx− f̂
(
u−
j+ 1

2

, u+
j+ 1

2

)
u−
j+ 1

2

+ f̂
(
u−
j− 1

2

, u+
j− 1

2

)
u+
j− 1

2

]

=

N∑

j=1

[
φ
(
u−
j+ 1

2

)
− φ

(
u+
j− 1

2

)
− f̂j+ 1

2

u−
j+ 1

2

+ f̂j− 1

2

u+
j− 1

2

]

=

N∑

j=1

(
F̂j+ 1

2

− F̂j− 1

2

+Θj− 1

2

)
,

where

φ(u) =

∫ u

f(a) da,

F̂j+ 1

2

=
(
φ(u−)− f̂ · u−

)
j+ 1

2

,

Θj− 1

2

=
[
φ(u−)− φ(u+) + f̂ ·

(
u+ − u−)]

j− 1

2

.

By periodicity, we have
N∑

j=1

(
F̂j+ 1

2

− F̂j− 1

2

)
= 0.

Note that

Θ = φ(u−)− φ(u+) + f̂(u−, u+)
(
u+ − u−)

= −φ′(ξ)(u+ − u−) + f̂(u−, u+)
(
u+ − u−)

=
(
f̂(u−, u+)− f̂(ξ, ξ)

)(
u+ − u−)

=
(
f̂(u−, u+)− f̂(u−, ξ) + f̂(u−, ξ)− f̂(ξ, ξ)

)(
u+ − u−) ≤ 0,

where ξ is a real number between u− and u+. Thus for any u ∈ Vh

N∑

j=1

Hf
j

(
u, u

)
≤ 0. (4.6)
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It turns out that

T4(t) = 2E

[∫ t

0

N∑

j=1

Hf
j

(
uh (ω, ·, s) , uh (ω, ·, s)

)
ds

]
≤ 0.

Then there exists a positive constant C which is independent of h, such that for any

t ∈ [0, T ],

E
[
‖uh(·, t)‖2

]
≤ ‖uh(·, 0)‖2 + C + C

∫ t

0

E
[
‖uh(·, s)‖2

]
ds.

Using Gronwall’s inequality, we have for any t ∈ [0, T ],

E
[
‖uh(·, t)‖2

]
≤

(
C + ‖uh(·, 0)‖2

)
eCt.

This completes the proof.

5 Optimal error estimates for semilinear equations

In this section, we consider the convergence of numerical method for strong solutions with

enough smoothness and integrability. We prove the optimal error estimates (O(hk+1)) with

respect to spatial L2(0, 2π)-norm for the semilinear case that f(u) := 0,





du = −uxxx dt+ g(·, x, t, u) dWt, (x, t) ∈ [0, 2π]× (0, T ];

u(x, 0) = u0(x), x ∈ [0, 2π].
(5.1)

In the semilinear case, the ultra-weak DG method (3.1) can be written as follows. For

any (ω, t) ∈ Ω× [0, T ], find uh(ω, ·, t) ∈ Vh such that for any vh ∈ Vh,

∫

Ij

vh(x)duh(ω, x, t) dx = Hj

(
uh(ω, ·, t), vh

)
dt+

∫

Ij

g
(
ω, x, t, uh(ω, x, t)

)
vh(x)dxdWt, (5.2)

where the bilinear functional Hj is defined by (3.4). Then, we state the error estimates of

the semi-discrete ultra-weak DG scheme (5.2).

Theorem 5.1. Suppose that u0 ∈ Hk+1 with k ≥ 2, the coefficient g(·) is uniformly Lipschitz

continuous in u, and equation (5.1) has a unique strong solution u(·) such that

(H4) u(·) ∈ L2
(
Ω× [0, T ];Hk+4

)⋂
S2 (Ω× [0, T ];L2)

⋂
L∞ (

0, T ;L2(Ω;Hk+1)
)
;

(H5) g (·, u(·)) ∈ L2
(
Ω× [0, T ];Hk+1

)
.

Then, there is a positive constant C which is independent of h, such that

sup
t∈[0,T ]

(
E
[
‖u(·, t)− uh(·, t)‖2

]) 1

2 ≤ Chk+1, (5.3)

where the constant C may depend on the terminal time T .
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Proof. Note that the scheme (5.2) is also satisfied when the numerical solution uh(·) is

replaced with the exact solution u(·): for any (ω, t) ∈ Ω× [0, T ] and vh ∈ Vh, we have

∫

Ij

vh(x)du(ω, x, t) dx = Hj

(
u(ω, ·, t), vh

)
dt+

∫

Ij

g
(
ω, x, t, u(ω, x, t)

)
vh(x) dx dWt.

Define

e(ω, x, t) := (u− uh)(ω, x, t) = (ξ − η)(ω, x, t),

with

ξ(ω, x, t) := (Qu− uh)(ω, x, t), η(ω, x, t) := (Qu− u)(ω, x, t)

where Q is the projection from Hk+1 onto Vh defined in (2.1).

Then the error equation is

∫

Ij

vh(x) d e(ω, x, t) dx

= Hj

(
e(ω, ·, t), vh

)
dt+

∫

Ij

[
g
(
ω, x, t, u(ω, x, t)

)
− g

(
ω, x, t, uh(ω, x, t)

)]
vh(x)dxdWt.

Taking vh = ξ(ω, ·, t), we have

∫

Ij

ξ(x, t)dξ(x, t)dx =

∫

Ij

ξ(x, t)dη(x, t)dx+

[
Hj

(
ξ(·, t), ξ(·, t)

)
−Hj

(
η(·, t), ξ(·, t)

)]
dt

+

∫

Ij

[
g
(
x, t, u(x, t)

)
− g

(
x, t, uh(x, t)

)]
ξ(x, t) dx dWt.

Using the Itô’s formula, we have for any x ∈ [0, 2π],

d |ξ(x, t)|2 = 2ξ(x, t) dξ(x, t) + d 〈ξ(x, ·), ξ(x, ·)〉t .

Then, we have

E
[
‖ξ(·, t)‖2

]
= ‖ξu(·, 0)‖2 + T1(t) + T2(t) + T3(t) + T4(t) + T5(t)

where

T1(t) := 2E

[∫ 2π

0

∫ t

0

ξ(x, s)dη(x, s) dx

]
,

T2(t) := E

[∫ 2π

0

〈ξ(x, ·), ξ(x, ·)〉t dx
]
,

T3(t) := 2E

[∫ t

0

N∑

j=1

Hj

(
ξ(·, s), ξ(·, s)

)
ds

]
,

T4(t) := −2E

[∫ t

0

N∑

j=1

Hj

(
η(·, s), ξ(·, s)

)
ds

]
,

18



and

T5(t) := 2E

[∫ t

0

∫ 2π

0

[
g (x, s, u(x, s))− g (x, s, uh(x, s))

]
ξ(x, s) dx dWs

]
.

The terms Ti(t) for i = 1, . . . , 5 are estimated as follows.

• Estimate of T1(t).

In view of (5.1), we have

dt(Qu)(·, t) = Q(dtu)(·, t) = −Q [uxxx(·, t)] dt+Q [g(·, t, u(·, t))]dWt. (5.4)

Therefore,

dη(·, t) = −(Quxxx − uxxx)(·, t) dt+ (Q− I)g(·, t, u(·, t)) dWt

with I being the identity operator.

It turns out that
∫ 2π

0

ξ(x, t) dη(x, t) dx = −
∫ 2π

0

ξ(x, t) (Quxxx − uxxx) (x, t)dxdt

+

∫ 2π

0

ξ(x, t) (Q− I)
[
g(·, t, u(·, t))

]
(x) dx dWt.

Since u(·) ∈ S2 (Ω× [0, T ];L2), we have Qu(·) ∈ S2 (Ω× [0, T ];L2). By (4.4), we get

E

[
sup

0≤s≤T

‖ξ(·, s)‖2
]
< ∞.

Thus by virtue of (H3) and Cauchy-Schwartz’s inequality we know that

E



(∫ T

0

∣∣∣∣
∫ 2π

0

ξ(x, s) (Q− I)
[
g(·, t, u(·, s))

]
(x) dx

∣∣∣∣
2

ds

) 1

2




≤ E

[(∫ T

0

‖ξ(·, s)‖2
∫ 2π

0

∣∣(Q− I)
[
g(·, s, u(·, s))

]∣∣2 (x) dxds
) 1

2

]

≤ CE

[
sup

0≤s≤T

‖ξ(·, s)‖
(∫ T

0

∫ 2π

0

(
1 + |u(x, s)|2

)
dxds

) 1

2

]

≤ C

(
E

[
sup

0≤s≤T

‖ξ(·, s)‖2
]) 1

2
(
E

[∫ T

0

(
1 + ‖u(·, s)‖2

)
ds

]) 1

2

< ∞. (5.5)

According to Lemma 2.1, we could verify that the process

∫ t

0

∫ 2π

0

ξ(x, s) (Q− I)
[
g(·, s, u(·, s))

]
(x) dx dWs, 0 ≤ t ≤ T
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is a martingale. Thus according to the property of the projection (2.2), we have

T1(t) = −2E

[ ∫ t

0

∫ 2π

0

ξ(x, s) (Quxxx − uxxx) (x, s)dxds

]

≤ E

[∫ t

0

(
‖ξ (·, s)‖2 + ‖(Quxxx − uxxx) (·, s)‖2

)
ds

]

≤
∫ t

0

E ‖ξ (·, s)‖2 ds+ Ch2k+2
E

[∫ t

0

‖uxxx (·, s)‖2Hk+1 ds

]
.

Since

u ∈ L2
(
Ω× [0, T ];Hk+4

)
,

we have

T1(t) ≤
∫ t

0

E ‖ξ (·, s)‖2 ds+ C h2k+2.

• Estimate of T2(t).

In view of (5.4), we have that for any vh ∈ Vh,

∫

Ij

vh(x)dQu(x, t) dx

= −
∫

Ij

vh(x)Q [uxxx(·, t)] (x)dxdt+
∫

Ij

vh(x)Q
[
g(·, t, u(·, t)

]
(x) dx dWt. (5.6)

From (5.2) and (5.6), we obtain that for any vh ∈ Vh,

∫

Ij

vh(x)dξ(x, t)dx = −
{∫

Ij

vh(x)Q [uxxx(·, t)] (x) dx+Hj

(
uh(·, t), vh

)}
dt

+

∫

Ij

vh(x)
{
Q
[
g(·, t, u(·, t)

]
− g

(
·, t, uh(·, t)

)}
(x)dxdWt. (5.7)

Since ξ(ω, ·, t) ∈ Vh for any (ω, t) ∈ Ω× [0, T ], then ξ(·) should have the form

ξ(ω, x, t) =

k∑

l=0

ξ̃l,j(ω, t)ϕ
j
l (x), x ∈ Ij .

Similar to (4.3), we have from (5.7) that

∫

Ij

〈ξ(x, ·), ξ(x, ·)〉t dx =

∫ t

0

∫

Ij

(
P
{
Q
[
g(·, s, u(·, s))

]
− g

(
·, s, uh(·, s)

)}
(x)

×
{
Q
[
g(·, s, u(·, s))

]
− g

(
·, s, uh(·, s)

)}
(x)

)
dxds

≤
∫ t

0

∫

Ij

∣∣Q
[
g(·, s, u(·, s))

]
− g

(
·, s, uh(·, s)

)∣∣2(x) dx ds.
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Then we get

T2(t) = E

[∫ 2π

0

〈ξ(x, ·), ξ(x, ·)〉t dx
]

≤ E

[∫ t

0

∫ 2π

0

∣∣Q
[
g(·, s, u(·, s))

]
− g

(
·, s, uh(·, s)

)∣∣2(x) dx ds
]

≤ 2E

[∫ t

0

∫ 2π

0

∣∣ (Q− I) g
(
·, s, u(·, s)

)∣∣2(x) dx ds
]

+2E

[∫ t

0

∫ 2π

0

∣∣g
(
x, s, u(x, s)

)
− g

(
x, s, uh(x, s)

)∣∣2 dx ds
]
.

According to (H5) and the property of the projection, we have

T2(t) ≤ Ch2k+2
E

[∫ t

0

‖g(·, s, u(·, s))‖2Hk+1 ds

]

+CE

∫ t

0

∫ 2π

0

[
|η(x, s)|2 + |ξ(x, s)|2

]
dx ds

≤ Ch2k+2 + Ch2k+2
E

[∫ t

0

‖u(·, s)‖2Hk+1 ds

]
+ CE

[∫ t

0

‖ξ(·, s)‖2 ds

]
.

Since u ∈ L2
(
Ω× [0, T ];Hk+4

)
⊆ L2

(
Ω× [0, T ];Hk+1

)
, we have

T2(t) ≤ Ch2k+2 + C

∫ t

0

E
[
‖ξ(·, s)‖2

]
ds.

• Estimate of T3(t).

According to (4.5), for any u ∈ Vh, we have

N∑

j=1

Hj(u, u) ≤ 0.

Since ξ(ω, ·, t) is in Vh for any (ω, t) ∈ Ω× [0, T ], we get

T3(t) = 2E

[∫ t

0

N∑

j=1

Hj

(
ξ(·, s), ξ(·, s)

)
ds

]
≤ 0,

• Estimate of T4(t).

By the definition of the projections Q (see (2.1)), we see that for any (ω, t) ∈ Ω× [0, T ],

j = 1, 2, ..., N ,




∫

Ij

η (ω, x, t) r(x) dx = 0, ∀r ∈ P k−3(Ij),

η
(
ω, x−

j+ 1

2

, t
)
= 0,

ηx

(
ω, x+

j− 1

2

, t
)
= 0,

ηxx

(
ω, x+

j− 1

2

, t
)
= 0.

(5.8)
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According to (3.4), we have for any v ∈ Vh,

Hj (η (ω, ·, t) , v) =

∫

Ij

η (ω, x, t) vxxx(x) dx

−η
(
ω, x−

j+ 1

2

, t
)
vxx

(
x−
j+ 1

2

)
+ η

(
ω, x−

j− 1

2

, t
)
vxx

(
x+
j− 1

2

)

+ηx

(
ω, x+

j+ 1

2

, t
)
vx

(
x−
j+ 1

2

)
− ηx

(
ω, x+

j− 1

2

, t
)
vx

(
x+
j− 1

2

)

−ηxx

(
ω, x+

j+ 1

2

, t
)
v
(
x−
j+ 1

2

)
+ ηxx

(
ω, x+

j− 1

2

, t
)
v
(
x+
j− 1

2

)
= 0.

Since ξ(ω, ·, t) ∈ Vh, we have

T4(t) = −2E

[∫ t

0

N∑

j=1

Hj

(
η(·, s), ξ(·, s)

)
ds

]
= 0.

• Estimate of T5(t).

By virtue of (4.4) and u(·) ∈ S2 (Ω× [0, T ];L2), similar to (5.5), we get

E



(∫ T

0

∣∣∣∣
∫ 2π

0

[g (x, s, u(x, s)))− g (x, s, uh(x, s))] ξ(x, s) dx

∣∣∣∣
2

ds

) 1

2


 < ∞.

According to Lemma 2.1, we see that the process
∫ t

0

∫ 2π

0

[g (x, s, u(x, s)))− g (x, s, uh(x, s))] ξ(x, s) dxdWs, 0 ≤ t ≤ T

is a martingale. Thus,

T5(t) = 2E

[∫ t

0

∫ 2π

0

[
g (x, s, u(x, s))− g (x, s, uh(x, s))

]
ξ(x, s) dx dWs

]
= 0.

Concluding the above, we have

E
[
‖ξ(·, t)‖2

]
≤ ‖ξ(·, 0)‖2 + Ch2k+2 + C

∫ t

0

E
[
‖ξ(·, s)‖2

]
ds.

Since ‖ξ(·, 0)‖ = ‖Qu0 − Pu0‖ ≤ Chk+1 ‖u0‖Hk+1 , we have from Gronwall’s inequality

that
(
E
[
‖ξ(·, t)‖2

]) 1

2 ≤ Chk+1eCt.

Since u ∈ L∞ (
0, T ;L2(Ω;Hk+1)

)
, we have

(
E
[
‖η(·, t)‖2

]) 1

2 ≤ C
(
E
[
‖u(·, t)‖2Hk+1

]) 1

2 hk+1 ≤ Chk+1.

It turns out that
(
E
[
‖u(·, t)− uh(·, t)‖2

]) 1

2 ≤
(
E
[
‖ξ(·, t)‖2

]) 1

2 +
(
E
[
‖η(·, t)‖2

]) 1

2 ≤ CeCthk+1.
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Remark 5.1. It should be pointed out that the regularity condition (H4) seems to be stringent.

We find no literature on the regularity of a strong solution to equation (5.1). However, our

examples (see (7.1), (7.2) and (7.3)) demonstrate that there is a sufficiently broad class of

problems satisfying assumption (H4), as long as the corresponding deterministic initial values

u0 have enough regularities.

On the other hand, in practice if such regularities could not be achieved, we could consider

the weak version of the scheme. We only need to assume that the coefficient g(·) satisfies

some regularity such that equation (5.1) has a unique strong solution u(·) and the processes
∫ t

0

∫

Ij

g(x, s, u(x, s)) dx dWs,

∫ t

0

∫

Ij

g(x, s, uh(x, s))vh(x) dx dWs, 0 ≤ t ≤ T

are martingales. Then by taking expectation on both sides of (5.1) and (5.2), we get




ūt = −ūxxx, (x, t) ∈ [0, 2π]× (0, T ];

ū(x, 0) = u0(x), x ∈ [0, 2π].
(5.9)

and ∫

Ij

vh(x) (ūh)t (x, t) dx = Hj

(
ūh(·, t), vh

)
, (5.10)

where ū = E [u] and ūh = E [uh]. We see that (5.9) is the simple third-order deterministic

PDE and (5.10) is the corresponding classical ultra-weak DG method. In this case, though

we could not get the strong result (5.3), we still could obtain the weak result without (H4)

and (H5)

sup
t∈[0,T ]

‖E [u(·, t)− uh(·, t)]‖ ≤ Chk+1.

Remark 5.2. In the estimation of T4(t), it is essential to set k ≥ 2 to get the error estimate.

If k < 2, then we could not well define the projection Q as (2.1), which leads to that (5.8)

will not hold and T4(t) cannot be estimated. This is also the case for deterministic KdV

equations. When k < 2, numerical experiments in Section 7 also show that our scheme is

not consistent.

Remark 5.3. In the deterministic setting, the ultra-weak DG method focuses on high-order

convergence of strong solution. As the stochastic counterpart, we naturally consider the

high-order convergence of strong solution. As a consequence, the mean-square convergence

for stochastic KdV equations is considered. Note that the mean-square convergence could

also derive the weak convergence.

Remark 5.4. The solutions of the stochastic KdV equations rarely have a uniform bound

with respect to the variable ω ∈ Ω. Thus it is difficult to use the method in Zhang and Shu [35]

to get error estimates for the stochastic equation containing the nonlinear term f(·), which
requires the uniform boundedness of the approximate solutions. But interestingly, numerical

examples in Section 7.3 verify the optimal order O(hk+1) for nonlinear stochastic equations.
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6 IMEX Time discretization

The ultra-weak DG method incorporates the spatial discretization and reduces the primal

SPDE into a system of SDEs, which needs to be coupled with a high-order time discretiza-

tion. The second-order explicit methods used in [21] are stable, efficient and accurate for

solving hyperbolic conservation laws. However, KdV equations contain third-order spatial

derivatives. For these problems which are not convection-dominated, explicit time discretiza-

tion will suffer from a stringent time-step restriction ∆t ∼ (∆x)3 for stability. When it comes

to such problems, a natural consideration to overcome the small time-step restriction is to

use implicit time-marching.

Implicit schemes are thoroughly discussed in [26], motivated by long-time integration

with geometry-preserving properties. These properties could well fit the need for long-time

integration. Also, implicit schemes (e.g., midpoint scheme) may provide the computational

reduction for numerical SDEs with a single noise.

In fact, in many applications the convection terms are often nonlinear; hence it would be

desirable to treat them explicitly while using implicit time discretization only for the third-

order linear term in the KdV equations. Such time discretizations are called implicit-explicit

(IMEX) time discretizations [1].

Wang, Shu and Zhang [32] proposed a second order IMEX time discretization scheme

for local discontinuous Galerkin method, which is unconditionally stable for the nonlinear

problems, in the sense that the time-step ∆t is only required to be upper-bounded by a

positive constant which depends on the flow velocity and the diffusion coefficient, but is

independent of the mesh size ∆x. Motivated by them, we give an implementable second

order time discretization for matrix-valued SDE




dX i,j
t =

[
ai,j1 (Xt) + ai,j2 (Xt)

]
dt+ bi,j(Xt) dWt, t > 0;

X i,j
0 = xi,j

0 ,
(6.1)

where i = 0, 1, ..., k and j = 0, 1, ..., N + 1. The coefficients a1(·) and a2(·) come from

the spatial discretization for the linear third order term uxxx and the nonlinear first order

term f(u)x in (1.1), respectively. In particular, for the degenerate case that b(·) ≡ 0, our

approximate scheme for SDE (6.1) given in this section coincides with the one for the ODE

in [32].

We aim to use Y i,j
n to approximate X i,j

tn
. Define Y i,j

0 := xi,j
0 . Suppose we already have

{Y i,j
n : i = 0, 1, ..., k and j = 0, 1, ..., N + 1}. Define the following operators

L0f :=
N+1∑

j=0

k∑

i=0

ai,j
∂f

∂xij

+
1

2

N+1∑

l,j=0

k∑

m,i=0

bi,jbm,l ∂2f

∂xij∂xml

,

and

L1f :=

N+1∑

j=0

k∑

i=0

bi,j
∂f

∂xij

,

24



where a := a1 + a2 and f : R(k+1)×(N+2) −→ R is twice differentiable.

Set

∆n = tn+1 − tn, ∆Wn = Wtn+1
−Wtn ,

and

∆Zn =

∫ tn+1

tn

(Ws −Wtn) ds, ∆Un =

∫ tn+1

tn

(Ws −Wtn)
2 ds.

6.1 Second order strong Taylor scheme

As indicated in [19], we could not directly use implicit scheme for the stochastic diffusion

term b(·). For instance, if we apply the fully implicit Euler scheme

Yn+1 = Yn + a(Yn+1)∆n + b(Yn+1)∆Wn, (6.2)

to the 1-dimensional homogeneous linear SDE

dXt = aXt dt+ bXt dWt,

then we obtain

Yn = Y0

n−1∏

i=0

1

1− a∆i − b∆Wi

.

However, this expression is not suitable as an approximation because one of its factors may

become infinite. In fact, the first absolute moment E [|Yn|] does not exist. It seems then

that fully implicit methods involving unbounded random variables, such as (6.2), are not

suitable. Thus, not only for a2(·), we also consider explicit scheme for the diffusion term

b(·), with implicit terms obtained from the corresponding Taylor approximation by suitably

modifying the coefficient functions of the nonrandom multiple stochastic integrals ∆n and

∆2
n. Motivated by the ideas in [19, Chapter 12], we have an implicit second order strong

Taylor scheme as follows

Y i,j
n+1 = Y i,j

n + ai,j2 (Yn)∆n +
1

2
L0ai,j2 (Yn)∆

2
n + bi,j(Yn)∆Wn

+γai,j1 (Yn+1)∆n + (1− γ) ai,j1 (Yn)∆n +

(
1

2
− γ

)
L0ai,j1 (Yn)∆

2
n

+
1

2
L1bi,j(Yn)

{
(∆Wn)

2 −∆n

}
+ L0bi,j(Yn) {∆Wn∆n −∆Zn}

+L1ai,j1 (Yn) {∆Zn − γ∆Wn∆n}+ L1ai,j2 (Yn)∆Zn + L1L1ai,j2 (Yn)

{
1

2
∆Un −

1

4
∆2

n

}

+L1L1ai,j1 (Yn)

{
1

2
∆Un −

1

4
∆2

n −
γ

2
∆n

(
∆W 2

n −∆n

)}

+
1

6
L1L1bi,j(Yn)

{
(∆Wn)

2 − 3∆n

}
∆Wn + L1L0bi,j(Yn) {−∆Un +∆Wn∆Zn}

+L0L1bi,j(Yn)

{
1

2
∆Un −∆Wn∆Zn +

1

2
(∆Wn)

2∆n −
1

4
∆2

n

}
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+
1

24
L1L1L1bi,j(Yn)

{
(∆Wn)

4 − 6 (∆Wn)
2∆n + 3∆2

n

}
, (6.3)

where γ = 1−
√
2
2
.

6.2 Second order implicit-explicit strong scheme

A disadvantage of the strong Taylor approximations is that the derivatives of various or-

ders of the drift and diffusion coefficients must be evaluated at each step, in addition to

the coefficients themselves. This can make implementation of such schemes a complicated

undertaking. In this subsection we will propose a strong scheme which avoids the usage of

derivatives in much the same way that Runge-Kutta schemes do in the deterministic setting.

6.2.1 Derivative-free scheme

Following the idea of [19], we could derive a second order derivative-free scheme by replacing

the derivatives in the second order strong Taylor scheme (6.3) by the corresponding finite

differences.

We set

Γm,l
± = Y m,l

n + am,l(Yn)∆n ± bm,l(Yn)
√
∆n,

ηm,l
± = Y m,l

n ± bm,l(Yn)∆n;

φm,l
+,± = Γm,l

+ + am,l(Γ+)∆n ± bm,l(Γ+)
√
∆n,

φm,l
−,± = Γm,l

− + am,l(Γ−)∆n ± bm,l(Γ−)
√
∆n;

βm,l
+,± = φm,l

+,+ ± bm,l(φ+,+)
√

∆n,

βm,l
−,± = φm,l

+,− ± bm,l(φ+,−)
√

∆n;

θm,l
± = Y m,l

n + γam,l
1 (θ±)∆n + γam,l

2 (Yn)∆n ± bm,l(Yn)
√

γ∆n. (6.4)

For a sufficiently smooth function f : R(k+1)×(N+2) −→ R, we have

L1f i,j(Yn) =
1

2∆n

{
f i,j(η+)− f i,j(η−)

}
+O(∆2

n),

L1f i,j(Yn) =
1

2
√
∆n

{
f i,j(Γ+)− f i,j(Γ−)

}
+O(∆n),

L0f i,j(Yn) =
1

2∆n

{
f i,j(Γ+)− 2f i,j(Yn) + f i,j(Γ−)

}
+O(∆n),
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f i,j(Yn) + γL0f i,j(Yn)∆n =
1

2

[
f i,j(θ+) + f i,j(θ−)

]
+O(∆

3

2
n ),

L1L1f i,j(Yn) =
1

4∆n

{
f i,j(φ+,+)− f i,j(φ+,−)− f i,j(φ−,+) + f i,j(φ−,−)

}
+O(∆n),

L1L1f i,j(Yn) =
1

2∆n

{
f i,j(φ+,+)− f i,j(φ+,−)− f i,j(Γ+) + f i,j(Γ−)

}
+O(

√
∆n),

L1L0f i,j(Yn) =
1

2∆
3

2
n

{
f i,j(φ+,+) + f i,j(φ+,−)− 3f i,j(Γ+)

−f i,j(Γ−) + 2f i,j(Yn)

}
+O(

√
∆n),

L0L1f i,j(Yn) =
1

4∆
3

2
n

{
f i,j(φ+,+)− f i,j(φ+,−) + f i,j(φ−,+)− f i,j(φ−,−)

−2f i,j(Γ+) + 2f i,j(Γ−)

}
+O(

√
∆n),

L1L1L1f i,j(Yn) =
1

4∆
3

2
n

{
f i,j(β+,+)− f i,j(β+,−)− f i,j(β−,+) + f i,j(β−,−)− f i,j(φ+,+)

+f i,j(φ+,−) + f i,j(φ−,+)− f i,j(φ−,−)

}
+O(

√
∆n).

Then scheme (6.3) reads

Y i,j
n+1 = Y i,j

n + δai,j2 (Yn)∆n +
1

2
(1− δ)

{
ai,j2 (θ+) + ai,j2 (θ−)

}
∆n + bi,j(Yn)∆Wn

+γai,j1 (Yn+1)∆n +
1

2
(1− γ)

{
ai,j1 (θ+) + ai,j1 (θ−)

}
∆n

+
1

4∆n

{
bi,j(η+)− bi,j(η−)

}{
(∆Wn)

2 −∆n

}

+
1

2∆n

{
bi,j(Γ+)− 2bi,j(Yn) + bi,j(Γ−)

}
{∆Wn∆n −∆Zn}

+
1

2
√
∆n

{
ai,j1 (Γ+)− ai,j1 (Γ−)

}
{∆Zn − γ∆Wn∆n}+

1

2
√
∆n

{
ai,j2 (Γ+)− ai,j2 (Γ−)

}
∆Zn

+
1

2∆n

{
ai,j2 (φ+,+)− ai,j2 (φ+,−)− ai,j2 (Γ+) + ai,j2 (Γ−)

}{
1

2
∆Un −

1

4
∆2

n

}

+
1

2∆n

{
ai,j1 (φ+,+)− ai,j1 (φ+,−)− ai,j1 (Γ+) + ai,j1 (Γ−)

}

×
{
1

2
∆Un −

1

4
∆2

n −
γ

2
∆n

(
∆W 2

n −∆n

)}
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+
1

8∆n

{
bi,j(φ+,+)− bi,j(φ+,−)− bi,j(φ−,+) + bi,j(φ−,−)

}{
1

3
(∆Wn)

2 −∆n

}
∆Wn

+
1

2∆
3

2
n

{
bi,j(φ+,+) + bi,j(φ+,−)− 3bi,j(Γ+)− bi,j(Γ−) + 2bi,j(Yn)

}
{−∆Un +∆Wn∆Zn}

+
1

4∆
3

2
n

{
bi,j(φ+,+)− bi,j(φ+,−) + bi,j(φ−,+)− bi,j(φ−,−)− 2bi,j(Γ+) + 2bi,j(Γ−)

}

×
{
1

2
∆Un −∆Wn∆Zn +

1

2
(∆Wn)

2∆n −
1

4
∆2

n

}

+
1

96∆
3

2
n

{
bi,j(β+,+)− bi,j(β+,−)− bi,j(β−,+) + bi,j(β−,−)− bi,j(φ+,+) + bi,j(φ+,−)

+bi,j(φ−,+)− bi,j(φ−,−)

}
×
{
(∆Wn)

4 − 6 (∆Wn)
2∆n + 3∆2

n

}
, (6.5)

where δ = 1− 1
2γ
.

6.2.2 Modeling of the Itô integrals

We have proposed a derivative-free scheme (6.5). Now it remains to model at each step three

random variables ∆Wn, ∆Zn and ∆Un. In [25], the characteristic function of these random

variables is found. However, it is very complicated and cannot be easily used in practice.

Thus, the exact modeling has poor perspectives, and therefore we need to be able to model

these variables approximately. The detailed method of modeling can be found in [26].

Introduce the new process

v(s) =
Wtn+∆ns −Wtn√

∆n

, 0 ≤ s ≤ 1.

It is obvious that {v(s), 0 ≤ s ≤ 1} is a standard Wiener process. We have

∆Wn = ∆
1

2
nv(1), ∆Zn = ∆

3

2
n

∫ 1

0

v(s) ds, ∆Un = ∆2
n

∫ 1

0

v2(s) ds.

Then the problem of modeling the random variables ∆Wn, ∆Zn and ∆Un could be

reduced to that of modeling the variables v(1),
∫ 1

0
v(s) ds and

∫ 1

0
v2(s) ds. These variables

are the solution of the system of equations





dx = dv(s), x(0) = 0,

dy = x ds, y(0) = 0,

dz = x2 ds, z(0) = 0,

(6.6)

at the moment s = 1.

Let xk = x̄(sk), yk = ȳ(sk), zk = z̄(sk), 0 = s0 < s1 < · · · < sNn
= 1, sk+1−sk = δn = 1

Nn
,

be an approximate solution of (6.6), where Nn is to be determined. We will now use a method
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of order 1.5 to integrate (6.6).





xk+1 = xk + (v(sk+1)− v(sk)),

yk+1 = yk + xkδn +

∫ sk+1

sk

(v(θ)− v(sk)) dθ,

zk+1 = zk + x2
kδn + 2xk

∫ sk+1

sk

(v(θ)− v(sk)) dθ +
δ2n
2
.

(6.7)

The pair of correlated normally distributed random variables v(sk+1)−v(sk) and
∫ sk+1

sk
(v(θ)−

v(sk)) dθ are generated by

v(sk+1)− v(sk) = ζk,1δ
1

2
n ,

∫ sk+1

sk

(v(θ)− v(sk)) dθ =
1

2

(
ζk,1 +

1√
3
ζk,2

)
δ

3

2
n , (6.8)

where ζk,1 and ζk,2 are independent normally N(0; 1) distributed random variables.

We choose δn such that δn = O(∆
1

3
n ) i.e.

Nn =

⌈
∆

− 1

3
n

⌉
, (6.9)

with ⌈·⌉ standing for the ceiling function.

Then we have ∆
1

2
nxNn

= ∆Wn, ∆
3

2
nyNn

= ∆Zn and

(
E

[∣∣∆2
nzNn

−∆Un

∣∣2
]) 1

2

= O(∆
5

2
n ).

Thus according to [26, Theorem 4.2, page 50], in a method of second order of accuracy

with time step ∆n such as scheme (6.5), we could replace ∆Wn, ∆Zn and ∆Un by ∆
1

2
nxNn

,

∆
3

2
nyNn

and ∆2
nzNn

independently at each step. Finally, we get an implementable second

order derivative-free time discretization scheme,

Y i,j
n+1 = Y i,j

n + δai,j2 (Yn)∆n +
1

2
(1− δ)

{
ai,j2 (θ+) + ai,j2 (θ−)

}
∆n + bi,j(Yn)xNn

√
∆n

+γai,j1 (Yn+1)∆n +
1

2
(1− γ)

{
ai,j1 (θ+) + ai,j1 (θ−)

}
∆n

+
1

4

{
bi,j(η+)− bi,j(η−)

}{
x2
Nn

− 1
}

+
1

2

{
bi,j(Γ+)− 2bi,j(Yn) + bi,j(Γ−)

}
{xNn

− yNn
}
√
∆n

+
1

2

{
ai,j1 (Γ+)− ai,j1 (Γ−)

}
{yNn

− γxNn
}∆n +

1

2

{
ai,j2 (Γ+)− ai,j2 (Γ−)

}
yNn

∆n

+
1

4

{
ai,j2 (φ+,+)− ai,j2 (φ+,−)− ai,j2 (Γ+) + ai,j2 (Γ−)

}{
zNn

− 1

2

}
∆n

+
1

4

{
ai,j1 (φ+,+)− ai,j1 (φ+,−)− ai,j1 (Γ+) + ai,j1 (Γ−)

}{
zNn

− 1

2
+ γ − γx2

Nn

}
∆n

+
1

8

{
bi,j(φ+,+)− bi,j(φ+,−)− bi,j(φ−,+) + bi,j(φ−,−)

}{1

3
x2
Nn

− 1

}
xNn

√
∆n
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+
1

2

{
bi,j(φ+,+) + bi,j(φ+,−)− 3bi,j(Γ+)− bi,j(Γ−) + 2bi,j(Yn)

}
{xNn

yNn
− zNn

}
√
∆n

+
1

4

{
bi,j(φ+,+)− bi,j(φ+,−) + bi,j(φ−,+)− bi,j(φ−,−)− 2bi,j(Γ+) + 2bi,j(Γ−)

}

×
{
1

2
zNn

− xNn
yNn

+
1

2
x2
Nn

− 1

4

}√
∆n

+
1

96

{
bi,j(β+,+)− bi,j(β+,−)− bi,j(β−,+) + bi,j(β−,−)− bi,j(φ+,+) + bi,j(φ+,−)

+bi,j(φ−,+)− bi,j(φ−,−)

}
×
{
x4
Nn

− 6x2
Nn

+ 3
}√

∆n, (6.10)

where xNn
, yNn

, zNn
are computed by (6.7), (6.8), (6.9), and Γ±, η±, θ±, φ±,±, β±,± are

calculated by (6.4).

6.3 Numerical tests for IMEX time discretization

Now we apply the time discretization (6.10) to some SDEs for verifying the second-order

accuracy of the IMEX scheme. The positive real number T is the terminal time and the

time-step is given by ∆t = T/NT . We use M = 15000 realizations for Monte Carlo technique

to approximate the L2(Ω)-errors

E
[
|YNT

−XT |2
]
≈ e22 ± V ,

with

e2 :=

(
1

M

M∑

i=1

zi

) 1

2

, V :=
2√
M


 1

M

M∑

i=1

z2i −
(

1

M

M∑

i=1

zi

)2



1

2

,

where zi := |YNT
(ωi)−XT (ωi)|2, YNT

(ωi) is one simulation from M paths, and XT (ωi) is the

exact solution with the corresponding path ωi.

6.3.1 Linear case

Let us first consider the following linear SDEs:




dXt = (c1Xt + c2Xt) dt+ c3Xt dWt (ω, t) ∈ Ω× (0, T ],

X0 = x0, ω ∈ Ω,
(6.11)

where c1, c2, c3, x0 are fixed real numbers. The exact solution of (6.11) is

Xt(ω) = ec1t+c2t+c3Wt(ω)− 1

2
c2
3
t.

In this case, we have

a1(x) = c1x, a2(x) = c2x, b(x) = c3x.
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We use IMEX scheme (6.10) on equation (6.11), in which we use implicit scheme for a1(·)
and explicit scheme for a2(·) and b(·). In Table 1, we show the errors and order of accuracy

with c1 = −1.5, c2 = −1.0, c3 = 1.0, x0 = 1.0 and T = 0.1. We could observe that the

scheme has second-order accuracy.

Table 1: Accuracy on (6.11) with M = 15000, c1 = −1.5, c2 = −1.0, c3 = x0 = 1.0, T = 0.1.

NT e2 order V
10 8.58E-05 - 1.94E-10

20 2.13E-05 2.01 1.31E-11

40 5.32E-06 2.00 9.44E-13

80 1.36E-06 1.96 6.76E-14

160 3.42E-07 2.00 4.21E-15

320 8.48E-08 2.01 2.80E-16

6.3.2 Nonlinear case

Next we test the IMEX scheme (6.10) on the following nonlinear SDEs:





dXt =

(
−1

2
c24Xt + c5

√
1−X2

t

)
dt+ c4

√
1−X2

t dWt, (ω, t) ∈ Ω× (0, T ],

X0 = 0, ω ∈ Ω,

(6.12)

where c4, c5 are fixed real numbers. The exact solution of (6.12) is

Xt(ω) = sin (c4Wt(ω) + c5 t) .

In this case, we have

a1(x) = −1

2
c24 x, a2(x) = c5

√
1− x2, b(x) = c4

√
1− x2.

We apply IMEX scheme (6.10) to equation (6.12), in which we use implicit scheme for

linear term a1(·) and explicit scheme for nonlinear terms a2(·) and b(·). In Table 2, we show

the errors and order of accuracy with c4 = 1.0, c5 = −1.0 and T = 0.1. We could see that

the scheme has second-order accuracy.

7 Numerical experiments

In this section we consider the application of the numerical method, which we have defined

in section 3, on some model problems. Here, M is the number of realizations. The positive

real number T is the terminal time. In Theorem 5.1, the error estimate is given by using the
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Table 2: Accuracy on (6.12) with M = 15000, c4 = 1.0, c5 = −1.0, T = 0.1.

NT e2 order V
10 2.13E-05 - 2.50E-11

20 5.42E-06 1.98 1.30E-12

40 1.38E-06 1.98 8.26E-14

80 3.39E-07 2.02 4.16E-15

160 8.60E-08 1.98 4.61E-16

320 2.11E-08 2.03 1.68E-17

L2(Ω × [0, 2π] × [0, T ])-norm. Since the mathematical expectation could not be calculated

exactly, the L2(Ω× [0, 2π]× [0, T ])-errors are approximated by the Monte Carlo technique

E

[
‖uh(·, ·, T )− u(·, ·, T )‖2L2(0,2π)

]
≈ e22 ± V ,

with

e2 :=

(
1

M

M∑

i=1

zi

) 1

2

, V :=
2√
M


 1

M

M∑

i=1

z2i −
(

1

M

M∑

i=1

zi

)2



1

2

,

where zi := ‖uh(ωi, ·, T )−u(ωi, ·, T )‖2L2(0,2π), uh(ωi, ·, T ) is one simulation from M paths, and

u(ωi, ·, T ) is the exact solution with the corresponding path ωi. We use e2 to approximate the

L2 error. The quantity V is called the statistical error. The run-time TR (in seconds) showed

in all tables is the CPU running time for computation of M realizations (with 16 cores for

parallel computing). The degree of the piecewise-polynomial space Vh is k. Since we use the

implicit time-marching in this paper, the stringent stability condition ∆t ∼ (∆x)3 can be

removed, which is necessary for third-order PDEs if one uses explicit time discretization. In

all experiments of ultra-weak DG scheme, we adjust the time step to ∆t ∼ (∆x)
k+1

2 so that

the time discretization is effectively (k + 1)-th order of accuracy.

7.1 Linear stochastic third-order equation

We consider the following linear third-order equation





du = −uxxx dt+ bu dWt in Ω× [0, 2π]× (0, T ),

u(ω, x, 0) = sin(x), ω ∈ Ω, x ∈ [0, 2π].
(7.1)

The exact solution of (7.1) is

u(ω, x, t) = sin(x+ t)ebWt(ω)− 1

2
b2t.

In Table 3, we show L2-errors for the linear equation (7.1). Our computation is based

on the flux choice (3.2) and (3.3). We observe that our scheme is not consistent for P 1
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polynomials, while optimal (k + 1)-th order of accuracy is achieved for k ≥ 2. The results

on the run-time show clearly that the ultra-weak DG scheme with k = 3 is more efficient

than the one with k = 2 to reach the same error levels. All the numerical results coincide

with the conclusion of Theorem 5.1.

Table 3: Accuracy on (7.1) with b = 1.0, T = 0.01, M = 1000

N e2 order V TR

k = 1

10 9.37E-02 - 1.11E-04 0.56

20 1.67E-01 -0.84 3.64E-04 0.59

40 9.41E-02 0.83 1.13E-04 0.79

80 3.12E-02 1.59 1.22E-05 1.97

160 2.76E-02 0.18 9.49E-06 16.75

k = 2

10 1.45E-02 - 2.70E-06 0.67

20 2.65E-03 2.45 8.77E-08 0.92

40 3.27E-04 3.02 1.43E-09 1.48

80 4.08E-05 3.00 2.05E-11 11.39

160 5.11E-06 3.00 3.35E-13 343.55

k = 3

10 5.59E-04 - 3.90E-09 0.67

20 3.62E-05 3.95 1.66E-11 1.13

40 2.27E-06 3.99 6.61E-14 3.24

80 1.42E-07 4.00 2.58E-16 69.13

160 8.90E-09 4.00 1.02E-18 2799.75

7.2 Linear stochastic KdV equations

In the following we test the accuracy of the ultra-weak DG method on the linear stochastic

KdV equations as follows,





du = − (uxxx − ux) dt+ b u dWt in Ω× [0, 2π]× (0, T ),

u(ω, x, 0) = sin(x), ω ∈ Ω, x ∈ [0, 2π].
(7.2)

The exact solution of (7.2) is

u(ω, x, t) = sin (x+ 2t) ebWt(ω)− 1

2
b2t.

We still use (3.2) and (3.3) as our flux choice and take the upwind flux for the first

order convection term f(u) = −u, i.e. f̂(u−, u+) = −u+. The errors and numerical order

of accuracy for P k elements with 1 ≤ k ≤ 3 are listed in Table 4, which show that our

scheme gives the optimal (k + 1)-th order of accuracy when k ≥ 2. For P 1, the scheme is

not consistent. The scheme with k = 3 is more efficient than the one with k = 2.
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Table 4: Accuracy on (7.2) with b = 1.0, T = 0.01, M = 1000

N e2 order V TR

k = 1

10 8.74E-02 - 9.66E-05 0.70

20 1.52E-01 -0.80 3.02E-04 0.73

40 8.80E-02 0.79 9.87E-05 0.82

80 3.71E-02 1.25 1.72E-05 2.38

160 2.70E-02 0.46 9.08E-06 22.30

k = 2

10 1.43E-02 - 2.63E-06 0.71

20 2.63E-03 2.44 8.67E-08 1.03

40 3.26E-04 3.01 1.43E-09 1.83

80 4.08E-05 3.00 2.05E-11 15.98

160 5.11E-06 3.00 3.35E-13 444.89

k = 3

10 5.68E-04 - 4.15E-09 0.71

20 3.63E-05 3.97 1.69E-11 1.32

40 2.27E-06 4.00 6.37E-14 4.55

80 1.43E-07 3.99 2.60E-16 107.46

160 8.88E-09 4.01 1.00E-18 3689.89

7.3 Stochastic nonlinear KdV equations

Although we could not give error estimates for fully nonlinear equations, it is worth trying

to apply the ultra-weak DG method to solve some nonlinear stochastic equations. The next

example is the stochastic nonlinear KdV equations,





du = −
[
uxxx + 3

∂

∂x

(
u2
)]

dt+ b dWt in Ω× [0, 2π]× (0, T ),

u(ω, x, 0) = sin(x), ω ∈ Ω, x ∈ [0, 2π].

(7.3)

The exact solution of (7.3) is

u(ω, x, t) = v

(
x− 6 b

∫ t

0

Ws ds, t

)
+ bWt, (7.4)

where v is the solution of the following deterministic nonlinear KdV equations





vt + vxxx + 3
∂

∂x

(
v2
)
= 0 in Ω× [0, 2π]× (0, T ),

v(ω, x, 0) = sin(x), ω ∈ Ω, x ∈ [0, 2π].

(7.5)

We use (3.2) and (3.3) as our flux. For the first order nonlinear convection term f(u) =

3u2, we use the simple Lax-Friedrichs flux

f̂
(
u−, u+

)
=

3

2

{(
u−)2 +

(
u+

)2}− 3α
(
u+ − u−) ,
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where

α = max
j

{∣∣∣u−
j+ 1

2

∣∣∣ ,
∣∣∣u+

j+ 1

2

∣∣∣
}
.

In Table 5, we show the L2-errors and order of accuracy for equation (7.3). We could

see that the order of accuracy converges to k + 1 when k ≥ 2. The scheme lose the order of

accuracy when k = 1. The scheme with k = 3 is more efficient than the one with k = 2.

Table 5: Accuracy on (7.3) with b = 1.0, T = 0.1, M = 100

N e2 order V TR

k = 1

10 3.22E-01 - 9.86E-04 0.26

20 3.37E-01 -0.06 7.65E-04 0.34

40 3.62E-01 -0.10 1.23E-03 1.15

80 3.75E-01 -0.05 7.39E-04 2.64

160 3.77E-01 -0.01 5.24E-04 11.33

k = 2

10 9.42E-02 - 3.07E-04 1.41

20 2.68E-02 1.82 1.20E-05 2.98

40 4.61E-03 2.54 1.13E-07 14.42

80 6.18E-04 2.90 5.44E-10 81.67

160 7.84E-05 2.98 2.38E-12 611.12

k = 3

10 8.75E-03 - 2.75E-06 2.50

20 5.37E-04 4.03 4.70E-10 12.52

40 3.31E-05 4.02 5.65E-13 89.32

80 2.05E-06 4.01 5.40E-16 747.71

160 1.28E-07 4.00 1.75E-18 7581.41

Remark 7.1. For the SPDEs driven by an additive noise, unlike the diffusion effect of the

stochastic terms on the solutions to (7.1) and (7.2), here the stochastic term only has the

drift effect on the solution of (7.3) since the stochastic perturbation in (7.4) is additive. Thus

the value of b has little influence on the error and M = 100 is good enough to approximate

the mathematical expectation. On the other hand, the cost for the computation of nonlinear

equations is quite high, so it would cost too much to compute the nonlinear case with M =

1000.

8 Concluding remarks

In this article, we present an ultra-weak DG scheme for generalized stochastic KdV equations.

The L2(0, 2π)-stability result of the scheme is obtained, and the optimal error estimate of

order O(hk+1) with respect to spatial L2-norm for semilinear stochastic equations is proved.

We combine a second order implicit-explicit derivative-free time discretization scheme, which
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could reduce the computational costs, to perform several numerical experiments on some

model problems to confirm the analytical results. Even though we concentrate on the one-

dimensional case in this paper, the numerical algorithm and its stability analysis can be

generalized to higher dimensions straightforwardly. But the optimal error estimates for

multi-dimensional case will be more involved, especially on unstructured meshes. In the

future, we would like to investigate error estimates for fully nonlinear stochastic equations

in higher spatial dimensional settings with unstructured meshes.
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