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Abstract

In this paper, an ultra-weak discontinuous Galerkin (DG) method is developed to
solve the generalized stochastic Korteweg-de Vries (KdV) equations driven by a mul-
tiplicative temporal noise. This method is an extension of the DG method for purely
hyperbolic equations and shares the advantage and flexibility of the DG method. Sta-
bility is analyzed for the general nonlinear equations. The ultra-weak DG method is
shown to admit the optimal error of order k + 1 in the sense of the spatial L?(0, 27)-
norm for semi-linear stochastic equations, when polynomials of degree k > 2 are used
in the spatial discretization. A second order implicit-explicit derivative-free time dis-
cretization scheme is also proposed for the matrix-valued stochastic ordinary differen-
tial equations derived from the spatial discretization. Numerical examples using Monte
Carlo simulation are provided to illustrate the theoretical results.
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1 Introduction

The Korteweg-de Vries (KdV) equations were introduced in 1895 by Korteweg and de
Vries [20] to model long, unidirectional, dispersive waves of small amplitude. It was gen-
eralized to study the nonlinear anharmonic lattices [34]. The equations turn out to be not
only good models for water waves, but also very useful approximation models in nonlin-
ear studies which incorporate and balance a weak nonlinearity and weak dispersive effects.
The stochastic KdV equations arise in the propagation of weakly nonlinear waves in a noisy
plasma [6, 18, 30]. Tt is also of interest in any circumstances when the KdV equations
are used, since the stochastic forcing may represent terms that have been neglected in the
derivation of this ideal model. In this paper we present an ultra-weak discontinuous Galerkin
(DG) method for the following stochastic generalized KdV equation with a periodic boundary
condition and a multiplicative temporal noise:

du = —|Uggs + f(u),] dt + g(-, z,t,u) dW,, (x,t) € [0,27] x (0,T7;
(1.1)

u(z,0) = wup(z), x € 0,27],

where the terminal time 7' > 0 is a fixed real number, and {W,;,0 <t < T} is a standard
one-dimensional Brownian motion on a given probability space (€2, F,P). We denote by
{F:,0 <t <T} the augmented natural filtration of W. We make the following hypotheses:

(H1) The initial condition uy € L?(0, 27).

(H2) The functions f and ¢ are locally Lipschitz continuous, i.e., for any M € N, there
exists a positive constant L(M) such that, for all (w,z,t) € Q x [0,2x] x [0,T] and all
(u, ') € R? with |u| V |u'| < M,

‘f(u) - f(u/>| v |g<wvx7t7u) o g(w,x,t,u’)| < L<M) |u - u/| :

(H3) The functions f and ¢ are at most linearly growing, i.e. there exists a constant C' > 0
such that for any (w,z,t,u) € Q x [0,27] x [0,T] x R,
F@)IV g, .t u)] < CO+ Ju]).

The existence and uniqueness of solutions for the stochastic KAV equations with a mul-
tiplicative stochastic forcing term involving a temporal white noise was established by de
Bouard and Debussche in [3] (cf. also [4, 15, 17, 18] and the references therein). In most
cases, it is not possible to have explicit solutions to these problems. Thus numerical solutions
of these stochastic partial differential equations (SPDEs) naturally receive a lot of attention.

Concerning numerical schemes for stochastic KdV equations, Debussche and Printems [16]
numerically investigated the influence of an additive noise on the evolution of solutions based
on finite elements and least-squares. By a modified Zabusky-Kruskal finite difference scheme,
Rose [29] discussed the large time behavior of the stochastic KdV equations and verified the
diffusion of solitons. Lin et al. [23] gave numerical solutions of the stochastic KdV equations
for the three cases of additive time-dependent noise, multiplicative space-dependent noise,
and a combination of both, but lacked of any result on stability and error. They employed
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polynomial chaos for discretization in random space, and local discontinuous Galerkin (LDG)
and finite difference for discretization in the physical space. Unlike the plethora of the theo-
retical and perturbation-based works, little attention seemed to be paid to the stability and
error of the high-order approximation schemes for stochastic KdV equations, which are the
main objective of our current paper.

The first DG method was presented by Reed and Hill in [28] for a deterministic time-
independent linear hyperbolic equation in the framework of neutron transport. A major
development of the DG method is the Runge-Kutta DG (RKDG) framework introduced for
nonlinear hyperbolic conservation laws of first order spatial derivatives in a series of papers
by Cockburn et al. [11, 12, 10, 9, 13]. Subsequently, the method was extended to partial
differential equations of order higher than one (e.g. [2, 7, 14, 33]).

In this paper, we extend the ultra-weak DG method to stochastic generalized KdV equa-
tions (1.1). The ultra-weak DG method refers to the DG method [31] in which the integration
by parts formula is used repeatedly to transfer all the spatial derivatives from the solution
to the test function in the weak formulations. It can be dated back at least to [5]. In [7],
Cheng and Shu developed an ultra-weak DG method for general time-dependent problems
with higher order spatial derivatives, which can be used to numerically solve the determin-
istic generalized KdV equations. They obtained the L2-norm stability results by carefully
choosing the numerical fluxes resulting from integration by parts. With the help of the local
Gauss-Radau projection, they proved error estimates for nonlinear deterministic equation.
Our numerical scheme is the stochastic counterpart of the above work and shares the fol-
lowing advantages and flexibilities of the classical DG method: (1) it is easy to design high
order approximations, thus allowing efficient p-adaptivity; (2) it is flexible on complicated
geometries, thus allowing efficient h-adaptivity; (3) it is local in data communications, thus
allowing efficient parallel implementations.

There are also some types of DG methods for SPDEs (see [22] and the references therein).
Recently, Li et al. proposed a DG method [21] for nonlinear stochastic hyperbolic conser-
vation laws and an LDG method [22] for nonlinear parabolic SPDEs. By estimating the
quadratic variation process of the approximate solution, they investigated the stability for
fully nonlinear equations and the error estimates for semi-linear equations. Motivated by
these earlier results, in this paper we study the stability for nonlinear KdV equations and
error estimates for semi-linear third-order SPDEs.

The ultra-weak DG method is a scheme for spatial discretization, which needs to be cou-
pled with a high-order time discretization. The explicit methods used in [21, 22] are efficient
for solving first-order SPDEs and are tolerable for second-order SPDEs. However, since the
KdV equations contain third-order spatial derivative, explicit time discretization will suffer
from a stringent time-step restriction At ~ (A:c)3 for stability. Thus it is natural to consider
an implicit time-marching to get rid of this time-step restriction. In many applications,
the convection terms f(-) are often nonlinear; hence we would like to treat them explicitly
while using implicit time discretization only for the third-order term in the KdV equations.
Such time discretizations are called implicit-explicit (IMEX) time discretizations [1]. Wang
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et al. [32] proposed an IMEX time discretization scheme for LDG method, which is uncon-
ditionally stable for the nonlinear problems. Inspired by them, we give an implementable
second order time discretization for the matrix-valued SDE (6.1), which coincides with the
one for ODEs in [32] for the degenerate case that b(-) = 0.

The paper is organized as follows. In Section 2, we introduce notations, definitions and
auxiliary results used in the paper. In Section 3, we present the ultra-weak DG method for
nonlinear KdV equations (1.1), and study the existence and uniqueness of the solution to the
stochastic differential equations (SDEs) obtained after the spatial discretization. In Section
4, we investigate the L2-stability for the fully nonlinear stochastic equations. In Section
5, we obtain the optimal error estimates (O(h¥*1)) for semilinear SPDEs with respect to
spatial L?(0, 27)-norm. In Section 6, we establish a second-order IMEX derivative-free time
discretization for matrix-valued SDEs to collaborate with the semi-discrete ultra-weak DG
scheme. Finally in Section 7 the paper ends with a series of numerical experiments on some
model problems, which confirm our analytical results.

2 Notations, definitions and auxiliary results

In this section, we introduce notations, definitions, and some auxiliary results.

2.1 Notations

We denote the mesh by I; = [xj_%,xﬁ%}, for 7 = 1,..., N. The mesh size is denoted by

hj =x; 1 —x;_1, with h = max h; being the maximum mesh size. We assume that the
IT2 I73 1<j<N

mesh is regular, namely the ratio between the maximum and the minimum mesh sizes stays
bounded during mesh refinements. Denote by P¥(I) the totality of all polynomials on I of
the degree up to k for any interval I. We define the piece-wisely polynomial space V), as
follows:

Vi, == {v: v restricted on each I; lies in P*(I;) for j =1,..,N}.

Note that functions in V}, might have discontinuities on an element interface.

We denote by || - || and || - || ggm», the L?(0, 27) norm and the Sobolev norm with respect to
the spatial variable x, respectively. For simplicity, by || - || gm, it means || - || gm.2. We denote
by SP(Q2 x [0, T]; L*(0,27)), the space of all adapted continuous processes ¢ : Q x [0,T] —

L?(0,27) such that (E [ sup ||¢(t)||p]) " < 00. An element of R¥4 is a k x d matrix, and
0<t<T

its Euclidean norm is given by |y| := \/trace(yy*) for y € RF*4,
The solution of the numerical scheme is denoted by uy,, which belongs to the finite element

+ -
space Vj,. Set Uiy = u(a:j+%+) and Ujpr = u(:cﬂ%—) :
By C > 0, we denote a generic constant, which in particular does not depend on the
discretization width h and possibly changes from line to line. Since the Ito integral is not



defined path-wisely, the argument w of the integrand as a stochastic process will be omitted
in the rest of this paper if there is no danger of confusion.

2.2 The numerical flux

For the convenience of notation we would like to introduce the following numerical flux
related to the ultra-weak DG spatial discretization. The given monotone numerical flux

~

f (g ,q") depends on the two values of the function ¢ at the discontinuity point Tipt,

namely qjjr 1=4q (x;i 1 ) The numerical flux f(q*, q*t) satisfies the following conditions:

2
(a) it is locally Lipschitz continuous and linearly growing;
(b) it is consistent with the physical flux f(q), i.e., f(q,q) = f(q);
(c) it is nondecreasing in the first argument, and nonincreasing in the second argument.

2.3 Projection properties

Consider the standard L?-projection of a function u with (k + 1)-th continuous derivatives
into space V},, denoted by P, i.e., for each j,

/ [Pu(z) — u(z)]v(z)dr =0, Yo € P*I;),

I;

and the local Gauss-Radau projection Q into space V},, which satisfies, for k = 2,

and for k > 3,

) )
Qu <$;+§> - <$;+%> ’ (2.1)

In view of Ciarlet [8], we have
1Pu—ul + [1Qu — ull < C|lull g A (2.2)

for a positive constant C' independent of both u and h.

b}



2.4 Properties of the It6 formula

Finally we list some properties of the stochastic calculus. If X and Y are continuous semi-
martingales, then the Ito formula tells us that

t t
XthIXoYmL/ XdemL/ YodX, +(X)Y),,
0 0

where (X,Y) is the quadratic covariation process of X and Y. Note that (X,Y) = (¥, X).
For any locally bounded adapted process H, we have

</O H, dXs,Y>t = /Ot Hd(X,Y),. (2.3)

Moreover, if X has bounded total variation, we have

(X,Y)=0. (2.4)
One can prove the following lemma easily by using the dominated convergence theorem and
the Burkhoéder-Davis-Gundy (abbreviated as BDG) inequality.

Lemma 2.1. IfE {(IOT H? ds)Q} < 00, then {fot H,dW,, 0<t< T} is a martingale.

For more details on the It6 formula, the reader is referred to [27].

3 The ultra-weak DG method for the generalized stochas-
tic KAV equations

3.1 The semi-discrete ultra-weak DG method

In this subsection, we formulate the ultra-weak DG method for the generalized stochastic
KdV equations. We seek an approximation u;, to the exact solution w such that for any
(w,t) € Qx[0,T], up(w, -, t) belongs to the finite dimensional space V},. In order to determine
the approximate solution uy, we first note that by multiplying (1.1) with arbitrary smooth
functions v and ¢, and integrating over I; with j = 1,2,..., N, we get, after a simple formal
integration by parts,

/ v(@)du(w, z,t) dv = {

I;

/u(w,x,t) Ve () d

)

I;

—Ugy (w,xj+%,t> v( i
+u, (w,xﬁ%,t) Uy (SL’;JF%) — U, (w,xjfé,t> Uy (SL’JL%>

J
- +
—u (w,xj+%,t> Vs :pj+%) +u (w,xj_%,t> Uy (:L‘j_%



—l—/l. f(u(w,x,t) v, (x) dz

(o) o) 1 (o (o) ) Yo

—i—/ g(w,x,t,u(w,x,t)) v(x) dx dWy,
I

J

/ w(w,z,0) q(x)dr = / uo(z) q(z) da.

I; I;

Next, we replace the smooth functions v and ¢ with test functions v, and gy, respectively,
in the finite element space V}, and the exact solution u with the approximation uy. Since the
functions in V}, might have discontinuities on an element interface, we must also replace the
physical fluxes

u( , j+1,t) ux( , ]+1,t> um< , j+1,t) and f( ( , ]+1,t>)

with the numerical fluxes

aj—i—% (wv t) ’ ax,j—i—% (wv t) ’ amc,j—l—% (wv t) and fj-{—% (wa t)

respectively, which will be suitably chosen later. Thus, the approximate solution given by
the ultra-weak DG method is defined as the solution of the following weak formulation:

/Ivh(:p)duh(w,x,t)dx = {/1 up (W, ,1) (Vh) 4y () d

J J

g iy L (w,t) vy (:E;rl)

2

+am+% (w, 1) (vn), <xj—+

+/ g(w,x,t,uh(w,x,t)) vp () dz dWy,
I

J

/uh(w,x,O)qh(x)d:p = /Iuo(x)qh(x)dx. (3.1)

I j
It only remains to choose suitable numerical fluxes. For 7 = 0,1, ..., N, we choose

~

fjJr% (w,t):=f <uh(w,x;r%,t),uh(w,:c;%,t)) ,
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where the numerical flux f(, -) is a monotone flux as described in Section 2.2. We also
choose the other numerical fluxes as

ﬁmj% (w,t) := (up), (w,:p;ll,t) ,

(3.2)
2
and
ﬁH% (w,t) :==uy (w,:p;r%,t) y Uil (W, t) = (un),, (w,:p;LJr%,t) (3.3)
Note that, by periodicity, we have

~

= uNJr%v u:):,NJr% = ux,%u uzz,NJr% = uzz,%

u

NI

and

f% = fN+§ = f (uh<w7x;\/+%7t)7uh(wulér7t)> :

For simplicity of notation, for j = 1,2, ..., N and piece-wisely smooth functions u and v,
we define

Hj(u,v)

(3.4)

and

(3.5)

with the numerical flux f(-,-) being defined in Section 2.2. Then the approximate scheme (3.1)
now reads

up(2)dup(w, =, t)de = |H;(up(w, - t),vs) + H (un(w, -, ), v) | dt
/ | |

+/ g(w, z, t, up(w, z, 1)) v () do dW,. (3.6)
1
Remark 3.1. We could also define the numerical fluz (3.3) in an alternative way as follows:

aj+% <w7t) = up <w,x;r+%,t> ) a:m:,jJr% (wat) = (uh>:m: <W,I;+%7t> :

It is crucial that we take the flux u, as in (3.2) and W, Uy, from the opposite directions.



3.2 The stochastic ordinary differential equation derived from the
spatial discretization

The ultra-weak DG method as a spatial discretization, transfers the primal problem into a
system of ordinary stochastic differential equations, which will be specified in this subsection.
For x € I; with j = 1,2,..., N, the numerical solution should have the form

(w,z,t) Zul j(w, 1) gpl
where {¢],1 =0,1,...,k} is an arbitrary basis of P*(I;).
By periodicity, we define the “ghost” coefficients as follows:
Uo=u,nN, WUWnN4+1=U.

...........

For j =1,2,..., N, by taking vy, :== ¢/ for m = 0,1, ...,k in equality (3.1), we have

=

{/ zk:“’” (@, 0P0@) (Pn) g (@)

JnO

_ z:% :un,j+1(w,t) (@) ( j+§> o, (xj+%> — i (w, ) (@), (:pj_%) ol (;pj_%)}
) (¥h), (%ﬁ) — (W, 1) (1), (xj_%> (). (xj_%)]

/I o () () dx) (. 1)

J

NI

+i :“w“(”’t) (™), (%
n=0
- i :um(w,t)wi; (wﬁ%) (#7) 1o <%+%) — 1 (w, b)) ! (xj_
n=0
+/ f (i un,j(w,t)wﬁ;(w)> P () dz
=0

_f<
+f<

k
+/ g (w,x,t,Zun,j(w,t)wﬁ(x)> @ () dx dW,.
I

J n=0

[SIES
N———
—~
=
~—

]

]
/N
8

[
|
NIE
N———
[E—

Mwﬁ

tns (w0, 1) Zumﬂwt ARG >)sozn<xj+;>

0

S
Ea |

<
ol
——
U
~

un] 1(&] t 90% 1 '7% Zun] w, t Son %)) 90m<x

[en]

The mass matrix A7 := [A7 ]| with

A= [ oo dr
I
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is invertible, and its inverse is denoted by A%~1.
Then we obtain the following SDE of u:

du(t) = F(u(t)) dt + G(-, t,u(t)) dW, (3.7)

where for j =1,2,.... Nand [ =0,1,.... k,

Fij(ua): / Zunjcpn ZA =8 vwe () d

JnO

o Z AJ - Z _un7j+1 (ngfl)xx (xj+%) SO% (xj+%) ~ Uny (SO%)WU (xj_%) SD% (l‘]_%)]

n=0

+ Z Al Z _un7j+1 (ei™), <xa‘+%) (eh), (Ij+%> — U (20), (xj‘%) (). <xj_%>}

n=0
N Z Al Z _un,j% (%’%) () ua <1’j+%> — U1 (37]-7%) () sa <5"jf%)}
n=0
/_ (Zunwn )ZAlm P
(Bt Bt )m i

f(zun] 1Q0n ‘—% Zun](pn ‘—% ) ZAlm (pm %)

and

Gl,j (w,t,u) ::/ (w x,t, Zum%@n ) ZAlm Spm
I;

with periodic settings Fj o = Fi n, Finy1 = Fi1,Gio = Gin, and Gy yvy = Gi.

Lemma 3.1. Let Assumption (H2) hold. Then for any N € Ny, F and G are locally
Lipschitz continuous in the variable u, i.e., for any M € N, there exists a positive constant
Ly (M) such that, for all (w,t) € Q x [0,T] and all u,w’ € REFVXNF2) ith [u| v 0’| < M,

I (w) = F ()| V|G (@, t,1) — G (w,t,w)] < Lye(M) [u— ],
where the constant Ly(M) may depend on N.

Proof. We only show the locally Lipschitz continuity of G for fixed N € N, and that
of F' can be proved in a similar way. Note that for any [ = 0,1,....k, 7 = 1,2,..., N,
u, u’ € REFDXNF2) with |u| v [v/| < M,

|Gy j(w, t,u) — G j(w, t,0)]
10



k k
/I |:g (wvl‘atvzun,j@f@(x)> -9 (wvl‘?tvzu;@jwi >:| ZAlm me
n=0

J n=0

. Z/f eate) Z | (@)] da [[AP7H] | ung — |
k :
< On(M) Y fun =l | < Cv(M (Z -~ :wf) |

where Cy (M) is a constant depending on N and M, and possibly changes from line to line.
It leads to that

IN

k N+1
|G (wata ll) -G (wvtau/)|2 = Z |Gl7j(w7ta ll) - Gl,j(wata ll/)|2
=0 j=0
k N+1
12
< 22 OnM Z!um 1" = O+ 1O (M) o=l
=0 j=0

Thus for any N, M € N, there exists a constant Ly(M) such that, for all (w,t) €
Q x [0,7] and all u,u’ € RE+DXN+2) with |u| v [u'| < M,

‘G<w7t7u) o G(W,t, u/)‘ < LN<M) |u_ u/| :

The proof is complete. O
Similar to the proof of Lemma 3.1, we could obtain that the coefficients of SDE (3.7)
satisfy the linearly growing condition.

Lemma 3.2. Let Assumption (H3) hold. Then for any N € Ny, F and G are linearly
growing in the variable u, i.e., there exists a positive constant Cy such that, for all (w,t) €
Q x [0,T] and all u € REFD>N+2)

|F (u)| V|G (w,t,u)] < Cy (14 |uf),
where the constant C'y may depend on N.

By (3.1), the initial condition of the SDE (3.7) is determined by ug as follows:

uy,(w Z Al / @ (z)dx. (3.8)

In the assumption (H1), ug is assumed to be a deterministic function. Then we know
that u(0) is a deterministic matrix, which is L?(2)-integrable for any p > 1. According to
the classical results of stochastic differential equations (see Mao [24]), if the initial value of
the SDE is LP(Q)-integrable and the coefficients of the SDE are locally Lipschitz continuous
and linearly growing, then the considered SDE admits a unique LP-solution. Thus, for any
fixed N € N, SDE (3.7) has a unique solution {u(t)}o<;<r such that for any p > 1,

E { sup |u(t)|p] < . (3.9)

0<t<T
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4 Stability analysis for the fully nonlinear equations

We have known that the approximating equation (3.1) has a unique solution u; € V}, for any
fixed N € N,. Next we give the stability result for the numerical solutions.

Theorem 4.1. Suppose that the assumptions (H1)-(H3) are satisfied. Then there exists a
constant C' > 0 which is independent of h, such that

sup E [[Jun(-, )]*] < C (1+ Jun(-,0)[%)

0<t<T
where the constant C' may depend on the terminal time T

Proof. For any N € N, and (w,t) € Q x [0, 7], by setting v, = up(w, -, t) in (3.6) we have

/ up(w, z, t)duy(w, x,t)de = [Hj (uh(w, 1), up(w, -,t)) + H]f(uh(w, 1), up(w, ~,t)) dt

I;

+/ g(w,x,t,uh(w,:p,t)) up(w, x, t) de dWy, (4.1)
I

J

where the functionals H; and H ]f are defined by (3.4) and (3.5), respectively.
According to the It6 formula, we have for any x € [0, 27],

|uh(:p,t)|2 = |up(x, O)|2 + 2/0 up(z, s) dup(z, s) + (un(z, ), up(z, -)), -

Thus, after summarizing on j from 1 to N in (4.1), integrating in time from 0 to ¢ and
taking expectation we have

E [un( O] = llun (-, 0)I + Ti(t) + Ta(t) + Ta(t) + Ta(t),

where .
70 =8 | [ tun(e, ) wnto. ), do).
0
t 2
70 =25 | [ [ o (e 9) wto ) s
0o Jo
t N
T5(t) = 2E / Z H; (uh (w,-,8),up (w, -, s)) ds] ,
0 =
and
t N
Ti(t) = 2E / ZH]f(uh (W, s),up (w,-,s)) ds] .
(R
Terms 7;(t) for i = 1,...,4 are estimated as follows.

e  Estimate of 7;(t).
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Compared with the deterministic case, the quadratic variation term is an essential ad-
ditional term. The approximating solution wy is given by a weak formulation (3.6) and is
not easy to derive an explicit representation. Thus it is difficult to directly estimate the
quadratic variation of u;,. However, we could use Fubini theorem and stochastic calculus to
estimate the spatial integral of the quadratic variation. In view of (3.6), we have for any
Ty € Vi,

/ rp(x)up(x,t) de

I

~ /Ij () 0(2) der/Ot {Hj(uh(W,-,S)’rh) +H]f(uh(w,-,8)a7“h)} ds

+ /Ot /Ij (. s,up(z, ) ri(x) de dW.

Thus by (2.4), for any continuous semimartingale Y, we obtain

/IV ru(x) (up(z,-),Y), do = </1 rn(x)up(z, -)dx,Y>

J

/ / 9(z, s, up(z,s)) rp(z) de dW,, Y ) . (4.2)
0 JI .
It turns out that

/Ij (un(z, ), un(z,-)), d;z:_/lj <uh(x7.)7gul7j(.)¢{(x)> "

K . |
:Z/j 1 (@) (un(z, ), wy () do=Y </0 /Ivg(x,s,uh(x,s))gp{(x}ddes,ul7j(.)> .

t

According to (2.3) and the properties of the L? projection, we have

/Iv. <Uh(fL', '),Uh(l’, ))t dx
k t

— z, s, up(z, 5)) @] () de d (W, 5(-)),
;/0 /Ijg( ) @i

- /I/(; ZP [g(.,s,Uh('78))} (I‘) @;(x)d@‘/, ul,j(')>s dx

_ / / 5y }<x)d<w,iul,j<->so{<x>> dz
_ /</7> s, un(- ))}(x)dws,uh(x,-)>tdx.
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Since P [g(-, s, un(-, s))] € V4 for any (w, s) € Q x [0, T], we have

Plg(w, s un(w, )] (@) = Y gii(w.8)@(z), zel;

By (4.2), we get the spatial integral of quadratic variation of approximating solution wy,:

/(uh(a: ), up(z, da:—/ </o Zgl] x) dW, up(z, )> dx

=0

= ([ sttt dxdWS,/gl] dW>
- Z / /IJ_g(x,s,ums>)so{<x>dxgl,j<s>d<w:w>s

= /0 /1~g(x’8’Uh(x’ S))P [g(-,S,uh(.,s))} () dx ds. (4.3)

After summarizing over j from 1 to N, by Cauchy-Schwartz’s inequality we have

/027r (un(z, ), u , dx </ / (z, s, up(z, s))‘Q dx ds.

According to (H3), after taking expectation, we have

i) = EUO%W( ), unl, dx]qe[// (2, un(x, ) > deds
= CJFC/OtE [llun(-, 5)II*] ds

e  Estimate of T5(t).
From (3.9), we have for any fixed N € N,

B | s o)l < o0 (4.4

0<s<T

Thus by (H3) and Cauchy-Schwartz’s inequality we know that

B 1

E (/OT /027rg(x, s,uh(x’s)) wn(a. ) de 2d8> 1

< E (/OT [Jun (-, 8)”2/‘27F |9 (x5, un(@,5)) | dﬂde)é]
< CE| sw flun(,s)] (/ / 1+ |un(z, 8)| )dxds) ]




< e{e] o) (G1f Gmor)el) <~

According to Lemma 2.1, the process

t 21
{/ / g(:c, s, up(x, 5)) up(x,s)dedW, 0<t< T}
0o Jo

is a martingale. It turns out that

T2(t) = 2E [/Ot /OQWg(a:, s, up(w,s)) up(x, s) de dWs} =0.

e  Estimate of T3(t).

For any u € V},, we have

Hi(u,u) = /I U (T) Uggs(x) dz — u (:U;r%) Uy (x].;%) +u <SL’,__%) Upa <x;r_%>

U
Uy | + . !
”‘“( J+%)
+ - + + + -
ANEAS VAR A AN AL VAN A RANEAS ity

By periodicity, we get

N N

Y Hi(u,u) = Z; [—%

J=1 J=

2 1
+_

e () g e () [ (o) e ()
2
o () e (250) = Joa (25| = v (552, “(%;)}
) Y R )
e (xﬁ%) Tt (‘Uﬂ%) Tl (xj+%> e (xﬂé)}

2
- +
u xT. — U xT.
”‘“(J%) ”‘“(J%)
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Thus for any u € V),

It gives that

T(t) = 2E

/0 ZHj(uh (W, 8),un (w,-,s)) ds] <0.

j=1
e  Estimate of Ty(t).

For any u € V},, we have

N N
ZH{(u,u) = Z [ 1~f(u)umd$—f (u;_%,u;_%) u]_+% +f (u.__%,uj_%
i=1 i

j=1
N
_ - _ + \_F .- ot
B Z [¢ (uﬁr%) gb(“ﬂ%) Tiestypy ]_%u]_%}
j=1
N
= 2 < i+~ Fing +@J*%) ’
j=1

where

By periodicity, we have

Note that
O = o(u) —o(u’) + f(z[, ut) (ut —u”)
= —¢'(O)(u" —u)+ flumut) (ut —u”)
= (Jwmwh) = Fle.9) (" —u)

-~

= (fmw) = Fun, 0+ w9 = (6. 9) (w* =) <0,

where ¢ is a real number between v~ and u*. Thus for any u € V},

N
ZH{(u,u) < 0.

Jj=1

16
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It turns out that

Ta(t) = 2E

/0 ZHf(“h (W 8) ,un (w, - 5)) ds] <0.

Then there exists a positive constant C' which is independent of h, such that for any
t €10,7],

t
E [[lun(-OIF] < lun(-,0)|* + C + C/O E [|lun(-, 5)II] ds.
Using Gronwall’s inequality, we have for any ¢ € [0, 7],
E [[lun(- )] < (C + [[un(-, 0)[%) €.

This completes the proof. O

5 Optimal error estimates for semilinear equations

In this section, we consider the convergence of numerical method for strong solutions with
enough smoothness and integrability. We prove the optimal error estimates (O(h¥*1)) with
respect to spatial L?(0,27)-norm for the semilinear case that f(u) := 0,

du = —Ugeedlt + g(-,x,t,u) dW;, (x,t) € [0,27] x (0,T7;
(5.1)
u(z,0) = wup(x), x € [0,27].

In the semilinear case, the ultra-weak DG method (3.1) can be written as follows. For
any (w,t) € Q x [0,7], find up(w, -,t) € V), such that for any vy, € Vj,

/ vp(x)dup(w, x,t) de = Hj(uh(w,~,t),vh)dt+/ g(w, 2, t, up(w, z, b)) v, (x)dzdWy, (5.2)
I I

where the bilinear functional H; is defined by (3.4). Then, we state the error estimates of
the semi-discrete ultra-weak DG scheme (5.2).

Theorem 5.1. Suppose that ug € H*' with k > 2, the coefficient g(-) is uniformly Lipschitz
continuous in u, and equation (5.1) has a unique strong solution u(-) such that

(Hf) u(-) € L* (2 x [0,T]; H¥) N S% (2 x [0,T]; L*) ( L* (0, T; L*(Q; H*1));

(H5) g (-,u(-)) € L? (Q X [O,T];H’““).
Then, there is a positive constant C' which is independent of h, such that

sup (E [Ju(-t) —un(- OF])7 < CBF+, (5.3)

te[0,7)

where the constant C' may depend on the terminal time T
17



Proof. Note that the scheme (5.2) is also satisfied when the numerical solution wuy(-) is
replaced with the exact solution u(-): for any (w,t) € Q x [0,T] and v, € V},, we have

/ op(x)du(w, z,t) de = Hj(u(w, -, t), v)dt + / g(w, z,t, u(w, z,t)) vy (z) du dW,.

I; I

Define
e(w,z,t) == (u—up)(w,z,t) = (£ —n)(w,z,t),
with
E(w,x,t) == (Qu — up)(w,x,t), n(w,z,t) = (Qu —u)(w,x,t)

where Q is the projection from H**1 onto V}, defined in (2.1).
Then the error equation is

/ (@) de(w, z,t) dz

I;

= H; (e(w, -,t),vh)dt +/ [g(w,x,t,u(w,x,t)) — g(w,x,t,uh(w,x,t))} vp(z)dxdW;.

I;

Taking v, = {(w, -, 1), we have

/Iv' g(x,t)dg(x,t)dx - /I f(%t)dﬁ@at)dx + [Hj (g('vt)7§('7t)) - Hj (n('vt)vg('vt)) dt

J

+/ [g(x,t,u(x,t)) — g(:c,t,uh(x,t))] E(x,t) do dW,.
I;
Using the It6’s formula, we have for any z € [0, 27,

d |f($€,t>‘2 = 25(377 t) df(l‘, t) +d <£(.T}, ')7 f(SC, )>t :
Then, we have
E (G OIP] = 16u( O + Ta(t) + Ta(t) + Ts(t) + Ta(t) + T5(t)
where

7ty =22 [ [ [ et oyinte.da].

7t = B[ [ o)., ],

E(t) =2K /0 ZHj(é(WS)?é('?S)) dS] )
7:1(t> = 2K /0 ZHJ(H(US)ag(US)) dS] )
18



and
= 2F U / (@, 5,u(z,5)) — g (z, 5, un(x, 5)) |€(, 5) da AW, | .

The terms 7;(t) for i = 1,...,5 are estimated as follows.

e  Estimate of Ti(t).

In view of (5.1), we have
dy(Qu)(-,t) = Qdwu) (-, 1) = = Q [taaa (-, )] dt + Qg (-, ¢, ul-, 1)) dWe. (5.4)
Therefore,
dn(-t) = —(Quage — Usae) (1) dt + (Q — T)g(-, t, u(-, ) dW,

with Z being the identity operator.
It turns out that

| eaan e = = [ et) (@i = uass) (r, )
+/0 (0, 0)(Q = T) [9( s ul- )] (2) da W,

Since u(-) € 5% (Q x [0,T]; L?), we have Qu(-) € S*(Q x [0,T]; L?). By (4.4), we get

E[sup 1€ 8)IP
0<s<T

Thus by virtue of (H3) and Cauchy-Schwartz’s inequality we know that
[ T 2 %
E ds
o IJo
[ T ) 2m 9 %
( [ 169 7100 =) [g6s.ut ) (o) s

e[ tecon ([ [ (1ot |
¢ (& | sup, lec s>|12])2 (=] (14 a9 dsDé <o (55)

According to Lemma 2.1, we could verify that the process

)(Q—1) [g(t,u(, 5))|(x) dz

IA
=

IN

IN

/0 /0 Wf(% s)(Q—1) [g(-,s,u(-,s))}(:p) dedW,, 0<t<T

19



is a martingale. Thus according to the property of the projection (2.2), we have
t 2
Ti(t) = —ZE{/ / E(x,8) (QUyzr — Upes) (T, s)dxds}
0o Jo

B[ [ (K + 10 = e () )]

t t
< / E| (-, 5)| ds + Ch*+E [ / tas - )0 ds]-
0 0

VAN

Since
ue L*(Qx[0,T); H*),

we have

t
Ti(t) < / E € (-, s)]” ds + O h**2,
0

e [Estimate of T5(t).
In view of (5.4), we have that for any v, € V},
/ vp(z)dQu(x, t) dz
I

= _/1 Up () Q [Ugpa (-, 1)] (a:)da:dt+/l op(2)Qlg(- t,u(-, )] (z) dedW,.  (5.6)

J J

From (5.2) and (5.6), we obtain that for any v, € Vj,

/Ivh(x)df(x,t)dx = —{/ U (2) Q [tgza (-, 1)] (x)dx+Hj(uh(-,t),vh)}dt

j I;

+ /I on(@) {Q[g(stou(+ )] = 9+t un(+ 1)) } (2)dzd W, (5.7)

J

Since &(w, -, t) € V}, for any (w,t) € Q x [0, T], then £(-) should have the form

§(w, x,t) Z&szﬂpl x € Ij.

Similar to (4.3), we have from (5.7) that

[ e cwnan = [ / (PA@late.s, 5] = a5} )

I;

x{Q[g(- s, ul-, )] — g, s,un(- 5)) } (x))dxds
< / / ‘Q 8, u( —9( 5 Uh(',S))’2($)d£CdS.



Then we get

Tit) =B U%(é(%-),&( ]
< B[ [ [T 10lsts.u60] ol 9) o) o]

OR U/ (Q=T)g(s,u(9)*() dxds]

+2EU72W g (2, s, u(z,5)) — g(@, s, un(z, 5))|” da:ds].

According to (H5) and the property of the projection, we have

t
70 < Cm | gt at )l s
0

IN

t 2T
+CE [ [ llnte o) + ¢, dods
< CRMH? 4 OpteR U luCe, )2 ds} +CE U IEC, )P ds} |
Since u € L? (Q x [0,T7]; H’“H) CL? (Q x [0,T]; Hk“), we have

Tot) < G 1C / E [[l€(, 5)|I] ds

e Estimate of 73(t).

According to (4.5), for any u € V},, we have

N
ZHj(u,u) <0
j=1

Since &(w, -, t) is in V}, for any (w,t) € Q x [0,T], we get
—om| [ (et g 0)as| <0
0 =

By the definition of the projections Q (see (2.1)), we see that for any (w,t) € Q x [0,T],
j=1,2, .. N,

e Estimate of 74(t).




According to (3.4), we have for any v € V,,

Hn0),0) = [ 00.2.0) vans(o)do

I;

- - - - +
n (w,xﬁ%,t) Vi (:L’J.Jr%) +n (w,x;%,t) Ve (%,é)
+ - - + +
e (1) v (25,) = e (w7 1) v (274
- + - + + _
Nz <w,xj+%,t) v <5L’j+%) + Moo <w,xj7%,t) v <xj7%> =0.

Since &(w, -, t) € Vj, we have
¢ N
/ ZHj(ﬁ('aS)af(wS))ds] — 0.
0 o
e [Estimate of T5(t).

By virtue of (4.4) and u(-) € S (2 x [0, T]; L?), similar to (5.5), we get

T 2 %
E (/ ds) < 00.
0

According to Lemma 2.1, we see that the process
/ / (x,s,u(z,s))) — g (x,s,up(z,s))] &(x, s)dedWs, 0<t<T

Aﬂb@ﬁﬂ@ﬁm—ﬂ@ﬁwﬂﬂ$ﬂﬂﬁﬁﬂ

is a martingale. Thus,

— 9E U / (a5, ul(x, 5)) — g (x, 5, un(z, 5)) |€(x, 5) da AW, | = 0.

Concluding the above, we have

E[I¢(,01°] < |\£(~70)|!2+Ch2’“+2+0/0 E [[[¢(-, s)II"] ds

Since [|£(,0)]| = || Quo — Puo|| < Ch* ||ugl| yrs1, we have from Gronwall’s inequality
that

(E [, H]7])7 < Chb+1eCt

Since u € L* (0, T L*(Q; H*™)), we have

). w
E [InC,OIF])? < C (B [[lul- )][7mn]) > b < CRE
It turns out that

(E [Hu(7t) — uh(~,t)|]2})% < (E [Hg(’t)”ﬂ)% + (E [”77< £l ])% CeCtpk+1
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Remark 5.1. It should be pointed out that the reqularity condition (H4) seems to be stringent.
We find no literature on the reqularity of a strong solution to equation (5.1). However, our
examples (see (7.1), (7.2) and (7.3)) demonstrate that there is a sufficiently broad class of
problems satisfying assumption (H4), as long as the corresponding deterministic initial values
ug have enough regularities.

On the other hand, in practice if such regularities could not be achieved, we could consider
the weak version of the scheme. We only need to assume that the coefficient g(-) satisfies
some regularity such that equation (5.1) has a unique strong solution u(-) and the processes

// x, s,u(x,s)) dx dWs, // (x, s, up(x, s))vp(x) de dWs, 0<t<T

are martingales. Then by taking expectation on both sides of (5.1) and (5.2), we get

U = —Ugge, (x,t) € 0,27 x (0,T7;
(5.9)
u(z,0) = wup(x), x € [0, 27].

and

/I op() (tn), (z,t) de = H;(un(-,t), vp), (5.10)
where © = E[u| and uy, = Elug]. We see that (5.9) is the simple third-order deterministic
PDE and (5.10) is the corresponding classical ultra-weak DG method. In this case, though
we could not get the strong result (5.3), we still could obtain the weak result without (Hj)
and (H5)

sup [[E[u(,t) —un(, )] < Ch.

t€[0,T]
Remark 5.2. In the estimation of T4(t), it is essential to set k > 2 to get the error estimate.
If k < 2, then we could not well define the projection Q as (2.1), which leads to that (5.8)
will not hold and Ti(t) cannot be estimated. This is also the case for deterministic KdV
equations. When k < 2, numerical experiments in Section 7 also show that our scheme is
not consistent.

Remark 5.3. In the deterministic setting, the ultra-weak DG method focuses on high-order
convergence of strong solution. As the stochastic counterpart, we naturally consider the
high-order convergence of strong solution. As a consequence, the mean-square convergence
for stochastic KdV equations is considered. Note that the mean-square convergence could
also derive the weak convergence.

Remark 5.4. The solutions of the stochastic KdV equations rarely have a uniform bound
with respect to the variable w € Q. Thus it is difficult to use the method in Zhang and Shu [35]
to get error estimates for the stochastic equation containing the nonlinear term f(-), which
requires the uniform boundedness of the approrimate solutions. But interestingly, numerical
ezamples in Section 7.3 verify the optimal order O(h**1) for nonlinear stochastic equations.
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6 IMEX Time discretization

The ultra-weak DG method incorporates the spatial discretization and reduces the primal
SPDE into a system of SDEs, which needs to be coupled with a high-order time discretiza-
tion. The second-order explicit methods used in [21] are stable, efficient and accurate for
solving hyperbolic conservation laws. However, KdV equations contain third-order spatial
derivatives. For these problems which are not convection-dominated, explicit time discretiza-
tion will suffer from a stringent time-step restriction At ~ (Ax)3 for stability. When it comes
to such problems, a natural consideration to overcome the small time-step restriction is to
use implicit time-marching.

Implicit schemes are thoroughly discussed in [26], motivated by long-time integration
with geometry-preserving properties. These properties could well fit the need for long-time
integration. Also, implicit schemes (e.g., midpoint scheme) may provide the computational
reduction for numerical SDEs with a single noise.

In fact, in many applications the convection terms are often nonlinear; hence it would be
desirable to treat them explicitly while using implicit time discretization only for the third-
order linear term in the KdV equations. Such time discretizations are called implicit-explicit
(IMEX) time discretizations [1].

Wang, Shu and Zhang [32] proposed a second order IMEX time discretization scheme
for local discontinuous Galerkin method, which is unconditionally stable for the nonlinear
problems; in the sense that the time-step At is only required to be upper-bounded by a
positive constant which depends on the flow velocity and the diffusion coefficient, but is
independent of the mesh size Az. Motivated by them, we give an implementable second
order time discretization for matrix-valued SDE

dX{7 = [aP? (X)) + a5’ (X,)] dt + b (X)) dW,, > 0;
- - (6.1)
Xy! = xy,

where ¢ = 0,1,....k and j = 0,1,...., N + 1. The coefficients a;(-) and as(-) come from
the spatial discretization for the linear third order term w,,, and the nonlinear first order
term f(u), in (1.1), respectively. In particular, for the degenerate case that b(-) = 0, our
approximate scheme for SDE (6.1) given in this section coincides with the one for the ODE
in [32].

We aim to use Y,/ to approximate Xti,lj- Define Yoi’j = xé’j. Suppose we already have
{Vi:i=0,1,...,kand j = 0,1,..., N + 1}. Define the following operators

. N+1 k 1 N+l  of
_ ij 2J 0,7 1y,
LOf = ; 2; 8% + o ;M;Ob 0 e
and N+1 k
Lf = s 9L
Ji= ]Zo ; 8:61]
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where a := a; 4+ ay and f : REFDXV+2) 4 R g twice differentiable.
Set
An = tn—i—l — tn, AWn = VthH - tha

and

tn+1 Int1
sza= [ wemwyyas av = [T v - w2 as
tn in

6.1 Second order strong Taylor scheme

As indicated in [19], we could not directly use implicit scheme for the stochastic diffusion
term b(-). For instance, if we apply the fully implicit Euler scheme

Yo =Y, +a(Yoi)A, + 0(Y) AW, (6.2)
to the 1-dimensional homogeneous linear SDE
dX; = a Xy dt + b X, dWy,
then we obtain

n—1

1
Y, =Y, .
" 0H1—aAi—bAWZ-

1=0

However, this expression is not suitable as an approximation because one of its factors may
become infinite. In fact, the first absolute moment E [|Y,|] does not exist. It seems then
that fully implicit methods involving unbounded random variables, such as (6.2), are not
suitable. Thus, not only for as(-), we also consider explicit scheme for the diffusion term
b(+), with implicit terms obtained from the corresponding Taylor approximation by suitably
modifying the coefficient functions of the nonrandom multiple stochastic integrals A,, and
A?. Motivated by the ideas in [19, Chapter 12], we have an implicit second order strong
Taylor scheme as follows

Vi = Y (YA, + %ang’j(Yn)AfL + b49(Y,) AW,
- . 1 .
#90 Waen) B+ (1= 9) P08, + (5 =) L (1)
1 . .
+§clbw(yn) {(AW,)? = A, } + L% (V,) {AW, A, — AZ,}

. y . 1 1
+LYaY (V) {AZ, — yAW, ALY + Lral? (V) AZ, + L1 Ly (V) {iAUn — ZAZ}
+L LY () Lav, = Iaz 20 (AW? — A,)

1 n 2 n 4 n 2 n n n
1 . .
+6£1£1W(Yn) {(AW,)? = 3A,} AW, + L1 L (Y,,) { =AU, + AW, AZ,}

+L0LM(Y;,) {%AUn — AW, AZ, + % (AW, A, — iAg}
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+5 L LL (V) {(AW,)! = 6 (AW,,)2 A, +3A21 (6.3)

Whereyzl—g.

6.2 Second order implicit-explicit strong scheme

A disadvantage of the strong Taylor approximations is that the derivatives of various or-
ders of the drift and diffusion coefficients must be evaluated at each step, in addition to
the coefficients themselves. This can make implementation of such schemes a complicated
undertaking. In this subsection we will propose a strong scheme which avoids the usage of
derivatives in much the same way that Runge-Kutta schemes do in the deterministic setting.

6.2.1 Derivative-free scheme

Following the idea of [19], we could derive a second order derivative-free scheme by replacing
the derivatives in the second order strong Taylor scheme (6.3) by the corresponding finite
differences.
We set
Il =yml 4 a™ (V) A, £ 8V A,

771171 = Ynml + bml(Yn)AM

¢T§: = FTJ +a™ (T)A, £ bm’l(FJr)\/Kna
™ML =T 4 a™ T )A, £ ™I )/ Ay

Bl = oL £ 0™ (64 )V A,
L= 0L £V (64 )V A

01! = Y a™ (02) A + a5 (Vo) An £ 5™ (Vo) VA (6.4)

For a sufficiently smooth function f : REFD*(N+2) s R we have

LLfH (Ya {f” — (=)} +0(A7),

£9Y,) = 5= {9 = )} + 0,

LOfH(Y,) =

s {900 =209 (%) + F9(0)} + O(A,),
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FIY) + LT (V) A = 1 [£9(0:) + F9(00)] + O(ad),

£y, P64 = P00 + 6. )} + O,
LIL (Y, = [(040) = [T + [UT )} + O(VA),
CLPI) = {000+ 00) =3
[ 4290 |+ OWED),
L) = 00) = 900 4 S0 - o)
270+ 270 | + O/
CELPIN) = g P80 = FHB ) = P+ £ = 6

e+ £9(0-0) = F9(6- )} + O/,
Then scheme (6.3) reads

er;zl = Y4 —|—5a§]( ) A —i— {a ‘9+ +a2 )}An‘i‘bi’j(Yn)AWn

y 1 ‘
+7ay? (Yos)An + 5 (1= {a1 (04) + afj(e—)} An

5
+i {8 (ns) = 0¥ (n-) } {(AW,)° = A}

. {b"(T4) — 267 (Y,) + 07(T2) } {AW, A, — AZn}

2A,
+2\/A_ {a?(Ty) — af/ (D)} {AZ, — yAW, A} —i— {a (Ty) —as’(T)} AZ,
1 i, % 7 % 1 1
. s {659 (61.4) — a9 (6, ) — aif(D)) + ¥ (T)} {QAUn - ZAi}

a0 (0e) — @ (620) — al (T4) + 6 (1))

Iag 2 tae 2 2 _
X{QAUn a2 Ta, (aw; An)}
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o (09(00,0) = 0900, ) — 09(6-.0) + 09000} {3 (W - A} A,
+L§ {69 (pss) + 077 (ps—) = 30"(Dy) — b (D) + 26" (V) } {—AU, + AW,AZ,}
2N
g {1900, = ) 4 590-0) =10 ) = 20T + 29T )
1 1 , 1
x {§AUn — AW,AZ, + 5 (AW,)? A, - ZA%}
+961A§ {bi’j<5+,+) — b (Bym) = b (Bop) + (B 2) = 0 (dg 1) + 0 (P4 2)

0 (- 1) — b@"jw-,—)} x {(AWL)" = 6 (AW,)* A, + 347}, (6.5)

Whereézl—%.
Y

6.2.2 Modeling of the It6 integrals

We have proposed a derivative-free scheme (6.5). Now it remains to model at each step three

random variables AW,,, AZ, and AU,. In [25], the characteristic function of these random

variables is found. However, it is very complicated and cannot be easily used in practice.

Thus, the exact modeling has poor perspectives, and therefore we need to be able to model

these variables approximately. The detailed method of modeling can be found in [26].
Introduce the new process

z 0<s<1.

VA, ’

It is obvious that {v(s), 0 < s < 1} is a standard Wiener process. We have
1 3 1 1
AW, = Ajv(l), AZ, = A,%/ v(s)ds, AU, = Ai/ v?(s) ds.
0 0

Then the problem of modeling the random variables AW,,, AZ, and AU, could be
reduced to that of modeling the variables v(1), fol v(s)ds and fol v%(s) ds. These variables
are the solution of the system of equations

(0) =
dy =xds, y(0)=0, (6.6)

at the moment s = 1.
Let x), = T(sk), Yo = Y(sk), 2 = 2(s), 0 =80 <51 <+ < sn, =1, Spp1— 8k = 0 = N%n

be an approximate solution of (6.6), where N,, is to be determined. We will now use a method
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of order 1.5 to integrate (6.6).

Tyl = Tg + (U(8k+1) - U(Sk))u

Sk+1

9 Sk+1 52
Zhp1 = 2k + Ti0p + ka/ (v(0) — v(sg)) dO + 5
Sk
The pair of correlated normally distributed random variables v(sy1)—v(s) and f;’““ (v(0)—

v(sg)) df are generated by

o(si1) — v(s8) = Guadd, /s“l<v<9>—v<sk>>de=%(ck,ﬁ%ck,z)&%, (6.8)

where (i1 and (2 are independent normally N (0; 1) distributed random variables.
We choose §,, such that 6, = O(AZ) i.e.

Jun

N, = [A; W (6.9)

with [-] standing for the ceiling functlon
Then we have A2 N, = AW, AﬁyN = AZ, and

(B [|a22, - AUn]2]>§ — 0(Ad).

Thus according to [26, Theorem 4.2, page 50], in a method of second order of accuracy
1
with time step A,, such as scheme (6.5), we could replace AW,,, AZ, and AU, by Azzxy,,,

3
AZyy, and A?zy  independently at each step. Finally, we get an implementable second
order derivative-free time discretization scheme,

Y = YR 4 8a (V) A, + 0) {az’(0:) + a5’ (0-)} An + 0 (Va)zn, VA,
90 (Vo) B + % g
+i {67 () =8 ()} {a, — 1}
+1 {b"(T4) — 2677 (Y,) + b"9(T2) } {aw, —?/Nn}\/i

{a () — a’ (T} {yw, — van,  An + = {a (T4) — ay’(T) } yn, A

1
+— {05 (61.4) — a5’ (¢4.-) — a5’ (T4) + a5’ (T} {ZNn - 5} An

— ) {a(0,) +ai(0-)} A,

- - 1
(P (00) — 0 (00) = P+ PO o, = 402, L,

5 {09000 = 89(0,0) = 09(0-0) + 09(0- 0} gk, — 1 fow Vs
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‘ié {bi’j(¢+,+) + bi’j(¢+,7) - 3bi’j(r+) - bi’j(rf) + Qbi’j(Yn)} {zn,yn, — 2N, } \/Kn
{09 (60) = 960, ) + B9 (64) — 096 ) — 269(T,) + 269 (1)}

1 1 1
X {—an — TN, YN, + —x?vn — Z} vV A,

2 2

+%{bi?j(5+,+) =0 By o) = 0 (B ) + 0 (B ) = b (py 4) + b (o )

H5(9-p) - b”’(cb_,_)} x {a, = 6ok, + 3} VA, (6.10)

where =y, yn,, 2N, are computed by (6.7), (6.8), (6.9), and 'y, ny, 0+, ¢4, By + are

calculated by (6.4).

6.3 Numerical tests for IMEX time discretization

Now we apply the time discretization (6.10) to some SDEs for verifying the second-order
accuracy of the IMEX scheme. The positive real number T is the terminal time and the
time-step is given by At = T'/Ny. We use M = 15000 realizations for Monte Carlo technique
to approximate the L?(§)-errors

E [|YNT - XT‘2:| ~ 65 +V )

with
1 1
| M 2 5 | M M dE
ey = | — zi |, Vi=—|— Z—| = Zi )
(2+) w2 ()
where z = Y, (w;) — Xr(w;)|*, Ya, (w;) is one simulation from M paths, and X7(w;) is the

exact solution with the corresponding path w;.

6.3.1 Linear case

Let us first consider the following linear SDEs:
dXt = (cht + CQXt) dt + CgXt th (w, t) € x (0, T],
(6.11)
Xo = o, w e Q,
where ¢, ¢g, c3, ¥y are fixed real numbers. The exact solution of (6.11) is

12
Xt(w) _ eclt+02t+03Wt(w)f§CSt.

In this case, we have

ar(x) = ax, as(x) = co, b(x) = csu.
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We use IMEX scheme (6.10) on equation (6.11), in which we use implicit scheme for a;(-)
and explicit scheme for as(-) and b(). In Table 1, we show the errors and order of accuracy
with ¢; = —1.5, ¢co = —1.0, ¢c3 = 1.0, g = 1.0 and T" = 0.1. We could observe that the

scheme has second-order accuracy.

Table 1: Accuracy on (6.11) with M = 15000, ¢; = —1.5, co = —1.0, ¢ = 29 = 1.0, T' = 0.1.

Nt € order V

10 | 8.58E-05 - 1.94E-10
20 | 2.13E-05 2.01 | 1.31E-11
40 | 5.32E-06  2.00 | 9.44E-13
80 | 1.36E-06 1.96 | 6.76E-14
160 | 3.42E-07 2.00 | 4.21E-15
320 | 8.48E-08 2.01 | 2.80E-16

6.3.2 Nonlinear case

Next we test the IMEX scheme (6.10) on the following nonlinear SDEs:

1
dX; = <——ci Xi+esv/1 — XE) dt + ca/1 — XZdW,,  (w,t) € Q x (0,T], (6.12)

2
X(]:O, MEQ,

where ¢4, ¢5 are fixed real numbers. The exact solution of (6.12) is
Xi(w) = sin (¢ Wi(w) + ¢5t) .
In this case, we have
ar(z) = —%cﬁ x, as(z) = e5vV/'1 — 22, b(z) = csV/1 — 22,

We apply IMEX scheme (6.10) to equation (6.12), in which we use implicit scheme for
linear term a; () and explicit scheme for nonlinear terms as(-) and b(-). In Table 2, we show
the errors and order of accuracy with ¢4 = 1.0, ¢ = —1.0 and 7" = 0.1. We could see that

the scheme has second-order accuracy.

7 Numerical experiments

In this section we consider the application of the numerical method, which we have defined
in section 3, on some model problems. Here, M is the number of realizations. The positive
real number 7' is the terminal time. In Theorem 5.1, the error estimate is given by using the
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Table 2: Accuracy on (6.12) with M = 15000, ¢4 = 1.0, ¢s = —1.0, T = 0.1.

Nt € order V

10 | 2.13E-05 - 2.50E-11
20 | 5.42E-06 1.98 | 1.30E-12
40 | 1.38E-06 1.98 | 8.26E-14
80 | 3.39E-07 2.02 | 4.16E-15
160 | 8.60E-08 1.98 | 4.61E-16
320 | 2.11E-08 2.03 | 1.68E-17

L*(2 x [0,27] x [0,T])-norm. Since the mathematical expectation could not be calculated
exactly, the L*(Q x [0, 2] x [0, T])-errors are approximated by the Monte Carlo technique

Ellun(s, ) =l Toam | = £V

with
1 1
( M )2 9 M M 2]z
S E 2N BT R e O i I
M= M| M= M=
where z; := ||up(w;, -, T) —u(w;, -, T) H%Q(O,%), up(wy, -, T') is one simulation from M paths, and

u(wy, -, T') is the exact solution with the corresponding path w;. We use e5 to approximate the
L? error. The quantity V is called the statistical error. The run-time Tk (in seconds) showed
in all tables is the CPU running time for computation of M realizations (with 16 cores for
parallel computing). The degree of the piecewise-polynomial space V}, is k. Since we use the
implicit time-marching in this paper, the stringent stability condition At ~ (Az)® can be
removed, which is necessary for third-order PDEs if one uses explicit time discretg?tion. In

all experiments of ultra-weak DG scheme, we adjust the time step to At ~ (Az) 2 so that
the time discretization is effectively (k + 1)-th order of accuracy.

7.1 Linear stochastic third-order equation

We consider the following linear third-order equation

du = —Ugyy dt + bu dW, in Q x [0,27] x (0,7,
(7.1)
u(w, z,0) = sin(z), we Q, x € |0,2n].

The exact solution of (7.1) is

u(w, x, t) = Sin($‘ + t)ebWi(W) 2b2t.

In Table 3, we show L*-errors for the linear equation (7.1). Our computation is based
on the flux choice (3.2) and (3.3). We observe that our scheme is not consistent for P!
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polynomials, while optimal (k + 1)-th order of accuracy is achieved for k > 2. The results
on the run-time show clearly that the ultra-weak DG scheme with k£ = 3 is more efficient
than the one with £ = 2 to reach the same error levels. All the numerical results coincide
with the conclusion of Theorem 5.1.

Table 3: Accuracy on (7.1) with b = 1.0, "= 0.01, M = 1000

N €9 order V Tr
10 | 9.37E-02 - 1.11E-04 | 0.56
Eo 1 20 | 1.67TE-01 -0.84 | 3.64E-04 | 0.59
40 | 941E-02 0.83 | 1.13E-04 | 0.79
80 | 3.12E-02 1.59 | 1.22E-05 1.97
160 | 2.76E-02  0.18 | 9.49E-06 | 16.75
10 | 1.45E-02 - 2.70E-06 | 0.67
b — 9 20 | 2.65E-03 2.45 | 8.77TE-08 | 0.92
40 | 3.27E-04 3.02 | 1.43E-09 1.48
80 | 4.08E-05 3.00 | 2.05E-11 | 11.39
160 | 5.11E-06  3.00 | 3.35E-13 | 343.55
10 | 5.59E-04 - 3.90E-09 | 0.67
PR 20 | 3.62E-05 3.95 | 1.66E-11 1.13
40 | 2.27TE-06  3.99 | 6.61E-14 | 3.24
80 | 1.42E-07 4.00 | 2.58E-16 | 69.13
160 | 8.90E-09 4.00 | 1.02E-18 | 2799.75

7.2 Linear stochastic KdV equations

In the following we test the accuracy of the ultra-weak DG method on the linear stochastic
KdV equations as follows,

du = — (Uggy — Ug) dt + budW,; in  x [0,27] x (0,7),
(7.2)
u(w, z,0) = sin(z), we Q, x€|0,2n].

The exact solution of (7.2) is
u(w, z,t) = sin (z + 2t) W)~ 0%t

We still use (3.2) and (3.3) as our flux choice and take the upwind flux for the first
order convection term f(u) = —u, i.e. f(uﬂu*) = —u™. The errors and numerical order
of accuracy for P* elements with 1 < k < 3 are listed in Table 4, which show that our
scheme gives the optimal (k + 1)-th order of accuracy when k > 2. For P!, the scheme is

not consistent. The scheme with £ = 3 is more efficient than the one with £ = 2.
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Table 4: Accuracy on (7.2) with b = 1.0, "= 0.01, M = 1000

N €9 order V Tr
10 | 8.74E-02 - 9.66E-05 | 0.70
Eo 1 20 | 1.52E-01 -0.80 | 3.02E-04 | 0.73
40 | 8.80E-02 0.79 | 9.87E-05 | 0.82
80 | 3.71E-02 1.25 | 1.72E-05 | 2.38
160 | 2.70E-02  0.46 | 9.08E-06 | 22.30
10 | 1.43E-02 - 2.63E-06 | 0.71
b — 9 20 | 2.63E-03 2.44 | 8.67E-08 1.03
40 | 3.26E-04 3.01 | 1.43E-09 1.83
80 | 4.08E-05 3.00 | 2.05E-11 | 15.98
160 | 5.11E-06  3.00 | 3.35E-13 | 444.89
10 | 5.68E-04 - 4.15E-09 | 0.71
P 20 | 3.63E-05 3.97 | 1.69E-11 1.32
40 | 2.27TE-06  4.00 | 6.37E-14 | 4.55
80 | 1.43E-07 3.99 | 2.60E-16 | 107.46
160 | 8.88E-09 4.01 | 1.00E-18 | 3689.89

7.3 Stochastic nonlinear KdV equations

Although we could not give error estimates for fully nonlinear equations, it is worth trying
to apply the ultra-weak DG method to solve some nonlinear stochastic equations. The next
example is the stochastic nonlinear KdV equations,

0
du = — [umx + 3% (uz)} dt + bdW; in Q x [0,27] x (0,7, (73)
u(w, z,0) = sin(z), we N, ze|0,2n].
The exact solution of (7.3) is
t
u(w, z,t) =wv (:c — 61)/ W ds, t) + W4, (7.4)
0
where v is the solution of the following deterministic nonlinear KdV equations
Vp + Uy + 3.0 (v*) =0 in Q x [0,27] x (0,7),
Ox (7.5)
v(w,x,0) = sin(x), w e Q, z€|0,2n].

We use (3.2) and (3.3) as our flux. For the first order nonlinear convection term f(u) =
3u?, we use the simple Lax-Friedrichs flux



where

Y

b

In Table 5, we show the L?-errors and order of accuracy for equation (7.3). We could

a:max{

- -
u u’
] j+3 j+3

see that the order of accuracy converges to k + 1 when k£ > 2. The scheme lose the order of
accuracy when k = 1. The scheme with k£ = 3 is more efficient than the one with k£ = 2.

Table 5: Accuracy on (7.3) with b =1.0, 7= 0.1, M = 100

N €9 order V Tr
10 | 3.22E-01 - 9.86E-04 | 0.26
P 20 | 3.37TE-01 -0.06 | 7.65E-04 | 0.34
40 | 3.62E-01 -0.10 | 1.23E-03 1.15
80 | 3.75E-01 -0.05 | 7.39E-04 | 2.64
160 | 3.77E-01 -0.01 | 5.24E-04 | 11.33
10 | 9.42E-02 - 3.07E-04 | 1.41
I — 9 20 | 2.68E-02 1.82 | 1.20E-05 | 2.98
40 | 4.61E-03 2.54 | 1.13E-07 | 14.42
80 | 6.18E-04 2.90 | 5.44E-10 | 81.67
160 | 7.84E-05 2.98 | 2.38E-12 | 611.12
10 | 8.75E-03 - 2.75E-06 | 2.50
PR 20 | 5.37E-04 4.03 | 4.70E-10 | 12.52
40 | 3.31E-05 4.02 | 5.65E-13 | 89.32
80 | 2.05E-06 4.01 | 5.40E-16 | 747.71
160 | 1.28E-07 4.00 | 1.75E-18 | 7581.41

Remark 7.1. For the SPDEs driven by an additive noise, unlike the diffusion effect of the
stochastic terms on the solutions to (7.1) and (7.2), here the stochastic term only has the
drift effect on the solution of (7.3) since the stochastic perturbation in (7.4) is additive. Thus
the value of b has little influence on the error and M = 100 is good enough to approrimate
the mathematical expectation. On the other hand, the cost for the computation of nonlinear

equations is quite high, so it would cost too much to compute the nonlinear case with M =
1000.

8 Concluding remarks

In this article, we present an ultra-weak DG scheme for generalized stochastic KAV equations.
The L*(0,2m)-stability result of the scheme is obtained, and the optimal error estimate of
order O(h¥*1) with respect to spatial L?-norm for semilinear stochastic equations is proved.
We combine a second order implicit-explicit derivative-free time discretization scheme, which
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could reduce the computational costs, to perform several numerical experiments on some
model problems to confirm the analytical results. Even though we concentrate on the one-
dimensional case in this paper, the numerical algorithm and its stability analysis can be
generalized to higher dimensions straightforwardly. But the optimal error estimates for
multi-dimensional case will be more involved, especially on unstructured meshes. In the
future, we would like to investigate error estimates for fully nonlinear stochastic equations
in higher spatial dimensional settings with unstructured meshes.
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