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Abstract

In this article we present a generalization of the WENO algorithm of order six for data discretized in the point values introduced
in [S. Amat, J. Ruiz, C.-W. Shu, On new strategies to control the accuracy of WENO algorithms close to discontinuities, SIAM
J. Numer. Anal. 57 (3) (2019) 1205 - 1237]. This generalization requires a slight modification of the mentioned algorithm. The
objective is to obtain a new WENO algorithm of order 2r that is capable of rising the accuracy of the interpolation step by step
close to the discontinuities. In order to keep the computational cost controlled, we will propose simple smoothness indicators
of high order as a function of those used by the classical implementation of WENO. We will discuss about the accuracy of the
new algorithm and present numerical experiments that support our claims.

Keywords: WENO-2r, high accuracy interpolation, improved adaption to discontinuities, generalization, 41A05,
41A10, 65D05, 65M06, 65N06

1. Introduction and review

In [1, 2], with the aim of improving the results obtained by ENO (essentially non oscillatory) algorithm, it was introduced in
[3] the WENO (weighted essentially non oscillatory) algorithm. The technique was designed as a nonlinear convex combination
of interpolants with adjacent sub-stencils. The weights of the combination were calculated estimating the smoothness of each
sub-stencil. In [4], the authors introduced new smoothness indicators that were computationally more efficient than those
proposed in [3]. In [5] we proposed a new technique of order of accuracy six aimed to increase the accuracy of the WENO-6
algorithm close to jump and kinks for the interpolation of functions discretized in the point values. This new technique consists
in a redesign of the optimal weights of the original WENO algorithm with the objective of obtaining the maximum possible
theoretical accuracy close to singularities while maintaining maximum accuracy at smooth regions of the data. It is a known
fact that the classical implementation of WENO algorithm does not reach the maximum theoretical accuracy when more than
one substencil is smooth. The objective of this paper is to generalize the interpolation technique presented in [5] for 2r point
values, as this technique actually manages to reach the maximum theoretical accuracy when more than one substencil is smooth.
In [5] we consider the space of finite sequences V and a uniform partition X of the interval [a, b] in J subintervals,

X = {xi}Ji=0, x0 = a, h = xi − xi−1, xJ = b.

For a piecewise smooth function f we consider a point value discretization,

fi = f(xi), f = {fi}Ji=0 . (1)

The previous discretization is local and conserves the information only at the positions xi. We consider that discontinuities are
positioned far enough from each other.

The WENO-2r scheme uses the big stencil of 2r nodes {xj−r, · · · , xj+r−1} when interpolating in the interval (xj−1, xj) and
it reaches order of accuracy 2r in smooth regions of f . By Srk(j), k = 0, · · · , r − 1 we will denote the rth sub-stencil of length
r + 1 that contains the interval (xj−1, xj), where we want to interpolate by Srk(j) = {xj−r+k, · · · , xj+k}, for k = 0, · · · , r − 1.
WENO-2r algorithm is based on the construction of the convex combination,

I (x; f) =

r−1∑
k=0

ωrk(j)prj−r+k(x), (2)
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where ωrk(j) ≥ 0, k = 0, · · · , r− 1 and
∑r−1
k=0 ω

r
k(j) = 1. In (2), prj−r+k(x) denotes the rth degree interpolation polynomial with

stencil Srk(j). We will consider the interpolation at the mid point of the interval (xj−1, xj), that will be denoted as xj− 1
2
,

I(xj− 1
2
; f) =

r−1∑
k=0

ωrk(j)prj−r+k(xj− 1
2
). (3)

The values of the ωrk(j) are forced to be those that allow to obtain order of accuracy 2r at xj− 1
2

when the stencil is smooth. When

interpolating the discretized function f(xj), the objective is to obtain an interpolation polynomial that satisfies, p2r−1
j−r (xj− 1

2
) =

f(xj− 1
2
) +O(h2r), based on the big stencil {xj−r, · · · , xj+r−1}, through the convex combination of r interpolation polynomials

of lower order, prj−r+k(xj− 1
2
) = f(xj− 1

2
) + O(hr+1), that use the smaller stencils Srk(j). The classical WENO-2r algorithm

imposes that the optimal weights are C̄rk(j) ≥ 0, ∀k and
∑r−1
k=0 C̄

r
k(j) = 1, such that,

p2r−1
j−r

(
xj− 1

2

)
=

r−1∑
k=0

C̄rk(j)prj−r+k

(
xj− 1

2

)
. (4)

A formula for the optimal weights is obtained in [6],

C̄rk(j) =
1

22r−1

(
2r

2k + 1

)
, k = 0, · · · , r − 1. (5)

For r = 3 the optimal weights are equal to,

C̄3
0 (j) =

3

16
, C̄3

1 (j) =
10

16
, C̄3

2 (j) =
3

16
. (6)

In [3] the authors design the weights ωrk(j) such that at smooth zones they satisfy,

ωrk(j) = C̄rk(j) +O(hm), k = 0, · · · , r − 1,

with m ≤ r − 1, in a manner that the interpolation in (3) reaches order of accuracy 2r when m = r − 1,

f(xj− 1
2
)− I

(
xj− 1

2
; f
)

= O(hr+m+1),

that is the same as the one obtained by the interpolation polynomial p2r−1
j−r (x) built using the big stencil. The expression for

the weights in [3, 4] is,

ωrk(j) =
αrk(j)∑r−1
i=0 α

r
i (j)

, k = 0, · · · , r − 1 where αrk(j) =
C̄rk(j)

(ε+ Irk(j))t
, (7)

that satisfies
∑
k ω

r
k(j) = 1. The Irk(j) are called smoothness indicators for f(x) on the stencils Srk(j). The parameter t is an

integer used to assure the maximum order of accuracy close to the discontinuities. Depending on the implementation, the value
of t might vary. We will choose t = 2. The parameter ε > 0 avoids divisions by zero and takes the size of the smoothness
indicators at smooth zones. We will set it to ε = 10−6. In order to ease the notation, in the rest of the article we will drop (j)
in Srk(j), ωrk(j), C̄rk(j), αrk(j) and use Srk, ω

r
k, C̄

r
k , α

r
k. Talking about the smoothness indicators, we will use those introduced in

[5], that work well for detecting kinks and jumps in the function if the data is discretized in the point values (1),

Ink (j) =

n∑
l=2

h2l−1

∫ xj

xj−1

(
dl

dxl
pnj−r+k(x)

)2

dx. (8)

Let us denote the differences as δ2i = fi − 2 fi+1 + fi+2, δ3i = δ2i+1 − δ2i and δ4i = δ3i+1 − δ3i . For r = 3 the smoothness indicators
in (8) can be expressed in terms of finite differences as,

I30 =
10

3
(δ3j−3)2 + 3δ3j−3δ

2
j−3 + (δ2j−3)2, I31 =

4

3
(δ3j−2)2 + δ3j−2δ

2
j−2 + (δ2j−2)2, I32 =

4

3
(δ3j−1)2 − δ3j−1δ

2
j−1 + (δ2j−1)2. (9)

For r = 4 they have the expression,

I40 =
27

2
δ4j−4 δ

3
j−4 +

11

3
δ4j−4 δ

2
j−4 + 5 δ3j−4 δ

2
j−4 +

2107

240
(δ4j−4)2 +

22

3
(δ3j−4)2 + (δ2j−4)2,

I41 =
547

240
(δ4j−3)2 +

10

3
(δ3j−3)2 + (δ2j−3)2 +

19

6
δ4j−3 δ

3
j−3 +

2

3
δ4j−3 δ

2
j−3 + 3 δ3j−3 δ

2
j−3,

I42 =
89

80
(δ4j−2)2 +

4

3
(δ3j−2)2 + (δ2j−2)2 − 1

6
δ4j−2 δ

3
j−2 −

1

3
δ4j−2 δ

2
j−2 + δ3j−2 δ

2
j−2,

I43 =
547

240
(δ4j−1)2 +

4

3
(δ3j−1)2 + (δ2j−1)2 − 5

2
δ4j−1 δ

3
j−1 +

2

3
δ4j−1 δ

2
j−1 − δ3j−1 δ

2
j−1.

(10)

Theorem 3.1 of [5] should be proved for polynomials of any order n ≥ 3 to serve our purposes.
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Theorem 1.1. At smooth zones, the smoothness indicators obtained through (8) satisfy,

Ink =
(
h2p′′(xj−1/2)

)2 · (1 +O(h2)).

Proof. Let p be a polynomial of degree n ≥ 3, that is an n times continuously differentiable function in a neighborhood of the

point xj−1/2 = xj − h/2. Then, we can write
(
p(l)(x)

)2
using the Taylor expansion of p(x) as,(

p(l)(x)
)2

=
(
p(l)(xj−1/2) + p(l+1)(xj−1/2)(x− xj−1/2) +O((x− xj−1/2)2)

)2
=
(
p(l)(xj−1/2)

)2
+
(
p(l+1)(xj−1/2)(x− xj−1/2)

)2
+ 2p(l)(xj−1/2)p(l+1)(xj−1/2)(x− xj−1/2)

+ 2p(l)(xj−1/2)p(l+2)(xj−1/2)(x− xj−1/2)2 +O((x− xj−1/2)3).

Integrating the previous expression between xj−1 and xj , replacing in (8) and simplifying, we obtain the result, as for l > 2 all
the terms of the summation have a size smaller or equal than O(h6),

In(j) =

n∑
l=2

h2l−1

∫ xj

xj−1

(
p(l)(x)

)2
dx =

n∑
l=2

(
hlp(l)(xj−1/2)

)2
· (1 +O(h2)) =

(
h2p′′(xj−1/2)

)2 · (1 +O(h2)).

As a particularization of (8) for n = 3, 4, (9) and (10) satisfy this property. Through this theorem, it is clear that the
smoothness indicators are O(h4) at smooth zones and looking at their expression, it is clear that they are O(1) when they
touch a jump discontinuity. This theorem is one of the keys needed to prove the accuracy of the new algorithm introduced
in [5]. In this article, instead of using high order smoothness indicators obtained directly through (8), we will use a function
of the indicators obtained through the polynomials of lowest order involved in the algorithm with the aim of reducing the
computational effort. We want Theorem 1.1 to hold while keeping O(1) at discontinuities, so a good option is to define the
smoothness indicators of high order as sums of the smoothness indicators used by the classical WENO of order 2r. For r = 3
(in this case we have a stencil of 6 points) we can use as smoothness indicators of four points I30 , I

3
1 and I32 defined through (8)

and then, as smoothness indicators of five points, I40 and I41 defined as,

I40 = I30 + I31 , I41 = I31 + I32 . (11)

For r = 4 (in this case we have a stencil of 8 points) we will use as smoothness indicators of five points I40 , I
4
1 , I

4
2 and I43 defined

through (8) and then as smoothness indicators of six and seven points I50 , I
5
1 , I

5
2 , I

6
0 , I

6
1 defined as,

I50 = I40 + I41 , I51 = I41 + I42 , I52 = I42 + I43 , I60 = I40 + I41 + I42 , I61 = I41 + I42 + I43 . (12)

For higher orders, we follow a similar strategy. This design of the smoothness indicators significantly reduce the computational
cost obtained when using the expression in (8) in the whole algorithm, that was the option chosen in [5].

2. The new algorithm for r = 3

In [5] we analyze how to construct the new algorithm for r = 3, i.e. using 2r = 6 points. We use the polynomials of degree
3, p30(x), p31(x) and p32(x) in order to write the convex combination in (4). In this case we have two polynomials of degree 4
(stencil of 5 points), denoted as p40(x), p41(x) and one polynomial of degree 5 (big stencil of 6 points), denoted as p50(x). We can
build the two polynomials of degree 4 as a convex combination of the polynomials of degree 3,

p40(xj−1/2) =
3

8
p30(xj−1/2) +

5

8
p31(xj−1/2), p41(xj−1/2) =

5

8
p31(xj−1/2) +

3

8
p32(xj−1/2). (13)

And we can write the polynomial of degree 5 as a convex combination of the polynomials of degree 4,

p50(xj−1/2) =
1

2
p40(xj−1/2) +

1

2
p41(xj−1/2). (14)

Remark 2.1. In [5] we use a slightly different construction that provides the same order of accuracy as (14). The generalization
requires the process described here.

Now we can design two vectors of optimal weights C4
0,C

4
1, each of which is suitable for a particular position of the discon-

tinuity. The vectors will be composed of the weights in (13) and have the following expression,

C4
0 =

(
3

8
,

5

8
, 0

)
, C4

1 =

(
0,

5

8
,

3

8

)
. (15)

If the big stencil is {xj−3, xj−2, xj−1, xj , xj+1, xj+2}, then it is convenient to use C4
0 if the discontinuity is in the interval

(xj+1, xj+2) and C4
1 if the discontinuity is in the interval (xj−3, xj−2). It is desirable that, if there is no discontinuity affecting
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the stencil, a combination of the vectors in (15) would return the weights in (6), so that we can achieve maximum accuracy.
This combination is,

C̄3 =
1

2
C4

0 +
1

2
C4

1 =
1

2

(
3

8
,

5

8
, 0

)
+

1

2

(
0,

5

8
,

3

8

)
=

(
3

16
,

10

16
,

3

16

)
=
(
C̄3

0 , C̄
3
1 , C̄

3
2

)
. (16)

We can see how this process resembles a WENO algorithm performed step by step in order to grow the accuracy one step at
a time. Now, instead of using fixed weights multiplying the vectors in (16), we can build nonlinear weights as in the original
WENO algorithm with the aim of create a convex combination of the vectors in (15). We will replace the original WENO
optimal weights in (7) by the resulting convex combination. Thus, in order to assure the adaption of the resulting weights, we
will use the possible smoothness indicators of 4 and 5 points that arise from the 6 points stencil. We can denote by ω̃nk the
quotients,

ω̃4
0 =

α̃4
0

α̃4
0 + α̃4

1

, ω̃4
1 =

α̃4
1

α̃4
0 + α̃4

1

, with α̃4
0 =

1/2

(ε+ I40 )t
, α̃4

1 =
1/2

(ε+ I41 )t
. (17)

Now we can just define the adapted optimal weights as,

(C̃3
0 , C̃

3
1 , C̃

3
2 ) = ω̃4

0C4
0 + ω̃4

1C4
1. (18)

These nonlinear optimal weights C̃rk are used in place of the optimal weights C̄rk in the expression (7). The smoothness indicators
in (17) are those presented in (11) and the smoothness indicators that appear in (7) are the ones shown in (9).

Now we can reproduce some results from [5]. Theorem 3.2 of [5] is equivalent to the next theorem, and the proof is analogous:

Theorem 2.1. For r = 3 the accuracy of the interpolation at adjacent intervals to an isolated discontinuity is · · · , O(h6), O(h5),
O(h4), O(1), O(h4), O(h5), O(h6), · · · .

Corollary 3.3 and Theorem 3.4 from [5] exactly hold for this case:

Corollary 2.2. For r = 3, t ≥ 1, and ε ≤ h4 the new WENO interpolant is at least as good as WENO interpolant close to
discontinuities.

Theorem 2.3. The new algorithm satisfies the ENO property for t ≥ 2, satisfying at the same time Theorem 2.1.

The proof for the previous theorems and corollary is a reproduction of the steps followed in [5].

3. The new algorithm for r = 4

We can proceed in the same manner for higher order schemes. For example, for WENO-8 we start from the stencil of 8
points {xj−4, xj−3, xj−2, xj−1, xj , xj+1, xj+2, xj+3}. We will have four polynomials of degree 4 (stencil of 5 points), denoted
as p40(x), p41(x), p42(x), p43(x), three polynomials of degree 5 (stencil of 6 points), denoted as p50(x), p51(x), p52(x), two polynomials
of degree 6 (stencil of 7 points), denoted as p60(x), p61(x) and one polynomial of degree 7 (big stencil of 8 points), denoted as
p70(x). As before, we want to obtain vectors of weights that progressively attain the maximum possible theoretical accuracy. In
a similar manner as for r = 3, we can write the polynomials of degree 5 using the polynomials of degree 4,

p50(xj−1/2) =
3

10
p40(xj−1/2) +

7

10
p41(xj−1/2), p51(xj−1/2) =

1

2
p41(xj−1/2) +

1

2
p42(xj−1/2),

p52(xj−1/2) =
7

10
p42(xj−1/2) +

3

10
p43(xj−1/2).

(19)

Then we can write the polynomials of degree 6 using the polynomials of degree 5,

p60(xj−1/2) =
5

12
p50(xj−1/2) +

7

12
p51(xj−1/2), p61(x) =

7

12
p51(xj−1/2) +

5

12
p52(xj−1/2). (20)

Finally, the two polynomials of degree 6 can be used to obtain the polynomial of degree 7,

p70(xj−1/2) =
1

2
p60(xj−1/2) +

1

2
p61(xj−1/2). (21)

Now, similarly as before, we can design three vectors of optimal weights C5
0,C

5
1,C

5
2, each of which is suitable for a particular

position of the discontinuity. The vectors will be composed of the weights in (19),

C5
0 =

(
3

10
,

7

10
, 0, 0

)
, C5

1 =

(
0,

1

2
,

1

2
, 0

)
, C5

2 =

(
0, 0,

7

10
,

3

10

)
. (22)

These vectors can be multiplied by the weights calculated in (20) and (21) to obtain the desired weights at smooth zones,

C̄4 =
1

2

(
5

12
C5

0 +
7

12
C5

1

)
+

1

2

(
7

12
C5

1 +
5

12
C5

2

)
=

(
1

16
,

7

16
,

7

16
,

1

16

)
=
(
C̄4

0 , C̄
4
1 , C̄

4
2 , C̄

4
3

)
, (23)
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that are precisely the weights in (5) for r = 4. Now we can proceed as in the previous section and build a non linear convex
combination of the vectors in (22) that provides the optimal nonlinear weights to be used in (7). In this case, we can denote by
ω̃nk the quotients,

ω̃5
0 =

α̃5
0

α̃5
0 + α̃5

1

, ω̃5
1 =

α̃5
1

α̃5
0 + α̃5

1

, ω̃5
2 =

α̃5
2

α̃5
2 + α̃5

3

, ω̃5
3 =

α̃5
3

α̃5
2 + α̃5

3

, ω̃6
0 =

α̃6
0

α̃6
0 + α̃6

1

, ω̃6
1 =

α̃6
1

α̃6
0 + α̃6

1

, (24)

with,

α̃5
0 =

5/12

(ε+ I50 )t
, α̃5

1 =
7/12

(ε+ I51 )t
, α̃5

2 =
7/12

(ε+ I51 )t
, α̃5

3 =
5/12

(ε+ I52 )t
, α̃6

0 =
1/2

(ε+ I60 )t
, α̃6

1 =
1/2

(ε+ I61 )t
. (25)

Now we can just define the adapted optimal weights replacing the fixed weights in (23) by the nonlinear weights in (24),

(C̃4
0 , C̃

4
1 , C̃

4
2 , C̃

4
3 ) = ω̃6

0

(
ω̃5
0C5

0 + ω̃5
1C5

1

)
+ ω̃6

1

(
ω̃5
2C5

1 + ω̃5
3C5

2

)
. (26)

As before, these nonlinear optimal weights C̃rk are used in place of the optimal weights C̄rk in the expression (7). The smoothness
indicators in (25) are those presented in (12) and the smoothness indicators that appear in (7) are obtained using five points,
and have the expression shown in (10). Following [5], theorems equivalent to Theorem 2.1, Corollary 2.2 and Theorem 2.3 can
be given for this case. The proofs would be very similar to the ones presented in [5] and straightforward if one follows the steps
presented in this reference.

4. A generalization to order 2r

Following what has been done in previous section, we can build the optimal weights for WENO-2r algorithm executing the
steps shown in Algorithm 1. The final optimal weights would be stored in the vector C̄2r−1

0 and the components of this vector
should replace the C̄rk in (7). It can be easily checked that the algorithm reproduces the expressions in (18) and (26). It is
important to remark that line 4 of the algorithm implies the solution of a system of two equations with two unknowns every
time it is executed. It is also important to have in mind that Algorithm 1 is only executed once in order to obtain the expression
for the nonlinear optimal weights.

Again, Following [5], theorems equivalent to Theorem 2.1, Corollary 2.2 and Theorem 2.3 can be given for any value of
r. It can be proved that any particular WENO-2r scheme built using Algorithm 1 with t ≥ 2 and ε ≤ h4 satisfy the design
requirement of reaching O(h2r) accuracy at smooth zones and reduce its accuracy close to the discontinuity following the
pattern O(h2r), O(h2r−1), · · · , O(hr+2), O(hr+1), O(1), O(hr+1), O(hr+2), · · · , O(h2r−1), O(h2r). We can mention here that the
additional computational cost of the new algorithm is the calculation of the weights ω̃4

0 and ω̃4
1 in (18) for r = 3, the calculation

of the weights ω̃5
0 , ω̃

5
1 , ω̃

5
2 , ω̃

5
3 , ω̃

6
0 and ω̃6

1 in (26) for r = 4 and so on for greater values of r. Observing (18) and (26), it is easy
to reach the conclusion that the number of extra coefficients that we need to calculate for each interpolation point is given by
the difference equation ur+1 = 2ur + 2 for r = 3, 4, · · · , with u3 = 2. It is true that for a very high r, the computational cost
will be affected, but for low values of r that are the ones used in practice, the computational cost is not very much affected, as
it can be observed in the numerical experiments.

Algorithm 1 Algorithmic sequence to obtain the nonlinear optimal weights for order 2r

1: for m = r − 1, . . . , 1 do
2: k = 0
3: for n = 0, . . . ,m− 1 do

4: Solve for the unknown weights C
2r−(m+1)
n , C

2r−(m+1)
n+1 : P 2r−m

n = C
2r−(m+1)
n P

2r−(m+1)
n + C

2r−(m+1)
n+1 P

2r−(m+1)
n+1

5: if m 6= r − 1 then

6: α̃
2r−(m+1)
n+k =

C
2r−(m+1)
n+k

(ε+I
2r−(m+1)
n+k

)t
, α̃

2r−(m+1)
n+k+1 =

C
2r−(m+1)
n+k+1

(ε+I
2r−(m+1)
n+k+1

)t

7: ω̃
2r−(m+1)
n+k =

α̃
2r−(m+1)
n+k

α̃
2r−(m+1)
n+k

+α̃
2r−(m+1)
n+k+1

, ω̃
2r−(m+1)
n+k+1 =

α̃
2r−(m+1)
n+k+1

α̃
2r−(m+1)
n+k

+α̃
2r−(m+1)
n+k+1

8: C̄
2r−(m+1)+1
n = ω̃

2r−(m+1)
n+k C̄

2r−(m+1)
n + ω̃

2r−(m+1)
n+k+1 C̄

2r−(m+1)
n+1

9: k = k + 1
10: end if
11: end for
12: if m = r − 1 then
13: Define the r − 1 vectors of r weights:

C̄r+1
0 = (Cr0 , C

r
1 , 0, 0, · · · , 0) , C̄r+1

1 = (0, Cr2 , C
r
3 , 0, · · · , 0) , · · · , C̄r+1

r−2 =
(
0, · · · , 0, Cr2r−2, C

r
2r−1

)
. (27)

14: end if
15: end for; return C̄2r−1

0
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5. Numerical experiments

In this section we present some numerical examples that support the theoretical results presented in previous sections for
WENO-6 and WENO-8 algorithms. In order to check the accuracy of both algorithms we consider the piecewise continuous
function,

f(x) =

{
−x9 + x8 − 4x7 + x4 + 5x2 + 3x, 0.5 ≤ x < 0,
−x9 + x8 − 8x7 + x4 + 5x2 + 3x+ 1, 0 ≤ x < 0.5.

(28)

Tables 1 and 3 present a grid refinement analysis for the new WENO-6 and the new WENO-8 algorithms. Tables 2 and 4
present the results for the classical WENO-6 and the classical WENO-8 algorithms. In these tables we use 2i initial points.
We present the results in an interval around the discontinuity. We can see how the accuracy is reduced step by step towards
the discontinuity in the results of the new algorithms while this is not true for the classical implementation of WENO. Tables
3 and 4 only present the results of order of accuracy for all the stencils affected to the left of the discontinuity. To the right
we only present some of the results, as they are symmetric. About the computational time, we perform 500 executions of
each subroutine and obtain the mean of the computational time. We can see that the computational time is similar for both
algorithms.

· · ·x2j−6 x2j−4 x2j−2 x2j x2j+2 x2j+4 x2j+6 · · · Comp. t.
i ei log2

(
ei

ei+1

)
ei log2

(
ei

ei+1

)
ei log2

(
ei

ei+1

)
ei log2

(
ei

ei+1

)
ei log2

(
ei

ei+1

)
ei log2

(
ei

ei+1

)
ei log2

(
ei

ei+1

)
5 9.737e-09 - 1.584e-08 - 9.052e-07 - 4.976e-01 - 7.931e-07 - 5.781e-08 - 1.868e-08 - 1.340e-03
6 8.000e-11 6.927 1.289e-10 6.941 5.597e-08 4.016 4.994e-01 -0.005 5.508e-08 3.848 4.437e-10 7.026 1.342e-10 7.122 2.056e-03
7 5.511e-13 7.181 9.357e-13 7.107 3.493e-09 4.002 4.999e-01 -0.001 3.486e-09 3.982 3.541e-12 6.969 1.106e-12 6.923 3.601e-03
8 3.587e-15 7.263 6.592e-15 7.149 2.182e-10 4.001 5.000e-01 0 2.183e-10 3.997 2.842e-14 6.961 9.104e-15 6.924 6.749e-03

Table 1: Grid refinement analysis for the new WENO-6 algorithm for the function in (28).

· · ·x2j−6 x2j−4 x2j−2 x2j x2j+2 x2j+4 x2j+6 · · · Comp. t.
i ei log2

(
ei

ei+1

)
ei log2

(
ei

ei+1

)
ei log2

(
ei

ei+1

)
ei log2

(
ei

ei+1

)
ei log2

(
ei

ei+1

)
ei log2

(
ei

ei+1

)
ei log2

(
ei

ei+1

)
5 9.735e-09 - 2.000e-07 - 9.047e-07 - 4.983e-01 - 7.936e-07 - 2.126e-07 - 1.871e-08 - 1.281e-03
6 8.000e-11 6.927 1.284e-08 3.961 5.596e-08 4.015 4.996e-01 -0.004 5.509e-08 3.849 1.294e-08 4.039 1.342e-10 7.124 2.753e-03
7 5.511e-13 7.181 8.056e-10 3.995 3.493e-09 4.002 4.999e-01 -0.001 3.486e-09 3.982 8.063e-10 4.004 1.105e-12 6.923 3.723e-03
8 3.587e-15 7.263 5.036e-11 4.000 2.182e-10 4.001 5.000e-01 0 2.184e-10 3.997 5.038e-11 4.000 9.104e-15 6.924 7.596e-03

Table 2: Grid refinement analysis for the classical WENO-6 algorithm for the function in (28).

· · ·x2j−8 x2j−6 x2j−4 x2j−2 x2j x2j+2 x2j+4 · · · Comp. t.
i ei log2

(
ei

ei+1

)
ei log2

(
ei

ei+1

)
ei log2

(
ei

ei+1

)
ei log2

(
ei

ei+1

)
ei log2

(
ei

ei+1

)
ei log2

(
ei

ei+1

)
ei log2

(
ei

ei+1

)
5 6.023e-11 - 1.799e-09 - 1.035e-08 - 2.833e-08 - 4.990e-01 - 1.230e-07 - 2.596e-08 - 7.619e-04
6 2.250e-13 8.065 1.244e-11 7.176 7.697e-11 7.071 2.154e-10 7.039 4.997e-01 -0.002 9.707e-10 6.985 2.052e-10 6.983 9.928e-04
7 7.355e-16 8.257 9.188e-14 7.081 5.880e-13 7.032 1.692e-12 6.992 4.999e-01 -0.001 7.662e-12 6.985 1.619e-12 6.986 1.324e-03
8 - - 6.974e-16 7.042 4.535e-15 7.019 3.260e-14 5.698 5.000e-01 0 7.927e-14 6.595 1.288e-14 6.974 1.544e-03

Table 3: Grid refinement analysis for the new WENO-8 algorithm for the function in (28).

· · ·x2j−6 x2j−4 x2j−2 x2j x2j+2 x2j+4 x2j+6 · · · Comp. t.
i ei log2

(
ei

ei+1

)
ei log2

(
ei

ei+1

)
ei log2

(
ei

ei+1

)
ei log2

(
ei

ei+1

)
ei log2

(
ei

ei+1

)
ei log2

(
ei

ei+1

)
ei log2

(
ei

ei+1

)
5 6.175e-11 - 1.094e-09 - 4.101e-09 - 2.871e-08 - 4.994e-01 - 1.234e-07 - 2.353e-08 - 4.550e-04
6 2.253e-13 8.099 8.091e-12 7.080 3.154e-11 7.023 2.174e-10 7.045 4.999e-01 -0.001 9.727e-10 6.987 1.854e-10 6.988 8.220e-04
7 7.494e-16 8.232 6.244e-14 7.018 2.709e-13 6.863 1.768e-12 6.942 5.000e-01 -0.000 7.738e-12 6.974 1.481e-12 6.968 1.074e-03
8 0 - 9.957e-16 5.971 1.925e-14 3.815 7.510e-14 4.557 5.000e-01 0 1.219e-13 5.988 2.864e-14 5.692 1.437e-03

Table 4: Grid refinement analysis for the classical WENO-8 algorithm for the function in (28).

6. Conclusions

In this paper we have presented a generalization to order of accuracy 2r of the algorithm introduced in [5]. We have provided
an algorithm to construct the nonlinear optimal weights of any WENO-2r scheme for interpolation of data discretized in the
point values. We have proposed smoothness indicators of high order calculated from those used by the classical implementation
of WENO that are computationally more efficient than those used in [5]. We have discussed about the accuracy and presented
numerical experiments that support the claims made for WENO-6 and WENO-8. In future works we plan to extend this
generalization to cell averages and conservation laws.
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