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Abstract

In this paper, we will build a roadmap for the growing literature of high order quadrature-
based entropy stable discontinuous Galerkin (DG) methods, trying to elucidate the moti-
vations and emphasize the contributions. Compared to the classic DG method which is
only provably stable for the square entropy, these DG methods can be tailored to satisfy
an arbitrary given entropy inequality, and do not require exact integration. The method-
ology is within the summation-by-parts (SBP) paradigm, such that the discrete operators
collocated at the quadrature points should satisfy the SBP property. The construction is rel-
atively easy for quadrature rules with collocated surface nodes. We use the flux differencing
technique to ensure entropy balance within elements, and the simultaneous approximation
terms (SATSs) to produce entropy dissipation on element interfaces. The further extension

to general quadrature rules is achieved through careful modifications of SATs.
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1 Introduction

Systems of conservation laws describe the phenomena that the production of a conserved
quantity in any domain is balanced by a flux through the boundary [22]. Entropy inequalities,

7 solution, are crucial to the well-posedness

which help to single out the “physically relevan
of conservation laws. Therefore, when designing numerical methods, we hope that entropy
inequalities are satisfied at certain discrete level. Such property is called entropy stability.
Entropy stability analysis is well-developed for the first order (finite volume) method. The
key concepts are Tadmor’s entropy conservative fluxes and entropy stable fluxes [81, 82].
For high order entropy stable finite volume methods, a major result is the TeCNO scheme,
proposed by Fjordholm, Mishra and Tadmor [31] as a version of ENO schemes [45]. The
authors used high order linear combinations of entropy conservative fluxes in [61], along with
the sign property of ENO reconstruction [32].

Discontinuous Galerkin (DG) methods [15, 14, 13, 17], due to their local conservation,
great parallel efficiency and flexibility for dealing with unstructured meshes, constitute an-
other popular category of high order numerical methods for solving conservation laws. It is
well known that the classic DG method satisfies a discrete entropy inequality with respect
to the square entropy (i.e., L? stability), for scalar conservation laws [58] and symmetric
systems [54]. However, the stability result is only valid for the square entropy function.
There is no provable stability for problems such that the square function does not define
an entropy function. Moreover, we implicitly assume that all integrals in the DG formula-
tion are evaluated exactly. In practice, numerical quadrature rules are usually applied, and
the method we actually code up might not be stable. One possible remedy to accomplish
entropy stability for an arbitrary given entropy function is to approximate the entropy vari-
ables of that entropy function directly (see [56, 2, 53, 87]). This approach is computationally
expensive, as we need to solve nonlinear systems at each time step, even for explicit time
discretization. Besides, the stability proof still relies on the assumption of exact integration.

Over the past decade, there have been rapid developments on entropy stable quadrature-
based DG methods. These DG methods are often characterized in the matrix-vector nodal
formulation collocated at the quadrature points [60, 49]. Because of the approximation error
induced by quadrature, we no longer have the integration by parts property and the chain
rule. The methodology was first developed for the Legendre-Gauss-Lobatto quadrature rule
in one space dimension. The corresponding discrete operators (i.e., matrices) were shown to
satisfy the summation-by-parts (SBP) property [24, 26, 80], which is the discrete analogue
of integration by parts. The distinctive feature of the Gauss-Lobatto quadrature rule is

that it contains the two boundary points. Then we make sure that the boundary matrices



are diagonal, and neighboring cells can be coupled in a natural way through penalty type
terms, usually called simultaneous approximation terms (SATSs) in the literature. In order
to deal with the loss of chain rule, ad hoc split form methods have been provided for the
Burgers equation [36], shallow water equations [39] and Euler equations [38] (for kinetic
energy stability). In [5, 4], Carpenter et al revealed the generic logic behind the splitting
procedure by demonstrating the flux differencing technique. Flux differencing is essentially
high order difference operations on Tadmor’s entropy conservative fluxes, and is applicable
to any system with any given entropy function.

The one-dimensional Gauss-Lobatto nodal methodology can be easily generalized to
multi-dimensional Cartesian meshes through tensor product. In [12], Chen and Shu pro-
posed the entropy stable DG method on unstructured simplex meshes, by introducing special
Gauss-Lobatto type quadrature rules with collocated surface quadrature points, and estab-
lishing discrete operators with the multi-dimensional summation-by-parts property [52, 27].
The further extension to general quadrature rules is highly nontrivial. Although we are still
able to produce SBP operators in the general setting, the boundary matrices are dense, which
makes the treatment of element coupling terms (i.e., SAT) more involved. In [71, 69, 65],
the authors again used the idea of splitting to construct ad hoc entropy stable SATs for
some special problems. Then for general systems, two different entropy stable DG methods
were given by Chan in [7, 8] and Crean et al in [19, 20]. In both approaches, effectively an
augmented set of SBP operators with diagonal boundary matrices was invented, so that the
flux differencing term and the SAT were built on those newly defined operators. They will
be named hybridized SBP operators approach and global SBP operators approach in this
paper. We also remark that in [1], Abgrall recommended a “brute force” type approach that
eliminates entropy error and enforces chain rule directly. It arrived at the same goal as flux
differencing, without necessitating entropy conservative fluxes.

There have been numerous contributions improving the framework in many other aspects.
To name a few, entropy stable DG methods were devised for convection-diffusion equations
[5, 4, 12, 37], MHD equations [3, 62], , gradient flow problems [77, 78|, two-phase flow
problems [73] and stochastic problems [64] (via the generalized polynomial chaos approach
in [86]). The staggered-grid variant was discussed in [67, 25], and by using this idea, modal
DG formulations (evolving polynomials instead of nodal values) were recovered in [7, 8]. The
assumption of conforming simplex meshes can also be greatly relaxed. People have studied
the generalization to curvilinear meshes [4, 3, 37, 20, 9], non-conforming meshes [35], moving
meshes [74] and space-time meshes [34].

The objective of this paper is to systematically review and reinterpret the existing

quadrature-based entropy stable DG methods, primarily in the context of unstructured sim-



plex meshes. The rest of this paper is organized as follows. In Section 2, we briefly present
some necessary background materials, including continuous entropy analysis for systems of
conservation laws, and discrete entropy analysis for the first order method and the classic
DG method. In Section 3, we introduce quadrature rules on simplex elements and the corre-
sponding summation-by-parts operators, deriving the matrix-vector nodal representation of
the classic DG method. In Section 4, we derive the entropy stable DG method for quadra-
ture rules with collocated surface nodes (and diagonal boundary matrices), which is followed
by the extension to general quadrature rules (and dense boundary matrices) in Section 5.
We check the accuracy of these DG methods by carrying out a simple numerical test for
the two-dimensional Burgers equation. Several additional topics are explained in Section
6. Concluding remarks and future research directions are given in Section 7. Finally in
the appendices, we demonstrate the equivalence of flux differencing and splitting in certain

cases, as well as the proofs of some theorems.

2 Background: systems of conservation laws

2.1 Continuous entropy analysis

The general form of systems of conservation laws is

d

ou of(u) d
Ejuz il (t,x) € [0,00) x RY, (2.1)

m=
where u € RP are vector-valued conservative variables, and f,, € RP are flux functions. A
scalar convex function U(u) is called an entropy function for (2.1) if there exist entropy

fluxes {F},,(u)}2 _,, such that the following integrability condition holds

Uw)f (u)=F (u), 1<m<d. (2.2)

. Given a strictly convex entropy function U, let v = U’(u)? be the entropy variables. Then
v/(u) = U”(u) is symmetric positive-definite, and the mapping u +— v is invertible. We also

define the potential fluxes
Un(V) =V En(u(v)) = Fu(u(v)), 1<m<d. (2.3)
One can verify that (see e.g. [42])
U (v) = fu(u(v))” (2.4)

In addition, for a unit vector n € R?, we set

fa(u) = Z Nt (),  Fu(u) = Z N Fp (1), Yn(v) = Z NV (V).
4



If u is a smooth solution of (2.1), by (2.2), U(u) satisfies a secondary conservation law

}: %% (2.5)

At discontinuities, we require the entropy to dissipate, a weak solution u of (2.1) is called

an entropy solution if for all entropy functions, we have the following entropy inequality

oU (u)
ot

d
+ Z OFm(u) <0 (in the weak sense). (2.6)

0T,

Formally integrating (2.6) in space, and assuming that u is compactly supported, we obtain

the bound
d

dt

In other words, the total amount of entropy is non-increasing with respect to time.

U(u)dx < 0. (2.7)

For scalar conservation laws (p= 1) any convex function U defines an entropy function,
with entropy fluxes F,(u) = [“U'(s s)ds. Due to the abundance of entropy functions,
there exists a unique physmally correct” entropy solution. For general systems, existence
of entropy function is no longer guaranteed, and both existence and uniqueness of entropy
solutions are much more challenging. Fortunately, in almost all systems we encounter in
practice (e.g. shallow water equations, Euler equations, MHD equations), we are able to find
entropy functions with physical meaning. We refer interested readers to [41, 22] for more

details on the entropy analysis of systems of conservation laws.

2.2 First order method

Now we start to look into the numerical aspects. We will mostly conduct semi-discrete analy-
sis, i.e., temporal discretization is not taken into account. For spatial discretization, suppose
that Q € R? is some polygonal computational domain equipped with periodic boundary
condition. Let 7, = {T}}’_| be some conforming partition of €2, and h be the characteristic
length of 7;,. We assume that each element 7T}, is a simplex, so that 97, consists of (d —1) -

dimensional simplex faces. The collection of faces is denoted by
Iy={y:y=0T,NnoT,, 1<k, v<K, k#v}. (2.8)

Given T, € 7, and v € 'y such that v € 0T, we use the notation n” to represent the
unit outward normal vector at v. We will often omit the superscripts v and « if they can be

inferred from the context.



The first order (finite volume) method evolves the piecewise constant function uy,(¢,x) =

K
> uf(t)17,(x), and is written in the conservative form
k=1

(Z ffa(u 0)) =0, 1<k <K, (2.9)

L DT,

where €, is the adjacent element on the opposite side of v, and El(u L, Ug) is some directional

interface numerical flux function, satisfying

1. Consistency: ?n(u, u) = fu(u).
2. Single-valuedness: /f\_n(uR,uL) = —/f:n(uL, ug).

It actually approximates the following integral form of (2.1):

%(/TN udx) + /aTﬁ fa(u)dsS = 0. (2.10)

Entropy stability of (2.9) is thoroughly studied by Tadmor in [81, 82]. For an entropy
function U, the rate of change of the total entropy is

% Uy (t,x))dx = C‘;(Zw |U“>— Z (Z Iy [Fa (0, v )

Q

k=1 yEIT,
= 3 Bl (9 B (' 0) + ) () (3 = 9T, T
RISINA
= > I = V) T, 0) - (sinee 07 = —n7%),
RISINA

(2.11)
where we use the short hand notation U® = U(u”) and v* = v(u”). This motivates us to

define the concepts of entropy conservative flux and entropy stable flux.

Definition 2.1. For 1 < m < d, a numerical flur function f,, s(ur,ug) is called entropy
conservative with respect to some entropy U if it is consistent, symmetric and satisfies the
following equality:

(vr —vi) fns(up, ug) = Ymp — Vm.r, (2.12)

where we again set vi g = v(urgr) and V¥m 1,y = Um(VLR)- {4 ¥4 _| are the potential
fluzes given in (2.3). Given entropy conservative fluzes in all space dimensions, we also

define the directional entropy conservative flux

fos(ur, ug) E Nnfm.s(Ur, ug).



Definition 2.2. A directional numerical fluz function ?n(uL,uR) is called entropy stable
with respect to some entropy U if it is consistent, single-valued and satisfies the following
inequality:

A,

(VR - VL) Il(uL7 uR) S ¢n,R - ¢n,L- (213)

Recall (2.11). If £, is entropy stable,

d ) ) R U
dt U(uy(t,x))dx < Z Y| (Wl — WEe) = — Z | (e + %)
) €Tk vely
K
=3 (X i) =0 Gsince 3 pin =0)
et et ve0Tk

We accordingly say that (2.9) is entropy stable with respect to U. Similarly, if /fn is en-
tropy conservative, the total entropy does not change and the scheme is said to be entropy
conservative.

In the scalar case, the entropy conservative fluxes are uniquely determined For general
systems, (2.12) is underdetermined and f,, s(uy, ug) is not unique. Various computationally
affordable entropy conservative fluxes have been provided for shallow water equations [30],
Euler equations and MHD equations [11, 23]. As for the construction of entropy stable fluxes,
we can prove that the monotone fluxes [18, 46] for scalar conservation laws and Godunov-
type fluxes [47] for general systems are stable with respect to all entropy functions. Another
common practice in the literature [57, 10, 5, 37, 7] is to simply add some entropy dissipation

to the entropy conservative flux:

~ ~

fa(ur,ug) = fhs(ug, ug) + dn(ug, ug),

where the entropy dissipation function an(u 1, uR) satisfies the following conditions:

~

1. Consistency: d,(u,u) = 0.
2. Single-valuedness: d_n(ug, uz) = —dy(uz, ug).

3. Entropy dissipation: (vg — VL)Tan(uL, ur) <O0.
For example, the local Lax-Friedrichs dissipation function is a popular choice of an:
du(uz, ug) = —Aa(uz, ug)(ug —uy), (2.14)

where Ap(ur,ug) > 0 is some estimate of the largest absolute eigenvalue in f (u). Notice
that in this approach, fn is only stable with respect to a single given entropy function, as

entropy conservative fluxes are specific to entropy functions.



2.3 Classic DG method

Unlike in the first order method, generally speaking, entropy stability with respect to all
entropy functions can not be accomplished in high order methods. Osher [66] suggested the
concept of E-schemes to characterize numerical methods supporting all entropy inequalities,
and proved that E-schemes are at most first order accurate. Therefore we have to make a
compromise, i.e., to expect entropy stability with respect to a single given entropy function.
In the classic DG method, we keep the locality of the first order formulation, and evolve
high order piecewise discontinuous polynomials. Given polynomial degree k > 0, we define

the DG space
Vi ={w, :wi € [PYT,)P, 1<k <K}, (2.15)

where w is the restriction of wy, on T,,.. We seek uy(t,-) € V¥ such that for each w;, € V¥
and 1 <k < K,

/TN (811h> Whix — Z/ dwhd Z/ (uf, uy) wrds. (2.16)

€T

Again, f is some consistent and single-valued directional numerical flux function, and v =
JT,, N OT,. (2.16) is usually called the weak form of the DG method as it approximates the

weak problem
ou(t,x)" x)T d rdw(x)

for all smooth and compactly supported w. The strong form of the DG method is obtained

after a simple integration by parts

ouy d of,,, (uf
h Ilm (Up) Koy — .
[ (Gt 50 i = S [ata) - o) "wgas, 219

ve0Tx

which corresponds to the equation (2.1) itself. The classic DG method is L? stable if we

have a square entropy function, e.g. in scalar problems [58] and symmetric systems [54].

Theorem 2.1. IfU = —u u is an entropy function of (2.1), and f, is entropy stable with
respect to U, then the DG method (2.16) and (2.18) is L? stable in the sense that

d dl,
y QU(uh)dx—dt< y|uh||L2(Q)) <0. (2.19)



Proof. Since U = su”u, v =u, and ¢/, (u) = f,,(u). We set w, = u,, in (2.16) and get

 (Sli) Z/ (Ziy” dxzi(ifnx auth_Z/ (uf ) s

k=1 m=1 yEIT,
Yy | (st — o ) ws)
k=1 ~e0T}
=2 / e (0, 07)T (= ) = (o (W) = e () ) <0,
Y€l
The last inequality results from the entropy stability of /fn. O

The stability result is limited to the square entropy function. For a general entropy U,
the mapping u — v is nonlinear, and v(uy) does not live in the piecewise polynomial space
V. We can not use v(uy) as the test function. An alternative approach, originally found
by Hughes, Franca and Mallet [56] , is to approximate v directly. We evolve vy, (t,-) € V¥
such that for each wy, € V,’ﬁ and 1 <k <K,

-y / vi) Twrds.

[N oy
(2.20)

Then we can prove that (2.20) is entropy stable with respect to U, by simply taking w;, = v,

and repeating the proof of Theorem 2.1. . We will not concentrate on it in this paper.

The entropy stable DG methods we are going to discuss do not incur nonlinear solvers.
They are based on quadrature points and nodal formulation, so that we can perform nonlinear
mapping freely. Actually, quadrature rules are necessary for the implementation of the DG
method. If the flux functions {f,}¢_, are not polynomials (e.g. in Euler equations), it
is costly or even impossible to evaluate the second integral in (2.16) exactly. There are
two technical challenges related to the nodal form. We need discrete versions of integration
by parts and the chain rule f,,(u(v))?d,, v = 0

Tm Tm

¥m(v), which are crucial to the proof
of entropy stability. In subsequent sections, we will bring into the summation-by-parts

operators, and the flux differencing technique, to handle these difficulties.

3 Summation-by-parts operators

Summation-by-parts (SBP) operators mimic integration by parts at the discrete level. One
can check [24, 26, 80] for the review of SBP operators in one space dimension, and [52, 27] for
the generalization to higher space dimensions. SBP operators are widely used in designing

high order and provably stable numerical methods [44], in particular, entropy stable DG type
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methods [36, 39, 5]. In a nutshell, by specifying suitable volume and surface quadrature rules,
we construct SBP operators based on quadrature points, and by applying those quadrature

rules, we are able to rewrite the DG method under the SBP framework.

3.1 Quadrature rules

The degree k SBP operators are built on degree (2k—1) volume quadrature rules and degree
2k surface quadrature rules. Let {p, (x)}ﬁplk be a set of basis functions of P*(R?), such that

k+d
Npj = dim P*(RY) = < ; )
For each 1 < k < K, suppose that there is an degree (2k — 1) quadrature rule on Ty,
K NQ’k
7=t
v € I', we also choose some degree 2k (surface) quadrature rule on ~, associated with Np

nodes {x;’}js\fl'k, and positive weights {77 }Qflk We introduce the vector notation of nodal

associated with Mg > Npj nodes {x;”}?fl’k , and positive weights {w For each

functions. For some scalar function u on €2,

= ful) i)t = [uld) e b, )]

Then the continuous and discrete inner products on 7T, and v are defined as

No -\ T —
(u,v), = / wdx, (u,v)r, 0= Z wiu(x5)v(x]}) = (u“) M" ", (3.1)
K ]:1

(u,v), = /yuvdS, (U, )y r = Z Tsu(x))v(x)) = <17Y>TBVW, (3.2)

where the volume mass matrix (M*) and the surface mass matrix (B”) are diagonal matrices

of quadrature weights:

M" = diag{wy, -+, Wiy, }, B = diag{r/,--- , 7%, }- (3.3)
We also define the Vandermonde matrices, whose columns are nodal values of {p;(x) ﬁpl’“
k— |8 o _ [ T
VE=|pf - pr,J V= [p»{ . pX/P,k] (3.4)

Derivatives of polynomials in P*(R¢) still belong to P*(R?). We set Npj x Npj polynomial

(modal) differentiation matrices lA)m for 1 < m < d, such that

Np,k
Opy

%(X) =" Dyipr ().

r=1

10



Then V*D,, is the Vandermonde matrix of {8,, pi(x) ;\fl" on T,. According to integration

by parts and the algebraic accuracy of (-, )7, . and (-, ),.r,

~ ~ T
(M (VD)) + (VD) ™M V") = (5F) M (0upe) + (@) ) Mt
:(pl, a’cmpr)TN w T (@;mpbpr)n w = (pb 896mpr)T,.€ + (a:cmplapr)TN
= 0l o)y = Y npnpe = Y an(;?) By = > an((V”)TBVV”> :
~yeIT*H yeIT*H ~yeOT" ~yeOT* tr
In other words,
M*Dy, + DEM* = Y n)rBY, (3.5)
yeITw

which is the modal summation-by-parts property. The modal mass matrices are

—~

M" = (VH)TMHVH> ]/\Zl’:’ = (ppr’)TmuM g’y = (V’Y)TB"/V"/’ g;« = <pl>p7’>'y,'r- (36)

3.2 The SBP property

Inspired by (3.5), we come up with the definition of nodal SBP operators.

Definition 3.1. For 1 <k < K, D, (of size Nox x Ngx) and {R"} cor~ (of size Ng, X

No.x) are called the degree k difference matriz approzimating O,,,, and extrapolation matrices

mJ

mapping data from T} to vy, if the following conditions hold:
1. Exactness: both Df, and R should be exact for polynomials of degree < k; that is,
DEVE =V D, R"V*=V". (3.7)
2. Summation-by-parts: setting S%, = M*D¥F and E7 = (R")TBYR™, we have

Si 4+ (Si)T =MDy 4+ (DE)TM" = Y nlfE = Y nli(R)BTR™. (3.8)

v€dTy v€0T,

It is called the diagonal-norm SBP property as M" is a diagonal matriz.

A simple choice of extrapolation matrices is R7® = V7 P*, where P* is the L? projection

matrix with respect to the discrete inner product (-, )z, o
Pr = (M"Y (VAT M*. (3.9)

Then P*V* = (]\/4\"‘)_1]\7“ = In,, and R"™V* = V7. The existence of SBP difference

matrices is ensured by the following theorem .

11



Theorem 3.1. Assume that we have an extrapolation matrices R'® with the exactness prop-

erty. Then the difference matrices, given by the formula

1 ~
Dy, = 5 (M) > (R +V'PY)TBY (R — VIP) + V*D,,P", (3.10)

yEIT,

also satisfy the exactness property and SBP property.

Proof. Since P*V* = Iy, ,, (R = VIP*)V* = R**V* — V7 =0, and
DEVE = V5D, PVE =V D,,.

As for the SBP property,

1 .
Sp=M"Dj =2 Y mi (R +VIPY B (R —VIPY) + M"V"D,, P"

y€OTk

=3 Z SES 4+ (VIPHYTBYRY™ — (R BV PY — (PY)TBYPF) + (P M*D,, P".

veaik

Summing S}, and its transpose yields

SE A+ (SE)T = 3" npr(EY — (PYTBYP) + (P M"D,, P* + (P*)T D}, M* P*
~edTy

= Z n) E™  (by the modal SBP property),

~edTy

which completes the proof. O
Remark 3.1. By the exactness property and SBP property,

— R .
SETF=DEIF = 0%, R =T,
= N apErT = Y W (RBT, (3.11)

y€OTx y€OTk
— = — —
where 0% (07) and 1% (17) represent the vector of 0s and 1s evaluated on Ty (7).
Remark 3.2. We would like to highlight some special cases of R™ and D, :

1. If Npi, = Ngi (e.g. the one-dimensional Legendre-Gauss quadrature rule and Legendre-
Gauss-Lobatto quadrature rule with (k + 1) points), the Vandermonde matriz V" is

invertible. Then both R™ and D}, are uniquely determined:
R™=VY(V5)™' Df = V=D, (V)™
2. If R = VYP%, the first term of (3.10) vanishes, and D = V*D,, P*.

12



3. If the volume quadrature rule has collocated surface quadrature points (e.g. the one-
dimensional Legendre-Gauss-Lobatto quadrature rule), given v € 0T,, without loss of
generality we assume that x7 = x% for each 1 < s < Npy. Then we can choose

R = [[NB’k 0] , a simple restriction, such that

B 0
vE
=00

1s a diagonal matriz, and

1 ~
Dy, = 5 M%) N 0l (I, + VPR E (I, — VFP®) + VFD,,P*. (3.12)

yEIT,

We also define the extended vector of nodal values to incorporate vector-valued functions

u(xf) u(xy)
— —
u” = ) u’ = : )
u(X.’/ﬂ\/ka) u(XX/B,k)

as well as the Kronecker products
Mf=M"®l,, B"=B"®l, D, =D,®Il, R"=R"®I,
We still have the SBP property

St =MDy, E™=(R"™TBR™, S5+ (S5 = Y nrE" (3.13)

Remark 3.3. Conceptually, the SBP framework can be further generalized to arbitrary polyg-
onal meshes without any difficulty. We stick to simplex meshes for practical purposes. We
only need to store one set of matrices on some reference simplex. Then the local matrices can
be acquired through the affine mapping between the reference element and the local element.

This is efficient in terms of space complexity, especially for meshes with a large number of

elements.

3.3 Nodal DG formulation

Recall the classic DG method (2.16), written as inner products:

(%:?Wh)ﬂ - Zd: (fm(UZ)> %)TK = — Z <?n(u2,u;’;),w,’j> (3.14)

m=1 yEIT, v

13



We use the volume quadrature rule to approximate the left hand side, and the surface

quadrature rule to approximate the right hand side, replacing the continuous inner products

M=

with discrete inner products:
auh K de _ I K 4.V K
o)~ 2 (), == 3 (Riiowi) @19

Specific to the DG method, we expand uj and wj under the basis {p;(x) f\ipl’“

3
I

Npk Np

uy(t,x) = Z uy (t)pu(x),  wi(t x) Z Wi (t)p(x

=1

Define the vectors of polynomial coefficients

uy Wi

=~ P4

u” = , W= : ,
Unp s, wﬁ[Pk

and the vectors of nodal values
uy, (x7) wp(XF) £ (uf)
— —
u” = : A : , £ = :
uh(x.'f\/'Q’k) Wh(x.’f\/ka> fm(u.'f\/'Q’k)

- ~ 2 =~ . . = e
Then u® = Vfu® and w" = V*w”. Likewise we can also define v® and U". On a face

~v € 9T}, let the superscript vk represent the vector of extrapolated nodal values:

d
—

K K/HH /T)K/ K Ki—>K/ A_I>€ —H) K/? K K K
u" =R"™u"=V"u", w"¥=R"w"'=V'w" f{"=R"f f;’ n”’f'y.

We also put nodal values of the interface numerical flux into a vector

fu (w0 (x7), wj (7)) fa(u]”, u}")
—>
frd = : _ E

Using these notations and discrete operators in Section 3.1 and Section 3.2, we are able to

recast (3.15) into a compact matrix-vector formulation:

/\ d
=2\ "o du” w1 SR NRER oy A T
<W)M - Z(VD )Mfm_—Z<V7w)B’Yfg .

m=1 vyedTx

—
Since w" can be arbitrary, we obtain

du

d
1S (VED,,) MR = —(MF) S (VI B (3.16)
m=1

~edTy
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ﬁ
This is called weak modal formulation as we evolve the vector u*. Applying V* to (3.16),
we come up with the weak nodal formulation that describes the evolution of u”:
%
dua”
dt

d
rky—1 T AVA H?_ rky—1 YDPR\T PRYEYR,*
— (M) (VD P M"f;, = —(M")~" > (VP B, (3.17)

m=1 ’YEaTK

where we use the relation VF(MF)~! = (M*)~L(P*)T. It is a special case of the more general

weak nodal DG formulation

du d

S (DE)MAEL = (M) S (R)TBIE (3.18)
m=1 'YeaTli

by choosing R = VYP* and D% = VD, P~. According to the SBP property (3.8), we

also deduce the :

du d

W= S (e (e B
vedT, m=1
Difference term Simultaneous ap\prroximation term
d (3.19)
= () 3 (B (o e E - )
_ (M/{)—l Z (R’YH)TB'Y (fw — W)
’YE(?TK

It can be viewed as a spectral collocation method with penalty type terms on element

interfaces [48]. These penalty terms are called simultaneous approximation terms (SATs) by

the SBP community.

Remark 3.4. We should emphasize the caveats concerning the link between modal and nodal
DG formulations. By taking interpolation, the modal formulation only implies a specific
nodal formulation (with particular choices of R" and DE,). On the other hand, by taking
projection, all nodal formulations (with any R and D7, satisfying the exactness property
and the SBP property) will lead to the modal formulation. In fact, applying P* to (3.18) and
settmgu — Pru” yield

du*

dt

d
—Pr(M) ! Z (D" TMnfn — _PE(M) ! Z (RWR)TB“{W.
m=1 VEDT
This reduces to (3.16) because of the exactness properties:
(M)~ (D))" = (M) (D V)" = (M) (VD)
PH(MH)—I(RW%)T _ (T\/\In)—l(Rw@V/@)T _ (ﬁn)—1(v~,)T_
The reason for such asymmetric relation is the fact that Ngp > Npr. Then V* is not

surjective, and P* is not injective.
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4 Entropy stable DG method with collocated surface
nodes

The nodal DG formulation (3.19) (and (3.18)) does not satisfy any entropy inequality (even
the L? stability). For an entropy function U, the discrete total entropy is given by

K K K Ngxk
S (U, > (" ) MR =30 s
k=1 k=1 k=1 j=1
Then the entropy growth rate of (3.18) is
K K Nk K Nok K —
d A AU T du”
(0 () 0) = 03w =30 oG =30 () e
k=1 k=1 j=1 k=1 j=1 k=1
K d T .
S (3 () e - Y (er) )
k=1 m=1 v€Tx

However, we can not characterize the first term as the chain rule In this section, we will
modify the scheme (3.19) and make it entropy stable, in the special case that the volume
quadrature rule has collocated surface quadrature nodes, and that the boundary matrix
E7" is diagonal (i.e. the third case in Remark 3.2). The modification amounts to the flux

differencing technique in [29, 5, 4, 12].

4.1 Flux differencing

Identity (2.12) satisfied by entropy conservative fluxes serves as the discrete analogue of the
chain rule. The flux differencing technique, in which we replace the difference term in (3.19)
with high order difference operation of entropy conservative fluxes, is the key to entropy

balance within an element. The modified nodal DG method reads

—
du”®

Fs (0, )17 = (M%) Y (R™)BY(B) - £ 4.1
dt mCrImsil U - ( ) ( ) n ~ 'n : ( : )
g D \ yEIT, |
. . Vv
Flux differencing term Simultaneous approximation term

where o denotes the Hadamard (pointwise) product of vectors and matrices, and F,, s(-,-)

is the matrix of pairwise combinations of entropy conservative fluxes :

diag(f,s(up1,ury)) --- diag(f, s(upi, upny))

diag(fm,s(uLNLv uR,l)) e diag<fm,5<uL,NL7 uR,NR))
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for u; € RPNt and up € RPVE. We can clarify the involved flux differencing term by writing

down the evolution of the nodal values

d NQk NBk R
Mo >SN DEfmsiun) =Y Y RW i (£ — Ea(ul", ul")). (4.2)
m=1 [=1 vedT, s=1

We will take a deeper look into the flux differencing term in Appendix A, showing that if
the entropy conservative fluxes are seperable, flux differencing is actually equivalent to the
splitting technique in [36, 71, 39, 69, 38, 65]. Before proving the main result of this section,
we first give a lemma indicating the effects of flux differencing on primary conservation and

entropy growth.

Lemma 4.1. If for each 1 < m < d, £, s is an entropy conservative flur with respect to

some entropy function U, then

—\T — —\ — —\ T — —\ —
(1“) M“(ZD;oFmvs<u“,u“)1“> =3 ngf<1“> EWoFm,S(uH,uﬂ 1%, (4.3)

yE€OT
—\ T — —\ — —\ T — —\ — —\ T —
(V“) M“(QDfnoFm,g(u“,u")l“) = Z n'}f((v“) E“’”oFms(u“,u“)l“—( ;) E””l”).
yEITk
(4.4)
Moreover, if E*Y is diagonal, we have the simplified result
—\ T — =\ = —\T —
(1*”») M"(QDzloFms(u“,u“)l“) = ngf(17> B, (4.5)
yEIT,
—\T — —\ — —\7 _ — —\7T —
(w) M“<2DﬁloFm7s (u“,u“) 1“) -y n;:f«v%) B — (W{”) Bm). (4.6)

~edTy
— — — —
Proof. Since M" is diagonal, M" (D’;l oF,. s (u“, u“)) =Sk oF,s (u“,u“), and by the
symmetry of £, s, Fp, g (1?%, 1?”) is a symmetric matrix. Then
—\T — T — =\ —

(1“) M* <2Dﬁ1 oF,.s (u“, u )1"‘) (1"‘) Sy oF,. ¢ (u“, u“) 1"
) (S5, +(S5)7) 0 Fs (W, 07

ﬁ

1% (by the SBP property),

EU

(by symmetry of £, 5)

and

—\ T — —\ — —\ T — —\ —
(V"‘) M”<2DfnoFm7s<u“, ”) 1“) :2<V“> S oFm,g<u“,u“) 1"



The second term equals

Nok Nok
" T K kT T ANy U r\T ([ QK K K 4 K
v (Sm - (Sm> ) © Fm,s u,u 1" = (Vj) ( m,jl Sm,lj)fm,s(uj7ul)
j=1 =1
NQ kNQ,k
= S ]l(vf v, )7t S(U;”, u;) (by symmetry of £, ¢)
=1 [=1
NQ kNQ,k

= Z Z Sp it —¥m,)  (by entropy conservation of f,, s)

(9% >;(5;:;L (ST == (Wn)TEMF (by relation (3.11)).

yEIT,

Hence (4.3) and (4.4) are proved. Moreover, if E7* is diagonal,
E"oF,, s(u u )1“ Efr = (R™)TBE" (4.7)
which implies (4.5) and (4.6). O

We are ready to provide the main theorem, which states that the nodal DG method (4.1)

is conservative, entropy stable, and maintains high order accuracy, under the assumptions
that

1. The volume quadrature rule has collocated surface quadrature nodes ({x?},2 B Fis a
subset of {x}} j:Qlk for v € 0T, ), R"" is a simple restriction onto v, and E*7 is dlagonal.

2. The simplex meshes {7}, parameterized by h, shape regular and quasi-uniform.

3. All mappings and numerical fluxes (e.g. v(u), f,,(u), £, s(uz,ug), etc) are smooth
and Lipschitz continuous.

4. f,, s is entropy conservative, and ?n is entropy stable with respect to an arbitrary given

entropy function U.

Theorem 4.1. If all assumptions above hold, then the scheme (4.1) is consistent in that for

a smooth solution u of (2.1), the local truncation error is of high order:

d Ngxk NB R
e S D) - Y Y i T~ Ralul ) = O, (48)
m=1 [=1 v€dT, s=1

It is also conservative and entropy stable with respect to U in that
K K
d —\T — d —\T —
45 (F) wew) =0, L (3 () ) <o .
(2 (F) ) o G (3 (F) wrd) <o (19)
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Proof. Consistency: u is single-valued at interfaces. Since R and R are simple restric-
tions, ul® = ul” = u(x?) and % = f,(u(x7)). Then the simultaneous approximation term
vanishes. It suffices to show that the flux differencing term is of high order, i.e.,

Nv
2 QkD/i f K 4 K _8fm(u) K _Ohk
Z m,jl mﬁ(ujaul) O (Xj)_ (h%).

=1

Let ’fmg(X y) = ms( (z),u(y)) and f,(x) = £,,(u(x)). Then }:m,g is also symmetric and

consistent such that f,, s(x,x) = f,,(x). Therefore

s s

8fm 8fm g
m(x) = 2
OYm (%) = OYm

(x) (x,%) +

According to the approximation property of local difference matrix D |

(x,x).

0z, o0z,

NQ,k ~ _
of,, . of, . of,, (u

2 Z Dy, jifm,s (0f, ') = 2 oy 7S( X5, X}) + O(h*) = —(x]) + O(h*) = 8I( )
=1 m m

(x5) + O(RY).

0T,

Conservation and entropy stability: according to (4.5) and (4.6),

(7)) = 3 () (- 7) - 3 5 () e

~edTy m=1~€0T,
NB k
—\T_ —
S <1V> B = Y Y Sk w),
v€0Ty ~edT,; s=1

(7)) = 3 () e () - X0 3 () - () )

yEIT, m=1~€dT,
G g EE] YR r YEVEH = Y ()75 YNTE (17 1"
=3 ((0F) BT = (vVF) BEY) = 303 s — (v R w)).
y€ITx v€dT,, s=1

We are only left with interface terms. Summing over x gives us

i(i (ﬁ)TM’f?) B Z Z Zﬂf W, )
dt o

k=1 y€0T, s=1

NB R R
= — Z Z Tg(fnw (u;m’ u;yv) + an(uzy> u;m)) — 0’
el s=1
d K —\ T — K NB’k
Te
7L (V) M) =30 3 3 s - (03 R )
k=1 k=1 v€dT, s=1
NB.
=D AV = V) e (W], 1)) = (e s — Gie ) 0,
’YEF]—L s=1
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by entropy stability of ?n. We again use the fact that R"™ and R are simple restrictions,

50 that v = v(uJ*) and ¢ = g (vI%). =

4.2 Accuracy test

We test the accuracy of scheme (4.1) for the two-dimensional Burgers equation
ou 10u* 10u?
— - —— +—— =0, € [0,1]%, 4.10
ot 20m | 20m, *<[0.1] (4.10)
with periodic boundary condition and initial data u(0,x) = 0.5sin(27(x; + x2)). We can
easily compute the exact solution by tracing back characteristic lines along the diagonal

direction. The entropy function is taken be the hyperbolic cosine function U = cosh u, such
that
U2
v =sinhu, F; =F,=wucoshu—sinhu, 1 =1y = (5 + 1) cosh u — wsinh u.

The entropy conservative fluxes are given by

(% + 1) coshuy, — ug sinhuy, — (% + 1) coshug + ugsinhug

fl’s(uL’ tr) = fz,s(uL, ur) = sinh up — sinh up,

If |ur, — ug| is small, the division suffers from the round-off effect, and we use the first 5
terms of Taylor series to approximate the numerator and the denominator. The cutoff value
for |uy, — ug| is 1073, The local Lax-Friedrichs flux will be employed on element interfaces.

The test is performed on a hierarchy of unstructured triangular meshes generated by
the Gmsh software [40]. To implement SBP operators on those triangles, we need to find a
quadrature rule that achieves volume and surface accuracy simultaneously. For the surface
accuracy, we put (k+1) Legendre-Gauss points along each edge, and for the volume accuracy,
we use the numerical package in [88] to obtain degree (2k—1) quadrature rules with collocated
Legendre-Gauss edge nodes. The distribution of quadrature points on the equilateral triangle
is illustrated in Figure 4.1. Then we assemble the mass matrices and difference matrices using
(3.12).

The scheme (4.1) is evolved in time with the third order strong stability preserving (SSP)
Runge-Kutta method [43, 76]. We would like to compute with k& = 2,3,4. The time step
is proportional to h**1)/3 o that the time error will be dominated by the space error.
Numerical errors and orders of convergence at ¢ = 0.1 (before the shock wave emerges)
are displayed in Table 4.1. We observe reduced rate of convergence (less than the optimal
(k+1)-th order), especially for the L> error. It is probably due to the algebraic accuracy of
quadrature rules. It was shown in [13, 55 that , we need an degree 2k volume quadrature

and an degree (2k + 1) surface quadrature to attain optimal convergence.
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(a) k=1,Ngr =6 (b) k =2,Ng =10 (c) k=3,Ngr =18 (d) k=4, Ng, =22

Figure 4.1: Degree 2k — 1 quadrature rules on triangles with collocated Legendre-Gauss
edge nodes for £ = 1,2,3,4. Dots are quadrature points for the triangle, and circles are
quadrature points for the edges. The symbols overlap as edge nodes play both roles.

Table 4.1: Errors and orders of convergence of (4.1) for the two-dimensional Burgers equation
at t = 0.1. Degree (2k — 1) volume quadrature rules are used.
k h L' error  order L? error order L™ error order
2 1/16  1.324e-03 3.182¢-03 5.708e-02
1/32  2.337e-04 2.503 6.825e-04 2.221 1.577e-02 1.856
1/64 3.800e-05 2.620 1.362e-04 2.326 4.701e-03 1.746
1/128 5.628e-06 2.756 2.380e-05 2.516 1.222¢-03 1.944
1/256 8.219e-07 2.776 3.986e-06 2.578 2.329e-04 2.391
3 1/16 1.811e-04 5.932e-04 1.851e-02
1/32  2.376e-05 2.930 1.010e-04 2.555 4.591e-03 2.012
1/64 2.225e-06 3.417 1.055e-05 3.258 6.936e-04 2.727
1/128 1.977e-07 3.492 1.106e-06 3.253 1.135e-04 2.611
1/256 1.818e-08 3.443 1.181e-07 3.228 1.238e-05 3.196
4 1/8  3.494e-04 1.130e-03 2.753e-02
1/16  3.514e-05 3.314 1.367e-04 3.047 5.646e-03 2.286
1/32  2.609e-06 3.752 1.334e-05 3.357 9.824e-04 2.523
1/64  1.264e-07 4.368 7.157e-07 4.220 8.201e-05 3.582
1/128 5.226e-09 4.596 3.490e-08 4.358 5.968e-06 3.780

5 Entropy stable DG method on general set of nodes

In this section, we would like to extend the entropy stable DG methodology to arbitrary
volume and surface quadrature rules. Without the collocated surface nodes assumption, the

scheme (4.1) is not entropy stable, as we are facing some new obstacles:

1. The extrapolation matrix R?* is not a restriction. Then v* # v(ul®) and ¥~ #
Ya(VI%). The sign of (v1¥ — vI*) Ty (u7%, u1") — (Y30, — ¥l ) is -
2. The boundary matrix E7* is dense, and the identity (4.7) is not valid. We are not able
to simplify the term E" o F,, ¢ (1?, 1?) 1%,
—

N —
We solve the first issue by defining the entropy-extrapolated nodal values. Set u”* and )"

such that 2* = u(v)*) and )¢, = U (VY¥). We require the interface numerical flux to
s s m,s s
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depend on those entropy-extrapolated values:
fu(u]”, u)")
f’yﬁv* —
n
T /R ~yv
fn(uNB,k’ uNB,k)

In order to cope with the second issue, we design certain augmented discrete operators that
satisfy SBP property with diagonal boundary matrices. Two possible approaches, i.e., the
hybridized SBP operators in [7, 8] and the global SBP operators in [19, 20] will be covered.

Besides, we also consider the “brute force” approach in [1].

5.1 Approach 1: hybridized SBP operators

We start to analyze the hybridized SBP operators approach in [7, 8] by Chan. The key idea

is to combine volume nodes and surface nodes together. :
0T, =yUaoUn.

We define the hybridized vector of nodal values, by adding entropy-extrapolated values on

faces: ~ _
u vF
—
— || = | vF
K,h Kh
u — - y A" — —
N vor
— —
um v

The hybridized mass matrix and boundary matrices on 7} are all diagonal:

M* 0 0 0 0 0 0 0 0 0 0 0 0 0 O 0
g BUo0 0| [0 BT o o] o0 0 o] L, o0 0 of
0 0 B 0 0 0 0 0 0 0 B 0 0o 0 O 0
0 0 0 B™ 0 0 0 0 0 0 0 0 0 0 0 B
and for each 1 < m < d, the hybridized difference matrix is
D'zl_%(M~)71(nZnHE'YNJl_n»,UnNEUNJFn%{EnK) %n;‘;;‘i(Mﬁ)fl(R'yﬁ)TB’y %ng{i(Mﬁ)fl(Rom)TBa %n?{v(Mﬁ)fl(Rn&)TBn
1 1
Dh = —gnm R E"VmKINB,k 0 0
—3nGrRI” 0 37 INg & 0
—Lnlr s 0 0 %"ZTINB,k

The next theorem follows immediately from the exactness property and SBP property of the

original operators. Proof will be omitted.

Theorem 5.1. The hybridized discrete operators satisfy the following conditions:
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1. Exactness:

%6 V5D,
Y e —
Drh “;0 = 8 . In particular, D15 = 0", (5.1)
v 0
2. Summation-by-parts:
MH,]’LDH}'L (Dnh TMnh Z nﬁ/f;E'ynh (52)

yEIT,

With the hybridized SBP operators at hand, we develop the nodal DG method

du” =~ =
K,h K,h nh Hh kh) __ ky—1 YR\NTRY [ £Y5 _ fIK.*
=+l (E:D oFms( )1 )_(M) §j(R)B(fn £,
m=1 P yEIT,
Hybridized flux differencing term Simultaneous approximation term
(5.3)
where

Ln,h — [INQ,k (M“)_I(RW)TB'Y (Mn)—l(Ron)TBo (M“)_I(R"“)TB”}

help decouple the hybridized vector. We can also write down the formulation solely in terms
of the original SBP operators:
&
— —\ = — — — —
;t +2 Z D! oF,.¢s (u"‘, u“) 1" = (M")™! Z (E“’“ o Fpg(u® u)1" — (R 1B

m=1 yEIT,

-

(. J/

Vv
Simultaneous approximation term

— —\\ — — =\ =
FRTB (R 0 s (T, ) )1~ (R)7BY) o s (0,57 T7),

~~

Vo
Flux differencing term

Skew-symmetric correction term

(5.4)
where F, 5(+,-) is the matrix of pairwise combinations of f, g(,-). Comparing it with the
unmodified DG method (3.19), we have not only applied the flux differencing technique, but

also tuned the SAT by adding some skew-symmetric correction term. The component-wise
representation is

d Nox NB.k Nk
—i-QZZDmﬂfmguy,ul 3 ZR’“‘ (ZR’“‘f s, uf)
m=1 =1 €T, s=1 wy =1
. (5.5)
R+ 3 up) — fos(uf,01)).

We proceed to prove the consistency, primary conservation, and entropy stability of (5.3).

Similar to Lemma 4.1, we have the following result for the hybridized flux differencing term.
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Lemma 5.1. If for each 1 < m < d, f,, s is an entropy conservative flur with respect to

some entropy function U, then

T — ——\ —— T =
(?) L”th”(QD;;hoFm,S(u“vh,uﬁvh)r@h) -y @f(ﬁ) BT",  (5.6)
~edTy
T — ——\ — T = =\T
(7) L“’hM“<2Dfr;hoFms(u“’h,u”’h) 1“) = n;z:(<x7) B — (zp;;f) BVF)).
yEIT,
(5.7)

Proof. By the definition of L""
T T T T T —\T
(1) v = [ () v (T) B0 () B (1) Bo) = (1) M,

T T T T T —\7T
() e <[ (7' (7)o (7)< (7)o
4

The rest of proof is the same as Lemma 4.1. We make use of the SBP property of hybridized

—_— —
operators, and the identity D%R1%" = 0=h, O
Theorem 5.2. Under the same assumptions as in Theorem 4.1 (except for the collocated

surface nodes assumption), the scheme (5.3) is consistent in that for a smooth solution u of

(2.1), the local truncation error

d Nok NB.k Nk
+222Dmﬂfmsuwul Z ZRW H(ZRslfns(uy’ul)
m=1 [=1 ~edT, s=1 9 =1
5.8
Non (5.8)

(W, W) + ZR s(ul”, uy) — £ 5(uf, u””””)) = O(h¥),

as well as conservative and entropy stable with respect to U in that

(S () w0 GSE wF) < 6o

Proof. For consistency, we already know that the truncation error of the flux differencing
term is of high order. As a result of shape regular and quasi-uniform mesh, the quadrature
weights have the scales w? = ©(h?) and 77 = ©(h?""), and since the extrapolation matrices
are invariant under affine mapping, the coefficients have the scale RZ; = O(1). Hence it
suffices to show that

NGk NG,k

> Rt s(uf,uf) — £, (WF, W) + Z R ()", uf) — fo5(uf, 0)%) = O(RFTH).

=1
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By the approximation property of extrapolation and Lipschitz continuity of u(v),
vI"—v(x]) = O(h*), W —u(x]) = O(R*).

We check each term separately:

Nk
3" Rt s(ul,uf) = fos(uf, u(x)) + O(R*Y),
=1

(W%, 0)7) = fa(u(x))) + O(h*H),

NQ,k

> R s (W, uf) = fo,5(007, u(x))) + O(W) = fu(u(x))) + O(RFY),
=1

fos(uf, ul") = £, s(uf, u(x))) + O(LFH).

Then the truncation error of boundary terms is also of high order. The proof of conservation

and entropy stability is straightforward. We insert (5.6) and (5.7) and get

d K T R NB .k R R
gt (0 (1) M) = = 57 3 w0 (e (8%, 1) o B (82, T17)) =

k=1 vely s=1
d K o _\T — Nk 0 o
(X0 (V) M) = 303 (v = v e (5, ) — (P2, — ) S0,
k=1 vel'y s=1
Now the last inequality is valid for entropy-extrapolated values. O

Remark 5.1. In fact, scheme (4.1) is a special case of (5.3) (and (5.4)). If we assume
JAEEEEN —

collocated surface nodes, since R is a simple restriction, " = u"*, and
— — — — N
E" o F, s(u”, u")1" = E"f) = (R"")'B"f)",
— —\\ — —
(R'YR)TB'Y (R’m o Fn,S (u’m’ un) ) 1% = (R'YR)TB'yfr'lm’
T — =\ — O
(R™)"B")oFp g <u”‘, u”’“) 17 = (R™)"Bf)".

Therefore the skew-symmetric correction term in (5.4) vanishes, and we recover (4.1).

5.2 Approach 2: global SBP operators

The global SBP operators approach was found by Crean et al in [19, 20]. We consider the

nodal values on different elements as a whole, grouping them into a single global vector:

— —
u! vl
— —
w=|:|, vi=|:
— —
u® vE
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The global mass matrix is
Ml
MY =
MK

and the global difference matrices are assembled as

Dol .. D9lK
Dgn - . ’
DKL ... D9KK
where we set
Dr, — S(M*)=t 3> n) B if k=v
gk ~edTy
Dy =190 if Kk #vand 0T, NIT, =0 -
(M=) (R™TBYRY = in)s(M*)"'E" if k # v and 0T, N OT, = v

Theorem 5.3. The global mass matrix and global difference matrices satisfy the following

conditions:

1. Exactness:

1
- 4 - =
DIVI=VID,,, whereVI= | i |. In particular, DI 19 = 0. (5.10)
VK
2. Summation-by-parts:
M9D4 4 (DI M9 = 0. (5.11)

The proof is again a direct application of the local exactness property and the local SBP
property. Here the right hand side of (5.11) is zero, as on each interface, the contributions
from its two sides will cancel out with each other (and by periodic boundary condition,
all faces are interfaces). We produce the following nodal DG method, using global SBP

operators:

— d

d g

d—‘l+2§ DgloFmvs@?,Eg))ﬁ:o. (5.12)
m=1

J

Global flux differencing term

The SATs on element interfaces are implied by the global flux differencing term. Plugging
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the definition of DY, we derive its element-wise formulation

dt &
— —\ —
4 —I—QE D“moFm,S(u“,u“>1“
m=1

dt
Flux differencing term o R (513)
_ (Mfa)—l Z (E’m o Fn,S(uH, u“)l“ _E" o ]:—‘11173(11;-;7 uu>1u>7
yeOT,

Vo
Simultaneous approximation term

and component-wise formulation

d Noxk
‘I‘QZZDmﬂfmS ujaul)
m= 1/0; v (5.14)
=3 Zjo%(Z(R M s (05, uf) — R £, s(uf, ul”)))-
€T, s=1 Wi N3

Theorem 5.4. Under the same assumptions as in Theorem 5.2, the scheme (5.12) is con-

sistent in that for a smooth solution u of (2.1),

d Nok

‘l'QZZDm]zfmS (uf,uy)

m=1 [=1

Ny (5.15)

-3 Y Rl (Z (R B s (05, uf) = R s, u)) ) = O(h"),

vedT, s=1 J

as well as conservative and entropy conservative with respect to U in that

i(<1g> Mng)) = _(Tg))TMg(QD% oFp.s (1?7) 13) 1_5) =0, (5.16)
(7Y 307) = - () Mo (203, 0 B, (o) 7) o (5.17)

Proof. Conservation and entropy conservation are actually global versions of (4.5) and (4.6),

and can be proved in the same way as in Lemma 4.1. For consistency, since

Nk
3 R s(uf,uf) = fus(uf,u(x))) + O(hF),

=1

and
N,k
Z R fas(uf,uf) = fo5(uf, u(x))) + O(A*Y),
the truncation error is of high order. ]
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In practice, the entropy conservative scheme (5.12) will generate strong spurious oscilla-
tions in the vicinity of shock waves as entropy should be dissipated at . It is necessary to
impose entropy dissipation on element interfaces to make it entropy stable,. For 1 < x < K
and v € 9T}, we define R

o dn(u]", u;")
n R : ’
dn(Uy, Uy, )
where the d,, is some entropy dissipation function with respect to U (see Section 2.2). We

create the entropy stable scheme

du” d — —\ —
u K K K K
7 + 2 E_leoFm,Lq(u,u)l

(. J/

Flux differe‘,ncing term

-1 B R OTANTR KV A yr\T ’ym
3 ( o Fus(ut, u)1* — E¥ o F, (0", ) — (R™)TB'd] )
yeOT,

- -
v~

Simultaneous approximation term

(5.18)

Corollary 5.1. If an is an entropy dissipation function with respect to U, then the scheme

(5.18) is consistent, conservative and entropy stable with respect to U.
Proof. For a smooth solution u, because of consistency of an,
da (W, 1)) = da(u(x]) u(x))) + OB = O(RHH).

Hence entropy dissipation does not affect consistency. The effects on primary conservation

and entropy stability are

NB
Y () B = 3 A (750 + (7,55 = 0
=1 y€dTx veTy, s=1
NB k
Y () ROBET = 33 0 v a5 < 0
k=1 y€0T, vely, s=1
As a consequence, the scheme is clearly conservative and entropy stable. O

Remark 5.2. In the case of collocated surface nodes, the boundary terms in (5.18) are

— = — — — = — P
E™ o Fy (", u")1* = (R™)BEF, E™oF, s, )1’ = (R™)TB),
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where o
fos(u]”, uy”)
YR, *
fn,S =
fn’s(uX/B,k7 uX/B,k>

is the vector of entropy conservative fluzes on the interface. Then the scheme (5.18) reduces

to
ﬁ
du”
dt

d

—_—

+2 30D, 0 By (0w ) 15 = (M) ST (RBY (5 - 15 - ).
m=1

yEOT

We again recover (4.1), by setting £ = £75" + dj™~, i.e.,
o~ K IYV _ TIVK YV 3 TIVK YV
fn(uz » Ug ) - fn,S(uZ » Ug ) + dn(uz ) Ug )

Remark 5.3. The element coupling term EHVOFms(I?, 17’)?’> depends on all nodal values on
the neighboring element T,. This will harm the locality of the DG formulation, and make the
implementation of non-periodic boundary conditions (inflow, outflow, solid wall, etc) more

difficult.

5.3 Approach 3: directly enforcing entropy balance

The method in [1] was written in the more general residual distribution framework. We will
focus on the version for nodal DG formulations. We start with the unmodified nodal DG
method (3.19). For 1 < k < K, the local entropy error of (3.19) on T}, is defined as

£ — i (\?)T(D;)TM“K*; =S (ﬁ)TB’YzTI’I“. (5.19)
=1 ~EOT,

Due to the lack of discrete chain rule, the entropy error is nonzero. However, we are able to

demonstrate that for smooth solutions, £* is of high order.

Theorem 5.5. Under the same assumptions as in Theorem 5.2, for a smooth solution u of
(2.1), the local entropy error £ = O(hk+9).

Proof. For a smooth solution u, the following identity holds at the continuous level:
vy N~ (V)
T ) = () = D (v 1),

d
fm b)
> (£ 5 -
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By the approximation property of difference and extrapolation matrix, and the algebraic

accuracy of volume and surface quadrature rule,

i (fm(u)’ a{;’;@)ﬂ _ i (fm(u), 8V(u))me + O (R

0T,

_ i (0uv" ) MPE) + O(R*F+) = i (p v”)TM"ff; +O(h**),

m=1

Y Wn(vw), 1), = ) (ga(v(w), 1), +OR*+)

vEIT yEOT
T T =
-y (ﬁ) B, + O = 37 (ﬁ) B + O(hF+).
v€dTy ~€dTx
d T T —
Hence £" = > (ﬁ) (D’;l)TMHf_g; -3 (ﬁ) BYr = O(hk+d), O
m=1 yE€OT

In order to neutralize the entropy error, a simple linear correction term will be introduced

o0 (3.19), resulting in the scheme

K 1 YT R W YK, * E” K,0
REE (M) (§ (R)B(fn —fn’)—iTV’), (5.20)
’YEaTN (Vﬁv()) VH7O
. h - . J
Difference term Simultaneous approximation term e

Linear correction term

—
where v™° is the vector of normalized nodal values of v:

K K
Vo —V 1 Ng.k
v , V= E Vf.
P Nok =
NQ .k

Theorem 5.6. Under the same assumptions as in Theorem 5.2, the scheme (5.20) is con-
servative and entropy stable.

o — /T —
Proof. From the definition of v*°, ( “) v™? = ( and

T No Nos T
_>/§ T,o_ R\T (5 oK) K gR\T (,F _ oK) T,o> T,Z)
v v —Z(Vj) (V5 V)—Z(Vj VO (Vi =V = (v v

j=1 j=1
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Then conservation and entropy stability can be easily proved:

K K NB
%(Z (?)TMUT) == S UBUE = = 3 S 7 Fn (8, W) + B (027, T2%)) = O,
k=1 k=1 ~€0T} vely, s=1
d K —\ T — K —\T = —\T —
E<Z (%) wT?) =3 (X (V) Brigr+en= Y (vF) B —¢)
k=1 k=1 €Tk yEOT
NB,k
=D D (V2 = VI R (17, 02) = (U s — Ui ) < 0.
vely, s=1

O

Remark 5.4. Although we have proved that £% is of high order, this does not guarantee the
consistency of (5.20). The main reason is that Vo = O(h), and we are not able to control
the truncation error of linear correction term, which is of the order O(h*+)/O(h?) with the
coefficients of the two O terms in the denominator and in the numerator not necessarily
related, hence there is the danger of the coefficient in the denominator going to zero faster

than that of the numerator, which might lead to a degeneracy of accuracy.

5.4 Accuracy test

We test the numerical convergence rates of three entropy stable DG methods in this section,
for the two-dimensional Burgers equation associated with hyperbolic cosine entropy function.
The settings are the same as in Section 4.2. We use the local Lax-Friedrichs flux in (5.3) and
(5.20), and the local Lax-Friedrichs entropy dissipation function in the implementation of
(5.18). SBP operators are built on degree 2k volume quadrature rules on triangles, exhibited
in Figure 5.1. Compared to Figure 4.1, these quadrature rules have better algebraic accuracy
with fewer degrees of freedom. This is a major benefit of removing the collocated surface
nodes constraint. The extrapolation matrices and difference matrices are simply chosen as
R = VYP* and D, = V*D,,P".

(a) k= 1,./\/'ka =3 (b) k= 2,./\/'(;)_,]@ =6 (C) k= 3,/\/@7]@ =12 (d) k= 4,./\/ka =16

Figure 5.1: Degree 2k quadrature rules triangles for k£ = 1, 2, 3,4. Dots are quadrature points
for the triangle, and circles are quadrature points for the edges.
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Numerical results at ¢ = 0.1 are presented in Table 5.1 for scheme (5.3), Table 5.2 for
scheme (5.18), and Table 5.3 for scheme (5.20). Since the volume quadrature rule is of degree
2k, the accuracy requirements in [13, 55] are met, and there is some hope to recover optimal
(k 4 1)-th order convergence. We do see optimal convergence in Table 5.1 and Table 5.3,
despite the fact that the truncation error of (5.20) is not fully understood. However, the
convergence is still below optimal for the global SBP scheme (5.18) in Table 5.2.

Table 5.1: Errors and orders of convergence of (5.3) for the two-dimensional Burgers equation
at t = 0.1. Degree 2k volume quadrature rules are used.

k h L' error  order L?error order L error order
2 1/16  2.244e-04 - 4.597e-04 - 6.226e-03 -
1/32  3.391e-05 2.726 8.188e-05 2.489 1.367e-03 2.187
1/64 4.386e-06 2.951 1.074e-05 2.931 1.793e-04 2.931
1/128 5.717e-07 2.939 1.557e-06 2.786 2.992e-05 2.583
1/256 7.511e-08 2.928 2.238e-07 2.798 5.511e-06 2.440
3 1/16 5.445e-05 - 1.913e-04 - 3.067e-03 -
1/32  4.526e-06 3.589 1.921e-05 3.316 5.347e-04 2.520
1/64 3.019e-07 3.906 1.365e-06 3.815 3.096e-05 4.110
1/128 1.920e-08 3.975 9.184e-08 3.894 3.538e-06 3.130
1/256  1.275e-09 3.913 6.148e-09 3.901 2.941e-07 3.589
4 1/8  1.476e-04 - 4.757e-04 - 6.202e-03 -
1/16  1.092e-05 3.757 4.482e-05 3.408 1.132e-03 2.454
1/32  4.984e-07 4.454 2.637e-06 4.087 1.150e-04 3.300
1/64 1.528e-08 5.028 7.728e-08 5.093 5.355e-06 4.424
1/128 4.818e-10 4.987 2.472e-09 4.966 1.641e-07 5.028

6 Additional topics

In this section, we treat different entropy stable nodal DG discretizations (including (4.1),

(5.3), (5.12) and (5.20)) in the same manner, using the generic representation

du” —
; :r“<ug>, (6.1)

such that

@ are() 0. @ re@) o

For clarity, proofs of the theorems in this section will be provided in Appendix B.
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Table 5.2: Errors and orders of convergence of (5.18) for the two-dimensional Burgers equa-
tion at t = 0.1. Degree 2k volume quadrature rules are used.

k h L' error  order L?error order L error order
2 1/16  5.300e-04 - 1.367e-03 - 1.451e-02 -
1/32  7.057e-05 2.909 2.154e-04 2.666 2.813e-03 2.366
1/64 8.973e-06 2.975 3.028¢-05 2.831 4.761e-04 2.563
1/128 1.089¢-06 3.042 3.872e-06 2.967 8.605e-05 2.468
1/256 1.363e-07 2.998 5.082e-07 2.930 1.447e-05 2.572
3 1/16 8.324e-05 - 2.611e-04 - 4.398e-03 -
1/32  8.824e-06 3.238 3.621e-05 2.850 8.565e-04 2.361
1/64  7.546e-07 3.548 3.655e-06 3.308 1.463e-04 2.550
1/128 5.944e-08 3.666 3.537e-07 3.370 2.444e-05 2.581
1/256  4.908¢-09 3.598 3.530e-08 3.325 3.024e-06 3.015
4 1/8 1.945e-04 - 5.587e-04 - 6.280e-03 -
1/16  1.768e-05 3.459 6.770e-05 3.045 1.607e-03 1.966
1/32  1.123e-06 3.977 5.577e-06 3.602 2.089e-04 2.943
1/64  4.482e-08 4.648 2.583e-07 4.432 1.709e-05 3.612
1/128 1.549e-09 4.855 9.283e-09 4.798 9.867e-07 4.114

Table 5.3: Errors and orders of convergence of (5.20) for the two-dimensional Burgers equa-
tion at t = 0.1. Degree 2k volume quadrature rules are used.

k h L' error  order L?error order L error order
2 1/16 2.321e-04 - 4.779e-04 - 6.456e-03 -
1/32  3.456e-05 2.748 8.407e-05 2.507 1.431e-03 2.173
1/64  4.432e-06 2.963 1.088e-05 2.950 1.888e-04 2.923
1/128 5.748e-07 2.947 1.566e-06 2.797 3.105e-05 2.604
1/256 7.532e-08 2.932 2.244e-07 2.803 5.511e-06 2.494
3 1/16 6.136e-05 - 2.201e-04 - 3.608e-03 -
1/32  5.050e-06 3.603 2.199e-05 3.323 6.367e-04 2.503
1/64  3.266e-07 3.951 1.513e-06 3.861 3.610e-05 4.141
1/128 2.031e-08 4.007 9.928e-08 3.929 3.837e-06 3.234
1/256 1.330e-09 3.933 6.533e-09 3.926 3.184e-07 3.591
4 1/8 1.787e-04 - 5.778e-04 - 7.072e-03 -
1/16  1.298e-05 3.783 5.361e-05 3.430 1.356e-03 2.382
1/32  5.751e-07 4.497 3.081e-06 4.121 1.346e-04 3.334
1/64 1.693e-08 5.086 8.712e-08 5.144 6.191e-06 4.442
1/128 5.198e-10 5.026 2.711e-09 5.006 1.902e-07 5.024

6.1 Compatibility with limiters

For the classic DG method, people have developed a wide class of limiters, such as the
TVD/TVB (total variation diminishing/bounded) limiter [75], the bound-preserving limiter
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92, 93] and the WENO limiter [68], to enable extra stabilization. The idea of limiters can
certainly be transferred to nodal DG formulations. Generally speaking, after applying some
limiter, we compute the modified set of nodal values, denoted by ueew ,foreach 1 <k < K.
We require that the average value of u on T, is unchanged, as the primary conservation

should be maintained.

Now Now

,Lg/-znow_ fut = T
|T‘Z ‘T‘Z%UJ u

In [12], the authors proved that if the limiter squeezes the data towards the average value,

the total amount of entropy will not increase.

Theorem 6.1. Suppose that the modified values are given by

u;,new — ﬁn ‘l‘ )\;(U; _ ﬁﬁ)’ (62)

where 0 < )\;7” <1 for each 1 < j < NQ7]<; and 1 < k < K, then for any convex entropy

function U, we have

—\T — —\T — Noyk Nowk
(1/@) MnUn,new S <1n) MI{U}{’ . Z w n new S Z W:U(Uj) (63)
j=1

For instance, in the bound-preserving limiter, we perform a simple linear scaling proce-
dure u;’new =u"+ )\"“(u;? — ") with 0 < \* < 1, making sure the modified nodal values are
within some physical bound. Therefore the bound-preserving limiter will not violate entropy
stability. A special entropy stable TVD/TVB limiter was also designed for one-dimensional
scalar conservation laws in [12]. These limiters make the most sense only for quadrature rules
with collocated surface nodes. On general set of nodes, due to the emergence of entropy-
extrapolated values, proving the bound-preserving property or the TVD/TVB property is
very challenging, despite the fact the proof of Theorem 6.1 still holds.

Remark 6.1. Limiters only work for fully discrete schemes. The argument is incomplete
unless we prove the entropy stability of the fully discrete version of (6.1). Time discretization

will be discussed later.

6.2 Convection-diffusion equations

We add viscous diffusive terms to the conservation law (2.1):

=+ 221 a% (£n(w) - Zomr(v)g—&) —0, (6.4)



where v is the entropy variable of some entropy function U, and C,,.(v) are p X p matrix-
valued functions. One typical examples is the compressible Navier-Stokes equations. We

assume that the matrix
Cll(V) s Cld(V)

Cdl(V) s Cdd(V)
is symmetric semi-positive-definite. Then (6.4) supports the entropy inequality with respect
to U. Entropy stable discretization of (6.4) is investigated in [5, 4, 37], where a nodal version

of the local discontinuous Galerkin (LDG) method [16, 6] is introduced. We recast (6.4) into

the mixed form

_Ov
- Ox,

u o d

ar a_ fm —Um) — 0, m = Cmr era 07“ 6.5

5+ D g ) = an) =0 =3 o) (65

The LDG method evolves the approximations of u and {6, }¢_, simultaneously. Once again
H

for each 1 < Kk < K, ut and @7 denote the vector of nodal values in 7). We further define

that
d

K : K K e K Ak
Cmr = dlag{Cmr(Vl ), T, Cmr<VNka)}7 9, = Z Cmror :

r=1
Neighboring elements are coupled via /fn(u L,Uug), as well as single-valued numerical fluxes of
v and qp:
V= i"\(VLu VR>7 an = an<vL7 VR, dn,L, qn,R)- (66>
—_— — .
On the face v € 07}, we also let v?** and q** describe the vectors of the nodal values of

corresponding numerical fluxes:

v(vi®, vi") an(vi" V1", Ayt A1)
— —
V’\/Ki,* — . , q;/lli,* — :
7K v ~ VK v VK v
V(VNB,k’ VNB,k) qn(VNB,k’ VN AoNg 0 qnvNB,k)
The LDG discretization of (6.5) is
d[?’i — d — — ——
= (W) + YDy — Y (M) TR B (a — gy ). (6.7a)
m=1 yeIT,
Difference term Simultaneous ap;roximation term
? /-z_>n K rk\—1 r\T —>/£ K,k
- MI—Z@M)QUWW—W»lgﬂ. (6.7b)
——

Difference term :{ €0T .,

Vv
Simultaneous approximation term
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Theorem 6.2. Given parameters a > 0 and 3 € R, if we choose the LDG fluzes

F(vi,vi) = (v +va) + Bve — V),
(6.8)

- 1
dn(VL, VR, Qn,L, qn,R) = _(qn,L + qn,R) - ﬁ(qn,L - qu) —a(vy — Vg),
2

then (6.7) is entropy stable with respect to U.

6.3 Modal formulation

We have only considered nodal DG formulations up to now. The recovery of modal formu-
lations was explored in [7, 8, 9]. The idea is similar to the staggered-grid DG methods in
(67, 25]. The polynomial basis functions {p;(x) ﬁplk play the role of solution points (say,
we can assume that they are Lagrangian interpolation polynomials), where the numerical
solution is stored; while the quadrature nodes {xf};\fl"“ are regarded as flur points, where
the function evaluations take place. The communication between these two sets of points is
via entropy variables, which brings us the concept of entropy-projected values. Vandermonde
matrix V" and projection matrix P" are the corresponding interpolation operators.

Recall the notations in Section 3.3. Let uj(x) be the numerical solution, and % be the
vector of polynomial coefficients on T,,. The vector of nodal values is = V"‘@. For the

entropy variables v, we define the projected polynomial:

Nok
— — @

vh = PHVH, VZ(X) = Z GFPl(X%
=1

— —
as well as the entropy-projected values v* and u”, such that

_ vi(X]) . u(vy)
vf{ — Vli’\ﬁ — VHPHVH — : , ﬁf{ —
Vh(X/’i/'ka) u(vﬁ/’Q,k)

Now given the generic entropy stable nodal DG formulation (6.1), its modal counterpart is

derived through projection and inserting entropy-projected values:

H
o u
K — —
;:P"r“(ﬁg>, W=, (6.9)
H
ﬁK

Theorem 6.3. Under standard assumptions, if (6.1) is conservative and entropy stable,

then the modal formulation (6.9) is also conservative and entropy stable, in the sense that

i [wie00) = (3 (7)) <0 (3 (7)) <0 o0

k=1 k=1

36



6.4 Curvilinear meshes

Curvilinear meshes are usually preferred in the decomposition of domains with complex

geometry. For a curvilinear mesh, still denoted by {7,}X |, suppose that there exists a

k=1
reference simplex element 7' (with reference coordinates £), such that T} is the image of T
under some invertible mapping € — x,(§). We define the Jacobian factor J* = det(x/(£)),

and the metric terms

0&’ 1<m,r <d.
oxk,

The metric terms satisfy the following geometric conservation law [59]

Gy ="

ZaG =0, foreach1l<m <d. (6.11)

Then we rewrite the conservation law (2.1) in terms of reference coordinates:

0u d
gt % (mZ:: ar ) (6.12)

This is actually a problem with variable coefficients, as both J* and G, are non-constant

functions (they are constant only for simplex meshes where all mappings are affine). In the
case that the quadrature rule has collocated surface nodes, entropy stable DG method for
(6.12) was created by Fisher in [28], and applied to different problems in [4, 3, 37]. The
main difficulty lies in the treatment of the metric terms. Roughly speaking, the nodal values
of the metric terms must satisfy the discrete geometric conservation law (i.e., the discrete
version of (6.11)). Exact evaluation of the metric terms will in general fail. One possible
procedure computing two-dimensional and three-dimensional metric terms was uncovered
n [59]. Moreover, metric terms should be averaged in the flux differencing term, which

corresponds to the split form

J8u+;i<8§<ZG (w) + ZGW

It is a well-known splitting technique for problems with variable coefficients (see e.g. [48]).

) —0. (6.13)

For general quadrature rules, the same idea was used in [9] to derive a curvilinear variant of
the hybridized SBP operators, such that the discrete geometric conservation law is written
in terms of volume metric terms and surface metric terms. The idea also works for global
SBP operators, but at the cost of requiring a global discrete geometric conservation law. A
slightly different approach was presented in [20] to maintain the locality of the geometric

conservation law.
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6.5 Time discretization

One important motivation for quadrature-based DG formulations is the pursuit of entropy
stable methods that can be exactly implemented. This goal is only partly accomplished
due to the assumption of semi-discrete analysis. Fully discrete entropy stability is mostly
established for implicit time stepping schemes. For example, applying the Euler backward
scheme to (6.1) yields

e
ut (D = ) 4 A <u9’(”+1)), (6.14)
——
where u™™ is the solution vector on T, at the n-th step. By the convexity of U,

K K
Z (F)TMHUR,(TL—FI) < Z <<1_,%) TMRUT,TL + (Vn,(n—l—l))TMn (uli,(’n-i-l) . uli,(’n)))
1 k=1

K=

K T K T K T
3 (B) 2T+ a3 () e (@) < 3° () aae i,
k=1 k=1

Hence the Euler backward time stepping is entropy stable. A general framework of high order
entropy stable implicit time stepping schemes was discussed in [61]. Time discretization can
also be handled by the so-called space-time DG technique, in which we regard the time
variable as an extra dimension, and the equation (2.1) as a steady state conservation law in
(d+1) dimensions. Then we directly adopt existing entropy stable methods to discretize the
steady state problem. See [34] for the space-time version of quadrature-based DG methods,
and [2, 53, 87| for the space-time version of (2.20) (DG method that approximates entropy
variables ). Clearly, the space-time DG methods are also implicit in time.

In contrast, the entropy stability of explicit time discretization is by large an open prob-
lem. For the first order method using monotone fluxes (in scalar problems) or Godunov
type fluxes, it is well-known that the entropy stability result is still valid in the fully dis-
crete case with Euler forward time stepping (see e.g. Chapter 3 of [41]). In the context of
high order DG methods, the L? stability of linear equations is proved for Runge-Kutta time
stepping [91], and Lax-Wendroff time stepping [79]. However, relatively little is known for

the nonlinear extension (in the sense of both flux functions and entropy function).

7 Concluding remarks

Starting from the pioneering work in [36, 5], high order entropy stable quadrature-based
DG methods have been developed into an exuberant research area. These DG methods
can be stable with respect to an arbitrary given entropy function. Therefore we circumvent
the limitation of the L? stability result for the classic DG method. There are three main

ingredients contributing to entropy stability:
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1. Discrete operators with the summation-by-parts property. The existence of difference
matrices is clinched by equation (3.10).

2. Flux differencing technique. We apply difference matrices to bivariate entropy conser-
vative fluxes, instead of the univariate flux functions, to enable chain rule. The “brute
force” method in Section 5.3 provides another option of enforcing entropy balance.

3. Entropy stable SATs that couple adjacent elements. For quadrature rules with collo-
cated surface nodes, simply inserting entropy stable fluxes on interfaces is enough. For
general set of nodes, we need to put more effort. Two possible constructions of SATs,
implicitly implemented in augmented SBP operators, are reviewed in Section 5.1 and
Section 5.2.

The entropy stable DG framework is of great versatility in that a variety of concepts
can be incorporated into it. We have only discussed a few topics in this paper, including
the generalization to convection-diffusion equations, the transformation between nodal and
modal formulations, the handling of curvilinear meshes and the development of fully-discrete
methods. The bound-preserving limiter and TVD/TVB limiter can be imposed on quadra-
ture points with collocated surface nodes. On the other hand, the main advantage of general
quadrature rules is the possibility of attaining better accuracy with degrees of freedom.

We speculate some possible directions for future research:

1. Rigorous error analysis for smooth problems. There are positive results for the classic
DG method in [89, 90, 55].

2. Establishing convergence of numerical solutions. Since the DG methods only satisfy
a single entropy condition, we might not be able to show convergence to the entropy
solution. The paradigm of measure-valued solutions was used in [53, 33].

3. Bound-preserving limiter for general quadrature rules. This is of practical importance.
For problems with strong shocks, the code is likely to crash due to non-physical values
(e.g. negative density or negative pressure in Euler equations), and bound-preserving
limiter is usually desired.

4. Entropy stable explicit time stepping schemes.

A Equivalence of flux differencing and splitting

In this section, we build the link between flux differencing and splitting, and also present
some special examples to further illustrate the equivalence. For the sake of simplicity, let us

consider the one-dimensional conservation law:

ou N of (u)

ot ox

=0 (A.1)
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We assume that the entropy conservative flux fg(uy,ug) is separable. That is, there exists

a finite sequence of functions {g;(u)}?,, such that fs has the symmetric decomposition

fs(ur, ug) = Y gi(ur) o gup1-i(ug). (A.2)

i=1

By consistency of fg,
= "gi(u) o gpi1i(w). (A.3)
i=1

As a result, if u is a smooth solution,

of(u) ¢ 0gn+1-i(n)  Ogi(u) . O8ni1i(w)
ox - ; (gz(u) © ox + ox © agn—i—l z ) =2 Z gz o .

We have the split form of (A.1)

Ou o u . 8gn+1_i(u)
= 2 ; gi(u)o ~ (A.4)

Theorem A.1. Under the assumption of separable fs, the flux differencing term is actually
the discretization of split form (A.4):

— —\ — LN —_—
2D o Fg (u“, u“) F=2% glo (D“gz_i_l_i), (A.5)
i=1

Proof. We simply examine each component of the flux differencing term:

Ng.k

<2Dr~ o Fg (u u ) ) —9 Z D fg(uf, uf) = QZgl ( 3 Dflgnﬂ_i(uf))
=1
—
=2 Z ng © (DHgZH—i)j-
=1

O

A.1 Linear symmetric system
Consider the one-dimensional linear symmetric system

ou 0(Au

— + (Au) =0, (A.6)

ot Ox
where A is some constant symmetric p x p matrix. The square function U = §u u defines
an entropy function, with

L r T L 7
vV =u, F:§u Au, ¢ =v f—F:§u Au
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We simply take fg to be the arithmetic mean
1 1
fs(uL, LIR) = §(AUL + ALIR) = §(f(uL) + f(uR)) (A?)
Hence the flux differencing term reduces to
— — — — — — —
9D o Fg (u“, u“) ~T%o (D"‘f"‘) F o (D“l”) — D~F”
We recover the difference term in the unmodified DG method (3.19).

A.2 Burgers equation

For the one-dimensional Burgers equation

ou 10u?

— - = 07
ot 2 0x

we still use the square entropy function U = %, with

u? u?
v=u, F=y=Z, Y=<
The entropy conservative flux is
— 1
fs(up,ug) = YR YL = —(u? +upug + uy). (A.8)
VR — U, 6

Then

which is the discretization of the split form
ou 1ou* 1 Ou
e Ry | A.
ot T30r T3 " (A.9)
It is called the skew-symmetric splitting technique in [36, 71].

A.3 Shallow water equations

The one-dimensional shallow water equations read
0| h 0 hw
o {hw} + o {huﬂ . %ghQ} = 0. (A.10)
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Here h and w are the water depth and velocity, and ¢ is the gravity acceleration constant.

The total energy function U = $hw? + Lgh?® serves as an entropy function with

w 2

We can construct the separable entropy conservative flux

1,2 1 1
V:[gh 2w]’ F = —hw® + gh*w, wzighzw

(hpwr + hpwg)
f = 2\ LT TR : A1l
S(uL’uR> |:i(thL+thR)(wL+wR) —l—%gthR ( )
The corresponding flux differencing term is equivalent to the discretization of
oh  0(h
5 g =0
t x , (A.12)
O(hw) N 19(hw?) lwﬁ(hw) N 1h ow ty h% B
ot 2 O 2 Ox Ox or 0
which is the skew-symmetric splitting procedure in [39].
B Proofs of the theorems in Section 6
B.1 Theorem 6.1
We will prove Theorem 6.1. Since
1 Nk 1 Nk
7 > Wit P W (T 4+ N (uf — ) =",
7j=1 7j=1
we have
N,k N,k No.k Nk
Sowrxuy = (S war)ur, S W - auy = (w1t X Ja
j=1 7j=1 7j=1 j=1
By the convexity of U
NGk Ng .k
UE™) < XU + (1 - AU @), (S wil - A“))U(u"‘) < S WL - AU ()
7=1 7j=1
Therefore
NQ k NQ,k
Zw upt) <Oy T WFNU () + (1 - AU ("))
j=1
NQ,k No.k Nok No.k
=S WU () + ( S Wil - A;)) U@y <y wr ) + Z (1— AU ()
j=1 j=1 j=1
N,k

= Z Wil (uf)
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B.2 Theorem 6.2

We will prove Theorem 6.2, i.e., the entropy stability of LDG method (6.7) for convection-
diffusion equations. We neglect the convective term r” (1?5) as it is already entropy stable.

Then the entropy growth rate in 7 is

d//r—T  —s d T —N\T
()£ e T ) )

m=1 ~vedTk

T
We left multiply (6.7b) by (qf) M
—\T —> —\7T  — —\ 7 _— ——
(@) M7 = (o) sovi= > (o) B (VP v), 1<
~edTy

Summing up the two identities above yields:
d
d (N v wg? N\ qro? o () et
() ) = 3 (@) e 3 () s+ () )
—n\T — —
3 () e ) @) ()

The first sum is non-positive since

No.k d No.k

d d
- z () M8 == 3y (o8, = - 30 (30 ) 02, ) <0
=1 r= = m=1 r=1
The second sum, according to the SBP property, equals
d T T d T T
S () s+ (@) s) =30 3w (W) B = Y () B
r=1 r=1 yedTy €T

Now there are only interface terms. We sum over x and get

HS () ) <8 3 () e ) e - ()
i 2 an qn

k=1 ’YE
NB.k
. ~ VK yN\T A VR YV TR W L W ONTS(vIE WY
- § § Ts ((Vs — Vg ) qn'*"‘(vs » Vs 7qnW7qun“f",s)+(qn“/"7s_qtﬂ"“,s) V(Vs » Vs )
vel'y s=1

— (V) e — (V) ).
By the definition of LDG fluxes (6.8) and the identity
1 1
VLGt = Vidnk = 5 (Ve +VR) (@nr = ng) + 5(VE = VR) (dn s + dng),
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we are left with

d K —\T SN NB,k
(2 (FF) arT7) <= 323 stavir =iy (v = v <0,

k=1 vel'y, s=1

Hence the LDG method is entropy stable with respect to U.

B.3 Theorem 6.3

We will prove Theorem 6.3, i.e., the conservation and entropy stability of the modal formu-
lation (6.9). The evolution of nodal values is
%
du”
dt
VAP M*,

N R N
(VPl)Mr(ug>:Z(1>Mr(ug>,

1 k=1

(Vi) e (7) = 32 (F) v (7).

1 k=1

_
)
Since MAV*P* = (P*)TM~P* =

3 (1) ) =

k=1 K

23 (7)) -

k=1 K

MN ||MN -

Then from the conservation and entropy stability of (6.1), we see that (6.9) is also conser-

vative and entropy stable.
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