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Abstract

In this paper, we will build a roadmap for the growing literature of high order quadrature-

based entropy stable discontinuous Galerkin (DG) methods, trying to elucidate the moti-

vations and emphasize the contributions. Compared to the classic DG method which is

only provably stable for the square entropy, these DG methods can be tailored to satisfy

an arbitrary given entropy inequality, and do not require exact integration. The method-

ology is within the summation-by-parts (SBP) paradigm, such that the discrete operators

collocated at the quadrature points should satisfy the SBP property. The construction is rel-

atively easy for quadrature rules with collocated surface nodes. We use the flux differencing

technique to ensure entropy balance within elements, and the simultaneous approximation

terms (SATs) to produce entropy dissipation on element interfaces. The further extension

to general quadrature rules is achieved through careful modifications of SATs.
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1 Introduction

Systems of conservation laws describe the phenomena that the production of a conserved

quantity in any domain is balanced by a flux through the boundary [22]. Entropy inequalities,

which help to single out the “physically relevant” solution, are crucial to the well-posedness

of conservation laws. Therefore, when designing numerical methods, we hope that entropy

inequalities are satisfied at certain discrete level. Such property is called entropy stability.

Entropy stability analysis is well-developed for the first order (finite volume) method. The

key concepts are Tadmor’s entropy conservative fluxes and entropy stable fluxes [81, 82].

For high order entropy stable finite volume methods, a major result is the TeCNO scheme,

proposed by Fjordholm, Mishra and Tadmor [31] as a version of ENO schemes [45]. The

authors used high order linear combinations of entropy conservative fluxes in [61], along with

the sign property of ENO reconstruction [32].

Discontinuous Galerkin (DG) methods [15, 14, 13, 17], due to their local conservation,

great parallel efficiency and flexibility for dealing with unstructured meshes, constitute an-

other popular category of high order numerical methods for solving conservation laws. It is

well known that the classic DG method satisfies a discrete entropy inequality with respect

to the square entropy (i.e., L2 stability), for scalar conservation laws [58] and symmetric

systems [54]. However, the stability result is only valid for the square entropy function.

There is no provable stability for problems such that the square function does not define

an entropy function. Moreover, we implicitly assume that all integrals in the DG formula-

tion are evaluated exactly. In practice, numerical quadrature rules are usually applied, and

the method we actually code up might not be stable. One possible remedy to accomplish

entropy stability for an arbitrary given entropy function is to approximate the entropy vari-

ables of that entropy function directly (see [56, 2, 53, 87]). This approach is computationally

expensive, as we need to solve nonlinear systems at each time step, even for explicit time

discretization. Besides, the stability proof still relies on the assumption of exact integration.

Over the past decade, there have been rapid developments on entropy stable quadrature-

based DG methods. These DG methods are often characterized in the matrix-vector nodal

formulation collocated at the quadrature points [60, 49]. Because of the approximation error

induced by quadrature, we no longer have the integration by parts property and the chain

rule. The methodology was first developed for the Legendre-Gauss-Lobatto quadrature rule

in one space dimension. The corresponding discrete operators (i.e., matrices) were shown to

satisfy the summation-by-parts (SBP) property [24, 26, 80], which is the discrete analogue

of integration by parts. The distinctive feature of the Gauss-Lobatto quadrature rule is

that it contains the two boundary points. Then we make sure that the boundary matrices
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are diagonal, and neighboring cells can be coupled in a natural way through penalty type

terms, usually called simultaneous approximation terms (SATs) in the literature. In order

to deal with the loss of chain rule, ad hoc split form methods have been provided for the

Burgers equation [36], shallow water equations [39] and Euler equations [38] (for kinetic

energy stability). In [5, 4], Carpenter et al revealed the generic logic behind the splitting

procedure by demonstrating the flux differencing technique. Flux differencing is essentially

high order difference operations on Tadmor’s entropy conservative fluxes, and is applicable

to any system with any given entropy function.

The one-dimensional Gauss-Lobatto nodal methodology can be easily generalized to

multi-dimensional Cartesian meshes through tensor product. In [12], Chen and Shu pro-

posed the entropy stable DG method on unstructured simplex meshes, by introducing special

Gauss-Lobatto type quadrature rules with collocated surface quadrature points, and estab-

lishing discrete operators with the multi-dimensional summation-by-parts property [52, 27].

The further extension to general quadrature rules is highly nontrivial. Although we are still

able to produce SBP operators in the general setting, the boundary matrices are dense, which

makes the treatment of element coupling terms (i.e., SAT) more involved. In [71, 69, 65],

the authors again used the idea of splitting to construct ad hoc entropy stable SATs for

some special problems. Then for general systems, two different entropy stable DG methods

were given by Chan in [7, 8] and Crean et al in [19, 20]. In both approaches, effectively an

augmented set of SBP operators with diagonal boundary matrices was invented, so that the

flux differencing term and the SAT were built on those newly defined operators. They will

be named hybridized SBP operators approach and global SBP operators approach in this

paper. We also remark that in [1], Abgrall recommended a “brute force” type approach that

eliminates entropy error and enforces chain rule directly. It arrived at the same goal as flux

differencing, without necessitating entropy conservative fluxes.

There have been numerous contributions improving the framework in many other aspects.

To name a few, entropy stable DG methods were devised for convection-diffusion equations

[5, 4, 12, 37], MHD equations [3, 62], , gradient flow problems [77, 78], two-phase flow

problems [73] and stochastic problems [64] (via the generalized polynomial chaos approach

in [86]). The staggered-grid variant was discussed in [67, 25], and by using this idea, modal

DG formulations (evolving polynomials instead of nodal values) were recovered in [7, 8]. The

assumption of conforming simplex meshes can also be greatly relaxed. People have studied

the generalization to curvilinear meshes [4, 3, 37, 20, 9], non-conforming meshes [35], moving

meshes [74] and space-time meshes [34].

The objective of this paper is to systematically review and reinterpret the existing

quadrature-based entropy stable DG methods, primarily in the context of unstructured sim-
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plex meshes. The rest of this paper is organized as follows. In Section 2, we briefly present

some necessary background materials, including continuous entropy analysis for systems of

conservation laws, and discrete entropy analysis for the first order method and the classic

DG method. In Section 3, we introduce quadrature rules on simplex elements and the corre-

sponding summation-by-parts operators, deriving the matrix-vector nodal representation of

the classic DG method. In Section 4, we derive the entropy stable DG method for quadra-

ture rules with collocated surface nodes (and diagonal boundary matrices), which is followed

by the extension to general quadrature rules (and dense boundary matrices) in Section 5.

We check the accuracy of these DG methods by carrying out a simple numerical test for

the two-dimensional Burgers equation. Several additional topics are explained in Section

6. Concluding remarks and future research directions are given in Section 7. Finally in

the appendices, we demonstrate the equivalence of flux differencing and splitting in certain

cases, as well as the proofs of some theorems.

2 Background: systems of conservation laws

2.1 Continuous entropy analysis

The general form of systems of conservation laws is

∂u

∂t
+

d∑

m=1

∂fm(u)

∂xm
= 0, (t,x) ∈ [0,∞) × R

d, (2.1)

where u ∈ R
p are vector-valued conservative variables, and fm ∈ R

p are flux functions. A

scalar convex function U(u) is called an entropy function for (2.1) if there exist entropy

fluxes {Fm(u)}d
m=1, such that the following integrability condition holds

U ′(u)f ′m(u) = F ′
m(u), 1 ≤ m ≤ d. (2.2)

. Given a strictly convex entropy function U , let v = U ′(u)T be the entropy variables. Then

v′(u) = U ′′(u) is symmetric positive-definite, and the mapping u 7→ v is invertible. We also

define the potential fluxes

ψm(v) = vT fm(u(v)) − Fm(u(v)), 1 ≤ m ≤ d. (2.3)

One can verify that (see e.g. [42])

ψ′
m(v) = fm(u(v))T (2.4)

In addition, for a unit vector n ∈ R
d, we set

f
n
(u) =

d∑

m=1

nmfm(u), F
n
(u) =

d∑

m=1

nmFm(u), ψ
n
(v) =

d∑

m=1

nmψm(v).
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If u is a smooth solution of (2.1), by (2.2), U(u) satisfies a secondary conservation law

∂U(u)

∂t
+

d∑

m=1

∂Fm(u)

∂xm

= 0. (2.5)

At discontinuities, we require the entropy to dissipate, a weak solution u of (2.1) is called

an entropy solution if for all entropy functions, we have the following entropy inequality

∂U(u)

∂t
+

d∑

m=1

∂Fm(u)

∂xm
≤ 0 (in the weak sense). (2.6)

Formally integrating (2.6) in space, and assuming that u is compactly supported, we obtain

the bound
d

dt

∫

Ω

U(u)dx ≤ 0. (2.7)

In other words, the total amount of entropy is non-increasing with respect to time.

For scalar conservation laws (p = 1), any convex function U defines an entropy function,

with entropy fluxes Fm(u) =
∫ u

U ′(s)f ′
m(s)ds. Due to the abundance of entropy functions,

there exists a unique “physically correct” entropy solution. For general systems, existence

of entropy function is no longer guaranteed, and both existence and uniqueness of entropy

solutions are much more challenging. Fortunately, in almost all systems we encounter in

practice (e.g. shallow water equations, Euler equations, MHD equations), we are able to find

entropy functions with physical meaning. We refer interested readers to [41, 22] for more

details on the entropy analysis of systems of conservation laws.

2.2 First order method

Now we start to look into the numerical aspects. We will mostly conduct semi-discrete analy-

sis, i.e., temporal discretization is not taken into account. For spatial discretization, suppose

that Ω ∈ R
d is some polygonal computational domain equipped with periodic boundary

condition. Let Th = {Tκ}K
κ=1 be some conforming partition of Ω, and h be the characteristic

length of Th. We assume that each element Tκ is a simplex, so that ∂Tκ consists of (d− 1) -

dimensional simplex faces. The collection of faces is denoted by

Γh = {γ : γ = ∂Tκ ∩ ∂Tν , 1 ≤ κ, ν ≤ K, κ 6= ν}. (2.8)

Given Tκ ∈ Th and γ ∈ Γh such that γ ∈ ∂Tκ, we use the notation nγκ to represent the

unit outward normal vector at γ. We will often omit the superscripts γ and κ if they can be

inferred from the context.

5



The first order (finite volume) method evolves the piecewise constant function uh(t,x) =
K∑

κ=1

uκ(t)1Tκ
(x), and is written in the conservative form

duκ

dt
+

1

|Tκ|

( ∑

γ∈∂Tκ

|γ |̂f
n
(uκ,uν)

)
= 0, 1 ≤ κ ≤ K, (2.9)

where Ων is the adjacent element on the opposite side of γ, and f̂
n
(uL,uR) is some directional

interface numerical flux function, satisfying

1. Consistency: f̂
n
(u,u) = f

n
(u).

2. Single-valuedness: f̂−n
(uR,uL) = −f̂

n
(uL,uR).

It actually approximates the following integral form of (2.1):

d

dt

(∫

Tκ

udx
)

+

∫

∂Tκ

f
n
(u)dS = 0. (2.10)

Entropy stability of (2.9) is thoroughly studied by Tadmor in [81, 82]. For an entropy

function U , the rate of change of the total entropy is

d

dt

∫

Ω

U(uh(t,x))dx =
d

dt

( K∑

κ=1

|Tκ|U
κ
)

= −
K∑

κ=1

(vκ)T
( ∑

γ∈∂Tκ

|γ |̂f
n
(uκ,uν)

)

= −
∑

γ∈Γh

|γ|
(
(vκ)T f̂

n
γκ(uκ,uν) + (vν)T f̂

n
γν (uν ,uκ)

)
(γ = ∂Tκ ∩ ∂Tν)

=
∑

γ∈Γh

|γ|(vν − vκ)T f̂
n

γκ(uκ,uν) (since nγν = −nγκ),

(2.11)

where we use the short hand notation Uκ = U(uκ) and vκ = v(uκ). This motivates us to

define the concepts of entropy conservative flux and entropy stable flux.

Definition 2.1. For 1 ≤ m ≤ d, a numerical flux function fm,S(uL,uR) is called entropy

conservative with respect to some entropy U if it is consistent, symmetric and satisfies the

following equality:

(vR − vL)T fm,S(uL,uR) = ψm,R − ψm,L, (2.12)

where we again set vL,R = v(uL,R) and ψm,(L,R) = ψm(vL,R). {ψm}
d
m=1 are the potential

fluxes given in (2.3). Given entropy conservative fluxes in all space dimensions, we also

define the directional entropy conservative flux

f
n,S(uL,uR) =

d∑

m=1

nmfm,S(uL,uR).
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Definition 2.2. A directional numerical flux function f̂
n
(uL,uR) is called entropy stable

with respect to some entropy U if it is consistent, single-valued and satisfies the following

inequality:

(vR − vL)T f̂
n
(uL,uR) ≤ ψ

n,R − ψ
n,L. (2.13)

Recall (2.11). If f̂
n

is entropy stable,

d

dt

∫

Ω

U(uh(t,x))dx ≤
∑

γ∈Γh

|γ|(ψν
n

γκ − ψκ
n

γκ) = −
∑

γ∈Γh

|γ|(ψκ
n

γκ + ψν
n

γν )

=

K∑

κ=1

( ∑

γ∈∂Tκ

|γ|ψκ
n

γκ

)
= 0 (since

∑

γ∈∂Tκ

|γ|nγκ = 0).

We accordingly say that (2.9) is entropy stable with respect to U . Similarly, if f̂
n

is en-

tropy conservative, the total entropy does not change and the scheme is said to be entropy

conservative.

In the scalar case, the entropy conservative fluxes are uniquely determined For general

systems, (2.12) is underdetermined and fm,S(uL,uR) is not unique. Various computationally

affordable entropy conservative fluxes have been provided for shallow water equations [30],

Euler equations and MHD equations [11, 23]. As for the construction of entropy stable fluxes,

we can prove that the monotone fluxes [18, 46] for scalar conservation laws and Godunov-

type fluxes [47] for general systems are stable with respect to all entropy functions. Another

common practice in the literature [57, 10, 5, 37, 7] is to simply add some entropy dissipation

to the entropy conservative flux:

f̂
n
(uL,uR) = f

n,S(uL,uR) + d̂
n
(uL,uR),

where the entropy dissipation function d̂
n
(uL,uR) satisfies the following conditions:

1. Consistency: d̂
n
(u,u) = 0.

2. Single-valuedness: d̂−n
(uR,uL) = −d̂

n
(uL,uR).

3. Entropy dissipation: (vR − vL)T d̂
n
(uL,uR) ≤ 0.

For example, the local Lax-Friedrichs dissipation function is a popular choice of d̂
n
:

d̂
n
(uL,uR) = −λ

n
(uL,uR)(uR − uL), (2.14)

where λ
n
(uL,uR) ≥ 0 is some estimate of the largest absolute eigenvalue in f ′

n
(u). Notice

that in this approach, f̂
n

is only stable with respect to a single given entropy function, as

entropy conservative fluxes are specific to entropy functions.
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2.3 Classic DG method

Unlike in the first order method, generally speaking, entropy stability with respect to all

entropy functions can not be accomplished in high order methods. Osher [66] suggested the

concept of E-schemes to characterize numerical methods supporting all entropy inequalities,

and proved that E-schemes are at most first order accurate. Therefore we have to make a

compromise, i.e., to expect entropy stability with respect to a single given entropy function.

In the classic DG method, we keep the locality of the first order formulation, and evolve

high order piecewise discontinuous polynomials. Given polynomial degree k ≥ 0, we define

the DG space

Vk
h = {wh : wκ

h ∈ [Pk(Tκ)]
p, 1 ≤ κ ≤ K}, (2.15)

where wκ
h is the restriction of wh on Tκ. We seek uh(t, ·) ∈ Vk

h such that for each wh ∈ Vk
h

and 1 ≤ κ ≤ K,

∫

Tκ

(∂uκ
h

∂t

)T

wκ
hdx −

d∑

m=1

∫

Tκ

fm(uκ
h)

T dwκ
h

dxm
dx = −

∑

γ∈∂Tκ

∫

γ

f̂
n
(uκ

h,u
ν
h)

Twκ
hdS. (2.16)

Again, f̂
n

is some consistent and single-valued directional numerical flux function, and γ =

∂Tκ ∩ ∂Tν . (2.16) is usually called the weak form of the DG method as it approximates the

weak problem

∫

Rd

∂u(t,x)T

∂t
w(x)dx −

d∑

m=1

∫

Rd

fm(u(t,x))T dw(x)

dxm

dx = 0, (2.17)

for all smooth and compactly supported w. The strong form of the DG method is obtained

after a simple integration by parts

∫

Tκ

(∂uκ
h

∂t
+

d∑

m=1

∂fm(uκ
h)

∂xm

)T

wκ
hdx =

∑

γ∈∂Tκ

∫

γ

(f
n
(uκ

h) − f̂
n
(uκ

h,u
ν
h))

Twκ
hdS, (2.18)

which corresponds to the equation (2.1) itself. The classic DG method is L2 stable if we

have a square entropy function, e.g. in scalar problems [58] and symmetric systems [54].

Theorem 2.1. If U = 1
2
uT u is an entropy function of (2.1), and f̂

n
is entropy stable with

respect to U , then the DG method (2.16) and (2.18) is L2 stable in the sense that

d

dt

∫

Ω

U(uh)dx =
d

dt

(1

2
‖uh‖

2
L2(Ω)

)
≤ 0. (2.19)
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Proof. Since U = 1
2
uT u, v = u, and ψ′

m(u) = fm(u). We set wh = uh in (2.16) and get

d

dt

(1

2
‖uh‖

2
L2

)
=

K∑

κ=1

∫

Tκ

(∂uκ
h

∂t

)T

uκ
hdx =

K∑

κ=1

( d∑

m=1

fm(uκ
h)

T ∂uκ
h

∂xm
dx −

∑

γ∈∂Tκ

∫

γ

f̂
n
(uκ

h,u
ν
h)

Tuκ
hdS

)

=
K∑

κ=1

∑

γ∈∂Tκ

∫

γ

(
ψ

n
(uκ

h) − f̂
n
(uκ

h,u
ν
h)

Tuκ
hdS

)

=
∑

γ∈Γh

∫

γ

(
f̂
n

γκ(uκ
h,u

ν
h)

T (uν
h − uκ

h) − (ψ
n

γκ(uν
h) − ψ

n
γκ(uκ

h))
)
≤ 0.

The last inequality results from the entropy stability of f̂
n
.

The stability result is limited to the square entropy function. For a general entropy U ,

the mapping u 7→ v is nonlinear, and v(uh) does not live in the piecewise polynomial space

Vk
h. We can not use v(uh) as the test function. An alternative approach, originally found

by Hughes, Franca and Mallet [56] , is to approximate v directly. We evolve vh(t, ·) ∈ Vk
h

such that for each wh ∈ Vk
h and 1 ≤ κ ≤ K,

∫

Tκ

(∂u(vκ
h)

∂t

)T

wκ
hdx −

d∑

m=1

∫

Tκ

fm(u(vκ
h))T dwκ

h

dxm

dx = −
∑

γ∈∂Tκ

∫

γ

f̂
n
(u(vκ

h),u(vν
h))

Twκ
hdS.

(2.20)

Then we can prove that (2.20) is entropy stable with respect to U , by simply taking wh = vh

and repeating the proof of Theorem 2.1. . We will not concentrate on it in this paper.

The entropy stable DG methods we are going to discuss do not incur nonlinear solvers.

They are based on quadrature points and nodal formulation, so that we can perform nonlinear

mapping freely. Actually, quadrature rules are necessary for the implementation of the DG

method. If the flux functions {fm}d
m=1 are not polynomials (e.g. in Euler equations), it

is costly or even impossible to evaluate the second integral in (2.16) exactly. There are

two technical challenges related to the nodal form. We need discrete versions of integration

by parts and the chain rule fm(u(v))T ∂xm
v = ∂xm

ψm(v), which are crucial to the proof

of entropy stability. In subsequent sections, we will bring into the summation-by-parts

operators, and the flux differencing technique, to handle these difficulties.

3 Summation-by-parts operators

Summation-by-parts (SBP) operators mimic integration by parts at the discrete level. One

can check [24, 26, 80] for the review of SBP operators in one space dimension, and [52, 27] for

the generalization to higher space dimensions. SBP operators are widely used in designing

high order and provably stable numerical methods [44], in particular, entropy stable DG type
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methods [36, 39, 5]. In a nutshell, by specifying suitable volume and surface quadrature rules,

we construct SBP operators based on quadrature points, and by applying those quadrature

rules, we are able to rewrite the DG method under the SBP framework.

3.1 Quadrature rules

The degree k SBP operators are built on degree (2k−1) volume quadrature rules and degree

2k surface quadrature rules. Let {pl(x)}
NP,k

l=1 be a set of basis functions of Pk(Rd), such that

NP,k = dimPk(Rd) =

(
k + d

d

)
.

For each 1 ≤ κ ≤ K, suppose that there is an degree (2k − 1) quadrature rule on Tκ,

associated with NQ,k ≥ NP,k nodes {xκ
j }

NQ,k

j=1 , and positive weights {ωκ
j }

NQ,k

j=1 . For each

γ ∈ Γh, we also choose some degree 2k (surface) quadrature rule on γ, associated with NB,k

nodes {xγ
s}

NB,k

s=1 , and positive weights {τγ
s }

NB,k

s=1 . We introduce the vector notation of nodal

functions. For some scalar function u on Ω,

−→
uκ =

[
u(xκ

1) · · · u(xκ
NQ,k

)
]T

,
−→
uγ =

[
u(xγ

1) · · · u(xγ
NB,k

)
]T

.

Then the continuous and discrete inner products on Tκ and γ are defined as

(u, v)Tκ
=

∫

Tκ

uvdx, (u, v)Tκ,ω =

NQ,k∑

j=1

ωju(xκ
j )v(xκ

j ) =
(−→
uκ

)T

Mκ−→vκ, (3.1)

〈u, v〉γ =

∫

γ

uvdS, 〈u, v〉γ,τ =

NB,k∑

s=1

τsu(xγ
s )v(xγ

s ) =
(−→
uγ

)T

Bγ−→vγ , (3.2)

where the volume mass matrix (Mκ) and the surface mass matrix (Bγ) are diagonal matrices

of quadrature weights:

Mκ = diag{ωκ
1 , · · · , ωκ

NQ,k
}, Bγ = diag{τγ

1 , · · · , τγ
NB,k

}. (3.3)

We also define the Vandermonde matrices, whose columns are nodal values of {pl(x)}
NP,k

l=1 :

V κ =
[−→
pκ

1 · · ·
−−→
pκ
NP,k

]
, V γ =

[−→
pγ

1 · · ·
−−→
pγ
NP,k

]
. (3.4)

Derivatives of polynomials in Pk(Rd) still belong to Pk(Rd). We set NP,k ×NP,k polynomial

(modal) differentiation matrices D̂m for 1 ≤ m ≤ d, such that

∂pl

∂xm

(x) =

NP,k∑

r=1

D̂m,rlpr(x).
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Then V κD̂m is the Vandermonde matrix of {∂xm
pl(x)}

NP,k

l=1 on Tκ. According to integration

by parts and the algebraic accuracy of (·, ·)Tκ,ω and 〈·, ·〉γ,τ ,

(
(V κ)T Mκ(V κD̂m)

)
lr

+
(
(V κD̂m)T MκV κ

)
lr

=
(−→
pκ

l

)T

Mκ
−−−−−→
(∂xm

pr)
κ +

(−−−−−→
(∂xm

pl)
κ
)T

Mκ−→pκ
r

=(pl, ∂xm
pr)Tκ,ω + (∂xm

pl, pr)Tκ,ω = (pl, ∂xm
pr)Tκ

+ (∂xm
pl, pr)Tκ

=
∑

γ∈∂T κ

nγκ
m 〈pl, pr〉γ =

∑

γ∈∂T κ

nγκ
m 〈pl, pr〉γ,τ =

∑

γ∈∂T κ

nγκ
m

(−→
pγ

l

)T

Bγ−→pγ
r =

∑

γ∈∂T κ

nγκ
m

(
(V γ)T BγV γ

)
lr
.

In other words,

M̂κD̂m + D̂T
mM̂κ =

∑

γ∈∂T κ

nγκ
m B̂γ , (3.5)

which is the modal summation-by-parts property. The modal mass matrices are

M̂κ = (V κ)T MκV κ, M̂κ
lr = (pl, pr)Tκ,ω, B̂γ = (V γ)T BγV γ, B̂γ

lr = 〈pl, pr〉γ,τ . (3.6)

3.2 The SBP property

Inspired by (3.5), we come up with the definition of nodal SBP operators.

Definition 3.1. For 1 ≤ κ ≤ K, Dκ
m (of size NQ,k ×NQ,k) and {Rγκ}γ∈∂T κ (of size NB,k ×

NQ,k) are called the degree k difference matrix approximating ∂xm
, and extrapolation matrices

mapping data from Tκ to γ, if the following conditions hold:

1. Exactness: both Dκ
m and Rγκ should be exact for polynomials of degree ≤ k; that is,

Dκ
mV κ = V κD̂m, RγκV κ = V γ. (3.7)

2. Summation-by-parts: setting Sκ
m = MκDκ

m and Eγκ = (Rγκ)T BγRγκ, we have

Sκ
m + (Sκ

m)T = MκDκ
m + (Dκ

m)T Mκ =
∑

γ∈∂Tκ

nγκ
m Eγκ =

∑

γ∈∂Tκ

nγκ
m (Rγκ)T BγRγκ. (3.8)

It is called the diagonal-norm SBP property as Mκ is a diagonal matrix.

A simple choice of extrapolation matrices is Rγκ = V γP κ, where P κ is the L2 projection

matrix with respect to the discrete inner product (·, ·)Tκ,ω:

P κ = (M̂κ)−1(V κ)T Mκ. (3.9)

Then P κV κ = (M̂κ)−1M̂κ = INQ,k
and RγκV κ = V γ. The existence of SBP difference

matrices is ensured by the following theorem .
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Theorem 3.1. Assume that we have an extrapolation matrices Rγκ with the exactness prop-

erty. Then the difference matrices, given by the formula

Dκ
m =

1

2
(Mκ)−1

∑

γ∈∂Tκ

nγκ
m (Rγκ + V γP κ)T Bγ(Rγκ − V γP κ) + V κD̂mP κ, (3.10)

also satisfy the exactness property and SBP property.

Proof. Since P κV κ = INQ,k
, (Rγκ − V γP κ)V κ = RγκV κ − V γ = 0, and

Dκ
mV κ = V κD̂mP κV κ = V κD̂m.

As for the SBP property,

Sκ
m = MκDκ

m =
1

2

∑

γ∈∂Tκ

nγκ
m (Rγκ + V γP κ)T Bγ(Rγκ − V γP κ) + MκV κD̂mP κ

=
1

2

∑

γ∈∂Tκ

nγκ
m (Eκγ + (V γP κ)T BγRγκ − (Rγκ)T BγV γP κ − (P κ)T B̂γP κ) + (P κ)T M̂κD̂mP κ.

Summing Sκ
m and its transpose yields

Sκ
m + (Sκ

m)T =
∑

γ∈∂Tκ

nγκ
m (Eκγ − (P κ)T B̂γP κ) + (P κ)T M̂κD̂mP κ + (P κ)T D̂T

mM̂κP κ

=
∑

γ∈∂Tκ

nγκ
m Eκγ (by the modal SBP property),

which completes the proof.

Remark 3.1. By the exactness property and SBP property,

Sκ
m

−→
1κ = Dκ

m

−→
1κ =

−→
0κ, Rγκ−→1κ =

−→
1γ ,

(Sκ
m)T−→1κ =

∑

γ∈∂Tκ

nγκ
m Eγκ−→1κ =

∑

γ∈∂Tκ

nγκ
m (Rγκ)T Bγ−→1γ , (3.11)

where
−→
0κ (

−→
0γ) and

−→
1κ (

−→
1γ) represent the vector of 0s and 1s evaluated on Tκ (γ).

Remark 3.2. We would like to highlight some special cases of Rκγ and Dκ
m:

1. If NP,k = NQ,k (e.g. the one-dimensional Legendre-Gauss quadrature rule and Legendre-

Gauss-Lobatto quadrature rule with (k + 1) points), the Vandermonde matrix V κ is

invertible. Then both Rκγ and Dκ
m are uniquely determined:

Rγκ = V γ(V κ)−1, Dκ
m = V κD̂m(V κ)−1.

2. If Rγκ = V γP κ, the first term of (3.10) vanishes, and Dκ
m = V κD̂mP κ.
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3. If the volume quadrature rule has collocated surface quadrature points (e.g. the one-

dimensional Legendre-Gauss-Lobatto quadrature rule), given γ ∈ ∂Tκ, without loss of

generality we assume that xγ
s = xκ

s for each 1 ≤ s ≤ NB,k. Then we can choose

Rγκ =
[
INB,k

0
]
, a simple restriction, such that

Eγκ =

[
Bγ 0
0 0

]

is a diagonal matrix, and

Dκ
m =

1

2
(Mκ)−1

∑

γ∈∂Tκ

nγκ
m (INQ,k

+ V κP κ)T Eγκ(INQ,k
− V κP κ) + V κD̂mP κ. (3.12)

We also define the extended vector of nodal values to incorporate vector-valued functions

u:

−→
uκ =




u(xκ
1)

...
u(xκ

NQ,k
)


 ,

−→
uγ =




u(xγ
1)

...
u(xγ

NB,k
)


 ,

as well as the Kronecker products

Mκ = Mκ ⊗ Ip, Bγ = Bγ ⊗ Ip, Dκ
m = Dκ

m ⊗ Ip, Rγκ = Rγκ ⊗ Ip.

We still have the SBP property

Sκ
m = MκDκ

m, Eγκ = (Rγκ)TBγRγκ, Sκ
m + (Sκ

m)T =
∑

γ∈∂Tκ

nγκ
m Eγκ. (3.13)

Remark 3.3. Conceptually, the SBP framework can be further generalized to arbitrary polyg-

onal meshes without any difficulty. We stick to simplex meshes for practical purposes. We

only need to store one set of matrices on some reference simplex. Then the local matrices can

be acquired through the affine mapping between the reference element and the local element.

This is efficient in terms of space complexity, especially for meshes with a large number of

elements.

3.3 Nodal DG formulation

Recall the classic DG method (2.16), written as inner products:

(∂uκ
h

∂t
,wh

)

Tκ

−
d∑

m=1

(
fm(uκ

h),
dwκ

h

dxm

)

Tκ

= −
∑

γ∈∂Tκ

〈
f̂
n
(uκ

h,u
ν
h),w

κ
h

〉

γ
(3.14)
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We use the volume quadrature rule to approximate the left hand side, and the surface

quadrature rule to approximate the right hand side, replacing the continuous inner products

with discrete inner products:

(∂uκ
h

∂t
,wh

)
Tκ,ω

−
d∑

m=1

(
fm(uκ

h),
dwκ

h

dxm

)
Tκ,ω

= −
∑

γ∈∂Tκ

〈
f̂
n
(uκ

h,u
ν
h),w

κ
h

〉
γ,τ

(3.15)

Specific to the DG method, we expand uκ
h and wκ

h under the basis {pl(x)}
NP,k

l=1 :

uκ
h(t,x) =

NP,k∑

l=1

ûκ
l (t)pl(x), wκ

h(t,x) =

NP,k∑

l=1

ŵκ
l (t)pl(x).

Define the vectors of polynomial coefficients

−→
ûκ =




ûκ
1
...

ûκ
NP,k


 ,

−→
ŵκ =




ŵκ
1
...

ŵκ
NP,k


 ,

and the vectors of nodal values

−→
uκ =




uh(x
κ
1)

...
uh(x

κ
NQ,k

)


 ,

−→
wκ =




wh(x
κ
1)

...
wh(x

κ
NQ,k

)


 ,

−→
fκ
m =




fm(uκ
1)

...
fm(uκ

NQ,k
)


 .

Then
−→
uκ = Vκ

−→
ûκ and

−→
wκ = Vκ

−→
ŵκ. Likewise we can also define

−→
vκ and

−→
Uκ. On a face

γ ∈ ∂Tκ, let the superscript γκ represent the vector of extrapolated nodal values:

−→
uγκ = Rγκ−→uκ = Vγ−→ûκ,

−−→
wγκ = Rγκ−→wκ = Vγ−→ŵκ,

−→
fγκ
m = Rγκ−→fκ

m,
−→
fγκ
n

=
d∑

m=1

nγκ
m

−→
fγκ
n

.

We also put nodal values of the interface numerical flux into a vector

−−→
fγκ,∗
n

=




f̂
n
(uκ

h(x
γ
1),u

ν
h(x

γ
1))

...

f̂
n
(uκ

h(x
γ
NB,k

),uν
h(x

γ
NB,k

))


 =




f̂
n
(uγκ

1 ,uγν
1 )

...

f̂
n
(uγκ

NB,k
,uγν

NB,k
)


 .

Using these notations and discrete operators in Section 3.1 and Section 3.2, we are able to

recast (3.15) into a compact matrix-vector formulation:

(−→
ŵκ

)T

M̂κ d
−→
ûκ

dt
−

d∑

m=1

(
VκD̂m

−→
ŵκ

)T

Mκ−→fκ
m = −

∑

γ∈∂Tκ

(
Vγ−→ŵκ

)T

Bγ−−→fγκ,∗
n

.

Since
−→
ŵκ can be arbitrary, we obtain

d
−→
ûκ

dt
− (M̂κ)−1

d∑

m=1

(VκD̂m)TMκ−→fκ
m = −(M̂κ)−1

∑

γ∈∂Tκ

(Vγ)TBγ−−→fγκ,∗
n

. (3.16)
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This is called weak modal formulation as we evolve the vector
−→
ûκ. Applying Vκ to (3.16),

we come up with the weak nodal formulation that describes the evolution of
−→
uκ:

d
−→
uκ

dt
− (Mκ)−1

d∑

m=1

(VκD̂mPκ)TMκ−→fκ
m = −(Mκ)−1

∑

γ∈∂Tκ

(VγPκ)TBγ−−→fγκ,∗
n

, (3.17)

where we use the relation Vκ(M̂k)−1 = (Mκ)−1(Pκ)T . It is a special case of the more general

weak nodal DG formulation

d
−→
uκ

dt
− (Mκ)−1

d∑

m=1

(Dκ
m)TMκ−→fκ

m = −(Mκ)−1
∑

γ∈∂Tκ

(Rγκ)TBγ−−→fγκ,∗
n

, (3.18)

by choosing Rγκ = VγPκ and Dκ
m = VκD̂mPκ. According to the SBP property (3.8), we

also deduce the :

d
−→
uκ

dt
+

d∑

m=1

Dκ
m

−→
fκ
m

︸ ︷︷ ︸
Difference term

= (Mκ)−1
∑

γ∈∂Tκ

( d∑

m=1

nγκ
m Eγκ−→fκ

m − (Rγκ)TBγ−−→fγκ,∗
n

)

︸ ︷︷ ︸
Simultaneous approximation term

= (Mκ)−1
∑

γ∈∂Tκ

(Rγκ)TBγ
( d∑

m=1

nγκ
m

−→
fγκ
m −

−−→
fγκ,∗
n

)

= (Mκ)−1
∑

γ∈∂Tκ

(Rγκ)TBγ
(−→
fγκ
n

−
−−→
fγκ,∗
n

)
.

(3.19)

It can be viewed as a spectral collocation method with penalty type terms on element

interfaces [48]. These penalty terms are called simultaneous approximation terms (SATs) by

the SBP community.

Remark 3.4. We should emphasize the caveats concerning the link between modal and nodal

DG formulations. By taking interpolation, the modal formulation only implies a specific

nodal formulation (with particular choices of Rγκ and Dκ
m). On the other hand, by taking

projection, all nodal formulations (with any Rγκ and Dγ
m satisfying the exactness property

and the SBP property) will lead to the modal formulation. In fact, applying Pκ to (3.18) and

setting
−→
ûκ = Pκ−→uκ yield

d
−→
uκ

dt
− Pκ(Mκ)−1

d∑

m=1

(Dκ
m)TMκ−→fκ

m = −Pκ(Mκ)−1
∑

γ∈∂Tκ

(Rγκ)TBγ−−→fγκ,∗
n

.

This reduces to (3.16) because of the exactness properties:

Pκ(Mκ)−1(Dκ
m)T = (M̂κ)−1(Dκ

mVκ)T = (M̂κ)−1(VκD̂m)T ,

Pκ(Mκ)−1(Rγκ)T = (M̂κ)−1(RγκVκ)T = (M̂κ)−1(Vγ)T .

The reason for such asymmetric relation is the fact that NQ,k ≥ NP,k. Then Vκ is not

surjective, and Pκ is not injective.
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4 Entropy stable DG method with collocated surface

nodes

The nodal DG formulation (3.19) (and (3.18)) does not satisfy any entropy inequality (even

the L2 stability). For an entropy function U , the discrete total entropy is given by

K∑

κ=1

(U(uh), 1)Tκ,ω =
K∑

κ=1

(−→
1κ

)T

Mκ−→Uκ =
K∑

κ=1

NQ,k∑

j=1

ωκ
j Uκ

j .

Then the entropy growth rate of (3.18) is

d

dt

( K∑

κ=1

(−→
1κ

)T

Mκ−→Uκ
)

=
K∑

κ=1

NQ,k∑

j=1

ωκ
j

dUκ
j

dt
=

K∑

κ=1

NQ,k∑

j=1

ωκ
j (vκ

j )T
duκ

j

dt
=

K∑

κ=1

(−→
vκ

)T

Mκ d
−→
uκ

dt

=
K∑

κ=1

( d∑

m=1

(−→
vκ

)T

(Dκ
m)TMκ−→fκ

m −
∑

γ∈∂Tκ

(−→
vκ

)T

(Rγκ)TBγ−−→fγκ,∗
n

)
.

However, we can not characterize the first term as the chain rule In this section, we will

modify the scheme (3.19) and make it entropy stable, in the special case that the volume

quadrature rule has collocated surface quadrature nodes, and that the boundary matrix

Eγκ is diagonal (i.e. the third case in Remark 3.2). The modification amounts to the flux

differencing technique in [29, 5, 4, 12].

4.1 Flux differencing

Identity (2.12) satisfied by entropy conservative fluxes serves as the discrete analogue of the

chain rule. The flux differencing technique, in which we replace the difference term in (3.19)

with high order difference operation of entropy conservative fluxes, is the key to entropy

balance within an element. The modified nodal DG method reads

d
−→
uκ

dt
+ 2

d∑

m=1

Dκ
m ◦ Fm,S

(−→
uκ,

−→
uκ

)−→
1κ

︸ ︷︷ ︸
Flux differencing term

= (Mκ)−1
∑

γ∈∂Tκ

(Rγκ)TBγ
(−→
fγκ
n

−
−−→
fγκ,∗
n

)

︸ ︷︷ ︸
Simultaneous approximation term

. (4.1)

where ◦ denotes the Hadamard (pointwise) product of vectors and matrices, and Fm,S(·, ·)

is the matrix of pairwise combinations of entropy conservative fluxes :

Fm,S(−→uL,−→uR) =




diag(fm,S(uL,1,uR,1)) · · · diag(fm,S(uL,1,uR,NR
))

...
. . .

...
diag(fm,S(uL,NL

,uR,1)) · · · diag(fm,S(uL,NL
,uR,NR

))


 ,
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for −→uL ∈ R
pNL and −→uR ∈ R

pNR. We can clarify the involved flux differencing term by writing

down the evolution of the nodal values

duκ
j

dt
+ 2

d∑

m=1

NQ,k∑

l=1

Dκ
m,jlfm,S(uκ

j ,u
κ
l ) =

∑

γ∈∂Tκ

NB,k∑

s=1

Rγκ
sj

τγ
s

ωκ
j

(fγκ
n,s − f̂

n
(uγκ

s ,uγν
s )). (4.2)

We will take a deeper look into the flux differencing term in Appendix A, showing that if

the entropy conservative fluxes are seperable, flux differencing is actually equivalent to the

splitting technique in [36, 71, 39, 69, 38, 65]. Before proving the main result of this section,

we first give a lemma indicating the effects of flux differencing on primary conservation and

entropy growth.

Lemma 4.1. If for each 1 ≤ m ≤ d, fm,S is an entropy conservative flux with respect to

some entropy function U , then
(−→
1κ

)T

Mκ
(
2Dκ

m ◦ Fm,S

(−→
uκ,

−→
uκ

)−→
1κ

)
=

∑

γ∈∂Tκ

nγκ
m

(−→
1κ

)T

Eγκ ◦ Fm,S

(−→
uκ,

−→
uκ

)−→
1κ, (4.3)

(−→
vκ

)T

Mκ
(
2Dκ

m◦Fm,S

(−→
uκ,

−→
uκ

)−→
1κ

)
=

∑

γ∈∂Tκ

nγκ
m

((−→
vκ

)T

Eγκ◦Fm,S

(−→
uκ,

−→
uκ

)−→
1κ−

(−→
ψκ

m

)T

Eκγ−→1κ
)
.

(4.4)

Moreover, if Eκγ is diagonal, we have the simplified result
(−→
1κ

)T

Mκ
(
2Dκ

m ◦ Fm,S

(−→
uκ,

−→
uκ

)−→
1κ

)
=

∑

γ∈∂Tκ

nγκ
m

(−→
1γ

)T

Bγ−→fγκ
m , (4.5)

(−→
vκ

)T

Mκ
(
2Dκ

m ◦ Fm,S

(−→
uκ,

−→
uκ

)−→
1κ

)
=

∑

γ∈∂Tκ

nγκ
m

((−→
vγκ

)T

Bγ−→fγκ
m −

(−→
ψγκ

m

)T

Bγ−→1γ
)
. (4.6)

Proof. Since Mκ is diagonal, Mκ
(
Dκ

m ◦ Fm,S

(−→
uκ,

−→
uκ

))
= Sκ

m ◦ Fm,S

(−→
uκ,

−→
uκ

)
, and by the

symmetry of fm,S, Fm,S

(−→
uκ,

−→
uκ

)
is a symmetric matrix. Then

(−→
1κ

)T

Mκ
(
2Dκ

m ◦ Fm,S

(−→
uκ,

−→
uκ

)−→
1κ

)
= 2

(−→
1κ

)T

Sκ
m ◦ Fm,S

(−→
uκ,

−→
uκ

)−→
1κ

=
(−→
1κ

)T

(Sκ
m + (Sκ

m)T ) ◦ Fm,S

(−→
uκ,

−→
uκ

)−→
1κ (by symmetry of fm,S)

=
∑

γ∈∂Tκ

nγκ
m

(−→
1κ

)T

Eγκ ◦ Fm,S

(−→
uκ,

−→
uκ

)−→
1κ (by the SBP property),

and
(−→
vκ

)T

Mκ
(
2Dκ

m ◦ Fm,S

(−→
uκ,

−→
uκ

)−→
1κ

)
= 2

(−→
vκ

)T

Sκ
m ◦ Fm,S

(−→
uκ,

−→
uκ

)−→
1κ

=
∑

γ∈∂Tκ

nγκ
m

(−→
vκ

)T

Eγκ ◦ Fm,S

(−→
uκ,

−→
uκ

)−→
1κ +

(−→
vκ

)T

(Sκ
m − (Sκ

m)T ) ◦ Fm,S

(−→
uκ,

−→
uκ

)−→
1κ.
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The second term equals

(−→
vκ

)T

(Sκ
m − (Sκ

m)T ) ◦ Fm,S

(−→
uκ,

−→
uκ

)−→
1κ =

NQ,k∑

j=1

NQ,k∑

l=1

(vκ
j )

T (Sκ
m,jl − Sκ

m,lj)fm,S(uκ
j ,u

κ
l )

=

NQ,k∑

j=1

NQ,k∑

l=1

Sκ
m,jl(v

κ
j − vκ

l )T fm,S(uκ
j ,u

κ
l ) (by symmetry of fm,S)

=

NQ,k∑

j=1

NQ,k∑

l=1

Sκ
m,jl(ψ

κ
m,j − ψκ

m,l) (by entropy conservation of fm,S)

=
(−→
ψκ

m

)T

(Sκ
m − (Sκ

m)T )
−→
1κ = −

∑

γ∈∂Tκ

nγκ
m

(−→
ψκ

m

)T

Eκγ−→1κ (by relation (3.11)).

Hence (4.3) and (4.4) are proved. Moreover, if Eγκ is diagonal,

Eγκ ◦ Fm,S

(−→
uκ,

−→
uκ

)−→
1κ = Eγκ−→fκ

m = (Rγκ)TBγ−→fγκ
m , (4.7)

which implies (4.5) and (4.6).

We are ready to provide the main theorem, which states that the nodal DG method (4.1)

is conservative, entropy stable, and maintains high order accuracy, under the assumptions

that

1. The volume quadrature rule has collocated surface quadrature nodes ({xγ
s}

NB,k

s=1 is a

subset of {xκ
j }

NQ,k

j=1 for γ ∈ ∂Tκ), Rκγ is a simple restriction onto γ, and Eκγ is diagonal.

2. The simplex meshes {Th}, parameterized by h, shape regular and quasi-uniform.

3. All mappings and numerical fluxes (e.g. v(u), fm(u), fm,S(uL,uR), etc) are smooth

and Lipschitz continuous.

4. fm,S is entropy conservative, and f̂
n

is entropy stable with respect to an arbitrary given

entropy function U .

Theorem 4.1. If all assumptions above hold, then the scheme (4.1) is consistent in that for

a smooth solution u of (2.1), the local truncation error is of high order:

duκ
j

dt
+ 2

d∑

m=1

NQ,k∑

l=1

Dκ
m,jlfm,S(uκ

j ,u
κ
l ) −

∑

γ∈∂Tκ

NB,k∑

s=1

Rγκ
sj

τγ
s

ωκ
j

(fγκ
n,s − f̂

n
(uγκ

s ,uγν
s )) = O(hk). (4.8)

It is also conservative and entropy stable with respect to U in that

d

dt

( K∑

κ=1

(−→
1κ

)T

Mκ−→uκ
)

= 0,
d

dt

( K∑

κ=1

(−→
1κ

)T

Mκ−→Uκ
)
≤ 0. (4.9)
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Proof. Consistency: u is single-valued at interfaces. Since Rγκ and Rγν are simple restric-

tions, uγκ
s = uγν

s = u(xγ
s ) and fγκ

n,s = f
n
(u(xγ

s )). Then the simultaneous approximation term

vanishes. It suffices to show that the flux differencing term is of high order, i.e.,

2

NQ,k∑

l=1

Dκ
m,jlfm,S(uκ

j ,u
κ
l ) −

∂fm(u)

∂xm

(xκ
j ) = O(hk).

Let f̃m,S(x,y) = fm,S(u(x),u(y)) and f̃m(x) = fm(u(x)). Then f̃m,S is also symmetric and

consistent such that f̃m,S(x,x) = f̃m(x). Therefore

∂f̃m

∂xm

(x) =
∂f̃m,S

∂xm

(x,x) +
∂f̃m,S

∂ym

(x,x) = 2
∂f̃m,S

∂ym

(x,x).

According to the approximation property of local difference matrix Dκ
m,

2

NQ,k∑

l=1

Dκ
m,jlfm,S(uκ

j ,u
κ
l ) = 2

∂f̃m,S

∂ym
(xκ

j ,x
κ
j ) + O(hk) =

∂f̃m

∂xm
(xκ

j ) + O(hk) =
∂fm(u)

∂xm
(xκ

j ) + O(hk).

Conservation and entropy stability: according to (4.5) and (4.6),

d

dt

((−→
1κ

)T

Mκ−→uκ
)

=
∑

γ∈∂Tκ

(−→
1γ

)T

Bγ
(−→
fγκ
n

−
−−→
fγκ,∗
n

)
−

d∑

m=1

∑

γ∈∂Tκ

nγκ
m

(−→
1γ

)T

Bγ−→fγκ
m

= −
∑

γ∈∂Tκ

(−→
1γ

)T

Bγ−−→fγκ,∗
n

= −
∑

γ∈∂Tκ

NB,k∑

s=1

τγ
s f̂

n
(uγκ

s ,uγν
s ),

d

dt

((−→
vκ

)T

Mκ−→uκ
)

=
∑

γ∈∂Tκ

(−→
vγκ

)T

Bγ
(−→
fγκ
n

−
−−→
fγκ,∗
n

)
−

d∑

m=1

∑

γ∈∂Tκ

nγκ
m

((−→
vγκ

)T

Bγ−→fγκ
m −

(−→
ψγκ

m

)T

Bγ−→1γ
)

=
∑

γ∈∂Tκ

((−→
ψγκ

n

)T

Bγ−→1γ −
(−→
vγκ

)T

Bγ−−→fγκ,∗
n

)
=

∑

γ∈∂Tκ

NB,k∑

s=1

τγ
s (ψγκ

n,s − (vγκ
s )T f̂

n
(uγκ

s ,uγν
s )).

We are only left with interface terms. Summing over κ gives us

d

dt

( K∑

κ=1

(−→
1κ

)T

Mκ−→uκ
)

= −
K∑

κ=1

∑

γ∈∂Tκ

NB,k∑

s=1

τγ
s f̂

n
(uγκ

s ,uγν
s )

= −
∑

γ∈Γh

NB,k∑

s=1

τγ
s (f̂

n
γκ(uγκ

s ,uγν
s ) + f̂

n
γν (uγν

s ,uγκ
s )) = 0,

d

dt

( K∑

κ=1

(−→
vκ

)T

Mκ−→uκ
)

=
K∑

κ=1

∑

γ∈∂Tκ

NB,k∑

s=1

τγ
s (ψγκ

n,s − (vγκ
s )T f̂

n
(uγκ

s ,uγν
s ))

=
∑

γ∈Γh

NB,k∑

s=1

τγ
s ((vγν

s − vγκ
s )T f̂

n
γκ(uγκ

s ,uγν
s ) − (ψγκ

n
γκ,s − ψγν

n
γκ,s)) ≤ 0,
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by entropy stability of f̂
n
. We again use the fact that Rγκ and Rγν are simple restrictions,

so that vγκ
s = v(uγκ

s ) and ψγκ
n,s = ψ

n
(vγκ

s ).

4.2 Accuracy test

We test the accuracy of scheme (4.1) for the two-dimensional Burgers equation

∂u

∂t
+

1

2

∂u2

∂x1
+

1

2

∂u2

∂x2
= 0, x ∈ [0, 1]2, (4.10)

with periodic boundary condition and initial data u(0,x) = 0.5 sin(2π(x1 + x2)). We can

easily compute the exact solution by tracing back characteristic lines along the diagonal

direction. The entropy function is taken be the hyperbolic cosine function U = cosh u, such

that

v = sinh u, F1 = F2 = u coshu − sinh u, ψ1 = ψ2 =
(u2

2
+ 1

)
cosh u − u sinh u.

The entropy conservative fluxes are given by

f1,S(uL, uR) = f2,S(uL, uR) =
(

u2

L

2
+ 1) cosh uL − uL sinh uL − (

u2

R

2
+ 1) cosh uR + uR sinh uR

sinh uR − sinh uL
.

If |uL − uR| is small, the division suffers from the round-off effect, and we use the first 5

terms of Taylor series to approximate the numerator and the denominator. The cutoff value

for |uL − uR| is 10−3. The local Lax-Friedrichs flux will be employed on element interfaces.

The test is performed on a hierarchy of unstructured triangular meshes generated by

the Gmsh software [40]. To implement SBP operators on those triangles, we need to find a

quadrature rule that achieves volume and surface accuracy simultaneously. For the surface

accuracy, we put (k+1) Legendre-Gauss points along each edge, and for the volume accuracy,

we use the numerical package in [88] to obtain degree (2k−1) quadrature rules with collocated

Legendre-Gauss edge nodes. The distribution of quadrature points on the equilateral triangle

is illustrated in Figure 4.1. Then we assemble the mass matrices and difference matrices using

(3.12).

The scheme (4.1) is evolved in time with the third order strong stability preserving (SSP)

Runge-Kutta method [43, 76]. We would like to compute with k = 2, 3, 4. The time step

is proportional to h(k+1)/3, so that the time error will be dominated by the space error.

Numerical errors and orders of convergence at t = 0.1 (before the shock wave emerges)

are displayed in Table 4.1. We observe reduced rate of convergence (less than the optimal

(k +1)-th order), especially for the L∞ error. It is probably due to the algebraic accuracy of

quadrature rules. It was shown in [13, 55] that , we need an degree 2k volume quadrature

and an degree (2k + 1) surface quadrature to attain optimal convergence.
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(a) k = 1,NQ,k = 6 (b) k = 2,NQ,k = 10 (c) k = 3,NQ,k = 18 (d) k = 4,NQ,k = 22

Figure 4.1: Degree 2k − 1 quadrature rules on triangles with collocated Legendre-Gauss
edge nodes for k = 1, 2, 3, 4. Dots are quadrature points for the triangle, and circles are
quadrature points for the edges. The symbols overlap as edge nodes play both roles.

Table 4.1: Errors and orders of convergence of (4.1) for the two-dimensional Burgers equation
at t = 0.1. Degree (2k − 1) volume quadrature rules are used.

k h L1 error order L2 error order L∞ error order
2 1/16 1.324e-03 3.182e-03 5.708e-02

1/32 2.337e-04 2.503 6.825e-04 2.221 1.577e-02 1.856
1/64 3.800e-05 2.620 1.362e-04 2.326 4.701e-03 1.746
1/128 5.628e-06 2.756 2.380e-05 2.516 1.222e-03 1.944
1/256 8.219e-07 2.776 3.986e-06 2.578 2.329e-04 2.391

3 1/16 1.811e-04 5.932e-04 1.851e-02
1/32 2.376e-05 2.930 1.010e-04 2.555 4.591e-03 2.012
1/64 2.225e-06 3.417 1.055e-05 3.258 6.936e-04 2.727
1/128 1.977e-07 3.492 1.106e-06 3.253 1.135e-04 2.611
1/256 1.818e-08 3.443 1.181e-07 3.228 1.238e-05 3.196

4 1/8 3.494e-04 1.130e-03 2.753e-02
1/16 3.514e-05 3.314 1.367e-04 3.047 5.646e-03 2.286
1/32 2.609e-06 3.752 1.334e-05 3.357 9.824e-04 2.523
1/64 1.264e-07 4.368 7.157e-07 4.220 8.201e-05 3.582
1/128 5.226e-09 4.596 3.490e-08 4.358 5.968e-06 3.780

5 Entropy stable DG method on general set of nodes

In this section, we would like to extend the entropy stable DG methodology to arbitrary

volume and surface quadrature rules. Without the collocated surface nodes assumption, the

scheme (4.1) is not entropy stable, as we are facing some new obstacles:

1. The extrapolation matrix Rγκ is not a restriction. Then vγκ
s 6= v(uγκ

s ) and ψγκ
n,s 6=

ψ
n
(vγκ

s ). The sign of (vγν
s − vγκ

s )T f̂
n

γκ(uγκ
s ,uγν

s ) − (ψγκ
n

γκ,s − ψγν
n

γκ,s) is .

2. The boundary matrix Eγκ is dense, and the identity (4.7) is not valid. We are not able

to simplify the term Eγκ ◦ Fm,S

(−→
uκ,

−→
uκ

)−→
1κ.

We solve the first issue by defining the entropy-extrapolated nodal values. Set
−→
ũγκ and

−→
ψ̃γκ

m

such that ũγκ
s = u(vγκ

s ) and ψ̃γκ
m,s = ψm(vγκ

s ). We require the interface numerical flux to
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depend on those entropy-extrapolated values:

−−→
fγκ,∗
n

=




f̂
n
(ũγκ

1 , ũγν
1 )

...

f̂
n
(ũγκ

NB,k
, ũγν

NB,k
)


 .

In order to cope with the second issue, we design certain augmented discrete operators that

satisfy SBP property with diagonal boundary matrices. Two possible approaches, i.e., the

hybridized SBP operators in [7, 8] and the global SBP operators in [19, 20] will be covered.

Besides, we also consider the “brute force” approach in [1].

5.1 Approach 1: hybridized SBP operators

We start to analyze the hybridized SBP operators approach in [7, 8] by Chan. The key idea

is to combine volume nodes and surface nodes together. :

∂Tκ = γ ∪ σ ∪ η.

We define the hybridized vector of nodal values, by adding entropy-extrapolated values on

faces:

−−→
uκ,h =




−→
uκ

−→
ũγκ

−→
ũσκ

−→
ũηκ


 ,

−−→
vκ,h =




−→
vκ

−→
vγκ

−→
vσκ

−→
vηκ


 .

The hybridized mass matrix and boundary matrices on Tκ are all diagonal:

Mκ,h=

2

6

6

6

6

6

6

4

Mκ 0 0 0

0 Bγ 0 0

0 0 Bσ 0

0 0 0 Bτ

3

7

7

7

7

7

7

5

, Eγκ,h=

2

6

6

6

6

6

6

4

0 0 0 0

0 Bγ 0 0

0 0 0 0

0 0 0 0

3

7

7

7

7

7

7

5

, Eσκ,h=

2

6

6

6

6

6

6

4

0 0 0 0

0 0 0 0

0 0 Bσ 0

0 0 0 0

3

7

7

7

7

7

7

5

, Eηκ,h=

2

6

6

6

6

6

6

4

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 Bη

3

7

7

7

7

7

7

5

,

and for each 1 ≤ m ≤ d, the hybridized difference matrix is

Dκ,h
m =

2

6

6

6

6

6

6

4

Dκ
m− 1

2
(Mκ)−1(nγκ

m Eγκ+nσκ
m Eσκ+nηκ

m Eηκ) 1

2
nγκ

m (Mκ)−1(Rγκ)T Bγ 1

2
nσκ

m (Mκ)−1(Rσκ)T Bσ 1

2
nηκ

m (Mκ)−1(Rηκ)T Bη

− 1

2
nγκ

m Rγκ 1

2
nγκ

m INB,k
0 0

− 1

2
nσκ

m Rσκ 0 1

2
nσκ

m INB,k
0

− 1

2
nηκ

m Rηκ 0 0 1

2
nηκ

m INB,k

3

7

7

7

7

7

7

5

.

The next theorem follows immediately from the exactness property and SBP property of the

original operators. Proof will be omitted.

Theorem 5.1. The hybridized discrete operators satisfy the following conditions:
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1. Exactness:

Dκ,h
m




V κ

V γ

V σ

V η


 =




V κD̂m

0
0
0


 . In particular, Dκ,h

m

−→
1κ,h =

−→
0κ,h. (5.1)

2. Summation-by-parts:

Mκ,hDκ,h
m + (Dκ,h

m )T Mκ,h =
∑

γ∈∂Tκ

nγκ
m Eγκ,h. (5.2)

With the hybridized SBP operators at hand, we develop the nodal DG method

d
−→
uκ

dt
+ 2Lκ,h

( d∑

m=1

Dκ,h
m ◦ Fm,S

(−−→
uκ,h,

−−→
uκ,h

)−−→
1κ,h

)

︸ ︷︷ ︸
Hybridized flux differencing term

= (Mκ)−1
∑

γ∈∂Tκ

(Rγκ)TBγ
(−→
f̃γκ
n

−
−−→
fγκ,∗
n

)

︸ ︷︷ ︸
Simultaneous approximation term

,

(5.3)

where

Lκ,h =
[
INQ,k

(Mκ)−1(Rγκ)T Bγ (Mκ)−1(Rσκ)T Bσ (Mκ)−1(Rηκ)T Bη
]

help decouple the hybridized vector. We can also write down the formulation solely in terms

of the original SBP operators:

d
−→
uκ

dt
+ 2

d∑

m=1

Dκ
m ◦ Fm,S

(−→
uκ,

−→
uκ

)−→
1κ

︸ ︷︷ ︸
Flux differencing term

= (Mκ)−1
∑

γ∈∂Tκ

(
Eγκ ◦ F

n,S(
−→
uκ,

−→
uκ)

−→
1κ − (Rγκ)TBγ−−→fγκ,∗

n

︸ ︷︷ ︸
Simultaneous approximation term

+ (Rγκ)TBγ
(
Rγκ ◦ F

n,S

(−→
ũγκ,

−→
uκ

))−→
1κ − ((Rγκ)TBγ) ◦ F

n,S

(−→
uκ,

−→
ũγκ

)−→
1γ

)

︸ ︷︷ ︸
Skew-symmetric correction term

,

(5.4)

where F
n,S(·, ·) is the matrix of pairwise combinations of f

n,S(·, ·). Comparing it with the

unmodified DG method (3.19), we have not only applied the flux differencing technique, but

also tuned the SAT by adding some skew-symmetric correction term. The component-wise

representation is

duκ
j

dt
+ 2

d∑

m=1

NQ,k∑

l=1

Dκ
m,jlfm,S(uκ

j ,u
κ
l ) =

∑

γ∈∂Tκ

NB,k∑

s=1

Rγκ
sj

τγ
s

ωκ
j

(NQ,k∑

l=1

Rγκ
sl f

n,S(uκ
j ,u

κ
l )

− f̂
n
(ũγκ

s , ũγν
s ) +

NQ,k∑

l=1

Rγκ
sl f

n,S(ũγκ
s ,uκ

l ) − f
n,S(uκ

j , ũ
γκ
s )

)
.

(5.5)

We proceed to prove the consistency, primary conservation, and entropy stability of (5.3).

Similar to Lemma 4.1, we have the following result for the hybridized flux differencing term.
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Lemma 5.1. If for each 1 ≤ m ≤ d, fm,S is an entropy conservative flux with respect to

some entropy function U , then

(−→
1κ

)T

Lκ,hMκ
(
2Dκ,h

m ◦ Fm,S

(−−→
uκ,h,

−−→
uκ,h

)−−→
1κ,h

)
=

∑

γ∈∂Tκ

nγκ
m

(−→
1γ

)T

Bγ
−→
f̃γκ
m , (5.6)

(−→
vκ

)T

Lκ,hMκ
(
2Dκ,h

m ◦ Fm,S

(−−→
uκ,h,

−−→
uκ,h

)−−→
1κ,h

)
=

∑

γ∈∂Tκ

nγκ
m

((−→
vγκ

)T

Bγ
−→
f̃γκ
m −

(−→
ψ̃γκ

m

)T

Bγ−→1γ
)
.

(5.7)

Proof. By the definition of Lκ,h,

(−→
1κ

)T

Lκ,hMκ =
[(−→

1κ
)T

Mκ
(−→
1γ

)T

Bγ
(−→
1σ

)T

Bσ
(−→
1η

)T

Bη

]
=

(−−→
1κ,h

)T

Mκ,h,

(−→
vκ

)T

Lκ,hMκ =
[(−→

vκ
)T

Mκ
(−→
vγ

)T

Bγ
(−→
vσ

)T

Bσ
(−→
vη

)T

Bη

]
=

(−−→
vκ,h

)T

Mκ,h.

The rest of proof is the same as Lemma 4.1. We make use of the SBP property of hybridized

operators, and the identity Dκ,h
m

−→
1κ,h =

−→
0κ,h.

Theorem 5.2. Under the same assumptions as in Theorem 4.1 (except for the collocated

surface nodes assumption), the scheme (5.3) is consistent in that for a smooth solution u of

(2.1), the local truncation error

duκ
j

dt
+ 2

d∑

m=1

NQ,k∑

l=1

Dκ
m,jlfm,S(uκ

j ,u
κ
l ) −

∑

γ∈∂Tκ

NB,k∑

s=1

Rγκ
sj

τγ
s

ωκ
j

(NQ,k∑

l=1

Rγκ
sl f

n,S(uκ
j ,u

κ
l )

− f̂
n
(ũγκ

s , ũγν
s ) +

NQ,k∑

l=1

Rγκ
sl f

n,S(ũγκ
s ,uκ

l ) − f
n,S(uκ

j , ũ
γκ
s )

)
= O(hk),

(5.8)

as well as conservative and entropy stable with respect to U in that

d

dt

( K∑

κ=1

(−→
1κ

)T

Mκ−→uκ
)

= 0,
d

dt

( K∑

κ=1

(−→
1κ

)T

Mκ−→Uκ
)
≤ 0. (5.9)

Proof. For consistency, we already know that the truncation error of the flux differencing

term is of high order. As a result of shape regular and quasi-uniform mesh, the quadrature

weights have the scales ωκ
j = Θ(hd) and τγ

s = Θ(hd−1), and since the extrapolation matrices

are invariant under affine mapping, the coefficients have the scale Rγκ
sj = Θ(1). Hence it

suffices to show that

NQ,k∑

l=1

Rγκ
sl f

n,S(uκ
j ,u

κ
l ) − f̂

n
(ũγκ

s , ũγν
s ) +

NQ,k∑

l=1

Rγκ
sl f

n,S(ũγκ
s ,uκ

l ) − f
n,S(uκ

j , ũ
γκ
s ) = O(hk+1).
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By the approximation property of extrapolation and Lipschitz continuity of u(v),

vγκ
s − v(xγ

s ) = O(hk+1), ũγκ
s − u(xγ

s ) = O(hk+1).

We check each term separately:

NQ,k∑

l=1

Rγκ
sl f

n,S(uκ
j ,u

κ
l ) = f

n,S(uκ
j ,u(xγ

s )) + O(hk+1),

f̂
n
(ũγκ

s , ũγν
s ) = f

n
(u(xγ

s )) + O(hk+1),

NQ,k∑

l=1

Rγκ
sl f

n,S(ũγκ
s ,uκ

l ) = f
n,S(ũγκ

s ,u(xγ
s )) + O(hk+1) = f

n
(u(xγ

s )) + O(hk+1),

f
n,S(uκ

j , ũ
γκ
s ) = f

n,S(uκ
j ,u(xγ

s )) + O(hk+1).

Then the truncation error of boundary terms is also of high order. The proof of conservation

and entropy stability is straightforward. We insert (5.6) and (5.7) and get

d

dt

( K∑

κ=1

(−→
1κ

)T

Mκ−→uκ
)

= −
∑

γ∈Γh

NB,k∑

s=1

τγ
s (f̂

n
γκ(ũγκ

s , ũγν
s ) + f̂

n
γν (ũγν

s , ũγκ
s )) = 0,

d

dt

( K∑

κ=1

(−→
vκ

)T

Mκ−→uκ
)

=
∑

γ∈Γh

NB,k∑

s=1

τγ
s ((vγν

s − vγκ
s )T f̂

n
γκ(ũγκ

s , ũγν
s ) − (ψ̃γκ

n
γκ,s − ψ̃γν

n
γκ,s)) ≤ 0.

Now the last inequality is valid for entropy-extrapolated values.

Remark 5.1. In fact, scheme (4.1) is a special case of (5.3) (and (5.4)). If we assume

collocated surface nodes, since Rγκ is a simple restriction,
−→
ũγκ =

−→
uγκ, and

Eγκ ◦ F
n,S(

−→
uκ,

−→
uκ)

−→
1κ = Eγκ−→fκ

n
= (Rγκ)TBγ−→fγκ

n
,

(Rγκ)TBγ
(
Rγκ ◦ F

n,S

(−→
ũγκ,

−→
uκ

))−→
1κ = (Rγκ)TBγ−→fγκ

n
,

((Rγκ)TBγ) ◦ F
n,S

(−→
uκ,

−→
ũγκ

)−→
1γ = (Rγκ)TBγ−→fγκ

n
.

Therefore the skew-symmetric correction term in (5.4) vanishes, and we recover (4.1).

5.2 Approach 2: global SBP operators

The global SBP operators approach was found by Crean et al in [19, 20]. We consider the

nodal values on different elements as a whole, grouping them into a single global vector:

−→
ug =




−→
u1

...
−→
uK


 ,

−→
vg =




−→
v1

...
−→
vK


 .
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The global mass matrix is

Mg =



M1

. . .

MK


 ,

and the global difference matrices are assembled as

Dg
m =




Dg,11
m · · · Dg,1K

m
...

. . .
...

Dg,K1
m · · · Dg,KK

m


 ,

where we set

Dg,κν
m =





Dκ
m − 1

2
(Mκ)−1

∑
γ∈∂Tκ

nγ
mEγκ if κ = ν

0 if κ 6= ν and ∂Tκ ∩ ∂Tν = ∅
1
2
nγκ

m (Mκ)−1(Rγκ)T BγRγν := 1
2
nγκ

m (Mκ)−1Eκν if κ 6= ν and ∂Tκ ∩ ∂Tν = γ

.

Theorem 5.3. The global mass matrix and global difference matrices satisfy the following

conditions:

1. Exactness:

Dg
mV g = V gD̂m, where V g =




V 1

...
V K


 . In particular, Dg

m

−→
1g =

−→
0g . (5.10)

2. Summation-by-parts:

MgDg
m + (Dg

m)TMg = 0. (5.11)

The proof is again a direct application of the local exactness property and the local SBP

property. Here the right hand side of (5.11) is zero, as on each interface, the contributions

from its two sides will cancel out with each other (and by periodic boundary condition,

all faces are interfaces). We produce the following nodal DG method, using global SBP

operators:

d
−→
ug

dt
+ 2

d∑

m=1

Dg
m ◦ Fm,S

(−→
ug,

−→
ug

)−→
1g

︸ ︷︷ ︸
Global flux differencing term

= 0. (5.12)

The SATs on element interfaces are implied by the global flux differencing term. Plugging
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the definition of Dg
m, we derive its element-wise formulation

d
−→
uκ

dt
+ 2

d∑

m=1

Dκ
m ◦ Fm,S

(−→
uκ,

−→
uκ

)−→
1κ

︸ ︷︷ ︸
Flux differencing term

= (Mκ)−1
∑

γ∈∂Tκ

(
Eγκ ◦ F

n,S(
−→
uκ,

−→
uκ)

−→
1κ −Eκν ◦ F

n,S(
−→
uκ,

−→
uν)

−→
1ν

)

︸ ︷︷ ︸
Simultaneous approximation term

,

(5.13)

and component-wise formulation

duκ
j

dt
+ 2

d∑

m=1

NQ,k∑

l=1

Dκ
m,jlfm,S(uκ

j ,u
κ
l )

=
∑

γ∈∂Tκ

NB,k∑

s=1

Rγκ
sj

τγ
s

ωκ
j

(NQ,k∑

l=1

(Rγκ
sl f

n,S(uκ
j ,u

κ
l ) − Rγν

sl fn,S(uκ
j ,u

ν
l ))

)
.

(5.14)

Theorem 5.4. Under the same assumptions as in Theorem 5.2, the scheme (5.12) is con-

sistent in that for a smooth solution u of (2.1),

duκ
j

dt
+ 2

d∑

m=1

NQ,k∑

l=1

Dκ
m,jlfm,S(uκ

j ,u
κ
l )

−
∑

γ∈∂Tκ

NB,k∑

s=1

Rγκ
sj

τγ
s

ωκ
j

( NQ,k∑

l=1

(Rγκ
sl f

n,S(uκ
j ,u

κ
l ) − Rγν

sl fn,S(uκ
j ,u

ν
l ))

)
= O(hk),

(5.15)

as well as conservative and entropy conservative with respect to U in that

d

dt

((−→
1g

)T

Mg−→ug
)

= −
(−→
1g

)T

Mg
(
2Dg

m ◦ Fm,S

(−→
ug,

−→
ug

)−→
1g

)
= 0, (5.16)

d

dt

((−→
1g

)T

Mg−→Ug
)

= −
(−→
vg

)T

Mg
(
2Dg

m ◦ Fm,S

(−→
ug,

−→
ug

)−→
1g

)
= 0. (5.17)

Proof. Conservation and entropy conservation are actually global versions of (4.5) and (4.6),

and can be proved in the same way as in Lemma 4.1. For consistency, since

NQ,k∑

l=1

Rγκ
sl f

n,S(uκ
j ,u

κ
l ) = f

n,S(uκ
j ,u(xγ

s )) + O(hk+1),

and
NQ,k∑

l=1

Rγν
sl fn,S(uκ

j ,u
ν
l ) = f

n,S(uκ
j ,u(xγ

s )) + O(hk+1),

the truncation error is of high order.
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In practice, the entropy conservative scheme (5.12) will generate strong spurious oscilla-

tions in the vicinity of shock waves as entropy should be dissipated at . It is necessary to

impose entropy dissipation on element interfaces to make it entropy stable,. For 1 ≤ κ ≤ K

and γ ∈ ∂Tκ, we define

−−→
dγκ,∗

n
=




d̂
n
(ũγκ

1 , ũγν
1 )

...

d̂
n
(ũγκ

NB,k
, ũγν

NB,k
)


 ,

where the d
n

is some entropy dissipation function with respect to U (see Section 2.2). We

create the entropy stable scheme

d
−→
uκ

dt
+ 2

d∑

m=1

Dκ
m ◦ Fm,S

(−→
uκ,

−→
uκ

)−→
1κ

︸ ︷︷ ︸
Flux differencing term

= (Mκ)−1
∑

γ∈∂Tκ

(
Eγκ ◦ F

n,S(
−→
uκ,

−→
uκ)

−→
1κ −Eκν ◦ F

n,S(
−→
uκ,

−→
uν)

−→
1ν − (Rγκ)TBγ−−→dγκ,∗

n

)

︸ ︷︷ ︸
Simultaneous approximation term

.

(5.18)

Corollary 5.1. If d̂
n

is an entropy dissipation function with respect to U , then the scheme

(5.18) is consistent, conservative and entropy stable with respect to U .

Proof. For a smooth solution u, because of consistency of d̂
n
,

d̂
n
(ũγκ

s , ũγν
s ) = d̂

n
(u(xγ

s ),u(xγ
s )) + O(hk+1) = O(hk+1).

Hence entropy dissipation does not affect consistency. The effects on primary conservation

and entropy stability are

−
K∑

κ=1

∑

γ∈∂Tκ

(−→
1κ

)T

(Rγκ)TBγ−−→dγκ,∗
n

= −
∑

γ∈Γh

NB,k∑

s=1

τγ
s (d̂

n
γκ(ũγκ

s , ũγν
s ) + d̂

n
γν (ũγν

s , ũγκ
s )) = 0,

−
K∑

κ=1

∑

γ∈∂Tκ

(−→
vκ

)T

(Rγκ)TBγ−−→dγκ,∗
n

=
∑

γ∈Γh

NB,k∑

s=1

τγ
s (vγν

s − vγκ
s )T d̂

n
γκ(ũγκ

s , ũγν
s ) ≤ 0.

As a consequence, the scheme is clearly conservative and entropy stable.

Remark 5.2. In the case of collocated surface nodes, the boundary terms in (5.18) are

Eγκ ◦ F
n,S(

−→
uκ,

−→
uκ)

−→
1κ = (Rγκ)TBγ−→fγκ

n
, Eκν ◦ F

n,S(
−→
uκ,

−→
uν)

−→
1ν = (Rγκ)TBγ

−−→
f
γκ,∗
n,S ,
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where

−−→
f
γκ,∗
n,S =




f
n,S(ũγκ

1 , ũγν
1 )

...
f
n,S(ũγκ

NB,k
, ũγν

NB,k
)




is the vector of entropy conservative fluxes on the interface. Then the scheme (5.18) reduces

to

d
−→
uκ

dt
+ 2

d∑

m=1

Dκ
m ◦ Fm,S

(−→
uκ,

−→
uκ

)−→
1κ = (Mκ)−1

∑

γ∈∂Tκ

(Rγκ)TBγ
(−→
fγκ
n

−
−−→
f
γκ,∗
n,S −

−−→
dγκ,∗

n

)
.

We again recover (4.1), by setting
−−→
fγκ,∗
n

=
−−→
f
γκ,∗
n,S +

−−→
dγκ,∗

n
, i.e.,

f̂
n
(ũγκ

s , ũγν
s ) = f

n,S(ũγκ
s , ũγν

s ) + d̂
n
(ũγκ

s , ũγν
s ).

Remark 5.3. The element coupling term Eκν◦F
n,S(

−→
uκ,

−→
uν)

−→
1ν depends on all nodal values on

the neighboring element Tν . This will harm the locality of the DG formulation, and make the

implementation of non-periodic boundary conditions (inflow, outflow, solid wall, etc) more

difficult.

5.3 Approach 3: directly enforcing entropy balance

The method in [1] was written in the more general residual distribution framework. We will

focus on the version for nodal DG formulations. We start with the unmodified nodal DG

method (3.19). For 1 ≤ κ ≤ K, the local entropy error of (3.19) on Tκ is defined as

Eκ =

d∑

m=1

(−→
vκ

)T

(Dκ
m)TMκ−→fκ

m −
∑

γ∈∂Tκ

(−→
1γ

)T

Bγ
−→
ψ̃γκ

n
. (5.19)

Due to the lack of discrete chain rule, the entropy error is nonzero. However, we are able to

demonstrate that for smooth solutions, Eκ is of high order.

Theorem 5.5. Under the same assumptions as in Theorem 5.2, for a smooth solution u of

(2.1), the local entropy error Eκ = O(hk+d).

Proof. For a smooth solution u, the following identity holds at the continuous level:

d∑

m=1

(
fm(u),

∂v(u)

∂xm

)
Tκ

=
d∑

m=1

(∂ψm(v(u))

∂xm

, 1
)

Tκ

=
∑

γ∈∂Tκ

〈ψ
n
(v(u)), 1〉γ.
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By the approximation property of difference and extrapolation matrix, and the algebraic

accuracy of volume and surface quadrature rule,

d∑

m=1

(
fm(u),

∂v(u)

∂xm

)
Tκ

=
d∑

m=1

(
fm(u),

∂v(u)

∂xm

)
Tκ,ω

+ O(h2k+d)

=

d∑

m=1

(−−−→
∂xm

vκ
)T

Mκ−→fκ
m + O(h2k+d) =

d∑

m=1

(
Dκ

m

−→
vκ

)T

Mκ−→fκ
m + O(hk+d),

∑

γ∈∂Tκ

〈ψ
n
(v(u)), 1〉γ =

∑

γ∈∂Tκ

〈ψ
n
(v(u)), 1〉γ,τ + O(h2k+d)

=
∑

γ∈∂Tκ

(−→
1γ

)T

Bγ−→ψγ
n

+ O(h2k+d) =
∑

γ∈∂Tκ

(−→
1γ

)T

Bγ
−→
ψ̃γκ

n
+ O(hk+d).

Hence Eκ =
d∑

m=1

(−→
vκ

)T

(Dκ
m)TMκ−→fκ

m −
∑

γ∈∂Tκ

(−→
1γ

)T

Bγ
−→
ψ̃γκ

n
= O(hk+d).

In order to neutralize the entropy error, a simple linear correction term will be introduced

to (3.19), resulting in the scheme

d
−→
uκ

dt
+

d∑

m=1

Dκ
m

−→
fκ
m

︸ ︷︷ ︸
Difference term

= (Mκ)−1
( ∑

γ∈∂Tκ

(Rγκ)TBγ
(−→
fγκ
n

−
−−→
fγκ,∗
n

)

︸ ︷︷ ︸
Simultaneous approximation term

−
Eκ

(−−→
vκ,o

)T−−→
vκ,o

−−→
vκ,o

︸ ︷︷ ︸
Linear correction term

)
, (5.20)

where
−−→
vκ,o is the vector of normalized nodal values of v:

−−→
vκ,o =




vκ
0 − vκ

...
vκ
NQ,k

− vκ


 , vκ =

1

NQ,k

NQ,k∑

j=1

vκ
j .

Theorem 5.6. Under the same assumptions as in Theorem 5.2, the scheme (5.20) is con-

servative and entropy stable.

Proof. From the definition of
−−→
vκ,o,

(−→
1κ

)T−−→
vκ,o = 0 and

(−→
vκ

)T−−→
vκ,o =

NQ,k∑

j=1

(vκ
j )T (vκ

j − vκ) =

NQ,k∑

j=1

(vκ
j − vκ)T (vκ

j − vκ) =
(−−→
vκ,o

)T−−→
vκ,o.
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Then conservation and entropy stability can be easily proved:

d

dt

( K∑

κ=1

(−→
1κ

)T

Mκ−→uκ
)

= −
K∑

κ=1

∑

γ∈∂Tκ

−→
1γBγ−−→fγκ,∗

n
= −

∑

γ∈Γh

NB,k∑

s=1

τγ
s (f̂

n
γκ(ũγκ

s , ũγν
s ) + f̂

n
γν (ũγν

s , ũγκ
s )) = 0,

d

dt

( K∑

κ=1

(−→
1κ

)T

Mκ−→Uκ
)

=

K∑

κ=1

( ∑

γ∈∂Tκ

(−→
1γ

)T

Bγ
−→
ψ̃γκ

n
+ Eκ −

∑

γ∈∂Tκ

(−→
vγκ

)T

Bγ−−→fγκ,∗
n

− Eκ
)

=
∑

γ∈Γh

NB,k∑

s=1

τγ
s ((vγν

s − vγκ
s )T f̂

n
γκ(ũγκ

s , ũγν
s ) − (ψ̃γκ

n
γκ,s − ψ̃γν

n
γκ,s)) ≤ 0.

Remark 5.4. Although we have proved that Eκ is of high order, this does not guarantee the

consistency of (5.20). The main reason is that
−−→
vκ,o = O(h), and we are not able to control

the truncation error of linear correction term, which is of the order O(hk+d)/O(h2) with the

coefficients of the two O terms in the denominator and in the numerator not necessarily

related, hence there is the danger of the coefficient in the denominator going to zero faster

than that of the numerator, which might lead to a degeneracy of accuracy.

5.4 Accuracy test

We test the numerical convergence rates of three entropy stable DG methods in this section,

for the two-dimensional Burgers equation associated with hyperbolic cosine entropy function.

The settings are the same as in Section 4.2. We use the local Lax-Friedrichs flux in (5.3) and

(5.20), and the local Lax-Friedrichs entropy dissipation function in the implementation of

(5.18). SBP operators are built on degree 2k volume quadrature rules on triangles, exhibited

in Figure 5.1. Compared to Figure 4.1, these quadrature rules have better algebraic accuracy

with fewer degrees of freedom. This is a major benefit of removing the collocated surface

nodes constraint. The extrapolation matrices and difference matrices are simply chosen as

Rγκ = V γP κ and Dκ
m = V κD̂mP κ.

(a) k = 1,NQ,k = 3 (b) k = 2,NQ,k = 6 (c) k = 3,NQ,k = 12 (d) k = 4,NQ,k = 16

Figure 5.1: Degree 2k quadrature rules triangles for k = 1, 2, 3, 4. Dots are quadrature points
for the triangle, and circles are quadrature points for the edges.
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Numerical results at t = 0.1 are presented in Table 5.1 for scheme (5.3), Table 5.2 for

scheme (5.18), and Table 5.3 for scheme (5.20). Since the volume quadrature rule is of degree

2k, the accuracy requirements in [13, 55] are met, and there is some hope to recover optimal

(k + 1)-th order convergence. We do see optimal convergence in Table 5.1 and Table 5.3,

despite the fact that the truncation error of (5.20) is not fully understood. However, the

convergence is still below optimal for the global SBP scheme (5.18) in Table 5.2.

Table 5.1: Errors and orders of convergence of (5.3) for the two-dimensional Burgers equation
at t = 0.1. Degree 2k volume quadrature rules are used.

k h L1 error order L2 error order L∞ error order
2 1/16 2.244e-04 - 4.597e-04 - 6.226e-03 -

1/32 3.391e-05 2.726 8.188e-05 2.489 1.367e-03 2.187
1/64 4.386e-06 2.951 1.074e-05 2.931 1.793e-04 2.931
1/128 5.717e-07 2.939 1.557e-06 2.786 2.992e-05 2.583
1/256 7.511e-08 2.928 2.238e-07 2.798 5.511e-06 2.440

3 1/16 5.445e-05 - 1.913e-04 - 3.067e-03 -
1/32 4.526e-06 3.589 1.921e-05 3.316 5.347e-04 2.520
1/64 3.019e-07 3.906 1.365e-06 3.815 3.096e-05 4.110
1/128 1.920e-08 3.975 9.184e-08 3.894 3.538e-06 3.130
1/256 1.275e-09 3.913 6.148e-09 3.901 2.941e-07 3.589

4 1/8 1.476e-04 - 4.757e-04 - 6.202e-03 -
1/16 1.092e-05 3.757 4.482e-05 3.408 1.132e-03 2.454
1/32 4.984e-07 4.454 2.637e-06 4.087 1.150e-04 3.300
1/64 1.528e-08 5.028 7.728e-08 5.093 5.355e-06 4.424
1/128 4.818e-10 4.987 2.472e-09 4.966 1.641e-07 5.028

6 Additional topics

In this section, we treat different entropy stable nodal DG discretizations (including (4.1),

(5.3), (5.12) and (5.20)) in the same manner, using the generic representation

d
−→
uκ

dt
= rκ

(−→
ug

)
, (6.1)

such that
K∑

κ=1

(−→
1κ

)T

Mκrκ
(−→
ug

)
= 0,

K∑

κ=1

(−→
vκ

)T

Mκrκ
(−→
ug

)
≤ 0.

For clarity, proofs of the theorems in this section will be provided in Appendix B.
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Table 5.2: Errors and orders of convergence of (5.18) for the two-dimensional Burgers equa-
tion at t = 0.1. Degree 2k volume quadrature rules are used.

k h L1 error order L2 error order L∞ error order
2 1/16 5.300e-04 - 1.367e-03 - 1.451e-02 -

1/32 7.057e-05 2.909 2.154e-04 2.666 2.813e-03 2.366
1/64 8.973e-06 2.975 3.028e-05 2.831 4.761e-04 2.563
1/128 1.089e-06 3.042 3.872e-06 2.967 8.605e-05 2.468
1/256 1.363e-07 2.998 5.082e-07 2.930 1.447e-05 2.572

3 1/16 8.324e-05 - 2.611e-04 - 4.398e-03 -
1/32 8.824e-06 3.238 3.621e-05 2.850 8.565e-04 2.361
1/64 7.546e-07 3.548 3.655e-06 3.308 1.463e-04 2.550
1/128 5.944e-08 3.666 3.537e-07 3.370 2.444e-05 2.581
1/256 4.908e-09 3.598 3.530e-08 3.325 3.024e-06 3.015

4 1/8 1.945e-04 - 5.587e-04 - 6.280e-03 -
1/16 1.768e-05 3.459 6.770e-05 3.045 1.607e-03 1.966
1/32 1.123e-06 3.977 5.577e-06 3.602 2.089e-04 2.943
1/64 4.482e-08 4.648 2.583e-07 4.432 1.709e-05 3.612
1/128 1.549e-09 4.855 9.283e-09 4.798 9.867e-07 4.114

Table 5.3: Errors and orders of convergence of (5.20) for the two-dimensional Burgers equa-
tion at t = 0.1. Degree 2k volume quadrature rules are used.

k h L1 error order L2 error order L∞ error order
2 1/16 2.321e-04 - 4.779e-04 - 6.456e-03 -

1/32 3.456e-05 2.748 8.407e-05 2.507 1.431e-03 2.173
1/64 4.432e-06 2.963 1.088e-05 2.950 1.888e-04 2.923
1/128 5.748e-07 2.947 1.566e-06 2.797 3.105e-05 2.604
1/256 7.532e-08 2.932 2.244e-07 2.803 5.511e-06 2.494

3 1/16 6.136e-05 - 2.201e-04 - 3.608e-03 -
1/32 5.050e-06 3.603 2.199e-05 3.323 6.367e-04 2.503
1/64 3.266e-07 3.951 1.513e-06 3.861 3.610e-05 4.141
1/128 2.031e-08 4.007 9.928e-08 3.929 3.837e-06 3.234
1/256 1.330e-09 3.933 6.533e-09 3.926 3.184e-07 3.591

4 1/8 1.787e-04 - 5.778e-04 - 7.072e-03 -
1/16 1.298e-05 3.783 5.361e-05 3.430 1.356e-03 2.382
1/32 5.751e-07 4.497 3.081e-06 4.121 1.346e-04 3.334
1/64 1.693e-08 5.086 8.712e-08 5.144 6.191e-06 4.442
1/128 5.198e-10 5.026 2.711e-09 5.006 1.902e-07 5.024

6.1 Compatibility with limiters

For the classic DG method, people have developed a wide class of limiters, such as the

TVD/TVB (total variation diminishing/bounded) limiter [75], the bound-preserving limiter
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[92, 93] and the WENO limiter [68], to enable extra stabilization. The idea of limiters can

certainly be transferred to nodal DG formulations. Generally speaking, after applying some

limiter, we compute the modified set of nodal values, denoted by
−−−→
uκ,new, for each 1 ≤ κ ≤ K.

We require that the average value of u on Tκ is unchanged, as the primary conservation

should be maintained.

1

|Tκ|

NQ,k∑

j=1

ωκ
j u

κ,new
j =

1

|Tκ|

NQ,k∑

j=1

ωκ
j u

κ
j = uκ.

In [12], the authors proved that if the limiter squeezes the data towards the average value,

the total amount of entropy will not increase.

Theorem 6.1. Suppose that the modified values are given by

u
κ,new

j = uκ + λκ
j (u

κ
j − uκ), (6.2)

where 0 ≤ λκ
j ≤ 1 for each 1 ≤ j ≤ NQ,k and 1 ≤ κ ≤ K, then for any convex entropy

function U , we have

(−→
1κ

)T

Mκ−−−→Uκ,new ≤
(−→
1κ

)T

Mκ−→Uκ, i.e.,

NQ,k∑

j=1

ωκ
j U(uκ,new

j ) ≤

NQ,k∑

j=1

ωκ
j U(uκ

j ). (6.3)

For instance, in the bound-preserving limiter, we perform a simple linear scaling proce-

dure u
κ,new
j = uκ + λκ(uκ

j −uκ) with 0 ≤ λκ ≤ 1, making sure the modified nodal values are

within some physical bound. Therefore the bound-preserving limiter will not violate entropy

stability. A special entropy stable TVD/TVB limiter was also designed for one-dimensional

scalar conservation laws in [12]. These limiters make the most sense only for quadrature rules

with collocated surface nodes. On general set of nodes, due to the emergence of entropy-

extrapolated values, proving the bound-preserving property or the TVD/TVB property is

very challenging, despite the fact the proof of Theorem 6.1 still holds.

Remark 6.1. Limiters only work for fully discrete schemes. The argument is incomplete

unless we prove the entropy stability of the fully discrete version of (6.1). Time discretization

will be discussed later.

6.2 Convection-diffusion equations

We add viscous diffusive terms to the conservation law (2.1):

∂u

∂t
+

d∑

m=1

∂

∂xm

(
fm(u) −

d∑

r=1

Cmr(v)
∂v

∂xr

)
= 0, (6.4)
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where v is the entropy variable of some entropy function U , and Cmr(v) are p × p matrix-

valued functions. One typical examples is the compressible Navier-Stokes equations. We

assume that the matrix 

C11(v) · · · C1d(v)

...
. . .

...
Cd1(v) · · · Cdd(v)




is symmetric semi-positive-definite. Then (6.4) supports the entropy inequality with respect

to U . Entropy stable discretization of (6.4) is investigated in [5, 4, 37], where a nodal version

of the local discontinuous Galerkin (LDG) method [16, 6] is introduced. We recast (6.4) into

the mixed form

∂u

∂t
+

d∑

m=1

∂

∂xm

(fm(u) − qm) = 0, qm =
d∑

r=1

Cmr(v)θθθr, θθθr =
∂v

∂xr

. (6.5)

The LDG method evolves the approximations of u and {θθθr}d
r=1 simultaneously. Once again

for each 1 ≤ κ ≤ K,
−→
uκ and

−→
θθθκ

r denote the vector of nodal values in Tκ. We further define

that

Cκ
mr = diag{Cmr(v

κ
1 ), · · · , Cmr(v

κ
NQ,k

)},
−→
qκ

m =

d∑

r=1

Cκ
mr

−→
θθθκ

r .

Neighboring elements are coupled via f̂
n
(uL,uR), as well as single-valued numerical fluxes of

v and q
n
:

v̂ = v̂(vL,vR), q̂
n

= q̂
n
(vL,vR,q

n,L,q
n,R). (6.6)

On the face γ ∈ ∂Tκ, we also let
−−→
vγκ,∗ and

−−→
qγκ,∗

n
describe the vectors of the nodal values of

corresponding numerical fluxes:

−−→
vγκ,∗ =




v̂(vγκ
1 ,vγν

1 )
...

v̂(vγκ
NB,k

,vγν
NB,k

)


 ,

−−→
qγκ,∗

n
=




q̂
n
(vγκ

1 ,vγν
1 ,qγκ

n,1,q
γν
n,1)

...
q̂

n
(vγκ

NB,k
,vγν

NB,k
,qγκ

n,NB,k
,qγν

n,NB,k
)


 .

The LDG discretization of (6.5) is

d
−→
uκ

dt
= rκ

(−→
ug

)
+

d∑

m=1

Dκ
m

−→
qκ

m

︸ ︷︷ ︸
Difference term

−
∑

γ∈∂Tκ

(Mκ)−1(Rγκ)TBγ
(−→
qγκ

n
−

−−→
qγκ,∗

n

)

︸ ︷︷ ︸
Simultaneous approximation term

, (6.7a)

−→
θθθκ

r = Dκ
r

−→
vκ

︸ ︷︷ ︸
Difference term

−
∑

γ∈∂Tκ

nγκ
r (Mκ)−1(Rγκ)TBγ

(−→
vγκ −

−−→
vγκ,∗

)

︸ ︷︷ ︸
Simultaneous approximation term

, 1 ≤ r ≤ d. (6.7b)
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Theorem 6.2. Given parameters α ≥ 0 and β ∈ R, if we choose the LDG fluxes

v̂(vL,vR) =
1

2
(vL + vR) + β(vL − vR),

q̂
n
(vL,vR,q

n,L,q
n,R) =

1

2
(q

n,L + q
n,R) − β(q

n,L − q
n,R) − α(vL − vR),

(6.8)

then (6.7) is entropy stable with respect to U .

6.3 Modal formulation

We have only considered nodal DG formulations up to now. The recovery of modal formu-

lations was explored in [7, 8, 9]. The idea is similar to the staggered-grid DG methods in

[67, 25]. The polynomial basis functions {pl(x)}
NP,k

l=1 play the role of solution points (say,

we can assume that they are Lagrangian interpolation polynomials), where the numerical

solution is stored; while the quadrature nodes {xκ
j }

NQ,k

j=1 are regarded as flux points, where

the function evaluations take place. The communication between these two sets of points is

via entropy variables, which brings us the concept of entropy-projected values. Vandermonde

matrix V κ and projection matrix P κ are the corresponding interpolation operators.

Recall the notations in Section 3.3. Let uκ
h(x) be the numerical solution, and

−→
ûκ be the

vector of polynomial coefficients on Tκ. The vector of nodal values is
−→
uκ = Vκ

−→
ûκ. For the

entropy variables v, we define the projected polynomial:

−→
v̂κ = Pκ−→vκ, vκ

h(x) =

NQ,k∑

l=1

v̂κ
l pl(x),

as well as the entropy-projected values
−→
ṽκ and

−→
ũκ, such that

−→
ṽκ = Vκ−→v̂κ = VκPκ−→vκ =




vh(x
κ
1)

...
vh(x

κ
NQ,k

)


 ,

−→
ũκ =




u(ṽκ
1)

...
u(ṽκ

NQ,k
)


 .

Now given the generic entropy stable nodal DG formulation (6.1), its modal counterpart is

derived through projection and inserting entropy-projected values:

d
−→
ûκ

dt
= Pκrκ

(−→
ũg

)
,

−→
ũg =




−→
ũ1

...
−→
ũK


 . (6.9)

Theorem 6.3. Under standard assumptions, if (6.1) is conservative and entropy stable,

then the modal formulation (6.9) is also conservative and entropy stable, in the sense that

d

dt

(∫

Ω

uh(t,x)dx
)

=
d

dt

( K∑

κ=1

(−→
1κ

)T

Mκ−→uκ
)

= 0,
d

dt

( K∑

κ=1

(−→
1κ

)T

Mκ−→Uκ
)
≤ 0. (6.10)
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6.4 Curvilinear meshes

Curvilinear meshes are usually preferred in the decomposition of domains with complex

geometry. For a curvilinear mesh, still denoted by {Tκ}K
κ=1, suppose that there exists a

reference simplex element T (with reference coordinates ξξξ), such that Tκ is the image of T

under some invertible mapping ξξξ 7→ xκ(ξξξ). We define the Jacobian factor Jκ = det(x′
κ(ξξξ)),

and the metric terms

Gκ
mr = Jκ ∂ξr

∂xκ
m

, 1 ≤ m, r ≤ d.

The metric terms satisfy the following geometric conservation law [59]

d∑

r=1

∂Gκ
mr

∂ξr

= 0, for each 1 ≤ m ≤ d. (6.11)

Then we rewrite the conservation law (2.1) in terms of reference coordinates:

Jκ ∂u

∂t
+

d∑

r=1

∂

∂ξr

( d∑

m=1

Gκ
mrfm(u)

)
= 0. (6.12)

This is actually a problem with variable coefficients, as both Jκ and Gκ
mr are non-constant

functions (they are constant only for simplex meshes where all mappings are affine). In the

case that the quadrature rule has collocated surface nodes, entropy stable DG method for

(6.12) was created by Fisher in [28], and applied to different problems in [4, 3, 37]. The

main difficulty lies in the treatment of the metric terms. Roughly speaking, the nodal values

of the metric terms must satisfy the discrete geometric conservation law (i.e., the discrete

version of (6.11)). Exact evaluation of the metric terms will in general fail. One possible

procedure computing two-dimensional and three-dimensional metric terms was uncovered

in [59]. Moreover, metric terms should be averaged in the flux differencing term, which

corresponds to the split form

Jκ ∂u

∂t
+

1

2

d∑

r=1

( ∂

∂ξr

( d∑

m=1

Gκ
mrfm(u)

)
+

d∑

m=1

Gκ
mr

∂fm(u)

∂ξr

)
= 0. (6.13)

It is a well-known splitting technique for problems with variable coefficients (see e.g. [48]).

For general quadrature rules, the same idea was used in [9] to derive a curvilinear variant of

the hybridized SBP operators, such that the discrete geometric conservation law is written

in terms of volume metric terms and surface metric terms. The idea also works for global

SBP operators, but at the cost of requiring a global discrete geometric conservation law. A

slightly different approach was presented in [20] to maintain the locality of the geometric

conservation law.
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6.5 Time discretization

One important motivation for quadrature-based DG formulations is the pursuit of entropy

stable methods that can be exactly implemented. This goal is only partly accomplished

due to the assumption of semi-discrete analysis. Fully discrete entropy stability is mostly

established for implicit time stepping schemes. For example, applying the Euler backward

scheme to (6.1) yields
−−−−→
uκ,(n+1) =

−−−→
uκ,(n) + ∆trκ

(−−−−→
ug,(n+1)

)
, (6.14)

where
−−−→
uκ,(n) is the solution vector on Tκ at the n-th step. By the convexity of U ,

K∑

κ=1

(−→
1κ

)T

Mκ
−−−−−→
Uκ,(n+1) ≤

K∑

κ=1

((−→
1κ

)T

Mκ−−→Uκ,n +
(−−−−→
vκ,(n+1)

)T

Mκ
(−−−−→
uκ,(n+1) −

−−−→
uκ,(n)

))

=

K∑

κ=1

(−→
1κ

)T

Mκ−−→Uκ,n + ∆t

K∑

κ=1

(−−−−→
vκ,(n+1)

)T

Mκrκ
(−−−−→
ug,(n+1)

)
≤

K∑

κ=1

(−→
1κ

)T

Mκ−−→Uκ,n,

Hence the Euler backward time stepping is entropy stable. A general framework of high order

entropy stable implicit time stepping schemes was discussed in [61]. Time discretization can

also be handled by the so-called space-time DG technique, in which we regard the time

variable as an extra dimension, and the equation (2.1) as a steady state conservation law in

(d+1) dimensions. Then we directly adopt existing entropy stable methods to discretize the

steady state problem. See [34] for the space-time version of quadrature-based DG methods,

and [2, 53, 87] for the space-time version of (2.20) (DG method that approximates entropy

variables ). Clearly, the space-time DG methods are also implicit in time.

In contrast, the entropy stability of explicit time discretization is by large an open prob-

lem. For the first order method using monotone fluxes (in scalar problems) or Godunov

type fluxes, it is well-known that the entropy stability result is still valid in the fully dis-

crete case with Euler forward time stepping (see e.g. Chapter 3 of [41]). In the context of

high order DG methods, the L2 stability of linear equations is proved for Runge-Kutta time

stepping [91], and Lax-Wendroff time stepping [79]. However, relatively little is known for

the nonlinear extension (in the sense of both flux functions and entropy function).

7 Concluding remarks

Starting from the pioneering work in [36, 5], high order entropy stable quadrature-based

DG methods have been developed into an exuberant research area. These DG methods

can be stable with respect to an arbitrary given entropy function. Therefore we circumvent

the limitation of the L2 stability result for the classic DG method. There are three main

ingredients contributing to entropy stability:
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1. Discrete operators with the summation-by-parts property. The existence of difference

matrices is clinched by equation (3.10).

2. Flux differencing technique. We apply difference matrices to bivariate entropy conser-

vative fluxes, instead of the univariate flux functions, to enable chain rule. The “brute

force” method in Section 5.3 provides another option of enforcing entropy balance.

3. Entropy stable SATs that couple adjacent elements. For quadrature rules with collo-

cated surface nodes, simply inserting entropy stable fluxes on interfaces is enough. For

general set of nodes, we need to put more effort. Two possible constructions of SATs,

implicitly implemented in augmented SBP operators, are reviewed in Section 5.1 and

Section 5.2.

The entropy stable DG framework is of great versatility in that a variety of concepts

can be incorporated into it. We have only discussed a few topics in this paper, including

the generalization to convection-diffusion equations, the transformation between nodal and

modal formulations, the handling of curvilinear meshes and the development of fully-discrete

methods. The bound-preserving limiter and TVD/TVB limiter can be imposed on quadra-

ture points with collocated surface nodes. On the other hand, the main advantage of general

quadrature rules is the possibility of attaining better accuracy with degrees of freedom.

We speculate some possible directions for future research:

1. Rigorous error analysis for smooth problems. There are positive results for the classic

DG method in [89, 90, 55].

2. Establishing convergence of numerical solutions. Since the DG methods only satisfy

a single entropy condition, we might not be able to show convergence to the entropy

solution. The paradigm of measure-valued solutions was used in [53, 33].

3. Bound-preserving limiter for general quadrature rules. This is of practical importance.

For problems with strong shocks, the code is likely to crash due to non-physical values

(e.g. negative density or negative pressure in Euler equations), and bound-preserving

limiter is usually desired.

4. Entropy stable explicit time stepping schemes.

A Equivalence of flux differencing and splitting

In this section, we build the link between flux differencing and splitting, and also present

some special examples to further illustrate the equivalence. For the sake of simplicity, let us

consider the one-dimensional conservation law:

∂u

∂t
+

∂f(u)

∂x
= 0 (A.1)
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We assume that the entropy conservative flux fS(uL,uR) is separable. That is, there exists

a finite sequence of functions {gi(u)}n
i=1, such that fS has the symmetric decomposition

fS(uL,uR) =

n∑

i=1

gi(uL) ◦ gn+1−i(uR). (A.2)

By consistency of fS,

f(u) =
n∑

i=1

gi(u) ◦ gn+1−i(u). (A.3)

As a result, if u is a smooth solution,

∂f(u)

∂x
=

n∑

i=1

(
gi(u) ◦

∂gn+1−i(u)

∂x
+

∂gi(u)

∂x
◦ ∂gn+1−i(u)

)
= 2

n∑

i=1

gi(u) ◦
∂gn+1−i(u)

∂x
.

We have the split form of (A.1)

∂u

∂t
= 2

n∑

i=1

gi(u) ◦
∂gn+1−i(u)

∂x
. (A.4)

Theorem A.1. Under the assumption of separable fS, the flux differencing term is actually

the discretization of split form (A.4):

2Dκ ◦ FS

(−→
uκ,

−→
uκ

)−→
1κ = 2

n∑

i=1

−→
gκ

i ◦
(
Dκ−−−−→gκ

n+1−i

)
. (A.5)

Proof. We simply examine each component of the flux differencing term:

(
2Dκ ◦ FS

(−→
uκ,

−→
uκ

)−→
1κ

)
j
= 2

NQ,k∑

l=1

Dκ
jlfS(uκ

j ,u
κ
l ) = 2

n∑

i=1

gi(u
κ
j ) ◦

(NQ,k∑

l=1

Dκ
jlgn+1−i(u

κ
l )

)

= 2

n∑

i=1

gκ
i,j ◦

(
Dκ−−−−→gκ

n+1−i

)

j
.

A.1 Linear symmetric system

Consider the one-dimensional linear symmetric system

∂u

∂t
+

∂(Au)

∂x
= 0, (A.6)

where A is some constant symmetric p × p matrix. The square function U = 1
2
uTu defines

an entropy function, with

v = u, F =
1

2
uT Au, ψ = vT f − F =

1

2
uT Au
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We simply take fS to be the arithmetic mean

fS(uL,uR) =
1

2
(AuL + AuR) =

1

2
(f(uL) + f(uR)). (A.7)

Hence the flux differencing term reduces to

2Dκ ◦ FS

(−→
uκ,

−→
uκ

)
=

−→
1κ ◦

(
Dκ−→fκ

)
+
−→
fκ ◦

(
Dκ−→1κ

)
= Dκ−→fκ .

We recover the difference term in the unmodified DG method (3.19).

A.2 Burgers equation

For the one-dimensional Burgers equation

∂u

∂t
+

1

2

∂u2

∂x
= 0,

we still use the square entropy function U = u2

2
, with

v = u, F = ψ =
u3

3
, ψ =

u3

6
.

The entropy conservative flux is

fS(uL, uR) =
ψR − ψL

vR − vL
=

1

6
(u2

L + uLuR + u2
R). (A.8)

Then

2Dκ ◦ FS

(−→
uκ,

−→
uκ

)−→
1κ =

2

3

−→
1κ ◦

(
Dκ−→fκ

)
+

1

3

−→
uκ ◦

(
Dκ−→uκ

)
+

2

3

−→
fκ ◦

(
Dκ−→1κ

)

=
2

3
Dκ−→fκ +

1

3

−→
uκ ◦

(
Dκ−→uκ

)
,

which is the discretization of the split form

∂u

∂t
+

1

3

∂u2

∂x
+

1

3
u
∂u

∂x
= 0. (A.9)

It is called the skew-symmetric splitting technique in [36, 71].

A.3 Shallow water equations

The one-dimensional shallow water equations read

∂

∂t

[
h

hw

]
+

∂

∂x

[
hw

hw2 + 1
2
gh2

]
= 0. (A.10)
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Here h and w are the water depth and velocity, and g is the gravity acceleration constant.

The total energy function U = 1
2
hw2 + 1

2
gh2 serves as an entropy function with

v =

[
gh − 1

2
w2

w

]
, F =

1

2
hw3 + gh2w, ψ =

1

2
gh2w.

We can construct the separable entropy conservative flux

fS(uL,uR) =

[
1
2
(hLwL + hRwR)

1
4
(hLwL + hRwR)(wL + wR) + 1

2
ghLhR

]
. (A.11)

The corresponding flux differencing term is equivalent to the discretization of

∂h

∂t
+

∂(hw)

∂x
= 0,

∂(hw)

∂t
+

1

2

∂(hw2)

∂x
+

1

2
w

∂(hw)

∂x
+

1

2
hw

∂w

∂x
+ gh

∂h

∂x
= 0,

(A.12)

which is the skew-symmetric splitting procedure in [39].

B Proofs of the theorems in Section 6

B.1 Theorem 6.1

We will prove Theorem 6.1. Since

1

|Tκ|

NQ,k∑

j=1

ωκ
j u

κ,new
j =

1

|Tκ|

NQ,k∑

j=1

ωκ
j (uκ + λκ

j (u
κ
j − uκ)) = uκ,

we have
NQ,k∑

j=1

ωκ
j λκ

j u
κ
j =

(NQ,k∑

j=1

ωκ
j λκ

j

)
uκ,

NQ,k∑

j=1

ωκ
j (1 − λκ

j )u
κ
j =

(NQ,k∑

j=1

ωκ
j (1 − λκ

j )
)
uκ.

By the convexity of U ,

U(uκ,new
j ) ≤ λκ

j U(uκ
j ) + (1 − λκ

j )U(uκ),
(NQ,k∑

j=1

ωκ
j (1 − λκ

j )
)
U(uκ) ≤

NQ,k∑

j=1

ωκ
j (1 − λκ

j )U(uκ
j ).

Therefore
NQ,k∑

j=1

ωκ
j U(uκ,new

j ) ≤

NQ,k∑

j=1

ωκ
j (λκ

j U(uκ
j ) + (1 − λκ

j )U(uκ))

=

NQ,k∑

j=1

ωκ
j λκ

j U(uκ
j ) +

(NQ,k∑

j=1

ωκ
j (1 − λκ

j )
)
U(uκ) ≤

NQ,k∑

j=1

ωκ
j λκ

j U(uκ
j ) +

NQ,k∑

j=1

ωκ
j (1 − λκ

j )U(uκ
j )

=

NQ,k∑

j=1

ωκ
j U(uκ

j ).
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B.2 Theorem 6.2

We will prove Theorem 6.2, i.e., the entropy stability of LDG method (6.7) for convection-

diffusion equations. We neglect the convective term rκ
(−→
ug

)
as it is already entropy stable.

Then the entropy growth rate in Tκ is

d

dt

((−→
1κ

)T

Mκ−→Uκ
)

=
d∑

m=1

(−→
vκ

)T

Sκ
m

−→
qκ

m −
∑

γ∈∂Tκ

(−→
vγκ

)T

Bγ
(−→
qγκ

n
−

−−→
qγκ,∗

n

)
.

We left multiply (6.7b) by
(−→
qκ

r

)T

Mκ:

(−→
qκ

r

)T

Mκ−→θθθκ
r =

(−→
qκ

r

)T

Sκ
r

−→
vκ −

∑

γ∈∂Tκ

nγκ
r

(−→
qγκ

r

)T

Bγ
(−→
vγκ −

−−→
vγκ,∗

)
, 1 ≤ r ≤ d.

Summing up the two identities above yields:

d

dt

((−→
1κ

)T

Mκ−→Uκ
)

= −
d∑

r=1

(−→
qκ

r

)T

Mκ−→θθθκ
r +

d∑

r=1

((−→
vκ

)T

Sκ
r

−→
qκ

r +
(−→
qκ

r

)T

Sκ
r

−→
vκ

)

−
∑

γ∈∂Tκ

((−→
vγκ

)T

Bγ
(−→
qγκ

n
−

−−→
qγκ,∗

n

)
+

(−→
qγκ

n

)T

Bγ
(−→
vγκ −

−−→
vγκ,∗

))
.

The first sum is non-positive since

−
d∑

r=1

(−→
qκ

r

)T

Mκ−→θθθκ
r = −

NQ,k∑

j=1

ωκ
j

( d∑

r=1

(qκ
r,j)

Tθθθκ
r,j

)
= −

NQ,k∑

j=1

ωκ
j

( d∑

m=1

d∑

r=1

(θθθκ
m,j)

T Cmr(v
κ
j )θθθ

κ
r,j

)
≤ 0.

The second sum, according to the SBP property, equals

d∑

r=1

((−→
vκ

)T

Sκ
r

−→
qκ

r +
(−→
qκ

r

)T

Sκ
r

−→
vκ

)
=

d∑

r=1

∑

γ∈∂Tκ

nκγ
r

(−→
vκ

)T

Eκγ−→qκ
r =

∑

γ∈∂Tκ

(−→
vγκ

)T

Bγ−→qγκ
n

.

Now there are only interface terms. We sum over κ and get

d

dt

( K∑

κ=1

(−→
1κ

)T

Mκ−→Uκ
)
≤

K∑

κ=1

∑

γ∈∂Tκ

((−→
vγκ

)T

Bγ−−→qγκ,∗
n

+
(−→
qγκ

n

)T

Bγ−−→vγκ,∗ −
(−→
vγκ

)T

Bγ−→qγκ
n

)

=
∑

γ∈Γh

NB,k∑

s=1

τγ
s

(
(vγκ

s − vγν
s )T q̂

n
γκ(vγκ

s ,vγν
s ,qγκ

n
γκ,s,q

γν
n

γκ,s) + (qγκ
n

γκ,s − q
γν
n

γκ,s)
T v̂(vγκ

s ,vγν
s )

− ((vγκ
s )Tq

γκ
n

γκ,s − (vγν
s )Tq

γν
n

γκ,s)
)
.

By the definition of LDG fluxes (6.8) and the identity

vT
Lq

n,L − vT
Rq

n,R =
1

2
(vL + vR)T (q

n,L − q
n,R) +

1

2
(vL − vR)T (q

n,L + q
nR

),
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we are left with

d

dt

( K∑

κ=1

(−→
1κ

)T

Mκ−→Uκ
)
≤ −

∑

γ∈Γh

NB,k∑

s=1

τγ
s α(vγκ

s − vγν
s )T (vγκ

s − vγν
s ) ≤ 0.

Hence the LDG method is entropy stable with respect to U .

B.3 Theorem 6.3

We will prove Theorem 6.3, i.e., the conservation and entropy stability of the modal formu-

lation (6.9). The evolution of nodal values is

d
−→
uκ

dt
= VκPκrκ

(−→
ũg

)
.

Since MκVκPκ = (Pκ)TM̂κPκ = (VκPκ)Mκ,

d

dt

( K∑

κ=1

(−→
1κ

)T

Mκ−→uκ
)

=
K∑

κ=1

(
VκPκ−→1κ

)T

Mκrκ
(−→
ũg

)
=

K∑

κ=1

(−→
1κ

)T

Mκrκ
(−→
ũg

)
,

d

dt

( K∑

κ=1

(−→
1κ

)T

Mκ−→Uκ
)

=

K∑

κ=1

(
VκPκ−→vκ

)T

Mκrκ
(−→
ũg

)
=

K∑

κ=1

(−→
ṽκ

)T

Mκrκ
(−→
ũg

)
.

Then from the conservation and entropy stability of (6.1), we see that (6.9) is also conser-

vative and entropy stable.
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