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In this paper, we are concerned with the study of efficient and high order accurate numerical methods
for solving Hamilton-Jacobi (H]) equations with initial conditions defined in the whole domain. One of
the commonly used strategy is to solve the problem only in a finite domain, but the determination of
boundary conditions at the artificial boundary of the finite computational domain is a problem. If the
initial condition decays fast in space, one could use zero boundary condition at the artificial boundary
if the domain is large enough, but this may not be very efficient since the computational domain may
need to be very large to justify this choice. In this paper we use the high order moving mesh arbitrary
Lagrangian Eulerian (ALE) weighted essentially non-oscillatory (WENO) finite difference scheme, recently
developed in [13], in a finite and moving computational domain, with numerical boundary conditions
obtained by solving the characteristic ordinary differential equations (ODEs) along the artificial boundary
of the moving computational domain. The usage of this moving characteristic boundary conditions al-
lows us to solve the HJ equations in any initial finite domain that we are interested in, regardless of the
magnitude of the initial condition at the artificial domain boundary. This method works well when sin-
gularities do not appear at the artificial boundary. Extensive numerical tests in one and two dimensions
are given to demonstrate the flexibility and efficiency of our method in solving both smooth problems
and problems with corner singularities.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we are interested in solving the Hamilton-Jacobi
(H]) equations

The Hamilton-Jacobi equations have wide applications in opti-
mal control, image processing, and mechanics, among many oth-
ers. In nonlinear solid mechanics, the Hamilton-Jacobi equations
have their spatial variables defined over non-periodic unbounded
or semi-unbounded domains [12]. Such problems with unbounded
domains also appear in other applications.
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{¢r+H(x,¢x,¢,t)=o .

$(x,0) = ¢o(x)

in one space dimension, and

{¢t+H(X,y,¢x,¢y,¢»t)=0 2
$(x.y,0) = do(x.y)

in two space dimensions, for which the initial condition ¢ is de-
fined over the whole domain R or R2. One major difficulty in solv-
ing such problems is the infinite computational domain. For gen-
eral partial differential equations (PDEs) defined over infinite do-
main, there are different approaches in solving them, for example
the infinite element method and the boundary element method
[2,7], spectral methods in using basis functions defined in the in-
finite domain [3], and the region decomposition algorithm based
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on natural boundary naturalization [5]. Boundary element method
mainly starts with Green function and Green formula, the bound-
ary value problem of partial differential equation is transformed
into a strongly singular integral equation on the boundary. Another
commonly used strategy is to solve the problem only in a finite do-
main. This has the advantage that most numerical methods, such
as finite difference and finite element methods, can be directly ap-
plied. However, the determination of boundary conditions at the
artificial boundary of the finite computational domain is a prob-
lem. If the initial condition ¢ decays fast in space towards a con-
stant (e.g. zero), one could use zero boundary condition at the ar-
tificial boundary if the domain is large enough. This, however, may
not lead to the most efficient numerical method, since the compu-
tational domain may need to be very large in order to justify the
choice of zero boundary condition. Moreover, if the initial condi-
tion does not go to zero (or constant) at infinity, then it is diffi-
cult to cut the initial computational domain to a finite domain, no
matter how large, and figure out suitable boundary conditions at
the artificial boundary, if the finite computational domain remains
fixed in time. Engquist and Majda developed a systematic method
for obtaining a hierarchy of local boundary conditions at these ar-
tificial boundaries for wave equations [6], see also [8,9]. It guaran-
tees stable difference approximations and also minimizes the (un-
physical) artificial reflections which occur at the boundaries. No-
tice that the determination of boundary conditions at the artificial
boundary of the finite computational domain is very difficult, if not
impossible, based solely on the initial condition inside the com-
putational domain and the PDE, especially for the inflow bound-
ary, because the boundary values of the exact solution at an in-
flow boundary depends on the initial condition outside the initial
finite computational domain. It is however difficult, in many cases,
to have the artificial boundary of the finite computational domain
to be only outflow boundary, especially if the computational do-
main is fixed in time.

For the HJ Eqs. (1) and (2) that we are interested in this paper,
one possible remedy of this difficulty is to use a moving compu-
tational domain, whose boundary corresponds to the characteris-
tic curves of the HJ equations. This would ensure that the bound-
ary of the computational domain is neither an inflow nor an out-
flow, but is a characteristic boundary. That is, the information on
this moving characteristic boundary can be completely determined
by the values of the initial condition at the boundary of the ini-
tial computational boundary. The numerical boundary conditions
can be obtained by solving the characteristic ordinary differential
equations (ODEs) along the artificial boundary of this moving com-
putational domain. This method works well when singularities do
not appear at the artificial boundary. In order to apply this frame-
work, we need a stable and accurate numerical method which can
be applied to such moving computational domains. The high or-
der moving mesh arbitrary Lagrangian Eulerian (ALE) weighted es-
sentially non-oscillatory (WENO) finite difference scheme, recently
developed in [13], is a good choice and will be used in this pa-
per. In two dimensions, this method is based on moving quadrilat-
eral meshes, which are often used in Lagrangian type methods. We
will only give a very brief description of this method in Section 2,
in order to describe our algorithm, and will refer the readers to
[13] and the references therein for more details and for the history
of numerical methods for solving HJ equations.

This paper is organized as follows. In Section 2, we give a de-
tailed discussion on our algorithm for solving the HJ equations,
paying special attention to the procedure of obtaining the char-
acteristic boundary conditions numerically in one and two dimen-
sional cases. In Section 3, the numerical results solving several typ-
ical H] equations are presented, to demonstrate the good perfor-
mance of our algorithm. Finally, we will give concluding remarks
in Section 4.

2. Algorithm
2.1. Characteristic boundary conditions

The basic idea behind the method of characteristics is to recast
(appropriate types of) the PDEs as a system of ordinary differential
equations (ODEs). For the type of HJ equation under investigation
here, the method amounts to finding curves, which are called the
characteristics, along which the solution ¢ can be computed from
the giving initial condition. This is achieved by integrating a system
of ODEs. Demidov has a historical perspective on this method in
[4]. We compute our unknown boundary conditions along a mov-
ing computational domain by solving the characteristic ODEs. Once
the numerical boundary values are obtained in this fashion, we
will use the high order finite difference ALE-WENO scheme devel-
oped in [13] to solve the PDE inside the computational domain. We
now describe the procedure to obtain and discretize the character-
istic ODEs.

For the one dimensional HJ Eq. (1), we begin by writing it into
the form

{F(p, o, xt)=r+HX,p ¢,t)=0
@0 = ¢(x0,0)

with the parameterization

p(t) = S x(0). 1),
r(t) = 2. 1), (3)
@(t) = p(x(t).t)

along the characteristic curve (x(t), t), with an initial condition xg =

x(0). Using the HJ Eq. (1), we can obtain the characteristic curve
initiating from xq by the system of ODEs

dx _ 9H

dt — dp’

dp _ _9H _ 9H

it = "ox ~ 9P 4)
dr _ _poH

a = Tag

dp _ ,0H

E_pf)p—’—r’

together with the compatibility equations

F(po. 1o, ¢0. X0, 0) =19 + H(X0, po, ¢0.0) =0
Py (5)
Do = % (X0, 0)

that define pg = p(0), rg =r(0).

Notice that the characteristic Eq. (4) form a coupled ODE sys-
tem. We can solve this system along the two boundary points of
the initial computational domain, thus obtaining the moving com-
putational domain and its boundary conditions for the later time.

Similarly, for the two dimensional HJ Eq. (2), we also begin by
writing the HJ equation into the form

F(p1.p2.7. ¢, x.y.t) =1+ H(X,y, p1, P2, $.t) =0,
Po = P (X0, Y0, 0),

with the parameterization,

p1(t) = S (x(0).y(t). 1),
pa(6) = 5o (x(©), y(0), 1),
r(t) = 32 (x(0).y (). 1),
@(t) = d(x(t), y(0), ),

along the characteristic curve (x(t), y(t), t), with the initial con-
dition xg = x(0), yo = y(0). Now the characteristic curve initiating

(6)
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from (xg, yg) is defined by the system of ODEs

dx _ 0H

dt — dp;°’

dy _ 9H

dt = dpy’

dpy _ _3dH _ 9H

d—pt_—ﬁ—%p], 7)
dp, _ _9H _ 9H

&t = "9y — agP2

dr _ _poH

a = T3¢

W=D+ paft

together with the compatibility equations

F(po, 10, ¢o, X0, Y0, 0) = ro + H(X0, Yo, Po. P0, 0) =0,

Pro = 5% (%0. Y0, 0), (8)
P20 = 5% (X0.¥0,0)

that define p;¢ = p1(0), pag = p2(0), ro = r(0). We can then solve
these characteristic ODEs along the boundaries of the initial com-
putational domain to update the x, y, ¢, thus obtaining the moving
computational domain and its boundary conditions for the later
time. We can find that the grid point x, y and the value ¢ (i.e.
¢) in this point depend on p4, py, 1. We expect to get third order
accuracy, thus we use the third order Runge-Kutta method to solve
these characteristic ODEs.

In order to match the calculation inside the computational do-
main which will be introduced later, we take the same ODE solver
as that for the time discretization of the PDE solver inside the com-
putational domain, namely, the following third order SSP Runge-
Kutta method [14],

60 = ¢" + ALL(P". ")

P = Z¢n n %(d’(]) + AtL(@D, t" + At)) (9)

R G R )

for solving the ODE ¢; = L(¢,t), where L is the related derivative
operator.

This procedure can be used if the singularities of the solu-
tion do not reach the boundary of the computational domain. That
means the forward going characteristics along the boundary of the
computational domain do not intersect with each other, nor do
they intersect with any characteristics from inside the computa-
tional domain.

2.2. The ALE-WENO scheme inside the computational domain

Once we have determined the boundary of the moving compu-
tational region, we need a high order numerical method to com-
pute the solution inside the this moving computational domain.
The method should work well for moving meshes, and should
not require too stringent smoothness for the mesh movements.
The high order finite difference ALE-WENO scheme developed in
[13] to solve the HJ equation is a good choice for this purpose, as
it can achieve high order accuracy with only boundedness and Lip-
schitz continuity requirements on the moving meshes. Firstly, we
will give a brief discussion on the mesh movement here.

We will introduce a variable w; to describe the moving speed of
the node x; in one-dimension and a variable w; ; = (wx,;, @y, ;) to
describe the moving speed of the node (x;;, y;;) in two-dimensions,
from the time level n (denoted as t,) to n+ 1 (denoted as t, 1).
We assume that the family of the mesh {T;;,n=0...,L} at all the
time levels gives the same mesh topology, i.e., the mesh T,,; has
the same number of nodes and the same connectivity as T,. Under
such restriction, we can set up a moving mesh connecting the node
at the time level n and the corresponding node at the time level n

+ 1 linearly. This linear mapping between T, and T, is the cru-
cial ingredient for the ALE-DG method in [11] to maintain stability
and accuracy while allowing only very mild regularity of the mesh
movement function (Lipschitz continuity is enough), and it is the
framework adopted by the high order finite difference ALE-WENO
scheme for solving HJ equations developed in [13] as well.

In one dimension, the mesh velocity @ and the node x;(t) are
defined as

X1 _ xn
ol = ’Tt’ X (0) :=x] + o] (t —tn), €[t trs1].
(10)
Similarly, in two dimensions, we have the definition as,
X1 xn
w;l;_}- i < l.j’ Xi,j(f) = X?j + a);‘i‘j(t —tn), t ety tn1l,
yf’ﬂ -y
w;x,, = ’JTt'J Yij(©) :=yi; +w;|__j (t —tn), telta thia]
(11)

For the one dimensional HJ Eq. (1), its semi-discrete scheme is
given by

S0+ A by 0 910 =0 (12)

where ¢;(t) is the numerical approximation to the exact solution at
the mesh point ¢(x,(t), t), ¢X_i and qﬁ;; are the left-biased and right-
biased WENO approximations to the derivative of ¢ at the node i,
which are obtained from the interpolation polynomials with sten-
cils biased to the left and to the right respectively, in a WENO fash-
ion, please see [13] for more details. A is a monotone numerical
Hamiltonian, which is monotonically non-decreasing in the second
argument and monotonically non-increasing in the third argument.
The method in [13] combines the solution evolution and the mesh
movement into one step. We will use the simple Lax-Friedrichs nu-
merical Hamiltonian as our first order monotone numerical Hamil-
tonian, suitably taking the mesh movement into account:

. u- +ut 1
A up uf: ¢y, t) = H<Xi, 'z',ff)i,f) - 5iUy +u)
1 . _
—50iuf —up) (13)
where
o = maX{|Hu(X, u, ¢s t) — Wi }’
a<u<b

a = min{u;, uf}, b=max{u;,u},

o = max{o;}. (14)

Here H, denotes the partial derivative of H(x, u, ¢, t) with respect
to u, and w; is defined by (10).

For the two dimensional HJ Eq. (2), its semi-discrete scheme is
given by

d
§¢i,j(f)

+AH .y, (Vo1 (Vi )2, (Vi )z, (Vi )as dij. t) =0
(15)

where ¢;;(t) is the numerical approximation to the exact solu-
tion at the mesh point ¢(x;(t), y(t), ©), (Vi) = (@x ;. by, e
¢=1,2,3,4, are the WENO approximations to the derivatives of
¢ at the node (x;j, y;;) obtained from the interpolation polyno-
mials with stencils biased to the four quadrants, again please see
[13] for more details. Just as in the one dimensional case, H is
a monotone Hamiltonian, which we take to be the Lax-Friedrichs
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;’; Gj+1)
0 !
Bs * 2
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63
ij—1
;); @Jj y]

Fig. 1. The node (x;j, y;;) and its angular sectors.

type monotone Hamiltonian on unstructured meshes developed by
Abgrall in [1]. For our moving mesh case, the Lax-Friedrichs mono-
tone Hamiltonian is defined as

A, yij, (Vi ), (Vi a2, (Vi )z, (Vi j)a, dij, b)

=H(X; j, ¥i j, Ui j, Vi js @i j. t) — x Ui j — 0y, Vi j — Db Dy, )

(16)
where
o Z?=] 0( (¢x;_j)l L Z;zl:] 913 (¢yi_j)e
N2 A
L e Véije+ (Vi _
D((pqusyu) _ % Zﬂu%(( ¢,1)z +2( d’,J)Hl ). "H%’ (17)
=1

9( 0(+]
,BH% = tan <2> + tan <2> (18)

@j= max {[H(xy.uv.¢.t)—oxlHyuv.e.t) - oyl

a = max{a; j}. (19)
Lj

6y, for ¢=1,...,4, are the angles between two neigh-

boring edges connecting the node (i, j), and My, 1. for
2

¢=1,...,4, are the unit vectors along the edges passing
through the node (i, j) (See Fig. 1). a=min{(¢xi,j)1,(¢xi,j)2,
(fx; )3, (Px; )a}. b =max{(dx )1, (Px; )2, (B )3, (@x;)a)s €=
min{((ibyi,j)l’ ((P)’U)Za (¢YiAj)3v (¢yf,j)4}» d= max{((lﬁy,‘,j)h (¢y1"j)25
(¢y,‘1j)3’ (¢y,‘1j)4}'

Following the above spacial discretization, we will use the
third order SSP Runge-Kutta method (9) for the time dis-
cretization of the HJ] Eqs. (1) and (2) respectively, where
the operator L in the one dimensional scheme represents
—FI((I)Xi_, d’x;”‘i» t), and in the two dimensional scheme represents

~A((Vi 1. (Vi 2. (Vi 3. (Vi )a Xi j. Vi j ).

2.3. The time step and evolution of the computational domain

In order to determine the computational domain at the next
time step, we need to first choose a suitable time step At. While
there is no stability issue for solving the characteristic ODEs at the
boundary of the computational domain, there is a CFL condition
for solving the PDE inside this domain, which is given by

Clh

At=—> (20)

where c; is the CFL number, here we choose it as 0.6. The coeffi-
cient « is computed by (14) or (19) in the one dimensional or two
dimensional cases respectively. In the one dimensional case, h is
the minimum size of all the cells in the computational domain, and
in the two dimensional case, h is the minimum diameter of the in-
scribed circles for all the quadrilateral cells in the domain. In the
situation of the mesh moving along characteristics, « in (20) could
be very small, leading to a very large At determined by the sta-
bility constraint (20). In such cases, it is prudent to reduce At in
order to ensure temporal accuracy. In our numerical tests of char-
acteristic type moving mesh, when At determined by (20) is larger
than 5h, we will set it to be 5h.

In the temporal discretization, in order to ensure the accuracy
of the algorithm on a moving mesh, as suggested in [11], the mesh
movement speed should satisfy the following boundedness and
Lipschitz continuity properties,

|wi] < ca, <c3. (21)

In the following one- and two- dimensional numerical examples,
we use ¢; = 10 and c3 = 10 to enforce these conditions.

Generally we can easily choose the mesh motion which can
guarantee the condition (21). For the case that the mesh moves
along the characteristics, and the case that the mesh is perturbed
randomly from the characteristic-type moving mesh, in order to
make the mesh velocity satisfy the condition (21), we need to
make some modification to the mesh moving speed if necessary.
We refer to [13] for more details of these modifications and will
not repeat them here.

Once the time step is determined, we will first solve the char-
acteristic ODE (4) or (7) for the mesh points at the boundary and
at the necessary ghost points (needed for the high order WENO
scheme) near and outside the boundary of the computational do-
main, to determine the values of the numerical solution at the
boundary and for these ghost points. We will use the third or-
der SSP Runge-Kutta method (9) to determine the boundary con-
dition of the computational domain. We will then determine the
movement of the mesh points inside the computational domain,
and then apply the above described third order ALE-WENO finite
difference scheme with the third order SSP Runge-Kutta time dis-
cretization.

3. Numerical examples

In all the numerical examples of this section, we use the
fully discrete third order ALE-WENO scheme with a characteris-
tically moving computational domain, with the boundary condi-
tions and the point values at the necessary ghost points obtained
from solving the characteristic ODEs. Two different types of mov-
ing meshes inside the computational domain are used: the mesh
with mesh points moving along the characteristic directions, sub-
ject to adjustments to satisfy the boundedness of mesh movements
(21) (to be denoted by “characteristic-type moving mesh”), and
the mesh with its points randomly perturbed (up to 12.5%) from
the characteristic-type moving mesh (to be denoted by “randomly
moving mesh”). Some of the examples in this section have been
taken from Li et al. [13], however in [13] periodic boundary con-
ditions were used, and here we use different computational do-
main not corresponding to a period to test our characteristic type
boundary conditions.

Example 3.1. We solve the one-dimensional linear equation with
variable coefficient

¢ +sin(x)¢x =0, (22)

by the characteristic boundary condition, that is, the initial com-
putational domain is x € [-1, 2] and it is evolved in time by char-



Y. Li, J. Cheng and Y. Xia et al./ Computers and Fluids 205 (2020) 104582 5

Table 1
Numerical errors and orders of accuracy at t = 1 for Example 3.1 with the
initial condition (23) on the randomly moving mesh with N mesh points.

N L, error order L, error order L. error order

32 1.75E-04

64 1.60E-05  3.45
128  2.71E-06  2.56
256  4.12E-07 272
512 6.63E-08  2.63

1.98E-04

2.42E-05  3.03
6.83E-06  1.83
7.23E-07 3.24
9.65E-08 291

3.97E-04

1.08E-04  1.88
3.56E-05 1.60
4.69E-06  2.92
5.87E-07  3.00

Table 2

Numerical errors and orders of accuracy at t = 1 for Example 3.1 with the
initial condition (23) on the characteristic-type moving mesh with w(x) =
sinx and with N mesh points.

N Ly error order L, error order L, error order

32 2.74E-04

64 9.71E-06  4.82
128 1.07E-06  3.18
256  1.31E-07  3.03
512 1.63E-08  3.00

1.63E-04

6.05E-06  4.75
4.90E-07  3.63
5.96E-08  3.04
7.53E-09  2.99

2.77E-04

1.18E-05  4.55
4.64E-07  4.67
5.26E-08  3.14
6.74E-09  2.96

acteristics. This is a linear variable coefficient equation, we use it
to verify the third-order accuracy of our algorithm for smooth so-
lutions.

First, we choose the initial condition as

@(x,0) = sin(x). (23)

The exact solution for this problem is

¢ (x,t) =sin (2 tan™! (e‘t tan (%)))

We compute the equation up to the time t = 1. The numerical er-
rors and orders of accuracy are shown in Tables 1-2 for both types
of meshes. The L, errors versus the number of grid points are plot-
ted in Fig. 2. The time history of the error at the middle point ver-
sus time, for N = 256 grid points and both types of mesh move-
ments, is plotted in Fig. 3. It shows that the error does not grow
fast in time after an initial transit, especially for the characteristic-
type mesh movements.

——a—— random
——@—— characteristic
————— 3rd order

‘error’

10°

10°

-10 .|
1930 10°
N’

o
oL
®

Fig. 2. L, errors versus the number of grid points. The characteristic-type moving
mesh and the randomly moving mesh for Example 3.1 with the initial condition
(23). In this and later error plots a dashed line with slope -3 is plotted to compare
the results with the designed third order accuracy.

1E-08

8E-09

random
H characteristic
S 6E-09
o
4E-09
2E-09

Fig. 3. The error of the middle point in the computational domain versus time,
N = 256 grid points. The characteristic-type moving mesh and the randomly moving
mesh for Example 3.1 with the initial condition (23).

From the error tables we can see the scheme with each type
of mesh motions has achieved the expected third order accuracy.
From the error tables and figures it is obvious that the magni-
tude of the error on the characteristic-type moving mesh is much
smaller than that on the randomly moving mesh with the same
number of mesh nodes.

Next, we use the initial condition

1 w2
s

d(x,0)=e T + € (24)
and compute the equation up to the time t=1 using the
characteristic-type moving mesh. The exact solution for this prob-
lem is

anle-ttan (¥)-1)
dxt) = e—2tan”! (e7tan (3)) +€_4(2t 2‘ ()1 .
The numerical errors and orders of accuracy are shown in Table 3.
We can find that even though we compute in a very small region,
with the exact solution far from zero at the boundary of the com-
putational domain, we can still get a very small error and the ex-
pected third order accuracy. If we would like to use the traditional
approach prescribing zero boundary condition at the boundary of
the computational domain, this domain must be very large in or-
der to justify the choice of zero boundary condition and to get
good accuracy.

Example 3.2. We solve the one-dimensional Burgers equation

¢r+%(¢x+1)2 =0, (25)

Table 3

Numerical errors and orders of accuracy at t = 1 for Example 3.1 with the
initial condition (24) on the characteristic-type moving mesh with w(x) =
sinx and with N mesh points.

N L, error order

32 1.21E-04

64 6.21E-06  4.29
128  6.24E-07 331
256 8.04E-08  2.96
512 1.03E-08  2.97

L, error order

8.49E-05

3.37E-06  4.65
2.94E-07  3.52
3.84E-08 294
4.93E-09  2.96

L., error order

1.10E-04

6.29E-06  4.13
2.14E-07  4.87
2.90E-08  2.89
3.76E-09  2.95
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Table 4
Numerical errors and orders of accuracy at t = % for Example 3.2 with
the initial condition (26) on the randomly moving mesh with N mesh

points.
N Ly error order L, error order L, error order
32 1.83E-02 1.63E-02 2.59E-02

64 3.70E-03 230
128  3.30E-04  3.49
256  1.14E-05  4.85
512 4.94E-07 453

3.66E-03  2.16
3.89E-04 3.23
1.26E-05  4.94
3.84E-07 5.04

6.37E-03  2.02
9.70E-04  2.72
3.87E-05  4.65
6.65E-07  5.86

Table 5

Numerical errors and orders of accuracy at t = % for Example 3.2 with
the initial condition (26) on the characteristic-type moving mesh with
w(x) = ¢x + 1 and with N mesh points.

N L, error order L, error order L, error order

32 2.30E-03

64 3.64E-04  2.66
128 4.59E-05  2.99
256  1.79E-06  4.68
512 1.06E-07  4.08

1.81E-03

3.29E-04  2.46
4.79E-05  2.78
1.42E-06  5.08
7.16E-08  4.31

1.91E-03

4.14E-04  2.21
7.57E-05  2.45
2.34E-06  5.02
6.96E-08  5.07

with the characteristic boundary condition, that is, the initial com-
putational domain is x € [-1.6,1.6] and it is evolved in time by
characteristics. This is a nonlinear equation. We use it to show that
our algorithm can obtain the designed third order accuracy when
the solution is smooth, and can accurately capture the corner sin-
gularity without generating oscillations when the singularity ap-
pears at later time.
First, we use the initial condition

¢(x,0) = —cos(mx), (26)
and calculate the equation to t = %3, At this time, the solution is
still smooth. We test the scheme on the two types of meshes, and
list the numerical errors and orders of accuracy in Tables 4-5. We
also draw the L, error versus the number of grid points in Fig. 4 for
the two mesh movement methods. We can observe that it is more
efficient to use the characteristic-type moving mesh, as the error
is smaller than the randomly moving mesh for the same number
of mesh points.

——=—— random
——@—— characteristic
————— 3rd order

-
o
Y
-
o
o

Fig. 4. L, errors versus the number of grid points. The characteristic-type moving
mesh and the randomly moving mesh for Example 3.2 with the initial condition
(23).

Table 6

Numerical errors and orders of accuracy at t = 0.5 for Example 3.2 with
the initial condition (24) on the characteristic-type moving mesh with
w(x) = ¢+ 1 and with N mesh points.

N L, error order

32 3.30E-04

64 1.32E-05 4.64
128  1.69E-06  2.97
256 2.18E-07  2.96
512 2.73E-08 299

L, error order L., error order

2.65E-04

9.44E-06  4.81
1.14E-06  3.05
1.45E-07  2.98
1.81E-08  3.00

4.36E-04

1.14E-05  5.26
1.43E-06  2.99
1.79E-07  3.00
2.24E-08  3.00

Table 7
Numerical errors and orders of accuracy at t = %E for Example 3.3 with the
initial condition (28) on the randomly moving mesh with N mesh points.

N L, error order

32 2.46E-03

64 4.95E-04 231
128 4.83E-05 3.36
256 2.88E-06  4.07
512 1.87E-07  3.94
1024  2.32E-08  3.01
2048  3.00E-09  2.95
4096  3.79E-10 299

L, error order

2.35E-03

5.30E-04 2.15
6.10E-05  3.12
3.94E-06  3.95
1.65E-07  4.58
2.08E-08  2.99
2.69E-09  2.95
3.40E-10 299

L., error order

3.53E-03

1.10E-03 1.68
1.62E-04  2.77
2.09E-05  2.95
4.06E-07  5.69
5.32E-08 2.93
6.82E-09  2.96
8.63E-10  2.98

Next, we calculate the equation from the same initial condition
(26) to the time t = 12, when the solution is no longer smooth.
We use the numerical solution on the characteristic-type mesh
with 2048 nodes as the reference solution, and plot the results of
our ALE-WENO scheme in Fig. 5. We can see that our scheme can
achieve high resolution in this example, and the characteristic-type
moving mesh produces better results than the randomly moving
mesh.

Finally, we choose the Gaussian type function (24) as our ini-
tial condition, and compute the equation up to the time t = 0.5.
The numerical errors and orders of accuracy are shown in Table 6,
for the characteristic-type mesh movement. We can see that, even
though our computational domain is relatively small and the solu-
tion is far from zero at its boundary, we have obtained very small
errors with the designed order of accuracy for this example.

When we compute to the time t = 0.85 with the same initial
condition (24), the solution is no longer smooth. We use the nu-
merical solution on the characteristic-type moving mesh with 2048
points as the reference solution, and plot the results of our ALE-
WENO scheme in Fig. 6. We can see that the numerical solution
with 16 points is very close to the reference solution.

Example 3.3. We solve the one-dimensional nonlinear problem
¢ —cos(¢x+1) =0, (27)

with the characteristic boundary condition, that is, the initial com-
putational domain is x € [-1.5,1.5] and it is evolved in time by the
characteristics. We first choose the initial condition

@ (x,0) = — cos(x). (28)

This is a nonlinear, nonconvex Hamiltonian problem. We use it to
verify the third-order accuracy of our algorithm when the solu-
tion is smooth, and the accurate and non-oscillatory capturing of
the corner singularity when it appears at later time. First, we use
our ALE-WENO scheme (9) to calculate the solution up to the time
t= %g, when the solution is still smooth, and list the numerical
errors and orders of accuracy in Tables 7-8. We also plot the L,
errors in Fig. 7. From the tables and figure, we can clearly see the
the superiority of the characteristic-type moving mesh versus the
randomly moving mesh.

Similar to Example 3.2, we compute the solution to the later
time t = 12, when a corner singularity has already appeared. We
again choose the numerical solution on the characteristic-type
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Reference

Reference

-0.5

(a) on the randomly moving mesh

(b) on the characteristic-type moving mesh

Fig. 5. ¢ att = 31—25 with N = 8, 16 mesh points for Example 3.2 with the initial condition (26).
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Fig. 6. ¢ at t = 0.85 with N = 8, 16 mesh points on the characteristic-type moving
mesh for Example 3.2 with the initial condition (24).

mesh with 2048 points as the reference solution in the figures.
The numerical results are shown in Fig. 8. We can observe that the
characteristic-type mesh leads to better resolution with 32 points,
than the randomly moving mesh, especially at the the corner sin-
gularities.

Next, we choose the Gaussian type function (24) as the initial
condition, and compute the equation up to t = 0.5. The numerical
errors and orders of accuracy are shown in Table 9. We notice that
the error is already close to machine zero for N = 256, and higher
than the expected third order accuracy has been achieved for this
example.

From the same initial condition (24), we compute to the time
t = 2.0. The solution is not smooth anymore. We use the the nu-
merical solution on the characteristic-type mesh with 2048 points
as the reference solution and then we plot the results of our ALE-

WENO scheme in Fig. 9. The solution with 10 points is very close
to the “exact” reference solution. Even the result with 5 points has
good resolution.

Example 3.4. We solve the problem

bt 3@ -V~ =0, (29)

which comes from Zhang and Shu [15], as a difficult test case for
nonconvex Hamiltonians and entropy conditions (viscosity solu-
tions). We use the initial condition

¢(x.0) = -2[x| (30)

and compute the equation up to t =1, and plot the results in
Fig. 10, in which we compare the results of the characteristic-
type moving meshes, and the randomly moving meshes, both with
N =32, 64 and 128 mesh points, against the “exact” reference so-
lution. We choose the initial computational domain as x € [—4, 4]

Table 8

Numerical errors and orders of accuracy at t = ?1—25 for Example 3.3 with the
initial condition (28) on the characteristic-type moving mesh with w(x) =
sin(¢x + 1) and with N mesh points.

N L, error order L, error order L, error order
32 1.12E-04 1.08E-04 2.16E-04
64 6.56E-05  0.78 7.56E-05  0.51 1.62E-04  0.41

128 8.94E-06  2.88
256 5.09E-07 4.13
512 4.95E-08  3.36
1024  1.15E-08  2.10
2048  2.04E-09 2.49
4096  2.97E-10 2.78

1.21E-05  2.65
4.30E-07 4.81
3.84E-08  3.49
9.12E-09  2.07
1.62E-09 249
2.37E-10  2.77

3.33E-05 2.28
9.15E-07  5.19
5.97E-08 3.94
1.42E-08  2.07
245E-09 2.54
4.13E-10  2.57

Table 9

Numerical errors and orders of accuracy at t = 0.5 for Example 3.3 with
the initial condition (24) on the characteristic-type moving mesh with
w(X) = sin(¢x + 1) and with N mesh points.

N L, error order L, error order L, error order

32 9.80E-08

64 2.25E-10  8.77
128  3.27E-12 6.11
256  5.36E-14  5.93

1.25E-07

2.09E-10 9.22
3.22E-12  6.02
5.20E-14  5.95

3.53E-07

4.05E-10  9.77
6.30E-12  6.01
1.04E-13 592
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Fig. 7. L, errors versus the number of grid points. The characteristic-type moving
mesh and the randomly moving mesh for Example 3.3 with the initial condition
(23).

and plot the solution at the final time. From the figure, we can
clearly observe that the characteristic-type moving mesh produces
more accurate results than the randomly moving mesh, with the
same number of mesh points. This example is quite demanding.
Many numerical methods can not get convergence to the correct
viscosity solution. We can see that our algorithm has good conver-
gence for this difficult test case.

Example 3.5. We solve the two-dimensional linear equation with
variable coefficients

¢ +sin (%)(@4-%) =0 (31)

with the characteristic boundary condition, that is, the initial com-
putational domain is (x,y) € [-2,3]? and it is evolved in time by

24 Ref //*
| — ererence
&
| —--e--5 /
| e == 10 /
22 4
| 4
B 4
=g o
18
1.6 I | T I |
0.5 1 1.5 2
X

Fig. 9. ¢ att = 1.0 with N =5 and 10 mesh points on the characteristic-type mov-
ing mesh for Example 3.3 with the initial condition (24).

characteristics. We extend Example 3.1 from a one-dimensional sit-
uation to a two-dimensional situation. This is a linear variable co-
efficient equation in two dimensional case. We verify the third-
order accuracy of our algorithm for calculating smooth solutions
for such variable coefficient equations.
We choose the initial condition

¢(x,y,0) =sin (%) (32)
Then we list the numerical errors and orders of accuracy simu-
lated by the ALE-WENO scheme in Tables 10-11. We also plot the
L, error of the characteristic-type moving mesh and the randomly
moving mesh cases in Fig. 11. We can clearly see that it is more ef-
ficient to use the characteristic-type moving mesh because its error
is smaller than that on the randomly moving mesh with the same

Reference
-—-- 32

0.5

-0.59

S IR IR R I EEIEN R
-1.5 -1 -0.5 0 0.5 1
X

Reference
-—e--32

0.5

-0.59

S R B R I IR R
-1.5 -1 -0.5 0 0.5 1
X

(a) on the randomly moving mesh

(b) on the characteristic-line-type moving
mesh

Fig. 8. ¢ att = 31—25 with N = 32 mesh points for Example 3.3.
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(a) on the randomly moving mesh

(b) on the characteristic-type moving mesh

Fig. 10. ¢ at t =1 with N = 32, 64, 128 mesh points for Example 3.4.

number of mesh points. In this case, since the computational do-
main is relatively large, hence h for the coarse mesh is quite large.
In order to reduce the error in the time direction, we set At deter-
mined by (20) to be h when it is larger than h.

Next, we use the following two dimensional Gaussian type
function as the initial condition

$(x.y.0) =e"

and compute the equation up to the time t = 1. The numerical
errors and orders of accuracy by the characteristic-type moving
meshes are shown in Table 12. We can find that even though we
compute in a relatively small initial domain, with the exact solu-
tion far from zero at its boundary, we can still get small errors and
the expected third order accuracy.

x+9)? 1 ey-12
8 16

+ ie I (33)

Example 3.6. We solve the two dimensional Burgers equation

Gt 5 (@Dt gy + 172 =0, (34)

Table 10
Numerical errors and orders of accuracy at t =1 for Example 3.5 with the
initial condition (32) on the randomly moving mesh with N x N mesh

points.
N Ly error order L, error order L, error order
32 1.75E-06 2.57E-06 6.91E-06

64 2.60E-07 2.76
128  3.96E-08  2.71
256  6.31E-09  2.65
512 1.02E-09 2.64

3.55E-07 2.85
4.98E-08  2.83
7.43E-09 275
1.16E-09  2.68

8.76E-07  2.98
1.12E-07  2.97
1.52E-08  2.88
2.51E-09  2.60

Table 11

Numerical errors and orders of accuracy at t =1 for Example 3.5 with
the initial condition (32) on the characteristic-type moving mesh with
w(X,y) = (sin(%), sin(¥3¥)) and with N x N mesh points.

N Ly error order

32 1.35E-06

64 1.42E-07  3.25
128  1.56E-08  3.18
256  1.83E-09  3.09
512 2.22E-10 3.04

L, error order L., error order

6.54E-06

7.78E-07  3.07
9.49E-08  3.03
1.17E-08  3.01
1.47E-09  3.00

1.81E-06

1.77E-07  3.35
1.86E-08  3.25
2.12E-09 3.13
2.54E-10  3.07
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Fig. 11. [, errors versus the number of grid points in each direction. The
characteristic-type moving mesh and the randomly moving mesh for Example 3.5
with the initial condition (32).

Table 12

Numerical errors and orders of accuracy at t =1 for Example 3.5 with
the initial condition (33) on the characteristic-type moving mesh with
w(x.y) = (sin(*F), sin(%)) and with N x N mesh points.

N Ly error order L, error order L, error order
32 1.30E-06 1.78E-06 8.75E-06

64 1.28E-07 3.34 1.73E-07  3.36 1.04E-06  3.07
128 1.32E-08  3.28 1.75E-08  3.31 1.27E-07  3.03
256 1.45E-09  3.18 1.89E-09  3.21 1.57E-08  3.01

512 1.69E-10  3.10 2.16E-10  3.13 1.96E-09  3.00

with the characteristic boundary conditions, that is, the initial
computational domain is (x,y) € [-4, 4]% and it is evolved in time
by characteristics. Compared with Example 3.2, this example ex-
tends the one-dimensional case to the two-dimensional case. Simi-
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Table 13
Numerical errors and orders of accuracy at t = % for Example 3.6 with
the initial condition (35) on the randomly moving mesh with N x N mesh

points.
N L, error order L, error order L, error order
32 7.57E-03 1.02E-02 2.32E-02

64 1.33E-03  2.51
128  9.56E-05  3.80
256  3.75E-06  4.67
512 3.44E-07 345

2.16E-03  2.23
1.71E-04  3.66
4.49E-06  5.25
3.72E-07  3.59

5.67E-03  2.04
5.63E-04  3.33
1.35E-05  5.38
6.32E-07 4.42

Table 14

Numerical errors and orders of accuracy at t = % for Example 3.6 with
the initial condition (35) on the characteristic-type moving mesh with
(X, y) = (px+ ¢y +1,¢x+ ¢y + 1) and with N x N mesh points.

N Ly error order L, error order L., error order

32 3.46E-03

64 4.61E-04 291
128  2.23E-05 437
256  1.46E-06  3.93
512 1.84E-07  2.99

4.97E-03

7.79E-04  2.67
3.16E-05  4.62
1.66E-06  4.25
1.95E-07  3.09

1.17E-02

2.16E-03  2.44
9.08E-05  4.57
3.08E-06  4.88
2.78E-07  3.47

lar to the one-dimensional case, we verify the designed third-order
accuracy of our algorithm when the solution is smooth, and plot
the solution when corner singularities appear to show that our al-
gorithm can accurately capture them without generating oscilla-
tions.

We take

¢(x,y,0) = —cos (n %) (35)
as the initial condition.

At the time ¢t = %g, the solution is still smooth. We list the nu-
merical errors and orders of accuracy simulated by the ALE-WENO
scheme in Tables 13-14. It can again be observed that our ALE-
WENO scheme on both types of mesh motions can achieve high
order accuracy. Also from the tables, we can see that we have
smaller errors by the characteristic-type moving mesh than by the
randomly moving mesh with the same number of mesh points. It

——a—— random
——&— characteristic
————— 3rd order
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Fig. 12. L, errors versus the number of grid points in each direction. The
characteristic-type moving mesh and the randomly randomly moving mesh for Ex-
ample 3.6 with the initial condition (32).

Table 15

Numerical errors and orders of accuracy at t = % for Example 3.6 with
the initial condition (33) on the characteristic-type moving mesh with
wX,y) = (dx+ ¢y +1,¢x+ ¢y + 1) and with N x N mesh points.

N L, error order L, error order L., error order

32 2.17E-05

64 2.67E-06  3.02
128  3.63E-07 2.88
256  4.66E-08  2.96
512 5.91E-09 298

2.81E-05

3.35E-06  3.07
4.47E-07 291
5.69E-08  2.97
7.19E-09  2.99

7.01E-05

8.04E-06  3.12
1.02E-06  2.97
1.29E-07  2.99
1.61E-08  3.00

Table 16
Numerical errors and orders of accuracy at t = % for Example 3.7 with
the initial condition (37) on the randomly moving mesh with N x N mesh

points.
N L, error order L, error order L, error order
32 2.09E-03 2.89E-03 6.75E-03

64 3.58E-04  2.55
128  2.85E-05 3.65
256  1.32E-06  4.43
512 1.31E-07 3.34

591E-04 2.29
5.05E-05  3.55
1.58E-06  5.00
1.63E-07  3.28

1.71E-03  1.98
1.81E-04  3.24
3.77E-06  5.58
4.80E-07  2.98

Table 17

Numerical errors and orders of accuracy at t = % for Example 3.7 with
the initial condition (37) on the characteristic-type moving mesh with
w(x,y) = (sin(¢x + ¢y + 1), sin(¢x + ¢y + 1)) and with N x N mesh points.

N L, error order L, error order L, error order

32 1.97E-03

64 3.38E-04 2.54
128  2.72E-05 3.64
256  1.27E-06  4.42
512 1.25E-07 334

2.74E-03

5.61E-04  2.29
4.83E-05 3.54
1.51E-06  5.00
1.55E-07  3.28

6.00E-03

1.47E-03  2.03
1.63E-04  3.17
3.23E-06  5.66
3.93E-07 3.04

can also been seen clearly from Fig. 12 which shows the L, errors
of the two moving meshes.

The mesh and the contours of ¢ obtained by the scheme (9) at
t= }Tg when the solution is no longer smooth, are shown in
Figs. 13-15. We can observe that the characteristic-type moving
mesh produces more accurate results than the randomly moving
mesh with the same number of mesh points.

Also, we use the two dimensional Gaussian type function
(33) as the initial condition. The initial computational domain is
(x,y) € [-8,8]? and it is evolved in time by the characteristics. The
numerical errors and orders of accuracy at t = %3, when the solu-
tion is smooth, are shown in Table 15. Again, we observe that we
can get small errors and the expected third order accuracy.

We then compute to the time t = 0.85, when the solution is
no longer smooth. We plot the results of our ALE-WENO scheme
in Figs. 16-17. We can again observe that the characteristic-type
moving mesh produces very good results.

Example 3.7. We solve the two dimensional nonlinear equation
¢ —cos(@x+¢y+1)=0 (36)

with the characteristic boundary condition, that is, the initial com-
putational domain is (x,y) € [-3,3]? and it is evolved in time by
characteristics. This example is the two-dimensional counterpart of
Example 3.3. Similar to the previous example, we are interested in
verifying the third-order accuracy for smooth solutions, and veri-
fying that the scheme can capture the corner singularities sharply
without oscillations.
The initial condition is

¢(x,y,0) = —cos (n %) (37)
We compute the equation up to the time t = %3. The numerical
errors and orders of accuracy are shown in Tables 16-17. We can
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Fig. 14. The mesh and contours of ¢ at t = 71725 for Example 3.6 on the characteristic-line-type moving mesh w(x,y) = (¢x + ¢y + 1. ¢x + ¢y + 1), with the initial condition
(35), 22 x 22 mesh points.
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Fig. 15. ¢ at t = ;—? in Example 3.6, cut along x =0 for the comparison of re-

sults between the characteristic-type moving mesh and the randomly moving mesh
against the reference solution, N = 8 x 8, 64 x 64 mesh points.

clearly see that we get the expected order accuracy. From tables
and the L, error plots in Fig. 18, we can see that the errors of the
characteristic-type moving mesh method is slightly smaller than
that of the randomly moving mesh method under the same num-
ber of mesh points.

The mesh and the contours of ¢ att = }T—g when the solution is
no longer smooth, are shown in Figs. 19-21. We can observe that
the performance of this example is similar to Example 3.6 in cap-
turing corners.

Like in the previous examples, next we use the two dimensional
Gaussian type function (33) to be the initial condition. We adopt
the characteristic boundary condition to obtain the moving com-

Table 18

Numerical errors and orders of accuracy at t = 23 for Example 3.7 with
the initial condition (33) on the characteristic-type moving mesh with
w(x,y) = (sin(¢x + ¢y + 1), sin(¢x + ¢y + 1)) and with N x N mesh points.

N L, error order L, error order L., error order

32 4.71E-05 7.32E-05 2.78E-04

64 2.63E-06 4.16 3.30E-06  4.47 7.55E-06  5.20
128  3.11E-07  3.08 3.96E-07  3.06 9.54E-07  2.98
256  3.91E-08  2.99 4.98E-08  2.99 1.20E-07  2.99
512 493E-09 299 6.25E-09  2.99 1.51E-08  2.99
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Fig. 16. The mesh and contours of ¢ at t = 0.85 for Example 3.6 with the initial condition (33) on the characteristic-type moving mesh with w(x,y) = (¢x + ¢y + 1, ¢x +

¢y + 1), 32 x 32 mesh points.
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Fig. 17. ¢ at t = 0.85 in Example 3.6 with the initial condition (33), cut along x =1
for the comparison of results on the characteristic-type moving mesh between the
N =16 x 16 and N = 32 x 32 mesh points against the reference solution.

putational domain. The numerical errors and orders of accuracy are
shown in Table 18. Obviously we can find that it has similarly good
performance as before.

Finally, we compute to the time t = 1.4, when the solution
is not smooth anymore. We use the ALE-WENO scheme on the
characteristic-type moving mesh and then we plot the mesh and
the contours of ¢ in Fig. 22 and the comparison of results in cuts
from the 8 x 8 and 16 x 16 mesh points in Fig. 23.

Example 3.8. We solve the problem

¢t +H(X?y7¢’¢x,¢y)=0 (38)

with the Hamiltonian
H=¢- 1[eycoshx +eV —2]—-eYtanh (f) @
- 2 2/ ox
2
-y
[1- efy]ai‘Zs i 672 (8(}5)
9y 4cosh?(¥) \ 9%

This example comes from Lefevre et al. [12], as a model in non-
linear solid mechanics. We use the realistic model Hamilton-Jacobi

102 =
10’3;— ——a—— random
g ——@— characteristic
L o O\ """ 3rd order
10" N
- N
S, 5|
=107 F
o F
10° =
107 E by
-8 (R | [N |
050 10° 10°
N’

Fig. 18. L, errors versus the number of grid points in each direction. The
characteristic-type moving mesh and the randomly moving mesh for Example 3.7
with the initial condition (32).

equation to verify that our scheme can effectively calculate com-
plex nonlinear problems and guarantee third-order accuracy. We
have used this example in [13] to test our WENO-ALE algorithm
with a zero initial condition. Here, to be consistent with the previ-
ous examples, we take the initial condition as

_ xp? 1 w12
15

¢ (x,y,0) =e "5 +je T (39)

In this example, the initial domain is (x,y) € [-4,4]? and it is
evolved in time by characteristics.

The solution is computed up to the time t = 0.1, and we list
the numerical errors and orders of accuracy simulating by the ALE-
WENO scheme (9) in Tables 19-20. We can see that we have ob-
tained the designed third order accuracy. We also plot the L, er-
rors in Fig. 24, from which we can see that the L, errors for the
characteristic-type moving meshes are smaller in magnitude than
those with the randomly moving meshes for the same number of
mesh points.

We also plot the meshes and the solutions corresponding to
both types of mesh movements in Figs. 25-26.
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Fig. 20. The mesh and contours of ¢ at t = }T—E for Example 3.9 on the characteristic-type moving mesh with w(x,y) = (¢x+ ¢y + 1, ¢x + ¢y + 1), 32 x 32 mesh points.

Table 19
Numerical errors and orders of accuracy at t = 0.1 for Example 3.8 on the
randomly moving mesh with N x N mesh points.

N L, error order L, error order L, error order

1 Reference
o — —m— - random 8 32 3.44E-03 1.25E-02 1.09E-01
- — —e— - characteristic 8 64 1.14E-03 1.60 4.92E-03 1.34 5.73E-02  0.92
I ——¢—-= random 32 128  2.82E-04 2.01 1.78E-03 1.46 2.18E-02 1.39
—-—A—.— characteristic 32

256 5.16E-05 245 3.21E-04 247 5.44E-03  2.00

0.5 512  6.79E-06  2.92 4.62E-05  2.80 7.94E-04  2.78

=3
0 Table 20
Numerical errors and orders of accuracy at t =0.1 for Example 3.8 on
the characteristic-line-type moving mesh with w(x,y) = (—e” tanh () +
= . . X
m(bx, —(1-e7Y)) and with N x N mesh points.
05 N L, error order L, error order L, error order
32 2.47E-03 1.02E-02 1.01E-01

64  391E-04 266  254E-03 201  431E-02 1.23
NI BN RN R SRR [ BRI R 128 2.60E-05 3.91 1.06E-04 4.58 1.23E-03 5.13
-3 -2 -1 0 1 2 256  4.16E-06  2.64 1.81E-05 255 2.44E-04 233

y 512 579E-07 2.84  262E-06 279  3.94E-05 2.63

Fig. 21. ¢ at t = }T§ in Example 3.7, cut along x = 0 for the comparison of results

from the characteristic-type moving mesh and the randomly moving mesh against
the reference solution, N = 8 x 8,32 x 32 mesh points.
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Fig. 22. The mesh and contours of ¢ at t = 1.0 for Example 3.7 on the characteristic-type moving mesh with w(x,y) = (¢x + ¢y + 1, ¢x + ¢y + 1), 32 x 32 mesh points.
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n —&—— random
g —=—— characteristic
T " 3rd order
10°F h
S|
E10°E
T &
10° =
g N
N
10° = .
-7 IR | Ll
10g 10° 10°
N’

Fig. 23. ¢ at t = 1.4 in Example 3.7, cut along x = 1, for the comparison of results
from the 8 x 8 and 16 x 16 mesh points against the reference solution.

4. Concluding remarks

In this paper, we have developed a framework to use a fi-
nite and moving domain and characteristic boundary conditions by
evolving the characteristic ODEs along the boundary of the com-
putational domain, to solve Hamilton-Jacobi equations defined on
infinite domains. The high order multi-resolution finite difference
WENO scheme in the ALE framework on moving meshes, devel-
oped recently in [13], is used inside the moving computational do-
main. Our algorithm can achieve high order accuracy in smooth
regions and can avoid spurious oscillations near the corner singu-
larities, and can save the computational cost significantly by solv-
ing only in the domain which is of interest to us. Ample numeri-
cal examples including the Gaussian type initial conditions without
compact support are used to verify the robustness and accuracy

Fig. 24. [, errors versus the number of grid points in each direction. The
characteristic-type moving mesh and the randomly moving mesh for Example 3.8
with the initial condition (32).

of our algorithm. One of the limitations of the proposed bound-
ary treatment is that we require that singularities do not appear at
the artificial boundary, nor do singularities from inside the com-
putational domain reach the artificial boundary during the time
of computation. This is because when such singularities appear at
the artificial boundary, the characteristic ODEs from different ini-
tial points would have intersecting solutions, thus requiring special
techniques such as the Hopf formula [10] to single out the vis-
cosity solution. This generalization will be studied in the future.
Also in the future, we plan to extend this framework to solve hy-
perbolic conservation laws including compressible Euler equations,
and eventually we hope to develop a combined ALE-WENO solver
to simulate multi-material flows.
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Fig. 25. The mesh and contours of ¢ at t = 0.1 for Example 3.8 on the randomly moving mesh, 32 x 32 mesh points.
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Fig. 26. The mesh and contours of ¢ at t =0.1 for Example 3.8 on the characteristic-line-type moving meshes with w(x,y) = (e ™ tanh(%) + ¢y, —(1—e7)),

32 x 32 mesh points.
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