
J. Fluid Mech. (2020), vol. 887, A14. c© The Author(s), 2020.

Published by Cambridge University Press

doi:10.1017/jfm.2019.1033

887 A14-1

Excitation of interfacial waves via
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We consider interactions between surface and interfacial waves in a two-layer
system. Our approach is based on the Hamiltonian structure of the equations of
motion, and includes the general procedure for diagonalization of the quadratic
part of the Hamiltonian. Such diagonalization allows us to derive the interaction
cross-section between surface and interfacial waves and to derive the coupled kinetic
equations describing spectral energy transfers in this system. Our kinetic equation
allows resonant and near-resonant interactions. We find that the energy transfers are
dominated by the class III resonances of Alam (J. Fluid Mech., vol. 691, 2012,
pp. 267–278). We apply our formalism to calculate the rate of growth for interfacial
waves for different values of wind velocity. Using our kinetic equation, we also
consider the energy transfer from wind-generated surface waves to interfacial waves
for the case when the spectrum of the surface waves is given by the JONSWAP
spectrum and interfacial waves are initially absent. We find that such energy transfer
can occur along a time scale of hours; there is a range of wind speeds for the most
effective energy transfer at approximately the wind speed corresponding to white
capping of the sea. Furthermore, interfacial waves oblique to the direction of the
wind are also generated.

Key words: surface gravity waves, wave scattering, Hamiltonian theory

1. Introduction

1.1. Background

The term ‘ocean waves’ typically evokes images of surface waves shaking ships during
storms in the open ocean, or breaking rhythmically near the shore. However, much of
the ocean wave action takes place far underneath the surface, and consists of surfaces
of constant density being disturbed and modulated.

When wind blows over the ocean, it excites surface waves. These surface waves
in turn excite internal waves. Therefore the coupling between surface and interfacial
waves provides a key mechanism of coupling the atmosphere and the ocean. The
simplest conceptual model describing such an interaction is a two-layer model
(figure 1), with a lighter fluid with free surface being on top of a heavier fluid

† Email address for correspondence: lvovy@rpi.edu
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FIGURE 1. Schematic of the surface and interface with respect to mean displacements.

with a rigid bottom. This two-layer model has been actively studied in the last few
decades from the angle of weakly nonlinear resonant interactions between surface
and interfacial layers (Ball 1964; Thorpe 1966; Gargettt & Hughes 1972; Watson,
West & Cohen 1976; Olbers & Herterich 1979; Segur 1980; Dysthe & Das 1981;
Watson 1989, 1994; Alam 2012; Constantin & Ivanov 2015; Tanaka & Wakayama
2015; Olbers & Eden 2016).

The strength of such nonlinear interactions has been the subject of long debate.
Earlier approaches include the calculations of Thorpe (1966) and Olbers & Herterich
(1979). Most recently, Olbers & Eden (2016) found the annual mean energy flux
integrated globally over the oceans to be about 10−3 TW. Ball (1964) showed
the existence of a closed curve of triad resonances for two-dimensional wave
vectors corresponding to interactions between waves of all possible orientations.
He emphasized the cases in which two counter-propagating surface waves drive an
interfacial wave, and two counter-propagating interfacial waves drive a surface wave.
Later, these classes of resonances were referred to as class I and class II interactions.
In class I, two surface waves counter-propagate with roughly equal wavelength, with
the interfacial wave having shorter wavelength. In class II, the interfacial waves
counter-propagate, with the surface wave having roughly twice the frequency of the
interfacial waves (Alam 2012).

Chow (1983) analysed class I resonances for a two-layer model under the
assumptions that the bottom layer is of infinite depth and the top layer is shallow.
These assumptions allowed the formulation of the triad resonance condition in a more
general way, namely that the group speed of a surface wave envelope matches the
phase speed of the interfacial wave. Using this condition, Chow derived evolution
equations for a surface wave train coupled to interfacial waves. He found a band
of wavenumbers that are unstable, thus facilitating energy transfer from the surface
waves to the interfacial waves. However, he found that the energy transfer rate was
smaller than the transfer rate for resonant triad interactions.

Watson (1989) considered surface wave–interfacial wave interactions, taking into
account both surface wave dissipation and broadening of the three wave resonances,
using Wentzel–Kramers–Brillouin theory.

Alam (2012) considered resonances in the one-dimensional case with collinear
waves. He discovered what are now called class III resonances, where the wavelength
of the resonant interfacial wave is much longer than that of the two co-propagating
surface waves, making it physically relevant in describing the formation of long
interfacial waves. Alam showed that these resonances cause a cascade of resonant
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and near-resonant interactions between surface and interfacial waves and thus could be
a viable energy exchange mechanism. He also obtained expressions for the amplitude
growth of an interfacial wave in a system with a large number of interacting waves.

Tanaka & Wakayama (2015) considered the two-layer system and modelled
numerically the primitive equations of motion in 2 + 1 dimensions (horizontal and
vertical directions and time) for the case of a surface wave spectrum based on the
Pierson–Moskowitz spectrum (Pierson & Moskowitz 1964). Tanaka & Wakayama
(2015) showed that an initially still interface experiences excitation with a flux
of energy towards smaller wavenumbers. For the case of a large difference in
density between layers, they noticed that the shape of the surface spectrum changes
significantly. They noted that this cannot be explained by resonant wave interaction
theory because resonant wave interaction theory predicts the existence of a critical
surface wavenumber, below which there could not be any interactions. Consequently,
there is a need of a theory not limited to only resonant interactions, but that which
also includes near-resonant interactions.

Olbers & Eden (2016) used an analytical framework that directly derives the flux
of energy radiating downward from the mixed-layer base with a goal of providing
a global map of the energy transfer to the interfacial wave field. They concluded
that spontaneous wave generation, where two surface waves create an interfacial wave,
becomes dominant over modulational interactions where a preexisting interfacial wave
is modulated by a surface wave for wind speeds above 10–15 m s−1.

1.2. Overview of the paper

In this paper we derive from first principles wave turbulence theory for wave–wave
interactions in the two-layer model. Our theory is based on the recently derived
Hamiltonian structure for this system (Choi 2019). We derive the kinetic equations
describing weakly nonlinear energy transfers between waves. The theory includes
both resonant and near-resonant wave–wave interactions, and allows a quantitative
description of coupling between the atmosphere and the ocean.

The paper is organized as follows. In § 2 we discuss the governing equations of
motion and Hamiltonian structure derived by Choi (2019) for the case of 3 + 1
dimensions. Notably, the Hamiltonian is expressed explicitly in terms of the interface
variables, forming the base needed for our analysis.

In § 3 we derive a canonical transformation to diagonalize the quadratic part of the
Hamiltonian to obtain the normal modes. Such a diagonalization reduces the system
to an ensemble of waves which are free to leading order, thus making it amenable
to wave turbulence theory as described in Zakharov, L’vov & Falkovich (1992) and
Nazarenko (2011).

In § 4 we apply wave turbulence theory to obtain the system of kinetic equations
governing the time evolution of the wave action spectrum of waves (‘number
of waves’). Furthermore, we calculate the exact matrix elements (interaction
cross-sections) governing such interactions. Our calculations are valid both on and
near the resonant manifold.

In § 5 we test our theory by considering the model problem with the surface
described by a single plane wave with frequency being the peak frequency of
the JONSWAP spectrum (Hassleman et al. 1973). We obtain the Boltzmann rates
and corresponding time scales of amplitude growth for excited interfacial waves.
The frequencies of the excited interfacial waves are well within the experimental
measurements given in buoyancy profiles of the ocean. Furthermore, we generalize
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the results in Alam (2012) by considering the general case where all wave vectors

are two-dimensional and not necessarily collinear. Notably, for conditions of long

surface swell waves, the dominant interactions occur between surface and interfacial

waves which are oblique, a case also noted by Haney & Young (2017). Inspired by

Tanaka & Wakayama (2015), we also simulate the evolving spectra for the case when

the surface is the one-dimensional JONSWAP spectrum and the interface is initially

at rest.

In § 6 we conclude by summarizing our results and discussing future work.

2. Governing equations

2.1. Equations in physical space

We use a Cartesian coordinate system (x, z), with the xy plane being the mean free

surface and the z axis being directed upward. We consider a two-layer model with

the free surface on top and the interface between the layers. We denote the respective

depths of the upper and lower layers by hu, hl and their densities by ρu, ρl, with

the difference in density between layers being 1ρ = ρl − ρu, where subscript ‘u’

refers to the upper layer and subscript ‘l’ to the lower layer. We assume the fluid is

homogeneous, incompressible, immersible, inviscid and irrotational in both layers.

To derive the closed set of coupled equations for the surface velocity potential

Ψ (u)(x, y, t) and displacement ζ (u)(x, y, t) and interfacial velocity potential Ψ (l)(x, y, t)

and displacement ζ (l)(x, y, t), we start from the Euler equations, incompressibility

condition and kinematic boundary conditions for velocity and pressure continuity

along the surface/interface. We then introduce a nonlinearity parameter ǫ, the slope

of the waves, and make a formal assumption that ǫ≪ 1. This allows us to iterate the

resulting equations for a solution representing a wavetrain with wavenumber k. This

procedure was recently executed in Choi (2019), and leads to the following system

of equations, truncated at the second order of the nonlinearity parameter:

ζ̇ (u) = γ11Ψ
(u) + γ12Ψ

(l) − ρuγ11[ζ
(u)(γ11Ψ

(u) + γ12Ψ
(l))]

−1ργ21[ζ
(l)(γ21Ψ

(u) + γ22Ψ
(l))]

− ∇ · (ζ (u)∇Ψ (u))/ρu +1ρ(ρl/ρu)γ31∇ · (ζ (l)γ31∇Ψ
(u))

− ρlγ31∇ · (ζ (l)γ33∇Ψ
(l)), (2.1a)

ζ̇ (l) = γ21Ψ
(u) + γ22Ψ

(l) − ρuγ12[ζ
(u)(γ11Ψ

(u) + γ12Ψ
(l))]

−1ργ22[ζ
(l)(γ21Ψ

(u) + γ22Ψ
(l))]

− ρlγ33∇ · (ζ (l)γ31∇Ψ
(u))− ρlJ∇ · (ζ (l)J∇Ψ (l))

+ ρuγ32∇ · (ζ (l)γ32∇Ψ
(l)), (2.1b)

Ψ̇ (u) = −ρugζ (u) + 1

2
ρu(γ11Ψ

(u) + γ12Ψ
(l))2 − 1

2
(∇Ψ (u)) · (∇Ψ (u))/ρu, (2.1c)

Ψ̇ (l) = −1ρgζ (l) + 1

2
1ρ(γ21Ψ

(u) + γ22Ψ
(l))2 + 1

2
1ρ(ρl/ρu)(γ31∇Ψ

(u)) · (γ31∇Ψ
(u))

− 1

2
ρl(J∇Ψ (l)) · (J∇Ψ (l))+ 1

2
ρu(γ32∇Ψ

(l)) · (γ32∇Ψ
(l))

− ρl(γ31∇Ψ
(u)) · (γ33∇Ψ

(l)), (2.1d)

with the non-local linear operators γij and J, whose Fourier kernels are given in

appendix A.
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2.2. Hamiltonian

We use the Fourier transformations of the interface variables for the two-layer system
depicted in figure 1:

ζ ( j)(x, t)=

∫

ζ̂ ( j)(k, t)e−ik·x dk,

Ψ ( j)(x, t)=

∫

Ψ̂ ( j)(k, t)e−ik·x dk for j ∈ {u, l}.











(2.2)

The equations of motion (2.1) can then be represented by canonically conjugated
Hamilton’s equations for the Hamiltonian H, given by Choi (2019):

∂ζ̂ ( j)

∂t
=

δH

δΨ̂ ( j)
∗ ,

∂Ψ̂ ( j)

∂t
= −

δH

δζ̂ ( j)
∗ , j ∈ {u, l}. (2.3)

This is a generalization for two layers of the Hamiltonian formulation described in
Zakharov (1968) for surface waves. Here the Hamiltonian, H, is a sum of a quadratic
Hamiltonian, describing linear non-interacting waves, and a cubic Hamiltonian,
describing wave–wave interactions, H = H2 + H3, where

H2 =
1

2

∫∫

[h
(1a)
1 ζ̂

(u)
1 ζ̂

(u)
2 + h

(2a)
1 Ψ̂

(u)
1 Ψ̂

(u)
2

+ h
(3a)
1 ζ̂

(l)
1 ζ̂

(l)
2 + h

(4a)
1 Ψ̂

(l)
1 Ψ̂

(l)
2 + h

(5a)
1,2 Ψ̂

(u)
1 Ψ̂

(l)
2 ] δ(k1 + k2) dk1 dk2, (2.4)

H3 =

∫∫∫

[h
(1)
123Ψ̂

(u)
1 Ψ̂

(u)
2 ζ̂

(u)
3 + h

(2)
123Ψ̂

(u)
1 Ψ̂

(l)
2 ζ̂

(u)
3 + h

(3)
123Ψ̂

(l)
1 Ψ̂

(l)
2 ζ̂

(u)
3

+ h
(4)
123Ψ̂

(u)
1 Ψ̂

(u)
2 ζ̂

(l)
3 + h

(5)
123Ψ̂

(u)
1 Ψ̂

(l)
2 ζ̂

(l)
3 + h

(6)
123Ψ̂

(l)
1 Ψ̂

(l)
2 ζ̂

(l)
3 ] δ(k1 + k2 + k3) dk1 dk2 dk3,

(2.5)

where the coupling coefficients hi
j are given in appendix B. Here k = |k| denotes the

wavenumber and we use the notation that subscripts represent vector arguments, i.e.
hijl ≡ h(ki, kj, kl).

This Hamiltonian is expressed explicitly in terms of the variables at the surfaces of
the fluids, and is a significant step forward over the Hamiltonian structure of the two-
layer system derived in Ambrosi (2000), where the implicit form of the Hamiltonian
was obtained.

The Hamiltonian provides a firm theoretical foundation to develop the theory of
weak nonlinear interactions of surface and interfacial waves. However, to describe the
time evolution of the spectral energy density of the waves, the quadratic part of the
Hamiltonian of the system (2.4) needs to be diagonalized, so that the linear part of
the equations of motion corresponds to distinct non-interacting linear waves. In other
words, we need to calculate the normal modes of the system. This task is done in the
next section.

3. Canonical transformation to normal modes

In this paper we use the wave turbulence formalism (Kadomtsev 1965; Benney
& Saffmann 1966; Newell 1968; Benney & Newell 1969; Zakharov et al. 1992;
Nazarenko 2011) to derive the coupled set of kinetic equations, describing the spectral
energy transfers in the coupled system of surface and interfacial waves. First we need
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to diagonalize the Hamiltonian equations of motion in wave action variables so that
waves are free to leading order. This is done via two canonical transformations:
the first being a transformation from interface variables to complex action density
variables done in § 3.1, the second being a transformation to diagonalize the quadratic
Hamiltonian, giving waves which are free to leading order, performed in § 3.2. The
final form of the Hamiltonian in terms of the normal modes is also derived in § 3.2).

3.1. Transformation to complex field variable

We start from the surface variables for the Fourier image of displacement of the upper

and lower layers ζ̂
(i)
k

and the Fourier image of the velocity potential on upper and

lower surfaces Ψ̂
(i)

k
, where (i) denotes the layer, with (u) being the upper layer and (l)

being the lower layer. We then perform a canonical transformation to complex action
variables describing the complex amplitude of wave with wavenumber k:

ζ̂
(u)
k

=

(

h
(2a)
k

4h
(1a)
k

)1/4

(a
(u)
k

+ a
(u)∗
−k
), Ψ̂

(u)
k

= i

(

h
(1a)
k

4h
(2a)
k

)1/4

(a
(u)
k

− a
(u)∗
−k
),

ζ̂
(l)
k

=

(

h
(4a)
k

4h
(3a)
k

)1/4

(a
(l)
k

+ a
(l)∗
−k
), Ψ̂

(l)
k

= i

(

h
(3a)
k

4h
(4a)
k

)1/4

(a
(l)
k

− a
(l)∗
−k
).



























In these variables the Hamiltonian takes the form

H2 =

∫

[F
(1)
k

|a
(U)
k

|2 + F
(2)
k

|a
(L)
k

|2 + F
(3)
k

[(a
(U)
k

a
(L)
−k

− a
(U)
k

a
(L)∗
k
)+ c.c.]] dk, (3.1)

H3 =
∑

S1,S2,S3∈{U,L}

∫∫∫

dk1 dk2 dk3

× [(V
(S1S2S3)
123 a

(S1)∗
1 a

(S2)∗
2 a

(S3)
3 δ1+2−3 + G

(S1S2S3)
123 a

(S1)
1 a

(S2)
2 a

(S3)
3 δ1+2+3)+ c.c.]. (3.2)

This is the standard form of the wave turbulence Hamiltonian of the spatially
homogeneous nonlinear system with two types of waves and with the quadratic
nonlinearity. The corresponding canonical equations of motion assume standard
canonical form (Zakharov et al. 1992):

iȧk
(U) =

δH

δa
(U)∗
k

, iȧk
(L) =

δH

δa
(L)∗
k

. (3.3)

Here the coefficient functions are given by

F
(1)
k

=

√

h
(1a)
k

h
(2a)
k
, F

(2)
k

=

√

h
(3a)
k

h
(4a)
k
, F

(3)
k

= −
h
(5)
k,−k

4

[

h
(1a)
k

h
(3a)
k

h
(2a)
k

h
(4a)
k

]1/4

,

with the matrix elements V
(S1S2S3)
123 and G

(S1S2S3)
123 given in appendix C.

3.2. Hamiltonian in terms of normal mode amplitudes

We now need to diagonalize the quadratic part of the resulting Hamiltonian. We
perform this task by finding a canonical transformation that would decouple linear
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Surface gravity wave–interfacial wave interactions 887 A14-7

waves of the Hamiltonian (3.1). In other words, we are seeking a canonical

transformation to remove the term F
(3)
k

[(a
(U)
k

a
(L)
−k

− a
(U)
k

a
(L)∗
k
) + c.c.] from the

Hamiltonian (3.1). The transformation is given by equation (C 5) of appendix C. As

a result we obtain the normal modes of the system while maintaining the canonical

structure of the equations of motion. Finding such a transformation to determine

the normal modes of the system appears to be a non-trivial task, since we needed

to solve an overdetermined system of nonlinear algebraic equations. Details of this

procedure are explained in appendix C. Applying the transformation (C 5) to (2.4),

the quadratic part of the Hamiltonian assumes the desired form

H2 =

∫

[ω̃
(S)
k

|c
(S)
k

|2 + ω̃
(I)
k

|c
(I)
k

|2] dk,

where the superscripts S and I correspond to the respective surface or interfacial

normal modes.

The linear dispersion relationships of the surface and interfacial normal modes are

given by

ω̃
(I)
k

= αk cosh 2φk + 2γk sinh 2φk, (3.4a)

ω̃
(S)
k

= βk cosh 2ψk + 2ζk sinh 2ψk, (3.4b)

which can be shown to be equivalent to those in Choi (2019) and Alam (2012). The

transformation (C 5) also alters the higher-order terms of the Hamiltonian due to three-

wave interactions:

H3 =
∑

S1,S2,S3∈{S,I}

∫∫∫

dk1 dk2 dk3

× [(J
(S1S2S3)
123 c

(S1)∗
1 c

(S2)∗
2 c

(S3)
3 δ1+2−3 + L

(S1S2S3)
123 c

(S1)
1 c

(S2)
2 c

(S3)
3 δ1+2+3)+ c.c.].

Here J
(S1S2S3)
123 and L

(ijk)

123 are the interaction matrix elements, also called scattering

cross-sections. These matrix elements describe the strength of the nonlinear coupling

between wavenumbers of k1, k2 and k3 of the normal modes of types S1, S2 and S3.

Calculation of these matrix elements is a tedious but straightforward task completed

in appendix D. An alternative, but equivalent, formulation is described in detail for

both the resonant and near-resonant cases in Choi (2019). Knowledge of these matrix

elements and the linear dispersion relations allows us to use the wave turbulence

formalism to derive the kinetic equations describing the time evolution of the spectral

energy density of interacting waves. This is done in the next section.

4. Statistical approach via wave turbulence theory

In wave turbulence the system is represented as a superposition of N large waves

with complex amplitudes c
(S)
k
(t), c

(I)
k
(t) interacting with each other. In essence, the

classical wave turbulence theory is a perturbation expansion of complex wave

amplitudes in terms of the nonlinearity, yielding, at leading order, linear waves,

with amplitudes slowly modulated at higher orders by resonant nonlinear interaction.

This modulation leads to a resonant or near-resonant redistribution of the spectral

energy density among length scales, and is described by a system of kinetic equations,
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887 A14-8 J. Zaleski, P. Zaleski and Y. V. Lvov

the time evolution equations for the wave spectra of surface and interfacial waves,
respectively:

n(S)(k, t)δ(k − k
′)= 〈c

(S)
k

c
(S)

k
′

∗
〉, (4.1a)

n(I)(k, t)δ(k − k
′)= 〈c

(I)
k

c
(I)

k
′

∗
〉, (4.1b)

where 〈· · ·〉 denotes an ensemble average over all possible realizations of the systems.
Wave turbulence theory has led to spectacular success in predicting spectral energy

densities in the ocean, atmosphere and plasma (see Zakharov et al. (1992) and
Nazarenko (2011) for reviews).

4.1. Kinetic equations

The kinetic equation is the classical analogue of the Boltzmann collision integral. The
basic ideas for writing down the kinetic equation to describe how weakly interacting
waves share their energies go back to Peierls. The modern theory has its origin in the
works of Hasselmann, Benney and Saffmann, Kadomtsev, Zakharov, and Benney and
Newell.

There are many ways of deriving the kinetic equation which are well understood
and well studied (Benney & Saffmann 1966; Zakharov et al. 1992; Choi, Lvov
& Nazarenko 2004, 2005; Lvov & Nazarenko 2004; Nazarenko 2011; Choi et al.

2005). Here we use the slightly more general approach for the derivation of the
kinetic equations, which allows not only for resonant, but also for near-resonant
interactions, as was done in Lvov et al. (1997) and Lvov, Polzin & Yokoyama
(2012). We generalize Lvov et al. (1997, 2012) for the case of a system of two types
of interacting waves, namely surface and interfacial waves. The resulting system of
kinetic equations is

ṅ(S0)(k, t) =
∑

S1,S2∈{S,I}

∫∫

dk1 dk2 × (|J
(S0S1S2)
012 |2f

(S0S1S2)
012 δ(k − k1 − k2)L

(S0S1S2)

k,k1,k2

− 2|J
(S1S0S2)
102 |2f

(S1S0S2)
102 δ(k1 − k − k2)L

(S1S0S2)

k1,k,k2
), S0 ∈ {S, I}, (4.2)

where f (S1S2S3) is the three-wave kinetic equation kernel for two types of waves:

f
(S1S2S3)
123 = n

(S1)
1 n

(S2)
2 n

(S3)
3

(

1

n
(S1)
1

−
1

n
(S2)
2

−
1

n
(S3)
3

)

.

The frequency-conserving Dirac delta function is replaced by its broadened version,
the Lorenzian L:

L
(S1S2S3)

k,k1,k2
=

Γ
(S1S2S3)

k1,k2,k3
(

ω
(S1)

k
−ω

(S2)

k2
−ω

(S2)

k2

)2

+
(

Γ
(S1S2S3)

k,k1,k2

)2
,

Γ
(S1S2S3)

k1,k2,k3
= γ

(Si)
1 + γ

(Si)
2 + γ

(Si)
3 ,

γ
(S0)

k
=

∑

S1,S2∈{S,I}

∫∫

dk1 dk2 (|J
(S0S1S2)
012 |2(n

(S1)
1 + n

(S2)
2 )δ(k − k1 − k2)L

(S0S1S2)

k,k1,k2

−2|J
(S1S0S2)
102 |2(n

(S1)
1 − n

(S2)
2 )δ(k1 − k − k2)L

(S1S0S2)

k1,k,k2
), S0 ∈ {S, I}.















































(4.3)
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(a)

(b)

FIGURE 2. The resonant set of interfacial wavenumbers for fixed surface wavenumber
κ = (2π/10) m−1. (a) Class III and surrounding resonances; (b) class I and surrounding
resonances.

Here Γ
( j)

k1,k2,k3
is the total broadening of a given resonance between wavenumbers

k1, k2, k3, and γ
(Si)
i is the Boltzmann rate for wavevector (ki, Si).

The principal new feature of this system of kinetic equations is that instead of
the resonant interactions taking place along Dirac delta functions, the near-resonances
appear acting along the broadened resonant manifold that includes not only resonant,
but also near-resonant interactions, as was done in Lvov et al. (1997, 2012).

The interpretation of this formula is the following. Nonlinear wave–wave interactions
lead to a change of wave amplitude, which in turn makes the lifetime of the waves to
be finite. Consequently, interactions can be near-resonant. A self-consistent evaluation
of γk requires the iterative solution of (4.2) and (4.3) over the entire field. Indeed,
one can see from (4.3) that the width of the resonance depends on the lifetime of
an individual wave, which in turn depends on the resonance width over which wave
interactions occur.

We define our characteristic time for interfacial wave growth to be τ
(Si)
i = −1/γ

(Si)
i ,

i.e. the e-scaling rate of the action density variable n
(Si)
i . Together (4.2)–(4.3) form a

closed set of equations which can be iteratively solved to obtain the time evolution
of the energy spectrum of surface and interfacial waves.

4.2. Three-wave resonances

Wave turbulence theory considers resonant wave–wave interactions. The rationale for
this is that out of all possible interactions of three wavenumbers it is only resonant
and near-resonant interactions that lead to the effective irreversible energy exchange
between wavenumbers. Consequently, we seek wavenumbers that satisfy resonances of
the form

k1 ± k2 ± k3 = 0, (4.4)

ω
(S1)
1 ±ω

(S2)
2 ±ω

(S3)
3 = 0, S1, S2, S3 ∈ {S, I}. (4.5)

In figure 2 we plot an example of the two-dimensional resonant set as described in
Ball (1964) and Thorpe (1966). We first fix the surface wavenumber k

S
1 to be a fixed,

given number. We arbitrarily choose k
S
1 = 2π/10, and calculate wavenumbers k

I
2 and

k
S
3 so that the conditions k

S
1 = k

I
2 + k

S
3 and ω

(S)
1 = ω

(I)
2 + ω

(S)
3 are satisfied. We then
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k2
(I)

(0, 0) ˚
(S)

˚
(S) - ˚2

(I)

FIGURE 3. Schematic construction of three-wave resonances as determined by a fixed
surface wave κ and the corresponding set of resonant interfacial waves, as done in Ball
(1964). Two of such triads are depicted.

(a) (b) (c)
0.05

0

-0.05

0 5 10
(÷ 10-3)

k I
x (m

-1)

k
I y 

(m
-

1
)

FIGURE 4. Resonances are not scale-invariant: the solid curve depicts interfacial
wavenumbers in resonance when one surface wavenumber is fixed to be (a) κ =
(2π/25) m−1, (b) κ = (3 × 2π/25) m−1 and (c) κ = (5 × 2π/25) m−1. The dashed curves
correspond to scaling curve (a) by factors of 3 and 5.

plot the corresponding values of the interfacial wavenumber k
I
2. Schematically, this

construction process is depicted in figure 3.
The intercept in figure 2(a) corresponds to the case when the interfacial wave co-

propagates in the direction of surface waves; this precisely corresponds to the class
III resonances studied in Alam (2012). We note that in this case the interfacial waves
excited are much longer and slower than the surface wave, because comparatively it
takes much less energy to distort the interface between the layers than it does to lift
and disturb the upper layer. In the interfacial wave case the heavier fluid is lifted in
slightly less dense fluid, while for the surface waves the water is lifted into the air.

Similarly, the intercept in figure 2(b) corresponds to counter-propagating waves in
class I resonance. Notably, the resonance curves are not scale-invariant; figure 4
depicts the resonance curves for the cases of fixed surface wavenumber κ =
(2jπ/25) m−1, j = 1, 3, 5, with the dashed lines depicting the first resonance curve
scaled by the respective factors of three and five. While the resonant manifold is
approximately scale-invariant for large wavenumbers, scale invariance is particularly
violated near the class III collinear resonance. This change in structure results in a
different regime of dynamics for longer surface wavelengths, as we will see in § 5.1.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

10
33

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 R

en
ss

el
ae

r 
Po

ly
te

ch
 In

st
itu

te
, o

n 
04

 Ju
l 2

02
0 

at
 2

2:
23

:5
6,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.



Surface gravity wave–interfacial wave interactions 887 A14-11

5. Energy transfer in the JONSWAP spectrum

5.1. Surface plane wave

5.1.1. Formulation of the problem

Let us now consider a model problem of a single plane wave on the surface of the
top layer and an interfacial layer that is at rest initially at t = 0. While this problem
may seem to be oversimplified, it is motivated by real oceanographic scenarios. Indeed,
when wind blows on top of the ocean, the spectral energy density of the generated
surface gravity waves has a prominent narrow peak for a specific wavenumber. We
denote this wavevector of the initial surface wave distribution by κ , and assume that
the lower interface is undisturbed except for small-amplitude noise ǫn. Such a choice
corresponds to the initial conditions

n(S)(k, t = 0)= Ãδ(k − κ), (5.1)

n(I)(k, t = 0)= O(ǫn). (5.2)

In physical space such choice corresponds to

ζ1(x, t = 0)= A cos(κ · x −ωκ t), ζ1(x, t = 0)= ǫn.

In the calculations below, we take the surface wavenumber κ to correspond to the
peak wavenumber of the JONSWAP spectrum (Hassleman et al. 1973). Here, the one-
dimensional JONSWAP spectrum can be expressed in terms of U19.5, the wind speed
19.5 m above the ocean surface, and is given by

S(ω)=
αg2

ω5
exp

(

−
5

4

(ω0

ω

)4
)

γ r,

r = exp

(

−
(ω−ω0)

2

2σ 2ω2
0

)

, ω0 = g/U19.5, σ =

{

0.07, if ω6ω0,

0.09, if ω>ω0.



















(5.3)

Consequently, the peak wavenumber κ and wave amplitude A that we use are
determined solely by the speed of the wind. Due to the surface spectrum being
unidirectional, the dominant energy exchange from the surface to interfacial spectrum
occurs on and near the class III resonance (Alam 2012).

Substituting (5.1) into (4.3), dropping terms of order ǫn and keeping only the
resonant and near-resonant terms, we obtain the following algebraic equations for the
Boltzmann rates of the interfacial and surface wave fields at t = 0:

γ
(I)
k
(t = 0)= −2πÃ|J(SIS)(κ, k, κ − k)|2L(ω̃(S)(κ)− ω̃(I)(k)− ω̃(S)(κ − k)),

γ
(S)
k
(t = 0)= 2πÃ|J(SIS)(κ, κ − k, k)|2L(ω̃(S)(κ)− ω̃(I)(κ − k)− ω̃(S)(k)), k ∈ RIII.

(5.4)

5.1.2. Unidirectional wave propagation

We now consider unidirectional wave propagation. We find the self-consistent value

for γ
(I)
k

by numerically solving the one-dimensional version of the algebraic equation
(5.4). The numerical solution for the growth rate of interfacial waves collinear to the
surface wave is shown in figure 5(a) for a surface wavenumber of κ = (2π/19) m−1.

Here the results were obtained by iterating (5.4). The value of γ
(I)
k

appears to be

narrowly peaked around the resonant frequency ω
(I)
k

= ω(S)
κ

− ω
(S)
κ−k

. We now vary the
value of the wind speed and plot the magnitude of the value of the peak of γ (I)(k)
as a function of the wind speed. Results are shown in figure 5(b). We see that for
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FIGURE 5. (a) Comparison of numerical solution of (5.4) and the analytical value of
the peak growth rate using (5.5) for a surface spectrum with wind speed of 10 m s−1.
(b) Peak growth rate of interfacial waves versus the wind speed for various values of
wind speed according to both formulas.

a wind speed of roughly 8 m s−1 there is a much more effective transfer of energy
to the interfacial waves than at lower or higher wind speeds. Interestingly, this wind
speed is around that at which white capping starts to occur. Here the parameters used
are ρu = 1027 kg m−3, 1ρ= 1 kg m−3, hu = 800 m and hl = 4000 m. We can actually
analytically estimate the amplitude of the peak using the following arguments. If we
choose the interfacial wavenumber k0 so that the resonance condition is satisfied, i.e.
ω(S)

κ
− ω

(S)
κ−k0

− ω
(I)
k0

= 0, and assume that γ (S)
κ
, γ

(S)
κ−k

≪ γ
(I)
k

, we obtain the following
estimate for the growth rate of the resonant interfacial wavenumber k0:

γ
(I)
k0
(t = 0)=

√

2πÃ|J(SIS)(κ, k0, κ − k0)|. (5.5)

The amplitude of γ found by this equation is shown as red dots in figure 5; the result
agrees with the peak values given by iterating (5.4), plotted in blue.

Now that we have numerically evaluated the resonance width function Γ , we
can visualize the broadening of the resonant manifold. So we broaden the resonant
manifold (4.5) by allowing not only resonant, but also near-resonant interactions. We
therefore replace resonant condition (4.5) by a more general condition:

RIII = {kI : |ω̃(S)(κ)− ω̃(I)(kI)− ω̃(S)(κ − kI) ) |<Γ
(SIS)
κ,kI ,κ−kI

}. (5.6)

The results are depicted in in figure 6, for the cases of the surface being a plane
wave of wavelength 20 and 80 m. This figure replaces figure 2(a) inset and figure 4.
Here the amplitude of the plane wave is determined from the JONSWAP spectrum.
We observe that the greatest broadening of the resonant curves occurs at and around
the class III collinear resonance.

5.1.3. Unidirectional surface wave can generate oblique interfacial waves

We now remove the constraint of surface and interfacial waves being collinear and
consider the more general case of arbitrary angle between them. Indeed, we observe
that (5.5) can be evaluated for resonant two-dimensional interfacial wavenumbers
which are not necessarily collinear to κ . Consequently, we calculate the peak growth
rate for interfacial waves all along the resonance curve, of which the general shape
is depicted in figure 2.

In figure 7 we plot the ratio of the resonance width and the frequency of the

interfacial wave which is excited, Γ
(SIS)

κ,kI ,κ−kI
/ω

(I)

k
I , along the entire resonance curve
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FIGURE 6. Resonance curves as plotted in figure 4 including physical width for (a) λ=
20 m surface spectrum and (b) λ= 80 m surface spectrum.
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FIGURE 7. The ratio between the resonance width Γ
(2)
κ,κ−kI ,kI

and the frequency of the

excited interfacial wave ω
(I)

k
I for two different wind speeds, as a function of wavenumber

and angle along the resonance curve.

for wind speeds of 7 and 10.7 m s−1. We observe that for both wind speeds the
low collinear wavenumbers experience the most resonance broadening, and that
the resonance width decreases roughly exponentially as a function of wavenumber.
Similarly, in figure 7 we also plot the ratio of resonance width and frequency as
a function of the angle between the excited interfacial wavenumber and the fixed
surface wavenumber, verifying that it is largest when the angle is small, though
non-zero for other angles.

In figure 8 we plot the Boltzmann growth rate of interfacial wavenumbers along the
two-dimensional resonance curve as a function of the angle between the interfacial
wave and the fixed surface wave. We see that a band of angles is excited on a time
scale similar to that of the peak collinear wave. Furthermore, as the wind speed
increases, the band of excited angles becomes broader, so in addition to the collinear
waves in the direction of the wind speed, oblique waves are generated as well, making
the mechanism of transfer of energy from the wind to the internal waves much more
effective.

5.2. Analysis of matrix element

The principal new feature of this paper is that we provide a first-principles derivation
of the magnitude of the strength of interactions between surface and interfacial
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FIGURE 8. The excitation rate, γ
(I)
k

, plotted as a function of θ , the angle between
interfacial wave k and surface wave κ .
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FIGURE 9. The matrix element J
(SSI)(κ, κ + kI, kI) with the resonant values of kI overlaid

on top. Surface wavelength is (a) λ= 8 m, (b) λ= 14.5 m and (c) λ= 150 m. We see a
transition into a regime in which collinear resonances are no longer dominant, i.e. as the
surface waves grow in wavelength the resonant curve crosses a peak spatial frequency in
which energy transfer is most efficient.

waves. The value of such an interaction is called the matrix element, or interaction
cross-section in wave turbulence theory. In figure 9 we plot the interaction coefficient
J
(SIS) which governs the interaction strength along resonances of the form depicted

in figure 2 for the cases of surface wavelengths λ= 8, 14.5 and 150 m. Here we fix
the second surface wavenumber so that the resonance condition on wavenumber (4.4)
is satisfied, plotting J

(SIS)(κ + kI, kI, κ) as a function of the free wavenumber kI . The
overlaid white curve shows the resonant values of kI determined by the resonance
condition on frequency. Combined, the contour plot shows the interaction strength,
with the resonance curve showing where interactions are restricted to occur. Notably,
the interaction coefficient is approximately scale-invariant, as the structure remains
nearly the same for the case of surface waves with wavelength 9 m and surface
swell waves with wavelength 150 m. In contrast, the shape of the resonance curve
experiences changes dependent on the magnitude of the surface wavenumbers,
meaning that varying regimes occur depending on where the resonance curve lies
with respect to the interaction coefficient. For a surface wavelength of approximately
λ = 14.5 m, the resonance curve aligns with the maximum value of the matrix
element, as seen in figure 9(b). In this regime, interactions as a whole seem most
efficient. Further beyond this range the collinear resonance becomes less dominant,
and for long surface wavelengths, as in the case when λ = 150 m, the maximum
growth rate is along non-collinear interfacial waves, as seen in figure 9(c).
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FIGURE 10. (a) The fixed surface wave JONSWAP spectrum. (b) The interfacial wave

spectrum over the course of 20 weeks, where n
(I)
k
(t = 0)= 0 initially.

5.3. Excitation of interfacial waves by the JONSWAP surface wave spectrum, kinetic

approach

5.3.1. Collinear waves

The main motivation for this paper is to predict the transfer of energy from wind-
generated surface waves to the depth of the ocean. Here we fix the spectrum of the
surface waves to be the JONSWAP spectrum in the x direction and homogeneous
in the y direction for a wind speed of 15 m s−1. We assume that initially there are
no interfacial waves, i.e. n(I)(k, t = 0) = 0. To calculate the growth rates, we iterate
formula (4.3) until a self-consistent value is obtained. We perform iterations until an
iterate is within 10−8 of the previous iterate. After obtaining self-consistent values for
the growth rates of each wavenumber, we then evolve in time equations (4.2) and
plot the resulting spectrum of the interfacial waves as a function of time in figure 10.
Here the interfacial waves with wavelengths of less than 10 m are damped, the typical
10 m cutoff for internal wave breaking. We see that the surface wave spectrum excites
interfacial waves on a time scale of days. Furthermore, the relative growth of the
interfacial wave spectrum slows down over a period of 20 weeks, with no visual
difference between week 19 and week 20 other than near the peak frequency.

It appears that the spectral energy density of interfacial waves is a ‘resonant
reflection’ of the spectra of the surface waves. Indeed, the spectrum in figure 10
is defined solely by class III resonances with the surface waves, and contributions
from the interfacial wave interactions are sub-dominant. It therefore appears that the
interactions between the interfacial waves are not an effective mechanism for the
redistribution of energy in the interfacial waves, at least for the parameters chosen
here. Spectral energy transfers in the field of internal waves have been studied
extensively (Muller, Henyey & Pomphrey 1986; Lvov & Tabak 2001, 2004; Lvov,
Polzin & Tabak 2004; Lvov & Yokoyama 2009; Lvov et al. 2010; Polzin & Lvov
2011, 2017). It is now understood that spectral energy transfer in internal waves is
dominated by the special class of non-local wave–wave interactions, called induced
diffusion. This mechanism is absent in our model, since it is a two-layer system.

5.4. Simulation of growth rates for continuous two-dimensional surface spectrum

For the case when the surface spectrum is a more general two-dimensional spectrum,
we resort to numerically iterating (4.3). Here we consider the two-dimensional
version of (5.3), the JONSWAP spectrum. Introducing simple angular dependence via
a directional spreading function as described in Janssen (2004), we consider

n(S)(k, θ)= A cos2 θ × S(ω
(S)
k
)
dωk

dk
, −

π

2
6 θ 6

π

2
, (5.7)
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FIGURE 11. (a) Fixed surface spectrum and (b) simulated growth rate of interfacial wave
spectrum for a wind speed of 5 m s−1.

0 π/4

œ (rad)

-π/2 -π/4 π/2 0 π/4

œ (rad)

-π/2 -π/4 π/2

10

8

6

4

2

1000

800

600

400

200

n(kS, œ)

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

(÷ 10-5)©(kI, œ)
5

4

3

2

1

k S
 (

m
-

1
)

k I
 (

m
-

1
)

(a) (b)(÷ 10-3) (÷ 10-3)

FIGURE 12. (a) Fixed surface spectrum and (b) simulated growth rate of interfacial wave
spectrum for a hurricane wind speed of 50 m s−1.

where the spectrum is renormalized so that the total energy is the same as in the

one-dimensional case, i.e. A =
∫∫

cos2 θS(ω) dω dθ/
∫

S(ω) dω. We now substitute (5.8)

into (4.3) and find the self-consistent solution for γ (I)(k, ω); the results are shown in

figure 11.

We obtain self-consistent values for the growth rate of interfacial waves excited for

the case of a two-dimensional Pierson–Moskowitz spectrum corresponding to a wind

speed of 5 m s−1 in figure 11 and 50 m s−1 in figure 12. Note that while these two

representations may look similar, the scales of the figures are different. Higher wind

speed generates a much larger band width of excited wavenumbers, and the growth

rates are higher. Notably, the structure of the growth rate of interfacial waves does

not match the structure of the surface spectrum. There is a peak interfacial wave

analogous to the peak of the surface spectrum, but there are three lobes corresponding

to interactions where long surface waves are in resonance with oblique interfacial

waves.

Having calculated matrix element J
(SIS)
123 , and the growth rates of internal waves as a

function of their wavenumber k and direction θ , we are now in a position to simulate

the full evolving two-dimensional interfacial wave spectrum governed by (4.2). This

is the subject of future work.
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6. Discussion

In the present paper we revisit the problem of the coupling of surface gravity
waves and interfacial waves in a two-layer system. We use the recently developed
Hamiltonian structure of the system (Choi 2019) and systematically develop wave
turbulence theory that describes the time evolution of the spectral energy density of
waves. To achieve this goal, we first need to diagonalize the quadratic part of the
Hamiltonian. It appears to be a non-trivial task, which we perform using a series of
two canonical transformations. We end up with a highly non-trivial overdetermined
system of equations, which we solve, thus finding normal modes of the system. We
therefore set up a stage for developing wave turbulence kinetic equations that describe
nonlinear spectral energy transfers between surface and interfacial waves.

We then derive wave turbulence kinetic equations for the time evolution of the
spectral energy densities of such a two-layer system. Our kinetic equation allows not
only resonant, but also near-resonant interactions. We revisit the question of possible
three-wave resonances, and confirm that for normal sea conditions the resonant picture
developed in Ball (1964), Thorpe (1966) and Alam (2012) holds. Interestingly, the
resonance condition still holds even for hurricane wind speeds and the case of long
surface swell; for long surface wavelengths, the characteristic wavelength of the
collinear interfacial waves becomes much longer. This leads to resonant non-collinear
interactions being dominant, as evidenced by numerically studying the coupling
coefficient.

The kinetic equation allows us to estimate the time scales of excitation of interfacial
waves by a single plane surface wave. We find that under the assumption of the
magnitude of the interfacial waves being small, the growth rate is of the order
of hours. Notably, we consider resonant interfacial waves in all directions, seeing
that the growth rate is maximized for class III collinear resonance and decreases
with growing angle. By using surface frequencies and amplitudes estimated by the
JONSWAP spectrum, we see a nonlinear threshold of roughly 9 m s−1 where energy
transfer becomes more effective, perhaps corresponding to conditions where the
surface waves transition into white capping.

We also consider the case when the spectrum of surface waves is given by the
continuous set of frequencies described in the JONSWAP spectrum. We numerically
solve the system of kinetic equations, and find that interfacial waves are generated at
a characteristic time scale of days, and they eventually will reach a steady state at a
characteristic time of months.

Our future work will be focused on investigating in more detail the interactions of
interfacial and surface waves for the case of strong wind, without limiting ourselves
to collinear vectors. We also will attempt to use observations of internal waves and
surface waves for quantitative comparison with results given by the kinetic equation.
Lastly, we will attempt to generalize our kinetic equation to three or more layers of
the fluid.
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Appendix A. Non-local operator (Choi 2019)

Here we list the components of the non-local operator and interaction matrix

elements derived in Choi (2019). These operators are constructed by multiplying

the Fourier transform of the quantity by the kernels given below, then calculating

the inverse Fourier transform. The Fourier kernels of operators as a function of

wavenumber k, derived by Choi (2019), are

Jk =
1

ρu tanh(huk) tanh(hlk)+ ρl

,

γ11,k = kJk[(ρl/ρu) tanh(huk)+ tanh(hlk)], γ12,k = γ21,k = kJk sech(huk) tanh(hlk),

γ22,k = kJk tanh(hlk), γ30,k = Jk, γ31,k = sech(huk)Jk,

γ32,k = Jk tanh(huk) tanh(hlk), γ33,k = Jk(1 + tanh(huk) tanh(hlk)).

Appendix B. Matrix elements in Fourier space (Choi 2019)

The coupling coefficients of the quadratic and cubic Hamiltonians from Choi (2019)

are given by

h(1a)(k)= ρug,

h(2a)(k)=
(ρl/ρu)k tanh(huk)+ k tanh(hlk)

ρu tanh(huk) tanh(hlk)+ ρl

,

h(3a)(k)=1ρg,

h(4a)(k)=
k tanh(hlk)

ρu tanh(huk) tanh(hlk)+ ρl

,

h(5a)(k1, k2)=
k1 tanh(hlk1) sech(huk1)

ρu tanh(huk1) tanh(hlk1)+ ρl

+
k2 tanh(hlk2) sech(huk2)

ρu tanh(huk2) tanh(hlk2)+ ρl

,

h
(1)
123 = −

1

2
(k1 · k2)/ρu

−
1

2
k1k2

(ρl tanh(huk1)+ ρu tanh(hlk1))(ρl tanh(huk2)+ ρu tanh(hlk2))

ρu(ρu tanh(huk1) tanh(hlk1)+ ρl)(ρu tanh(huk2) tanh(hlk2)+ ρl)
,

h
(2)
123 = −k1k2

sech(huk2) tanh(hlk2)(ρl tanh(huk1)+ ρu tanh(hlk1))

(ρu tanh(huk1) tanh(hlk1)+ ρl)(ρu tanh(huk2) tanh(hlk2)+ ρl)
,

h
(3)
123 = −

1

2
ρuk1k2

sech(huk1) sech(huk2) tanh(hlk1) tanh(hlk2)

(ρu tanh(huk1) tanh(hlk1)+ ρl)(ρu tanh(huk2) tanh(hlk2)+ ρl)
,

h
(4)
123 = −

1

2
1ρ

sech(huk1) sech(huk2)

(ρu tanh(huk1) tanh(hlk1)+ ρl)(ρu tanh(huk2) tanh(hlk2)+ ρl)

× [−(ρl/ρu)(k1 · k2)+ k1k2 tanh(hlk1) tanh(hlk2)],

h
(5)
123 = −

sech(huk1)

(ρu tanh(huk1) tanh(hlk1)+ ρl)(ρu tanh(huk2) tanh(hlk2)+ ρl)

× [1ρ k1k2 tanh(hlk1) tanh(hlk2)+ ρl(1 + tanh(huk2) tanh(hlk2))(k1 · k2)],

h
(6)
123 = −

1

2(ρu tanh(huk1) tanh(hlk1)+ ρl)(ρu tanh(huk2) tanh(hlk2)+ ρl)

× [1ρ k1k2 tanh(hlk1) tanh(hlk2)

+ (ρl − ρu tanh(huk1) tanh(huk2) tanh(hlk1) tanh(hlk2))(k1 · k2)] .
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Appendix C. Canonical transformation

C.1. Linear transformation

The linearized equations of motion for

(

u

v

)

=







ζ (1)

ζ (2)

Ψ (1)

Ψ (2)







can be written in the form
(

u̇

v̇

)

=

(

O2×2 G2×2

M2×2 O2×2

)(

u

v

)

.

We seek a canonical transformation to normal modes of the system. The condition of
the linear transformation to be canonical is that it is representable as

(

u̇

v̇

)

=

(

O2×2 I2×2

−I2×2 O2×2

)(

u

v

)

,

with G and M such that each are diagonalizable via unitary similarity transformations.
However, for the system under consideration this is not possible, and we substitute
a more general linear transformation in the complex action variables of the form
(Zakharov et al. 1992)

a
(U)
k = Q

(1)
k

c
(I)
k

+ Q
(2)
k

c
(I)∗
−k

+ Q
(3)
k

c
(S)
k

+ Q
(4)
k c

(S)∗
−k
, (C 1a)

a
(L)
k = Q

(5)
k

c
(I)
k

+ Q
(6)
k

c
(I)∗
−k

+ Q
(7)
k

c
(S)
k

+ Q
(8)
k c

(S)∗
−k
. (C 1b)

In order to preserve the Hamiltonian structure during the transformation of the
Hamiltonian, the transformation should be canonical. Conditions for transformations
to be canonical are given by (Zakharov et al. 1992)

|Q
(1)
k

|2 − |Q
(2)
k

|2 + |Q
(3)
k

|2 − |Q
(4)
k

|2 = 1,

|Q
(5)
k

|2 − |Q
(6)
k

|2 + |Q
(7)
k

|2 − |Q
(8)
k

|2 = 1,

}

(C 2a)

Q
(1)
k

Q
(5)∗
k

+ Q
(3)
k

Q
(7)∗
k

= Q
(2)
k

Q
(6)∗
k

+ Q
(4)
k

Q
(8)∗
k
,

Q
(1)
k

Q
(6)
−k

+ Q
(3)
k

Q
(8)
−k

= Q
(2)
k Q

(5)
−k

+ Q
(4)
k Q

(7)
−k
,

}

(C 2b)

Q
(1)
k

Q
(2)
−k

+ Q
(3)
k

Q
(4)
−k

= Q
(1)
−k

Q
(2)
k

+ Q
(3)
−k

Q
(4)
k
,

Q
(5)
k

Q
(6)
−k

+ Q
(7)
k

Q
(8)
−k

= Q
(5)
−k

Q
(6)
k

+ Q
(7)
−k

Q
(8)
k
.

}

(C 2c)

In order to diagonalize the quadratic part of the system, we further require that terms
of the form c∗

k
Ck, ckC−k, ckc−k and CkC−k and their complex conjugates vanish, which

leads to the additional conditions

ω
(1)
k
(Q

(1)
k

Q
(3)∗
k

+ Q
(2)∗
−k

Q
(4)
−k
)+ω(2)(Q

(5)
k

Q
(7)∗
k

+ Q
(6)∗
−k

Q
(8)
−k
)

+ Fk[(Q
(1)
k

− Q
(2)∗
−k
)(Q

(8)
−k

− Q
(7)∗
k
)+ (Q

(3)∗
k

− Q
(4)
−k
)(Q

(6)∗
−k

− Q
(5)
k
)] = 0, (C 3a)

ω
(1)
k
(Q

(1)
k

Q
(4)∗
k

+ Q
(2)∗
−k

Q
(3)
−k
)+ω

(2)
k
(Q

(5)
k

Q
(8)∗
k

+ Q
(6)∗
−k

Q
(7)
−k
)

+ Fk[(Q
(5)
k

− Q
(6)∗
−k
)(Q

(3)
−k

− Q
(4)∗
k
)+ (Q

(7)
−k

− Q
(8)∗
k
)(Q

(1)
k

− Q
(2)∗
−k
)] = 0, (C 3b)

ω
(1)
k

Q
(1)
k

Q
(2)∗
k

+ω
(2)
k

Q
(5)
k

Q
(6)∗
k

+ Fk[Q
(1)
k
(Q

(5)
−k

− Q
(6)∗
k
)+ Q

(2)∗
k
(Q

(6)∗
−k

− Q
(5)
k
)] = 0, (C 3c)

ω
(1)
k

Q
(3)
k

Q
(4)∗
k

+ω
(2)
k

Q
(7)
k

Q
(8)∗
k

+ Fk[Q
(3)
k
(Q

(7)
−k

− Q
(8)∗
k
)+ Q

(4)∗
k
(Q

(8)∗
−k

− Q
(7)
k
)] = 0. (C 3d)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

10
33

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 R

en
ss

el
ae

r 
Po

ly
te

ch
 In

st
itu

te
, o

n 
04

 Ju
l 2

02
0 

at
 2

2:
23

:5
6,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.



887 A14-20 J. Zaleski, P. Zaleski and Y. V. Lvov

We note that these conditions give a transformation of a form analogous to that
of the Bogoliubov–Valatin transformation widely used to diagonalize Hamiltonians in
quantum mechanics (Bogoljubov 1958; Valatin 1958).

We solve for the coefficients of the transformation – the full system (C 2a)–(C 3d) –
to obtain the Hamiltonian of the system in diagonal form. This system contains eight
complex and two real nonlinear coupled equations for eight complex unknowns, which
makes this task non-trivial. It might seem that the the system is overdetermined; yet
it turns out this is not the case. Namely, under the additional assumption that

Q
(i)
k
, i = 1, 2 . . . , 8 are real even functions of k, (C 4)

equations (C 2c) are trivially satisfied. We then are left with six complex equations
and two real equations for eight complex unknowns. We obtain a particular solution
to (C 2a)–(C 3d):

a
(U)
k

= sin θ [(cosh φ)c
(I)
k

+ (sinh φ)c
(I)∗
−k

] + cos θ [(coshψ)c
(S)
k

+ (sinhψ)c
(S)∗
−k

],

a
(L)
k

= cos θ [(α cosh φ + β sinh φ)c
(I)
k

+ (α sinh φ + β cosh φ)c
(I)∗
−k

]

− sin θ [(α coshψ + β sinhψ)c
(S)
k

+ (α sinhψ + β coshψ)c
(S)∗
−k

].











(C 5)

Here α, β, θ, φ and ψ are given by (C 7)–(C 14). Additional detailed analyses show
that the general solution has an additional six complex random phases, which are

taken here to be zero. Non-zero phases alter the phases of c
(S)
k

and c
(I)
k

, but do not
change the corresponding linear dispersion relationships or the strength of coupling
of the normal modes.

We emphasize that the transformation is expressed in closed form in terms of

ω
(1)
k
, ω

(2)
k

and Fk, and that this approach works for a general system with two types
of interacting waves and quadratic coupling term.

C.2. Transformation coefficients

Define the following functions:

C
(1)
k

= −
F
(1)
k

+ F
(2)
k

2

√

F
(1)
k

F
(2)
k

, C
(2)
k

= −
F
(1)
k

− F
(2)
k

2

√

F
(1)
k

F
(2)
k

, θk =
1

2
arctan





−4F
(3)
k

√

F
(1)
k

F
(2)
k

F
(1)
k

2
− F

(2)
k

2



 ,

µk = F
(2)
k

C
(1)
k

C
(2)
k

cos2 θk + F
(3)
k
(C

(1)
k

− C
(2)
k
) sin θk cos θk,

σk = F
(2)
k

C
(1)
k

C
(2)
k

sin2 θk − F
(3)
k
(C

(1)
k

− C
(2)
k
) sin θk cos θk.

Then we obtain

αk = F
(1)
k

sin2 θk + F
(2)
k
(C

(1)
k

2
+ C

(2)
k

2
) cos2 θk − 2F

(3)
k
(C

(1)
k

− C
(2)
k
) sin θk cos θk, (C 6)

βk = F
(1)
k

cos2 θ + F
(2)
k
(C

(1)
k

2
+ C

(2)
k

2
) sin2 θk + 2F

(3)
k
(C

(1)
k

− C
(2)
k
) sin θk cos θk, (C 7)

φk =
1

2
tanh−1

(

−
2µk

αk

)

, ψk =
1

2
tanh−1

(

−
2σk

βk

)

. (C 8)

Thus for the Hamiltonian to be diagonalizable we have the condition that

− 1<−
2µk

αk

< 1, −1<−
2σk

βk

< 1.
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Appendix D. Matrix elements for normal mode interactions

Define the following functions written in terms of the matrix elements from Choi
(2019):

f
(1)
k =

√

[h
(1a)
k ]−1h

(2a)
k , f

(2)
k =

√

[h
(3a)
k ]−1h

(4a)
k .

Then the matrix elements before applying the canonical transformation (C 5) are

G
(1)
123 = −

h
(1)
123

2

√

f
(1)
3

2f
(1)
1 f

(1)
2

, G
(2)
123 = −

h
(2)
123

2

√

f
(1)
3

2f
(1)
1 f

(2)
2

,

G
(3)
123 = −

h
(3)
123

2

√

f
(1)
3

2f
(2)
1 f

(2)
2

, G
(4)
123 = −

h
(4)
123

2

√

f
(2)
3

2f
(1)
1 f

(1)
2

,

G
(5)
123 = −

h
(5)
123

2

√

f
(2)
3

2f
(1)
1 f

(2)
2

, G
(6)
123 = −

h
(6)
123

2

√

f
(2)
3

2f
(2)
1 f

(2)
2

,

V
(1)
k = G

(1)
12−3 − G

(1)
1−32 − G

(1)
−321,

V
(2)
k = G

(2)
12−3 − G

(2)
1−32 − G

(2)
−321, . . . ,

V
(i)
k = G

(i)
12−3 − G

(i)
1−32 − G

(i)
−321, for j = 1, 2, 3, . . . , 6.











To calculate the matrix elements after applying transformation (C 5) we make use
of the following permutation operator to shorten notation:

P
123
ijk G =

∑

i6=j6=k

Gijk,

where the summation is taken for i, j, k ∈ {1, 2, 3}. Furthermore, to shorten expressions
involving products of the transformation coefficients (C 1b) we use the shorthand

notation Q
ijk ≡ Q

(i)
1 Q

( j)

2 Q
(k)
3 , i, j, k = 1, 2, 3, . . . , 8.

We obtain the coupling coefficients

J
(S1I2S3)
123 = Q

342
P

1−2−3
ijk G

(1) + (Q386
P

1−2−3
ij1 + Q

746
P

1−2−3
ij−2 + Q

782
P

1−2−3
ij−3 )G(3)

+ (Q742
P

1−2−3
ij1 + Q

382
P

1−2−3
ij−2 + Q

346
P

1−2−3
ij−3 )G(4)

+ Q
786

P
1−2−3
ijk G

(6) + (Q442
P

−1−2−3
ij−1 + Q

332
P

12−3
ij2 + Q

341
P

1−23
ij3 )V (1)

+ (Q486
P

−1−2−3
ij−1 + Q

736
P

12−3
ij2 + Q

781
P

1−23
ij3 )V (3)

+ (Q842
P

−1−2−3
ij−1 + Q

372
P

12−3
ij2 + Q

345
P

1−23
ij3 )V (4)

+ (Q886
P

−1−2−3
ij−1 + Q

776
P

12−3
ij2 + Q

785
P

1−23
1j3 )V (6), (D 1)

J
(I1I2I3)
123 = Q

112
P

1−2−3
ijk G

(1) + (Q386
P

1−2−3
ij1 + Q

746
P

1−2−3
ij−2 + Q

782
P

1−2−3
ij−3 )G(3)

+ (Q742
P

1−2−3
ij1 + Q

382
P

1−2−3
ij−2 + Q

346
P

1−2−3
ij−3 )G(4)

+ Q
786

P
1−2−3
ijk G

(6) + (Q442
P

−1−2−3
ij−1 + Q

332
P

12−3
ij2 + Q

341
P

1−23
ij3 )V (1)

+ (Q486
P

−1−2−3
ij−1 + Q

736
P

12−3
ij2 + Q

781
P

1−23
ij3 )V (3)

+ (Q842
P

−1−2−3
ij−1 + Q

372
P

12−3
ij2 + Q

345
P

1−23
ij3 )V (4)

+ (Q886
P

−1−2−3
ij−1 + Q

776
P

12−3
ij2 + Q

785
P

1−23
1j3 )V (6). (D 2)
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