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COMMUNICATION COMPLEXITY
WITH SMALL ADVANTAGE

THOMAS WATSON

Abstract. We study problems in randomized communication complex-
ity when the protocol is only required to attain some small advantage
over purely random guessing, i.e., it produces the correct output with
probability at least e greater than one over the codomain size of the
function. Previously, Braverman and Moitra (in: Proceedings of the
45th symposium on theory of computing (STOC), ACM, pp 161-170,
2013) showed that the set-intersection function requires O(en) commu-
nication to achieve advantage e¢. Building on this, we prove the same
bound for several variants of set-intersection: (1) the classic “tribes”
function obtained by composing with AND (provided 1/e is at most the
width of the AND), and (2) the variant where the sets are uniquely in-
tersecting and the goal is to determine partial information about (say,
certain bits of the index of) the intersecting coordinate.
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1. Introduction

In randomized communication complexity, protocols are commonly
required to succeed with probability at least some constant less
than 1, such as 3/4. Achieving success probability one over the
codomain size of the function is trivial by outputting a uniformly
random guess. There is a spectrum of complexities between these
extremes, where we require a protocol to achieve success proba-
bility € greater than one over the codomain size, i.e., advantage €.
We study the fine-grained question “How does the communication
complexity of achieving advantage € depend on €?”
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Formally, for a two-party function F, let R,(F") denote the min-
imum worst-case communication cost of any randomized protocol
(with both public and private coins) that is p-correct in the sense
that for each input (X, Y") in the domain of F, it outputs F'(X,Y)
with probability at least p.

First, let us consider functions with codomain size 2. One ob-
servation is that running an advantage-e protocol O(1/€?) times in-
dependently and taking the majority outcome yields an advantage-
1/4 protocol (we call this “majority-amplification”): Ryjoqc(F) >
Q(e’Ry/4(F)). However, this does not tell the whole story; achiev-
ing advantage e may be harder than this bound suggests, depending
on the function. For example, consider the well-studied functions
INNER-PROD (inner product mod 2), SET-INTER (set-intersection,
where 1-inputs are intersecting), and GAP-HAMMING (determin-
ing whether the Hamming distance is > n/2++/n or < n/2—/n).
Each of these three functions F' satisfies Rg/4(F') = ©(n), and yet

* Ri/21(INNER-PROD) = ©O(n) provided ¢ > 2-o(n)
(Chor & Goldreich 1988);

* Ri/24(SET-INTER) = O(en) provided en > 1
(Braverman & Moitra 2013; Gods & Watson 2016);

* Rij24(GAP-HAMMING) = O(e?n) provided e¢*n > 1
(Chakrabarti & Regev 2012; Sherstov 2012; Vidick 2012).

(We provide a proof of the GAP-HAMMING upper bound in Section
A since it does not appear in the above references.)

Hence, it is naturally interesting to study the dependence of the
complexity on € for different important functions, in order to build
a more complete understanding of randomized communication. For
functions with codomain size greater than 2, small-advantage pro-
tocols are not even amenable to amplification, so no lower bounds
for them follow a priori from lower bounds for higher-advantage
protocols.

The functions we study are defined using composition. Letting
g: X x Y — {0,1} be a two-party total function (usually called a
gadget), and f:{0,1}"™ — {0,1} be a (possibly partial) function,
the two-party composed (possibly partial) function f o g": XA™ x
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V" — {0, 1} is defined by

(fogM(X.Y) = f(g(X1,11),...,9(X,, 1y))

where X = (Xq,...,X,) and Y = (V3,...,Y,) with X; € X and
Y; € Y for each i. Sometimes, the outer function f itself will be
defined using standard function composition.

In the functions AND,, and OR,,, the subscript indicates the
number of input bits.

1.1. Tribes. Just as SET-INTER is the canonical NP-complete
communication problem, so-called TRIBES is the canonical 5P-
complete communication problem. A linear randomized lower bound
for TRIBES (with constant advantage) was shown in Jayram et al.
(2003) using information complexity (thereby giving a nearly opti-
mal (quadratic) separation between the (NPNcoNP)-type and BPP-
type communication complexity measures for a total function). An
alternative proof of the lower bound for TRIBES was given in Har-
sha & Jain (2013) using the smooth rectangle bound technique
introduced by Chakrabarti & Regev (2012); Jain & Klauck (2010).

Analogously to SET-INTER,, = OR,, o ANDy', we have the
definition

TRIBES;,, = AND;o OR/, o ANDY*™ = AND,o SET-INTER,.
We always assume m > 2 (since if m = 1 then TRIBES, ,, is trivially
computable with constant communication). Note that the outer
function AND, o OR’, takes a Boolean ¢ x m matrix and indicates
whether every row has at least one 1. For TRIBES,,, Alice and
Bob each get such a matrix, and the above function is applied to
the bitwise AND of the two matrices.

THEOREM 1.1. Ry/24(TRIBES,,) = ©(e/m) provided el > 1.

The upper bound is shown as follows. Let M denote the Boolean
¢ x m matrix that is fed into AND,; o OR’,. Consider the protocol
in which Alice and Bob publicly sample a uniformly random set of
4el rows, evaluate all the bits of M in those rows (using O(efm)
communication), and accept iff each of those rows of M contains
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at least one 1. For a l-input, this rejects with probability 0, and
for a O-input it finds an all-0 row (and hence rejects) with proba-
bility at least 4e. Now if we modify the above protocol so it rejects
automatically with probability 1/2 — e and otherwise proceeds as
before, then it rejects 1-inputs with probability 1/2—e and 0-inputs
with probability at least (1/2 —¢) + (1/2+¢€)-4e > 1/2+¢. The
provision €/ > 1 was stated cleanly to ensure that we can round
4el up to an integer without affecting the asymptotic complexity.
(If e/ < o(1) then just evaluating a single row of M takes w(elm)
communication.) The lower bound, which we prove in Section 2,
does not require this provision.

Our basic approach to prove the lower bound in Theorem 1.1
is to combine the information complexity techniques of Braverman
& Moitra (2013) (developed for the e-advantage lower bound for
SET-INTER) with the information complexity techniques of Jayram
et al. (2003) (developed for the constant-advantage lower bound for
TRIBES). However, in trying to combine these techniques, there
are a variety of technical hurdles, which require several new ideas
to overcome. In Section 1.4 we discuss why other approaches fail
to prove Theorem 1.1.

1.2. What if e/ < 0(1)? As mentioned above, when e/ < o(1),
our proof of the O(e/m) upper bound for TRIBES;,, breaks down.
So what upper bound can we give in this case? Let us restrict our
attention to £ = 2 (and let € > 0 be arbitrary).

First of all, notice that the communication protocol in Section
1.1 is actually a query complezity (a.k.a. decision tree complexity)
upper bound for the outer function. A communication protocol for
any composed function (with constant-size gadget) can simulate a
decision tree for the outer function, using constant communication
to evaluate the output of each gadget when queried by the decision
tree. In the next paragraph, we describe an O(y/em)-query e-
advantage randomized decision tree for ANDyo OR2, (thus showing
that Ry /ot (TRIBESy ) < O(y/em) provided /em > 1).

Say the input is z = (z1,22) € {0,1}™ x {0,1}. Consider
the following randomized decision tree: pick Si,Ss C [m] both
of size 2y/em, independently uniformly at random, and accept iff
21]s, and z|s, each contain at least one 1. For a l-input, each of
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these two events happens with probability at least 2+/¢, so they
happen simultaneously with probability at least 4e. For a 0-input,
one of the two events never happens, and hence, this accepts with
probability 0. Now if we modify the above randomized decision tree
so it accepts automatically with probability 1/2 — € and otherwise
proceeds as before, then it accepts O-inputs with probability 1/2—e
and 1-inputs with probability at least (1/2 —¢) + (1/2 +¢€) - 4e >
1/2 + €, and queries at most O(y/em) bits.

We conjecture that this communication upper bound is tight,
i.e., Rijoe(TRIBES;,,) > Q(y/em). This remains open, but we at
least prove the query complexity version of this conjecture, which
can be construed as evidence for the communication version. (The
query complexity measure Rgt( f) is defined in the natural way.)

THEOREM 1.2. R{j,, (ANDyo OR?,) = ©(y/em) provided \/em >
1.

We prove the lower bound of Theorem 1.2 in Section 3. There
are some known powerful “simulation theorems” (e.g., G60s et al.
(2016, 2017)) for converting query lower bounds for an outer func-
tion into matching communication lower bounds for a composed
function; however, we lack a simulation theorem powerful enough
to convert Theorem 1.2 into a communication lower bound. Fur-
thermore, we have not found a way to emulate the query lower
bound proof with information complexity tools to get a communi-
cation lower bound.

1.3. Which part contains the intersecting coordinate? We
now turn our attention away from TRIBES.

Suppose Alice and Bob are given uniquely intersecting subsets
X and Y from a universe of size n that is partitioned into ¢ > 2
equal-size parts, and they wish to identify which part contains the
intersection. Of course, they can succeed with probability 1/¢ by
random guessing without communicating about their sets. To do
better, they can use the following protocol.
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Alice and Bob publicly sample a uniformly random subset S
of size 2en

They exchange X NS and Y NS using 4en bits of
communication

If SN X NY # (0 they output the label of the part
containing the known point of intersection

Otherwise, they publicly sample and output a uniformly
random part label

This protocol succeeds with probability 2e + (1 — 2¢)/¢ = 1/ +
(1 —=1/0)-2¢ > 1/¢ + e. We prove that this is optimal: (en)
communication is necessary to achieve advantage €.

We state this using the following notation. Define the par-
tial function WHICH,: {0,1}* — [¢] that takes a string of Ham-
ming weight 1 and outputs the coordinate of the only 1. Define
the “unambiguous-or” function UNAMBIG-OR,,, as OR,, restricted
to the domain of strings of Hamming weight 0 or 1. Define the
“unambiguous-set-intersection” function!

UNAMBIG-INTER,,, := UNAMBIG-OR,,, 0 AND’

THEOREM 1.3. Ryjry(WHICH, o UNAMBIG-INTERY,) = ©(elm)
provided efm > 1.

We prove the lower bound in Section 4, where we also describe
some ways to reinterpret Theorem 1.3. This problem is motivated
partly as a simple variant of set-intersection whose communication
complexity was not fully understood before, and partly because of
the corollaries presented in Section 4, which show the maximum
possible gap between randomized small-advantage complexity and
so-called SV-nondeterminism, and between sampling from distri-
butions with/without the ability to condition on an event.

The key to the proof is in relating the complexity of WHICH0 [
to the complexity of F' (for an arbitrary two-party F' with Boolean
output). It is natural to conjecture that the complexity goes up
by roughly a factor of ¢ after composition with WHICH,; this is an

!Sometimes this is called “unique-set-intersection,” but our terminology is
more consistent with classical complexity; see Goos et al. (2018b).
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alternative form of direct sum problem. In the standard direct sum
setting, the goal is to evaluate F' on each of ¢ independent inputs;
our form is equivalent but under the promise that one of the inputs
evaluates to 1 and the rest to 0. Thus, proving the direct sum
conjecture (factor ¢ increase in complexity) appears qualitatively
harder in our setting than in the standard setting. We show an
information complexity version of the conjecture, and we combine
this with Braverman & Moitra (2013) to derive Theorem 1.3.

For worst-case communication, we at least show that the com-
plexity does not go down after composition with WHICH,. In par-
ticular, this yields a simple proof of a communication lower bound
due to Klauck (2003) which implies the communication complexity
class separation UP N coUP ¢ BPP. The proof in Klauck (2003) is
technically somewhat involved, exploiting a “fine-tuned” version of
Razborov’s corruption lemma (Razborov 1992); our simple proof of
the same lower bound is by a black-box reduction to the standard
(constant-advantage) lower bound for UNAMBIG-INTER.

1.4. Related work. We now describe why the Q(efm) lower
bound in Theorem 1.1 does not follow straightforwardly from known
results. First of all, applying standard majority-amplification to
the known Q(¢m) lower bound for constant advantage only yields
an Q(e2¢m) lower bound. What about the technique used by
Goos & Watson (2016) to give a simplified proof of the tight e-
advantage lower bound for SET-INTER? Let us summarize this
technique (known as “and-amplification”) as applied to the comple-
ment function SET-DISJ: running an e-advantage protocol O(1/¢)
times, and accepting iff all runs accept, yields a so-called SBP-type
protocol, for which the complexity is characterized by the corrup-
tion bound. Hence, the e-advantage complexity is always at least
Q(e) times the corruption bound (which is Q(n) for SET-DIsJ,
by Razborov (1992)). Applied to TRIBES,,, (or its complement),
the and-amplification technique can only yield an essentially (e -
max(¢, m)) lower bound, since TRIBES;,, has an O(¢logm)-com-
munication nondeterministic (in particular, SBP-type) protocol and
an O(m + log ¢)-communication conondeterministic (in particular,
coSBP-type) protocol.
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Can we leverage the known smooth rectangle lower bound for
TRIBES, /;, . (Harsha & Jain 2013)7 The smooth rectangle bound
in general characterizes the complexity of so-called WAPP-type
protocols (Gods et al. 2016; Jain & Klauck 2010). Thus, if we
could “amplify” an e-advantage protocol into a (sufficiently-large-
constant-advantage) WAPP-type protocol with o(1/€?) factor over-
head, then for TRIBES, 5 7 we would get a nontrivial e-advantage
lower bound. However, the smooth rectangle lower bound for
GAP-HAMMING (Chakrabarti & Regev 2012) shows that this can-
not always be done, i.e., an Q(1/e?) overhead is sometimes nec-
essary (at least for general partial functions). In summary, the
known “rectangle-based” lower bound techniques fail to yield The-
orem 1.1, so we use an information complexity approach instead.

There is some other work related to the TRIBES lower bound.
The paper Razborov & Sherstov (2010) proved that if the defini-
tion of R is changed to allow only private coins (no public coins)
then Ry /o4 (TRIBES 2) > Q(¢) for all € > 0 (no matter how small).
The original constant-advantage lower bound for TRIBES (Jayram
et al. 2003) spawned a line of research on the communication com-
plexity of read-once formulas (Go6s & Jayram 2016; Jain et al.
2010; Jayram et al. 2009; Leonardos & Saks 2010). A multi-party
version of TRIBES has also been studied in the message-passing
model (Chattopadhyay & Mukhopadhyay 2015).

Regarding the problem of finding which part contains the unique
intersecting coordinate, we mention that there is some prior work
studying a peripherally related topic: the randomized complexity
of “finding the exact intersection” (Braverman et al. 2013; Brody
et al. 2014, 2016), albeit not restricting the size of the intersection.

One of our corollaries of Theorem 1.3 concerns the communi-
cation complexity of problems where the goal is to sample from a
distribution. Not much is known about this topic, and the existing
works focus on problems where there is no input and the goal is to
sample random input-output pairs of a function (Ambainis et al.
2003; Jain et al. 2013; Watson 2016). The complexity of “small-
advantage sampling” was studied in the context of time-bounded
computation in Watson (2014).
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1.5. Preliminaries. We first note that it suffices to prove our
lower bounds for AND, o ORY o ANDY*™ (Theorem 1.1) and
WHICH, 0 UNAMBIG-OR’, o ANDY*™ (Theorem 1.3) with AND,
replaced by a different two-party gadget, namely the equality func-
tion on trits 3EQ: {0, 1,2} x{0,1,2} — {0,1} BEQ(X,Y) =1 iff
X =Y). This is because 3EQ reduces to UNAMBIG-OR3 o AND}
(with Alice and Bob both mapping their trit to its characteristic
bit vector of Hamming weight 1), and thus UNAMBIG-OR,,, 0 3EQ™
reduces to UNAMBIG-OR3,, 0 ANDY", and OR,,, 0 3EQ™ reduces to
ORs,,, © ANDS™.

We now mention some notational conventions. We use P for
probability, E for expectation, H for Shannon entropy, I for mutual
information, ID for relative entropy, and A for statistical (total vari-
ation) distance. We use bold letters to denote random variables,
and non-bold letters for particular outcomes. We use €, to denote
that a random variable is distributed uniformly over some set.

Fact 1.4. Mutual information and relative entropy satisfy the fol-
lowing standard properties (Cover & Thomas 2006):

(i) Direct sum: I(A ; By---B,) >I(A; B;)+---+1(A ; B,)
if By --- B, are fully independent.
(ii) Alternative definition: 1(A ; B) =E,.4D((B|A = A) || B).
(iii) Pinsker’s inequality: D(A || B) > 2A(A, B)2.

All protocols II are randomized and have both public and pri-
vate coins, unless otherwise stated, and we use CC(II) to denote
the worst-case communication cost. When we speak of an arbitrary
F, by default it is assumed to be a two-party partial function. Also,
complexity class names (such as BPP) refer to classes of (families
of) two-party partial functions with polylogarithmic communica-
tion protocols of the relevant type.

2. Communication lower bound for tribes

The upper bound for Theorem 1.1 was shown in Section 1.1. In this
section, we give the proof of the lower bound, which is broken into
four steps corresponding to the four subsections. In Section 2.1, we
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use known techniques (Bar-Yossef et al. 2004; Braverman & Moitra
2013; Jayram et al. 2003) to show that it suffices to prove a certain
information complexity lower bound for a constant-size function;
there are no substantially new ideas in this step. Then in Section
2.2, we further reduce to a problem involving just nine inputs at
a time. In Section 2.3 and Section 2.4, we finish the proof of the
lower bound by showing how to tightly relate probabilities (coming
from the protocol’s correctness) to the corresponding contributions
to the protocol’s information cost.

2.1. Step 1: conditioning and direct sum. As noted in Sec-
tion 1.5, it suffices to prove the lower bound for TRIBES),, =
ANDy o Oan o 3EQ™™ instead of TRIBES,,. Suppose for con-
tradiction there is a (1/2 4 €)-correct protocol II for TRIBESy,,
with CC(II) < o(efm). As a technicality, we assume II has been
converted into a private-coin-only protocol, where Alice first pri-
vately samples the public coins (if any) and sends them to Bob.
(This could blow up the communication, but we will only use the
fact that the “original communication” part of the transcript has
bounded length, not the “public coins” part.)

We can think of the input to TRIBES),, as an £ X m table
where each cell has two trits, one for Alice and one for Bob. As is
standard in information complexity lower bounds, we define a dis-
tribution over inputs, equipped with a “conditioning scheme” that
decomposes the distribution into a mixture of product distribu-
tions (where Alice’s and Bob’s parts of the input are independent
of each other). We do this by placing a uniformly random 1-input
to 3EQ at a uniformly random cell in each row, and for each of
the remaining cells choosing at random a rectangular “window” of
O-inputs to 3EQ, from which the input to that cell is drawn.

Formally, let us define #4 := {{00}, {11}, {22}} as the set of
“I-windows” of 3EQ, and define

# = {{01,02},{10,12}, {20, 21}, {10,20}, {01, 21}, {02, 12} }

as the set of “O-windows” of 3EQ. We define a probability space
with the random variables: X € {0,1,2}**™, Y € {0,1,2}">™,
T € {0,1}*, J € [m]’, and W ¢ (2{01:21x{012hxm = Choose J
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uniformly, and for each (7, j) € [¢] x [m] independently, let

W, it j=J,;
W, e {01
Wy itg#J;

and let (X, ,Y; ;) €, W, ;. Note that XY is supported on 1-inputs
of TRIBES'g,m, and that X and Y are independent conditioned on
W. Finally, let 7 be the random transcript on input (X,Y).

Define X_; = (X, ;)25 (and Y_; similarly), and let 7¢ de-
note the “original communication” part of 7, and 7% denote the
“public coins” part of 7. We have

I(r; X_;Y_;|W)

(79 X_,Y_; | Wrh)
H(TC | WTR)

ce(1n)

o(efm)

INIAIA

where the equality holds by the chain rule and independence of
78 and W XY . If we augment the probability space with random
variables (¢, k) sampled uniformly from ([¢] x [m]) ~ {(i,J;) : i €
[/]} (independent of the other random variables, conditioned on
J), then by Fact 1.4.(i) we have

I(7; XipYir |Wik) < gy 17 XsYg [W) < o(e)
(using (7| W =W) as A and (XY, | W = W) as a component
of B, for any particular W). For convenience let j = J;, let
h = {j,k}, let W}, be the restriction of W to the 2 coordinates
in {¢} x h, and let W_; ;, be the restriction of W' to the remaining
¢ x'm — 2 coordinates. There must exist outcomes i*, h*, W*,. ;.
such that

(2.1)

I(7; XinYik | Wink, i =, h="h", W_ip =W2.,.) < ole).

Note that given this ¢*, h*, WZ,. .., the remaining conditioning vari-
ables W; k have 36 possible outcomes: 2 choices for k (it could
be either element of h*, and j is the other), 3 choices for W; ;, and
6 choices for W .
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We rephrase the situation by considering a protocol IT* that
interprets its input as X« -, Yi« p=, uses private coins to sample
X pey Y= po uniformly from W=, ., then runs the private-coin
protocol Il on the combined input X,Y. Observe that II* is a
(1/2 + €)-correct protocol for ORy 0 3EQ? since with probability 1,
(ORy 0 3EQ?) (X pe, Yie =) = TRIBESZm(X, Y) (as the evaluation
of the 3EQ functions on X_;« p«, Y_;« » is guaranteed to have a 1
in each of the non-i* rows, and 0’s in the non-A* columns of the ¢*
row). Here, we now think of the two coordinates in {i*} x h* as
being labeled 1 and 2.

For convenience, we henceforth recycle notation by letting II
denote the new protocol IT* and letting (j,k) €, {(1,2),(2,1)},
W, e, W, Wi €4 %, (X1Y1) €4 Wi, (X0Y3) €, W, With

respect to this recycled notation, the inequality 2.1 becomes
(2.2) I(7 ; X3.Y;, | WE) < ofe).

The following lemma, whose proof occupies the remaining three
subsections, provides the contradiction, completing the proof of
Theorem 1.1.

LEMMA 2.3. If 2.2 holds then II is not a (1/2+ €)-correct protocol
for OR2 ¢} 3EQ2

2.2. Step 2: uniformly covering a pair of gadgets. Let us
set up some notation (all in reference to the private-coin protocol
IT). If X is an Alice input and Y is a Bob input, let 7y, denote
the probability IT accepts on input (X,Y). For a 1 x 2 rectangle of
inputs {U} x {v,w} let ¢y w denote the mutual information be-
tween the random transcript of IT and a uniformly random input
from {(u,v),(u,w)}. Similarly, for a 2 x 1 rectangle of inputs
{v,w} x {U} let tyw,y denote the mutual information between
the random transcript of II and a uniformly random input from
{(v,v),(w,u)}. We write U = U,U; € {0,1,2}? and similarly for
VvV and W.

Since in the inequality 2.2 there are only a constant number of
possible outcomes for Wk, the o(e) bound holds conditioned on
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each of those outcomes. Thus, 2.2 can be further rephrased as

tuyw < o(€) and tyw,y < 0(e)
(2.4) if Uy, vy, wy are all equal and Uy, Vo, Wy are all distinct,

or Us, Vo, Wy are all equal and Uy, Vi, Wy are all distinct.

The following lemma (illustrated in Figure 2.1) is proved in the
remaining two subsections.

LEMMA 2.5. For any Alice inputs A, B, C and Bob inputs D, E, F,
we have

Tap — Tar — Tep T Tor < 128(LA,DE + tagp + tope T+ LCB,F)'
We now show how to use Lemma 2.5 to prove Lemma 2.3.

PROOF (of Lemma 2.3). First, we define a map from {0, 1,2}? x

{£1}? to ({0, 1, 2}?)8 that takes “data” consisting of t1,t, € {0,1,2}
and d1, 9y € {£1} and maps it to a tuple of Alice inputs A, B, C and

Bob inputs D, E, F defined by

A =1y, (tg —+ (52) B =11,1 C = (tl + (51),t2
D = tl,(t2_62> E:=1t,1 F = (t1—51)7t2

(where the addition is mod 3). For any choice of the data, we
have (B,E) € (3EQ?)*(11) (hence the dark gray shading in Figure
2.1), (A, D), (B,D), (A, E) € (3EQ*)~1(10) and (¢, F), (C,E), (B, F) €
(3EQ?)~(01) (hence the light gray shading), and (A,F),(c,D) €
(3EQ*)~1(00).

Note that there are 36 possible choices of the data, and that
|(3EQ*)~'(10)| = |(3EQ®)!(01)| = 18 and |(3EQ?)~'(00)| = 36.
It is straightforward to verify the following key properties of our
map.

e The A,D coordinates form a 2-to-1 map onto (3EQ?)~'(10)
(since 0, is irrelevant).

e The ¢, F coordinates form a 2-to-1 map onto (3EQ?)~!(01)
(since 0y is irrelevant).

e The A, F coordinates form a 1-to-1 map onto (3EQ*)~'(00).
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Figure 2.2: Illustration for Lemma 2.8.
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e The ¢, D coordinates form a 1-to-1 map onto (3EQ*)~*(00).
» The quantities ty pg, tapps lerss Lese are always < o(e) by
2.4.

Now we have (letting the dependence of A, B, C, D, E, F on ty, to, 01, 02
be implicit)

Z(X,Y)G(SEQ2)*1(10)U(3EQ2)*1(01) Txy — Z(X,Y)€(3EQ2)*1(00) X,y

% Ztl,t%gl’@ (7TA,D — Tar — Tep T 7TC,F)

% Ztl,t2,51,62 128 (LA,DE + tagp + Lope T+ LCB,F)
1-36-128-4-0(e)

o(e)

where the second line is by the first four key properties of our map,
the third line is by Lemma 2.5, and the fourth line is by the last key
property. Hence, IT cannot be (1/2+¢)-correct for ORy03EQ? since

otherwise the first line would be at least 36-(1/24¢)—36-(1/2—¢) =
T2e. U

IA A

2.3. Step 3: relating information and probabilities for in-
puts. We first set up some notation. For numbers u, v, w € [0, 1],
define Z(u,v,w) = u(v — w)?/(v + w) (with the convention that
0/0 = 0). For an input (X,Y) and a transcript 7, we let the num-
bers 7y, 7y € [0, 1] be such that P[II(X, Y) has transcript 7] = 7 - 7y
(where 7 does not depend on Y, and 7, does not depend on X).
Note that myy = Zaccepting L Tx - Ty

The following fact was also used in Braverman & Moitra (2013);
we provide a proof for completeness.

LEMMA 2.6. For any rectangle {U} x {v,W}, we have t;yw >
>, Z(7o, v, Tw). Symmetrically, for any rectangle {v,w} x {u}
we have tyyy > % > L7y, Ty, Tw)-

PROOF.  Assume the random variable Y €, {v, w} is jointly dis-
tributed with 7 (the random variable representing the transcript).
Note that P[r = 7] = 17y (r + 7v) and that A((Y |7 =7),Y) =

+ —min(r, 7w) /(v + Tw) = 3|7v — Twl|/(7v + Tw). Then, we have

luvw = ]I(T ; Y)



2 Page 16 of 37 T. Watson cc

= ETNT]D)(Y T=1)|Y)

> > Plr=1]-2A((Y |7 =1) )2
2
=2, ( u(Tv +TW)) ( )/(Tv+TW)>
= 42 To(Tv — W>2/(TV+TW)
where the second line is by Fact 1.4.(i7), and the third line is by
Fact 1.4. (iii). O

Intuitively, Lemma 2.6 means Z(7, 7y, Tw) lower bounds the
“contribution” of 7 to the information cost. Now that we have
related the information costs to the contributions, we need to re-
late the contributions to the probabilities of observing individual
transcripts. The following two lemmas allow us to do this.

LEMMA 2.7. For any four numbers q,r,s,t € [0,1], we have

—qgs+qt+rs—rt < Q(I(q, s,t) +I(87Qar>)'

LEMMA 2.8. For any six numbers a,b,c,d, e, f € [0,1], we have

—ad + 2ae — af 4+ 2bd — 4be + 2bf — cd + 2ce — cf
< 32(Z(a,d,e) + Z(d,a,b) + Z(c, f,e) + Z(f,c,b)).

Lemma 2.7 is from Braverman & Moitra (2013). Lemma 2.8
(illustrated in Figure 2.2) is more involved and constitutes one
of the key technical novelties in our proof of Theorem 1.1. For
example, one insight is in finding the proper list of coefficients on
the left side of the inequality in Lemma 2.8, to simultaneously make
the lemma true and enable it to be used in our proof approach for
Lemma 2.5.

The proof of Lemma 2.7 in Braverman & Moitra (2013) pro-
ceeds by clearing denominators and then decomposing the differ-
ence between the right and left sides into a sum of parts, such that
the (weighted) AM-GM inequality implies each part is nonnega-
tive. A priori, it is conceivable the same approach could work for
Lemma 2.8; however, the problem of finding an appropriate decom-
position can be expressed as a linear program feasibility question,
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and with the help of an LP solver we found that this approach ac-
tually does not work for Lemma 2.8 (even with 32 replaced by other
constants). To get around this, we begin by giving a significantly
different proof of Lemma 2.7, which we are able to generalize to
prove Lemma 2.8. We provide our proofs of both lemmas in the
remaining subsection, where we also give some intuition.

For now, we complete the proof of Lemma 2.5. Here, we em-
ploy another key idea (beyond the proof structure of Braverman &
Moitra (2013)): the corresponding part of the argument in Braver-
man & Moitra (2013) finishes by simply summing Lemma 2.7 over
accepting transcripts, but this approach does not work in our con-
text. We also need to take into account the rejecting transcripts
and the fact that the acceptance and rejection probabilities sum
to 1, in order to orchestrate all the necessary cancellations.

PROOF (of Lemma 2.5).  We have
—Tap T 27TA,E — Tar + 27TB,D
_47TB,E + 27TB,F — Tep + 27TC,E — Tle,r

= Zaccepting ’T(_TATD + QTATE — TaTr + 27’BTD
—4Ts Ty + 27Ty — TeTp + 27cTe — TcTF)
(2'9) < 32 Zaccepting T (I(TAa Tp, TE) + I(TD, Ta, TB>
+I(7_C7 TF? TE) _'_ I(TF, Tc, TB)) .

by Lemma 2.8 with (a,b,c,d,e, f) = (T, Ts, Te, To, To, Tv)- We also
have

2(Tap — Taw — Moo + Tayp)
= 2(—(1 —Tap) + (1 —=7pp) + (1 —mpp) — (1 — 7TB7E))
= 2 Zrejecting . (—TATD + TaTe + TTp — TBTE)
(2.10) < 43" iccting AT, 70, 7) + Z(70, Ty )
by Lemma 2.7 with (q,r,s,t) = (s, Ts, Tp, 7). Similarly,

(2.11)
2(71'C,F_7T<:,1~:_7TB,F +7TB,E) < 4 Zrejecting T (I(Tc; Tr, TE)+I<TF7 Tc, TB))
2In fact, properly balancing the calculations in our proof of Lemma 2.7

shows that the factor of 2 can be improved to the golden ratio ¢ ~ 1.618,
which does not seem to follow from the proof in Braverman & Moitra (2013).
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by Lemma 2.7 with (q,r,s,t) = (7, T, Tr, 7). Summing the in-
equalities 2.9, 2.10, 2.11 yields

Ta,p — Tar — Tep T Mop
< 32) (I(TA, To, Te) + Z (7o, Ta, T8) + Z(7¢y T, T8) + Z (T8, Ty TB))
< 128 (LA,DE + tap + Lo LCB,F)

by Lemma 2.6. 0

2.4. Step 4: relating information and probabilities for tran-
scripts. We first give some intuition for why the inequality in
Lemma 2.8 is true. Suppose for some small d,e > 0 we have
a=1/24+,e=1/2+¢, and b=c=d = f = 1/2, as illus-
trated in Figure 2.3. (Although this is just a specific example, the
phenomenon it illustrates turns out to hold in general.)

The left side of the inequality is the linear combination of the
areas of the 9 rectangles, with coefficients as indicated in the figure.
The purple regions are congruent and hence cancel out since the
coefficients sum to 0. The red regions are congruent and hence
cancel out since the coefficients in the top row sum to 0. The blue
regions are congruent and hence cancel out since the coefficients in
the middle column sum to 0. Thus, the left side is 2de since only
the green region contributes.

Regarding the four terms on the right side of the inequality,
the first and third are ©(e?), the second is ©(6?), and the fourth
is 0. Hence, left side = O(de) < O(e? + §%) = right side. The
point is that the right side only has terms that are quadratic in
J, €, while the left side has “higher-order” terms (at least linear in
J, €) but those higher-order terms miraculously cancel out leaving
only quadratic terms. The key property for the cancellation is that
in every row and every column, the coefficients sum to 0.

We proceed to our formal proofs of Lemma 2.7 and Lemma
2.8. To avoid division-by-0 technicalities, we assume the relevant
quantities are infinitesimally perturbed so none are 0.

3We have not attempted to verify whether an analogue of Lemma 2.8 holds
for every such list of coefficients.
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d € f
al -1 2 1| -1
b| L2 (4| ot
c E—ll 5255 5—1:

Figure 2.3: Intuition for Lemma 2.8.

PROOF (of Lemma 2.7). Define
L= —qs+qt+rs—rt = (g—r)(t—2s)

to be the left side of the inequality in the statement of Lemma 2.7,
and define

R = I(g,5,t) + I(s,q,7) = (t—s)°+

2
t+s q+r (4=7)
to be the right side except for the factor of 2. The goal is to show
that R > L£/2. If ¢ > rand s > ¢, or if r > ¢ and t > s, then
L <0 <R, so we are done in these cases. Now consider the case
that ¢ > r and t > s. (The remaining case, that r > ¢ and s > ¢,
is symmetric.) If ¢ < 3s (so s/(t+s) > 1/4) then since q/(¢+7r) >
1/2, the product of the two terms of R is > (q — 7)%(t — 5)?/8,
so by AM-GM, R > 2(q — r)(t — s)/v8 > L/2. Tf t > 3s then
t+s < 2(t — s) so the first term of R is > (q/2(t — 8))(t — 5)* =
q(t —s)/2> L]2. O
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PROOF (of Lemma 2.8). Define

L = —ad+ 2ae — af + 2bd — 4be + 2bf — c¢d + 2ce — cf
= (a—2b+c¢)(—d+2e— f)

to be the left side of the inequality in the statement of Lemma 2.8,
and define

R = Z(a,d,e) + I(dsa,b) + Z(c, f,e) + I(f.e.b)

2 f 2
(= f)+ = (e =)

S (e —d)* +

AR
e+d (a )+

c
a+b e+ f
to be the right side except for the factor of 32. The goal is to show
that R > £/32. ff a4+ c>2band d+ f > 2e, or if a + ¢ < 2b and
d+ f < 2e, then £L <0 <R, so we are done in these cases. Now
consider the case that a + ¢ > 2b and d + f < 2e. (The remaining
case, that a + ¢ < 2b and d + f > 2e, is symmetric.) We consider
four subcases; the first two are just like our argument for Lemma
2.7, but the other two are a bit more complicated.

c<aandd < f: Then £ < 4(a —b)(e —d). If e < 3d (so
d/(e+d) > 1/4) then since a/(a+b) > 1/2 (because b < a follows
from a+c¢ > 2b and ¢ < a), the product of the first two terms of R
is > (a—b)*(e —d)?*/8, so by AM-GM, the sum of these two terms
is > 2(a —b)(e —d)/v/8 > L/6. If e > 3d then e +d < 2(e — d)
so the first term of R is > (a/2(e — d))(e — d)? = a(e — d)/2 >
(a—0b)(e—d)/2> L/8.

a < cand f < d: Then £ < 4(c—b)(e— f). If e < 3f (so
f/(e+ f) > 1/4) then since ¢/(c+b) > 1/2 (because b < ¢ follows
from a+ ¢ > 2b and a < ¢), the product of the last two terms of R
is > (c—b)*(e — f)?/8, so by AM-GM, the sum of these two terms
is > 2(c—b)(e — f)/V/8 > L/6. If e > 3f then e + f < 2(e — f)
so the third term of R is > (¢/2(e — f))(e — f)*> = cle — f)/2 >
(c=b)(e—f)/2>L/8.

a < candd < f: Then £ < 4(c—b)(e —d). If e < 2f (s0
f/(e+d) >1/3) and ¢ < 5a (so a/(c+b) > 1/10) then the product
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of the first and last terms of R is > (¢ —b)%(e — d)?/30, so by AM-
GM, the sum of these two terms is > 2(c — b)(e —d)/v/30 > L/12.
If e <2fand ¢ > 5a then f > (e —d)/2 and ¢+ b < 4(c — b)
(because 6¢ > 5¢ + 5a > 10b) so the last term of R is > (f/4(c —
b)(c—0b)2 = flc—=b)/4 > (c—b)(e—d)/8 > L/32. If e > 2f
then e+ f < 3(e— f)and e — f > ¢/2 > (e — d)/2 so the third
term of R is > (¢/3(e — f))(e — f)2 =cle — f)/3 > cle — d)/6 >
(c—=b)(e—d)/6 > L/24.

c<aand f <d: Then £ < 4(a—b)(e— f). If e < 2d (s0
d/(e+ f) > 1/3) and a < 5¢ (so ¢/(a + b) > 1/10) then the
product of the middle two terms of R is > (a — b)*(e — f)?/30,
so by AM-GM, the sum of these two terms is > 2(a — b)(e —
f)/V/30 > £/12. If e < 2d and a > 5¢ then d > (e — f)/2 and
a+b < 4(a—"b) (because 6a > 5a+5¢ > 10b) so the second term of
Ris > (d/4(a—b))(a—b)? =d(a—0b)/4 > (a—Db)(e—f)/8 > L/32.
If e > 2d thene+d < 3e—d) ande—d > ¢/2 > (e — f)/2
so the first term of R is > (a/3(e — d))(e — d)* = a(e — d)/3 >
ale — 1)/6> (a—b)(e — )/6 > £/24. .

3. Query lower bound for tribes

The upper bound for Theorem 1.2 was shown in Section 1.2; we
now prove the matching lower bound.

Suppose for contradiction there is a randomized decision tree,
which is a distribution 7 over deterministic decision trees that
always make at most y/em/2 queries, and which accepts O-inputs
with probability at most 1/2 — € and 1-inputs with probability at
least 1/2 + €. Consider the following pair of distributions (Dy, D)
over O-inputs and 1-inputs, respectively: to sample from Dy, pick
i €, {1,2},5 €, [m], k €, [m] independently and set z; ; = z; 1 =
1 (and the rest of the bits to 0). To sample from Dy, pick j €,
[m], k €, [m] independently and set z; ; = 294 = 1 (and the rest
of the bits to 0).

We claim that for an arbitrary 7" in the support of 7', for each
r € {0,1,2}, letting A, be the set of 2’s such that T'(z) accepts
after having read exactly r 1’s, we have Pp, [A,] — Pp,[4,] < €/4.
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This yields the following contradiction:

2¢ = (1/24¢€) —(1/2—¢)

E.p, [Prr[T(2) accepts|] — E.p, [Prr([T(2) accepts|]
= Er.r []P’ZND1 [T(z) accepts| — P,..p,[T(2) accepts]}

ETNT [ZT (PDl [Ar] - PDO [AT])i|
< e/dte/dtefd

IN

(where the dependence of A, on T is implicit on the fourth line).
To prove the claim, we first set up some notation. Consider the
execution of 7" when it reads only 0’s until it halts. Let S; C [m)]
(7 € {1,2}) be the coordinates of z; queried on this execution, and
let 0; == |S;|/m; note that d;+8, < v/€/2. For each ¢ € [|S1|+]5]],
let

e B? be the set of z’s that cause T" to read ¢ — 1 0’s then a 1,
i7 € {1,2}, h? € [m] be such that zq p is the location of that
]‘7

o (9 C B be the set of 2’s that cause T to read ¢ — 1 0’s, then
a 1, then only 0’s until it halts,

ST C Im] (i € {1,2}) be the coordinates of z; queried on the
execution corresponding to C'Y9,

of == |S|/m (i € {1,2}); note that &7 + 03 < \/¢/2.

Case r = 0: If the execution that reads only 0’s rejects then
Pp, [Ao] = Pp,[Ao] = 0; otherwise

Pp, [Ao] = Ppy[Ag] = (1= 01)(1—d2) = 5(1 = 61)% — 3(1 — d2)°
010> — 5(0% + 63)
< €/4.

Case r = 1: For each ¢, assuming for convenience that ¢ = 1, we
have

Pp,[C9 = P[j=h%and k€ S]] = (1-6%)/m < 1/m
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and

]P)Do[cq]
> Pli=1]-P[(j = h? and k & S7) or (k= h? and 5 ¢ S7)]
= 12 (—a)m
> (1- \e/2)/m

and so Pp, [C9] — Pp,[C?] < v/e/(2m). Letting @ C [|S1] + |Sa|]

be those ¢’s for which the execution corresponding to C'? accepts,
and noting that A; = J, .o €Y, we have

Pp, [Al] — Pp, [Al] = quQ (PDl [Cq] —Pp, [Cq])

< (Vem/2) - e/ (2m)
= ¢/4.

Case r = 2: We have

P..p, [T(z) reads at least one 1] P[j € S or k € S5]
01 + 09

Ve/2.

For each ¢, assuming for convenience that ¢ = 1, we have

IAINA

P..p,[T(z) reads two 1’s

z€BI] = P,.p[ke St ze B
&5
N

(the middle inequality may not be an equality, since prior to read-
ing the first 1, 7" may have read some 0’s in z). Hence

IAIA

Pp, [As] — Pp,[A,]
< P.op, [T(2) reads two 1’s]

= P..p, [T(z) reads at least one 1]
-P.p, [T (2) reads (z) reads at least one 1]
(

< (Ve/2)- (Ve/2)
= ¢/4.
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4. Which one is the 1l-input?

We prove Theorem 1.3 and related results in this section. We state
and apply the key lemmas in Section 4.1, and we prove them in
Section 4.2. We describe some ways to reinterpret Theorem 1.3 in
Section 4.3. We discuss some related questions in Section 4.4.

4.1. Overview. Let us first review some definitions.

Correctness: We say 11 is p-correct if for each (X, Y) in the domain
of F, we have P[II(X,Y) = F(X,Y)] > p over the randomness of
[1. For a distribution D over the domain of F', we say Il is (p, D)-
correct if P[II(X,Y) = F(X,Y)] > p over both the randomness
of Il and XY ~ D.

Efficiency: We let CC(II) denote the worst-case communication
cost of II. Letting D’ be a distribution over the set of all possi-
ble inputs to II (which is a superset of the domain of F'), define
1CP'(1T) = I(t; X |YR™) +1(7 ; Y | XRP) to be the inter-
nal information cost with respect to XY ~ D’ (where T denotes
the random transcript and RP"™ denotes the public coins)?.

Complexity: We can define the following complexity measures.
(Note that in this notation, the subscripts are related to correctness
and the superscripts are related to efficiency.)

( ) = min p-correct I1 OC (H)
Rp,D<F) = min (p, D)-correct IT OO(H)

(F) = infpeomern  1C7(TD)

( ) = inf (p, D)-correct 11 [CD/ <H>

LEMMA 4.1. For every F' and balanced distribution D = %Do +
D, on the domain of F, we have

P
1/2+€/2,D

(F) < Ry (WHICH, 0 FY) /L.

4This notation is somewhat different than in Section 2.1, where we found
it more convenient to let 7 denote the concatenation of the communication
transcript and the public coins.
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LEMMA 4.2. For every F', we have
R1/2+E/4(F) < R1/1+E(WHICH6 o Fg)

We provide the (very similar) proofs of these two lemmas in
Section 4.2. The key idea is that if we embed a random 1-input
of F into a random coordinate and fill the other ¢ — 1 coordinates
with random O-inputs of F, then the protocol for WHICH, 0 F** will
find the embedded 1-input with advantage €, whereas if we em-
bed a random O-input in the same way then the protocol cannot
achieve any advantage since the coordinate of the embedding be-
comes independent of the /-tuple of 0-inputs given to the protocol.
For Lemma 4.1, we use a direct sum property for information to
get the factor ¢ decrease in cost; for Lemma 4.2 we do not get a
decrease since there is no available analogous direct sum property
for communication.

PROOF (of Theorem 1.3). The upper bound was shown in Sec-
tion 1.3. Let F' := UNAMBIG-OR,, o 3EQ™. As noted in Section
1.5, it suffices to prove the lower bound for WHICH, o F* instead of
WHICH;0 UNAMBIG-INTER! . For b € {0, 1}, let Dj be the uniform
distribution over F~1(b), and let D := 3 Do+ 1D;. It was shown in
Braverman & Moitra (2013) that I?/()Qﬁ’D(F) > Q(em);® the result
was not stated in this way in that paper, but careful inspection of
the proof yields it. Then Ry /oy (WHICH, 0 F*) > Q(elm) follows
immediately from this and Lemma 4.1. 0

Note that for any communication complexity class C, if F' € C
then WHICH, o F2 € C N coC. Hence for ¢ = 2 and € a positive
constant, Lemma 4.2 implies that if C € BPP then CNcoC € BPP.
In particular, taking F' = UNAMBIG-INTER (and C = UP), we have
a simple proof of a result of Klauck (2003, Theorem 2 of the arXiv
version), using as a black box the fact that F' ¢ BPP.

5The simplified proof of the main conclusion R4 /24+¢(UNAMBIG-INTER,, ) >
Q(em) given in Goos & Watson (2016) does not yield the needed information
complexity lower bound.

SFor one thing, the write-up in Braverman & Moitra (2013) indicates that
the information lower bound argument only works for protocols that have been
“smoothed” in some sense, but actually this assumption is not necessary.
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4.2. Proofs.

PROOF (of Lemma 4.1). Consider an arbitrary (1/¢ + €)-correct
protocol II for WHICH, o F*. Define a probability space with the
following random variables: © €, [¢], XY is an input to II such that
X,Y; ~ D and X,Y; ~ D, for j € [¢(]\{¢} (with the ¢ coordinates
independent conditioned on %), T is the communication transcript
of I, and RP™, RY™ RE™ are the public, Alice’s private, and
Bob’s private coins, respectively. Let I’ be the following protocol
with input interpreted as X;Y;.

.....

.....

outcome of Y1 ,) and RY™
Bob privately samples Y;
,,,,, i—1) and Rgr”
Run IT on the combined input XY with coins
RPUb, RI/)\“V, R%I‘IV

If IT outputs ¢ then output 1, otherwise output 0

-----

For a bit b, let Ej, denote the event that F'(X;,Y;) = b. We have

ICPe(11)
= I(7 ; Xi | Yi,i, X1, i1, Yien,.0, R, )

..........

----------

I(7; X | X1, Y0, R, Ey)

777777777

I
=
7
ll

RS

..........

IAIA
S e

where the inequalities follow by known facts (see Braverman &
Moitra (2013, Fact 2.3 of the ECCC Revision #1 version) and
Braverman & Rao (2014, Lemma 3.14 of the ECCC Revision #1
version)). We also have

P[IT" outputs 1 ‘ Ei] = P[II outputs % } E] > 1/t+e
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by the correctness of IT (since ¢ = (WHICH, 0 F*)(X,Y’) assuming
Ey). We also have

P[II" outputs 1 } Ey] = P[II outputs & | Ey| = 1/¢

since conditioned on Fj, ¢ is independent of XY . Hence over the
randomness of the whole experiment, the probability Il is correct
is at least (1/2) - (1/0+¢€)+(1/2)- (1 —1/0) =1/2+¢€/2. O

PROOF (of Lemma 4.2). By the minimax theorem, it suffices to
show that for every distribution D over the domain of F,

R1/2+6/4,D(F) < Rl/g_;_e(WHICHg o Fe)

If either F~1(0) or F~1(1) has probability at least 1/2 + €/4 under
D, then a protocol that outputs a constant witnesses Ry /24¢/4, p(F) =
0, so we may assume otherwise. For a bit b, let D, be the distri-
bution D conditioned on F~1(b).

Consider an arbitrary (1/¢+¢)-correct protocol 11 for WHICH, 0
F*. Define a probability space with the following random variables:
1 €, [{], XY is an input to Il such that X,;Y; ~ D and X,;Y; ~ D,
for j € [¢]~{2} (with the ¢ coordinates independent conditioned on
i), and RP">, RY™ RP™ are the public, Alice’s private, and Bob’s
private coins, respectively. Let X _;Y_; denote XY restricted to
coordinates in [(]\{2}. Let I be the following protocol with input
interpreted as X;Y;.

Publicly sample %, X_;, Y_;, and RP"

Alice and Bob privately sample RY™ and RY™, respectively
Run IT on the combined input XY with coins

Rpub, Rgrlv’ RF];I‘IV

If IT outputs ¢ then output 1, otherwise output 0

Note that CC(II") < CC(II). For a bit b, let Ej, denote the event
that F(X;,Y;) = b. We have

P[I" outputs 1 ‘ Ei] = P[II outputs % ‘ E] > 1/l+e

by the correctness of IT (since ¢ = (WHICH, 0 F*)(X,Y’) assuming
Ey). We also have

IP[H’ outputs 1 } EQ] = P[H outputs 2 | E’O] = 1/¢
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since conditioned on Fjy, 2 is independent of XY . Hence over the
randomness of the whole experiment, the probability Il is correct
is at least the minimum of (1/24¢/4)-(1/0+€)+(1/2—¢/4)-(1—1/¢)
and (1/2 —e€/4)- (1/0+¢€) + (1/2+¢/4) - (1 — 1/£), both of which
are at least 1/2 + €/4. O

4.3. Corollaries. We now describe how Theorem 1.3 implies
two other results, which give different perspectives. One result
concerns so-called SV-nondeterminism, and the other concerns pro-
tocols whose output is a sample from a distribution.

Generally speaking, for a function with codomain [¢], an SV-
nondeterministic algorithm can make a nondeterministic guess and
output a value from [¢/]U{_L}, and on every input it must (1) output
the correct value for at least one guess, and (2) for each guess
output either the correct value or .7 (For ¢ = 2, this corresponds
to an NP N coNP type of computation.) This definition makes
sense for communication complexity, where it turns out an SV-
nondeterministic protocol can be equivalently defined as follows:
there is a collection of rectangles each labeled with a value from [¢],
such that the union of the rectangles labeled v € [{] exactly covers
the set of all v-inputs. We let SV(F') denote the minimum cost,

e., log of the number of rectangles, of an SV-nondeterministic
protocol for F.

COROLLARY 4.3. There exists an F' with codomain [(] such that
Rijeic(F) > Q(e25VE)). Moreover, this is tjght: for every F with
codomain [(], we have Ry e (F) < O(e25V¥)) provided €25V >
1.

PrOOF. By Theorem 1.3, the first part is witnessed by F =
WHICH,; o UNAMBIG-INTER? (for any ¢ and m with elm > 1)
since SV(F') < log(¢m). As for the second part, given a cost-c¢ SV-
nondeterministic protocol for F', Alice and Bob can publicly sample
a subset of 2¢2¢ of the 2¢ rectangles, and if the input lies in any of
them (which can be checked with O(€2¢) bits of communication)

"SV stands for “single-valued,” which historically comes from the fact that
the set of non-L values that are output on a given input (over the possible
guesses) must be a singleton.
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then they output the label of that rectangle, otherwise they output
a uniformly random value from [¢]. O

Let D, denote the set of all probability distributions over [¢].
A function F with codomain D, can be viewed as a sampling
problem, where given input (X,Y’) the goal is to output a sam-
ple from (or close to) the distribution F(X,Y). We define S,(F)
as the minimum worst-case communication cost of any protocol IT
that, for each input (X,Y’), outputs a sample from a distribution
II(X,Y) € Dy such that A(II(X,Y), F(X,Y)) <1 —p. Note that
the uniform distribution over [¢] is within distance 1 —1/¢ of every
distribution in Dy, so S1,(F) = 0 for all F'. Thus, it makes sense
to consider the complexity of achieving advantage €, i.e., Sy /p4e(F).

A natural nondeterministic analogue of sampling is sampling
with postselection: a protocol may output L with probability <
1, and conditioned on not outputting |, the output should be
a sample from (or close to) F(X,Y). An issue is that if we do
not restrict the probability of outputting 1, then every F' can
be sampled with postselection with constant communication (by
using public coins to guess what the joint input is). Hence, we
define PS,(F') as the minimum CC(II) 4 log(1/«a) of any protocol
IT that, for each input (X,Y’), conditioned on not outputting L,
outputs a sample from a distribution II(X,Y) € D, such that
A(H(X, Y), F(X, Y)) < 1 —p, and where o > 0 is defined as the
minimum over inputs of the probability of not outputting L. (Such
logarithmic terms appear in the cost measures for several other
communication models; see G66s et al. (2016) for more details.) We
note that a protocol with communication cost ¢ and associated «
can be modified to have communication cost 2 and associated o/ =
«/2¢ assuming w.l.o.g. that for each outcome of the public coins,
the corresponding deterministic protocol has exactly 2¢ possible
transcripts, Alice and Bob can sample all the coins as usual as well
as publicly sample a uniformly random transcript; they can then
check whether the guessed transcript would have been the real one,
and if so output the same value and if not output L.

COROLLARY 4.4. There exists an F' with codomain D, such that
S1/e4e(F) > Q(e2P51UN) . Moreover, this is tight: for every F with
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codomain Dy, we have Sy jp1(F) < O(e2P31)) provided e2F5:(F) >
1.

PrROOF. By Theorem 1.3, the first part is witnessed by F =
WHICH, o UNAMBIG-INTER', (for any ¢ and m with e/m > 1),
where we identify the output of F' (a value from [¢]) with the
distribution completely concentrated on that value, in which case
we have S1/04(F) = Rijpe(F) > Q(elm) and PS;(F) < O(1) +
log(¢m). As for the second part, given a PS; protocol for F' with
communication cost 2 (which is w.l.o.g. as noted above) and as-
sociated «, Alice and Bob can run that protocol O(e/a) times; if
it ever produces a non-_L output (which happens with probability
> 2¢) then they output the same value, otherwise they output a
uniformly random value from [¢]. The statistical distance of this
distribution to F'(X,Y) is < 2e-0+(1—2¢)-(1—1/¢) <1—-1/l—e.

O

4.4. Related questions. One question is how strong of a con-
verse there is to Lemma 4.2, i.e., how well Ry /ey (WHICH, o F*)
can be upper bounded in terms of Ry /24 5(F"). Doing so as a black-
box reduction (which would also work for query complexity) can
be phrased as the following problem: supposing there are ¢ coins,
one of which is good (having heads probability > 1/2 + §) and the
rest of which are bad (having heads probability < 1/2—0), identify
the good coin with probability > 1/¢ + € (over the randomness of
both the algorithm and the coin flips). This has somewhat of a
multi-armed bandit flavor and fits in the framework of “noisy deci-
sion trees.” As far as we know, it is open to determine an optimal
strategy for arbitrary ¢, €, d, but here are some observations. (In
conjunction with Lemma 4.2, these show that F' and WHICH, o F*
are at least qualitatively equivalent in complexity for small £.)

« Ry/a(WHICH; 0 F*) < £ - Ry_1¢)(F) since we can just flip
each coin once, and by a union bound, with probability 3/4
all the coins will have the “right” outcomes. (This does not
exploit any properties of WHICH,.) Of course, Ry_1 /s (F)
can be further upper bounded in terms of smaller-advantage
complexities by majority-amplification.
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* Ri/ete(WHICH, 0 FY < Rijoter/2(F) (provided e/ < 1) since
we can pick a coin uniformly at random and flip it; if it comes
up heads then output the index of that coin; otherwise output
a uniformly random one of the other ¢ — 1 indices. This im-
plies that R1/5+E(WHICHEOFZ> < 0(62-R1/2+6(F)) (provided
el < 1) since by Lemma A.1 we can boost € advantage to e//2
advantage with O(¢?)-repetition majority-amplification.

We also remark that R‘I%Jre(f) < O(R(f;e+e(WHICHg o f4)/(e0))
follows by combining the idea behind Lemma 4.2 with the idea be-
hind the “AND-composition lemma” in G66s et al. (2018a) (namely,
halting and outputting 1 if the number of queries exceeds O(1/(el))
times the height of the randomized decision tree for WHICH, o f*).
We omit the details of the simple analysis.

Finally, we remark that by combining Lemma 4.1 with the
“one-sided vs. two-sided information complexity” equivalence of
GOos et al. (2018a) and the “worst-case vs. average-case informa-
tion complexity” equivalence of Braverman (2015), it is possible to
derive a version of Lemma 4.1 with worst-case information com-
plexity on the left side of the inequality.

A. A delicate concentration bound

LEMMA A.1. Suppose a coin with heads probability %—i—& is tossed
N times (where 6 > 0 and N is odd). Then, the probability of
getting a majority of heads is at least %—FQ((F\/N) provided v/ N <
1.

As mentioned at the beginning of this paper, Lemma A.1 im-
plies the following bound.

COROLLARY A.2. Ry (GAP-HAMMING) < O(e*n) provided
e2n > 1.

PROOF (of Corollary A.2). Suppose Alice and Bob publicly sam-
ple a uniformly random one of the n coordinates and accept iff their
bits are unequal there. This can be viewed as a coin toss with heads
probability at least % + 1/4/n (where heads represents the output
being correct). Repeating the experiment ©(e*n) times and taking
the majority outcome boosts the success probability to % +e O



2 Page 32 of 37 T. Watson cc

Lemma A.1 follows without difficulty from a Chernoff bound
when N = ©(1/6%), and from the Berry—Esseen theorem when
w(1/§) < N < O(1/6%), but the general case seems to require a
direct proof, and we provide one below. We could not find a proof
in the literature. After this paper was written, other proofs of
Lemma A.1 were discovered and presented on Stack Exchange® by
Yury Makarychev and Clément Canonne.

PROOF (of Lemma A.1). We think of N as a fixed, sufficiently
large number, and § as varying in the range [0,1/v/N]. In fact,
since the probability in question is a monotonically increasing func-
tion of ¢, it suffices to consider ¢ € [0,0.01/v/N].

Letting p;s = (7) - (3 + )" - (5 — 6)N~", the probability is
Zi]\im /91 Dig- When 6 = 0 this equals % since N is odd, so it suffices
to show that the derivative of the probability with respect to J is
Q(VN) for all 6 € [0,0.01/v/N]. We introduce the shorthand

= + — % (and hence i = N - (1 + 7)), keeping in mind that ~
is a function of ¢ even though we suppress this dependence in the
notation.

The key claim is that %[piyg] =Cig - VN - (7 — 0) for some ¢; 5
that is nonnegative for all [N/2] < i < N and is in [2.5,3.7] for
all [N/2] <i < N/2+40.03v/N (so v € [0,0.03/v/N]). Then

d% [Zfiw/z] Pw] = Zi]i[N/Q'\ cig- VN - (y=9)
(Ziirei00 37 VN - (1 =9))
+(Ziewoosvm 25 VN - (1=9))
> <_3 7. \/_'ZLO.OI\/NJ %

<2 5.VN - ZLO .02VN|

v

2I“

> (~2L - (001VN +1)°/2
+(25 - (0.02VN - 1)"/2
> 0.0003v/N.

8https://cstheory.stackexchange.com/questions/36517/
statistical-distance-between-uniform-and-biased-coin.
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It remains to prove the key claim. We have

%[Pz’,a] = (]j) . (z . (% + 5)7%1 . (% _ 5)1\/77;
—(N —i)- (% +6)" - (% _ 5)N—z‘—1)
= (N-G+oy-G -9 (15 -15)

2

As a special case, this is nonnegative when ¢ = N, so henceforth
assume i < N (i.e., v < 3). By Stirling’s approximations,

(N) - . NV | N _ . 1 . 1 L
i (N=i)N =2\ i (N—) E ()N VE+)-GE-) VN

for some ¢ € [0.33,0.44]. We also have

i _ N—i _ N‘(%ﬂ_%—v)

T 1 346 36
_ N (0E20420-20)  (1-26)—(2y-2)
= 1+25 1-25

= N (el + ) (=)

Putting these things together, we have

%[piﬁ] =
1425\t (1-25\N—1 1 1 1
2¢; \(11_%) ’ (m) 1' V&G ’ (1+25 + 1—25) VN - (v = 9).
s P2 5"

(3

Thus, ¢;5 = 2¢, - /5 - /" - ¢§", which is certainly nonnegative for
1

v € [0,%). Henceforth assume v € [0,0.03/v/N]; then in par-
/11

ticular, ¢ € [1.99,2.01] since N is sufficiently large. Similarly,
¢y’ € [1.99,2.01]. Note that

ﬂ)Qi_N

Mok Ex * . 1—-452\N—1
Cis = CisCis where Cis = (1+2'y )

sk .
and ¢ = (=1

We have the following calculations.

. 1 \2i—-N 1 0.06v/ N
* Gy 2 (1+2v) > (1+0.06/\/N)
> (670.06/\/N)0.06\/N — 00036 > (99
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e sy < (1+20)%N < (140.02/V/N)00VN
< (eoos/f)ooe‘f — 00018 <~ 11

e ¢y > (1—461)N > (1—0.0004/N)N/?
> (e—Ool/N)N/Q _ 6_0'005 > 0.99

sor N/2

* Gy < (1 1y 2) ' < (170.0%)36/N)

< (OOI/N)N/Q = 0005 < 1.01
It follows that ¢/; € [0.99%,1.01%]. In conclusion, we have

¢s € [2:0.33:0.99%-1.99-1.99, 2.0.44-1.01*-2.01-2.01] C [2.5,3.7]

which proves the key claim. 0
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