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1 INTRODUCTION

There are several complexity class inclusions for which all the known proofs consist of “black-
box” simulations incurring at least a quadratic overhead in the running time. There have also
been lower bounds showing that for some of these inclusions, the quadratic overhead is neces-
sary for black-box simulations (which also yields corresponding oracle separations). We begin by
giving an overview of this topic. For convenience, we abbreviate “quadratic-overhead black-box
simulation” as “quadratic simulation.” (Some relevant complexity class definitions can be found in
Appendix A.)

e BPP C 3,P [16, 25] holds by quadratic simulations, and Viola [31] proved that the quadratic
overhead is necessary. Some known strengthenings of this inclusion include S,-BPP C S,P
[22] and the facts that 2-sided-error Merlin—-Arthur and Arthur-Merlin games are equiva-
lent to their 1-sided-error counterparts: MA; € MA; and AM; € AM;. Of course, the lower
bound in Reference [31] also applies to these strengthenings.

o Arthur-Merlin games can simulate Merlin-Arthur games (MA; € AM; and MA; C AM,)
quadratically [3]. Diehl [8] proved that the quadratic overhead is necessary, even for MA; C
AM;. (As a side result, we complement this by giving a quadratic simulation even for MA; C
AM,.)
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14:2 T. Watson

e MA; C PP [28] holds by quadratic simulations. As our main result, we prove that the qua-
dratic overhead is necessary (which was stated as an open problem in Reference [8]), even
for the weaker inclusion N-coRP C PP.! A strengthening of the latter inclusion is the qua-
dratic simulation for P-BQP C PP [12].

e PP is closed under intersection by quadratic simulations [4] (for all Ly, L, € P-TIME(n), we
have L; N Ly € P-TIME(n?)). Sherstov [23] proved that the quadratic overhead is necessary.

1.1 Statement of Result

A randomized decision tree with g queries and r random bits consists of a uniform distribution over
amultiset of 2" deterministic decision trees that each make at most g queries on every computation
path. A randomized decision tree computes a Boolean function with unbounded error if on each
input the output is correct with probability >1/2.

Consider the partial function Fy.cor that takes a 2" X 2" Boolean matrix with the promise that
each row has either all 1’s or at most half 1’s, and evaluates to 1 if there exists an all-1 row,
and to 0 otherwise. Note that Fy.cor is computable by a randomized unbounded-error decision
tree with O(n) queries and O(n?) random bits?; this is what underlies the standard proof that
MA;-TIME(n) C P-TIME(n?).

THEOREM 1.1. Every randomized unbounded-error decision tree for FN.cor uses either Q(n) queries
or 2" random bits.

For our interpretation about the necessity of a quadratic overhead (see the corollaries below), it
suffices to have Q(n?) random bits (rather than 2°(") at the end of the theorem statement. We con-
jectured that an Q(n) query lower bound holds regardless of the number of random bits, and based
on a suggestion from an anonymous reviewer, we can confirm this conjecture by combining our
argument with some machinery due to Sherstov [24]. We explain how to do this after presenting
our self-contained proof of Theorem 1.1 in Section 2.

COROLLARY 1.2. There is an oracle relative to which N-coR-TIME(n) ¢ P-TIME(o(n?)).

Corollary 1.2 holds in the standard model of relativization where the oracle tape is erased after
each query. This forces each query to cost linear time, which makes sense in our context, since a
query is intended to correspond to running a simulation of the deterministic algorithm underlying
an N-coR-TIME(n) algorithm. Corollary 1.2 follows in a completely routine way from Theorem 1.1
(see References [8, 31] for examples of how such diagonalization arguments go).

Our result can also be interpreted in terms of what we call “black-box proofs of
N-coR-TIME(n) € P-TIME(t).” Such a proof consists of a uniform randomized algorithm that takes
1" as input, computes Fy.cor With unbounded error on an instance it has oracle access to, and runs
in time O(t(n)), where each oracle query is charged time n. All known proofs of that inclusion are
indeed black-box.

COROLLARY 1.3. There is no black-box proof of N-coR-TIME(n) C P-TIME(o(n?)).

1We mention that in the world of communication complexity, a nearly quadratic separation between N-coRP-type com-
plexity and PP-type complexity is witnessed by the inner product mod 2 function—see Reference [1] for the N-coRP upper
bound and References [15, §3.5-3.6 and references therein] for the PP lower bound. However, this is not directly relevant
to our results, since the upper bound is really specific to communication complexity.

ZFirst, consider picking uniformly at random a row and a sequence of n + 1 bits from that row and accepting iff all those
bits are 1. This accepts 1-inputs with probability > 1/2" and 0-inputs with probability <1/2™*!. Now modify this by using
n + 3 more uniformly random bits, interpreted as the binary representation of an integer k < 2**3: If k < 2"*2 — 3, then
accept; if k > 22, then run the algorithm from the previous sentence; otherwise reject. The modified algorithm accepts
1-inputs with probability >1/2 — 3/27*% + 1/2™*! > 1/2 and 0-inputs with probability <1/2 —3/2"3 + 1/2"*2 < 1/2.
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Corollary 1.3 follows immediately from Corollary 1.2, since black-box proofs relativize. Corol-
lary 1.3 also follows directly from Theorem 1.1, since such a black-box proof is just a uniform,
time-efficient implementation of a randomized unbounded-error decision tree for Fy.cor that uses
o(n) queries and o(n?) random bits.

For convenience, we have focused on time n vs. n2, but our lower bound also works for any
time-constructible ¢(n) vs. t(n)?.

1.2 Relevance to Time-space Lower Bounds

There is a line of research on time-space lower bounds for problems related to satisfiability [26].
One of the motivations for Viola [31] to initiate the study of quadratic simulation lower bounds
was that they can provide barriers to improving such time-space lower bounds. It is known that
for every constant € > 0,

(i) SAT (which is NP-complete) cannot be solved by a deterministic algorithm running in time
n2 cos(m/7)—€ n1-8019 and space no(l) [33];
(if) X2SAT (which is ¥, P-complete) cannot be solved by a bounded-error randomized algorithm
running in time n?~¢ and space n°® [9];
(iif) MajMajSAT (which is P-PP-complete) cannot be solved by a bounded-error quantum algo-
rithm running in time n'*°® and space n'~€ [2, 27].

It is open to prove a nontrivial randomized time-space lower bound for SAT rather than X,SAT
(the first rather than the second level of the polynomial hierarchy). A natural approach to prove this
(following Reference [9]) would involve “swapping Arthur and Merlin” (i.e., using MA; € AMy);
however, the quadratic overhead is too inefficient to yield any nontrivial lower bound. Indeed, one
of the motivations for the result of Reference [8] is that it implies this approach cannot be made
to work via a subquadratic black-box simulation.

Similarly, it is open to prove a nontrivial quantum time-space lower bound for MajSAT rather
than MajMajSAT (the first rather than the second level of the counting hierarchy). A natural ap-
proach to prove this (following Reference [27]) would involve “absorbing quantumness into a ma-
jority quantifier” (i.e., using P-BQP C PP [12]); however, the quadratic overhead is too inefficient
to yield any nontrivial lower bound. Our result implies this approach cannot be made to work via
a subquadratic black-box simulation (since N-coR-TIME(n) € P-BQ-TIME(n)).

2 PROOF OF THEOREM 1.1

Suppose for contradiction that Fy.cor has a randomized unbounded-error decision tree using <n/6
queries and <2"/* uniformly random bits. Such a decision tree can be expressed as a polynomial
threshold function (PTF) with integer coeflicients, having degree <n/6 and weight <22 (the
weight is the sum of the absolute values of the coefficients).®> We use a two-step argument: first,
we show that a particular approach for designing such a PTF fails; second, we essentially show
that if that approach fails then every approach fails (by using an adaptation of Vereshchagin’s
machinery from Reference [29]).

If there were a univariate polynomial p of degree < n/6 such that p(2") > 2" and p(i) € [0, 1] for
alli € {0,1,2,...,2"" 1}, then we could get a PTF of degree < n/6 for Fy.cor by taking the sum over
all rows of p applied to the sum of the bits in that row, and using 2" as the threshold. (Moreover,

3Specifically, the polynomial is the sum over all deterministic decision trees in the support, and over all that tree’s accepting
4
computation paths, of the conjunction expressing that path. The bound on the weight has a factor of 22"/ , since there are

<2"/% random bits; rounding this up to 22" loosely accounts for the deterministic decision trees’ contributions to the
weight.
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14:4 T. Watson

if the coefficients of p were all integer multiples of some a > 0 and p had weight < 22", then we
could use p/a to get a PTF having weight < 22n/3.) However, this approach cannot work:

CraiM 1. There is no univariate polynomial p of degree < n/6 such that p(2") > 2"/ and p(i) €
[0,1] foralli € {0,1,2,...,2"71}.

PrOOF. Let us modify p by transforming the input interval [0,2""!] to [-1,1] and shifting
the graph down by 1/2, i.e., define the polynomial g(x) := p((x + 1)2"72) — 1/2. Then we have
q(3) > 2"2 —1/2 and q(-1 +i/2"%) € [-1/2,1/2] for all i € {0,1,2,...,2""'}. We claim the lat-
ter property implies that for all x € [-1, 1] we have

lg(x)| < (1/2)/(1 — O(deg(q)?/2")) < 1. (1)

The second inequality holds, since deg(q) = deg(p) < n/6 < 0(2"/2). The first inequality is by a
standard result that has been widely used in the literature (starting with Reference [18]) and is
generally attributed to References [10, 21]. Specifically, taking maxima over x € [—1, 1], we have

2" (max |g(x)| — 1/2) < max |¢’(x)| < deg(q)2 - max |q(x)|, (2)

where the first inequality of Equation (2) is by the mean value theorem and the second inequality
of Equation (2) is by Markov’s inequality in approximation theory. Rearranging gives the first
inequality of Equation (1).

In summary, ¢(3) > 2"/? — 1/2, |q(x)| < 1forall x € [~1, 1], and deg(q) < n/6. To show that this
is impossible, we appeal to a classic result stating that Chebyshev polynomials are extremal in the
following sense (see Reference [20, Theorem 1.10] or Reference [6, Theorem 4.12] for a proof): If
T, is the degree-d Chebyshev polynomial of the first kind (defined by the recurrence Ty (x) = 1,
Ti(x) = x, and Tyi1(x) = 2xTy(x) — Ty-1(x) for d > 1) and q is any degree-d polynomial such
that |g(x)| < 1forall x € [-1, 1], then for all x > 1 we have |q(x)| < Ty4(x). To get a contradiction,
note that the recurrence trivially implies that T;(3) < 6¢, and thus ¢(3) < 69 < 2"/2 —1/2ford <
n/6. O

Now we begin the “bootstrapping,” using Claim 1 to show that not only does the most natural
approach to designing a PTF fail, but every approach fails.

Craim 2. There exist distributions Dy and Dy over {0, 1,2, ...,2" 1} U {2"} such that Pp,[2"] = 0,
Pp,[2"] = 272, and E;-p,[i*] = E;-p, [i¥] for allk € {0,1,2,...,n/6}.

Proor. The claim is equivalent to the feasibility of the following system with variables v; and w;
fori € {0,1,2,...,2" !} (representing Pp,[i] and Pp, [i], respectively), where we define § := 27 n/2,

xivi= 1
iwi= 1-6

Sivi- i =Y w - ik =68 (2m)k forall k € {0,1,2,...,n/6}
vi,wi > 0 foralli € {0,1,2,...,2"71}

By Farkas’s Lemma, this is equivalent to the infeasibility of the following system with variables x,
y, and zx for k € {0,1,2,...,n/6}.

k

X+ Dz >0 foralli € {0,1,2,...,2"7 1)
y—Yeze-iF>0 foralli e {0,1,2,...,2"1}
x+y-(1-8)+Ypz- 8- (2M)F <o.

Defining the polynomial Z(i) := Y4 zx - i, this system can be rewritten as follows:
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Z(i) € [-x,y] foralli € {0,1,2,...,2"71}, (3)
x+y-(1-8)+5-Z(2") <o. (4)
Suppose for contradiction this system is feasible; in particular y > —x. We cannot have y = —x,

since then by Equation (3), Z would either be the constant y = —x, thus violating Equation (4), or
have degree > 2""! > n/6. Thus, we may assume x + y > 0. If we define the polynomial Z*(i) :=
(y — Z(i))/(x + y), then Z*(i) € [0,1] for all i € {0,1,2,...,2""'} by Equation (3) and Z*(2") >
1/8 = 2™ by Equation (4); yet deg(Z*) = deg(Z) < n/6, contradicting Claim 1. O

For b € {0, 1}, define 1, as the distribution over 2" X 2" Boolean matrices M obtained by, for each
row independently, sampling i ~ Dj, and then taking a uniformly random length-2" bit string of
Hamming weight i. Let “P(M) > t” be the purported PTF for Fy.cor (Where ¢ is an integer). The
following two claims provide a contradiction.

Cramm 3. E,, [P(M)] > E, [P(M)].
Cramm 4. E,, [P(M)] = E, [P(M)].

ProorF oF Cramm 3. Let us abbreviate Fy.cor as F. Observe that PP, [F1(0)] =1 and
P, [F'(1)]=1-(01- 272" > 1~ e2""*. Also, notice that |[P(M)| < weight(P) < 22" for all
M; in particular, t < 22" Thus,

Ey [P(M)] = E, [P(M) | FH(1)] - Py, [FH(1)] + E, [P(M) | F(0)] - P, [F(0)]
> (t+1)- (1—e 2"y —22" e
>t
> E,, [P(M)]. O

Proor oF CraIM 4. Define U; to be the uniform distribution over length-2" bit strings of Ham-
ming weight i. For any C C [2"], we have P,y [uc isall 1’s] = zn:;;‘j})<zz‘,lfl'gll)+1) (most easily
seen by imagining that u is fixed and C is random); this is a polynomial of degree |C| in i, which
we write as Q!€1(i) = Zlc‘ Qlc‘ i*. We also write P(M) := Y5 Ps [1(r,c)es Mr,c, where the sum
ranges over S C [2"] X [2"] Wlth |S| < n/6. For a row index r € [2"], let S, = {c € [2"] : (r,¢) €
S}. For each b € {0, 1}, we have

B, [P(M)] = )" Ps Py, [Ms is all 1s]
S

= ZPS H Ei<p,Pu~u;[us, is all 1’s]
S r

= ZPS ]—[Ewb (0)

- ZPS HZle 'E;-p, [i¥].

By Claim 2, this value does not depend on b (since k < |S,| < |S| < n/6 always holds). O

This concludes the proof of Claim 1.1. We now explain how to strengthen the result to show
that every randomized unbounded-error decision tree for Fy.cor uses Q(n) queries, no matter how
many random bits (although this is unnecessary for Corollary 1.2 and Corollary 1.3). We use the
following definition and technical lemma due to Sherstov.
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14:6 T. Watson

Definition 1. The one-sided e-approximate degree of a partial function f : {0,1}F — {0, 1}, de-
noted deg? (f), is the least degree of a real polynomial P such that |P(x)| < € for x € £71(0) and
P(x) > 1—eforx e f71(1).

The block composition of g :{0,1}N — {0,1} and f : {0, 1} — {0,1} is the (partial) function
go fN:(10,1}1)N — (0,1} defined by (go fN)(x1,...,xn) = g(f(x1),..., f(xn)). The follow-
ing, which concerns the Ory function on N bits, is a special case of Reference [24, Corollary 6.10
(or Corollary 6.8 in the ECCC version)].

LEmMMA 2.1. For all f and € > 0, every randomized unbounded-error decision tree for Ory o fN
uses Q(min(deg (f), Nve)) queries.

Defining GAPAND|, to be the partial function that evaluates to 1 if all input bits are 1, and eval-
uates to 0 if at most half of the input bits are 1, we have Fy.cor = ORgn © GAPAND%::. Combining
Claim 1 with the classic symmetrization technique [5, 17] shows that deg) (GAPANDzn) > Q(n)
for € = 1/2"/2. Combining this with Lemma 2.1 implies that every randomized unbounded-error
decision tree for Orzn © GAPANDZ, uses Q(min(n, 2°"/)) = Q(n) queries.

3 QUADRATIC SIMULATION FOR MA, € AM,
THEOREM 3.1. MA,-TIME(n) € AM;-TIME(n?).

For historical context, the four diagonal arrows in
the figure represent known simulations with quadratic
overhead: MA-TIME(n) € MA;-TIME(n? polylog n)

and AM,-TIME(n) € AM;-TIME(n? polylog n) fol- /

low by the “covering by shifts” argument of Refer- MA: |
ence [16], while MA,-TIME(n) € AM,-TIME(n?) and }
MA;-TIME(n) € AM;-TIME(n?) follow by amplification |
and swapping the quantifiers, as shown in Reference [3]. The }
horizontal arrow represents Theorem 3.1. The dashed verti- MA;
cal arrow represents the lower bound of Reference [8] show-
ing that black-box or relativizing techniques cannot even yield MA;-TIME(n) € AM,-TIME(o(n?)).
Of course, a fourth-power simulation for MA; € AM; follows from the previous results by car-
rying out the two steps (swapping the quantifiers and making the error 1-sided) in either order.
To prove Theorem 3.1, we need a single quadratic simulation that handles both steps at the same
time. Our proof ends up resembling the proof of S;-BPP C S,P in Reference [22], but (similarly to
Reference [9]) we start by doing randomness-efficient amplification with very explicit expanders,
and we also set parameters differently (in particular, using constant numbers of shifts).

LEMMA 3.2. An expander is defined as an infinite family of constant-degree undirected graphs,
each of whose normalized adjacency matrix has at least a positive constant gap between the first and
second eigenvalues.

o [7, 14] A constant-error randomized algorithm can be amplified to have error probability <
¢ by taking an O(log(1/¢))-step random walk on an expander whose vertices correspond to
outcomes of the original algorithm’s randomness, running the original algorithm using each
of the outcomes on the walk, and outputting the majority vote.

e [13] There is an expander whose vertices are bit strings of length O(n), where each vertex’s
neighborhood can be computed in time O(n).

Combining these shows that any O(n)-time constant-error randomized algorithm can be amplified
to have error probability < 27" while using O(n) random bits and running in time O(n?). This holds

ACM Transactions on Computation Theory, Vol. 12, No. 2, Article 14. Publication date: May 2020.



Quadratic Simulations of Merlin—Arthur Games 14:7

by taking an O(n)-step random walk on the expander, using O(n) random bits to specify the initial
vertex and O(n) random bits to specify the edge labels on the walk, and for each step using O(n) time
to compute the vertex from the previous one and O(n) time to run the original algorithm again.

Proor ofF THEOREM 3.1. By the randomness-efficient amplification of Lemma 3.2, we may
assume that Arthur has error probability < 27" while using O(n) random bits and running in
time O(n?). That is, for L € MA,-TIME(n) there is a deterministic O(n?)-time algorithm M and
a constant ¢ such that if x € L, then Iw € {0, 1}" Prc(o,1)en [M(x, w,7) accepts] > 1 — 27", and
if x ¢ L, then Yw € {0,1}" P,co,1)en [M(x, w, r) accepts] < 27". Consider the O(n?)-time algo-
rithm M’ that, letting a = 2+c+1andb =c, interprets its input as x € {0, 1}, r" :==ry-- 1 €
({0,1)°™)%, and w’ := wsy - - - 5 € {0,1}" x ({0, 1}°")?, and accepts iff Vi € [a]3j € [b]M(x, w,r; &
s;j) accepts. We claim that M’ witnesses L € AM;-TIME(n?). First suppose x € L, and fix w €
{0,1}°" such that P,[M(x, w, r) accepts] > 1 — 27", If we pick s; - - - s, € ({0,1}°")® uniformly at
random, then for each r € {0,1}" we have Py, ...;, [-3j M(x, w,r & s;) accepts] < (27m)b = 27en,
Hence by a union bound, there exists s;---s, such that for all r there exists a j such that
M(x,w,r @ s;) accepts. Letting w’ := ws; - - - sp, we have dw’ Vr” M’(x,r’, w’) accepts, and thus
P, [Aw” M’(x,r’,w’) accepts] = 1. Now suppose x ¢ L. If we pick r’ € ({0,1}°")¢ uniformly at
random, then for each w’ := ws; ---s, we have P [Vi Jj M(x,w,r; @ s;) accepts] < (b27")¢ <
% . g (en+ben) By a union bound, P,-[Aw” M’ (x,r’, w’) accepts] < 1/2. O

4 RELATIVIZED MA ¢ NPBFP

The distinction between MA; and N-coRP is that when Merlin sends a “wrong” witness for a 1-
input, MA; allows Arthur to accept with arbitrary probability, whereas N-coRP requires Arthur to
accept with a “legal” probability (in [0, 1/2] U {1}). The distinction between MA, and N-BPP is sim-
ilar but where the legal probabilities are [0, 1/3] U [2/3, 1]. Since the relativizing polynomial-time
class equalities MA := MA, = MA; and NPBPP = N-BPP = N-coRP hold, the following theorem
shows that the distinction is significant.

THEOREM 4.1. There is an oracle relative to which MA g NPBPP.

Theorem 4.1 was shown in Reference [11] using the machinery of generics. In contrast, most
oracle separations of pairs of ordinary complexity classes are known to hold directly via separa-
tions of the corresponding query complexity (decision tree) models. When we asked Mika G66s
whether a query complexity style argument could be used to prove Theorem 4.1, he promptly man-
ufactured such an argument. He declined coauthorship but graciously gave permission to present
the argument for the sake of recording it in the literature. Furthermore, this argument even yields
an oracle relative to which MA ¢ N PBQ® (by using a quantum rather than randomized query lower
bound for the OR function in the appropriate places), which appears to be a new result.

We define a g-query N-BPP decision tree for a partial function F : {0, 1}N — {0, 1} to be a set of
probability distributions over depth-q deterministic decision trees, such that for every 0-input, each
distribution in the set accepts with probability < 1/3, and for every 1-input, each distribution in the
set accepts with probability in [0, 1/3] U [2/3, 1] and at least one of them accepts with probability
>2/3.4

Consider the partial function Fya, that takes a 2" x 2" Boolean matrix and evaluates to 1 if
there exists an all-1 row, and to 0 if each row has at most half 1’s. Theorem 4.1 is a corollary of

4Tt would also be natural to charge the log of the size of the set—i.e., the number of nondeterministic guess bits—to the
cost of the decision tree. For Theorem 4.1 it would suffice to consider this more restricted model, but our lower bound
holds even for the more powerful model that does not charge for guess bits. Reference [19] explores this distinction in the
context of MA decision trees.
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14:8 T. Watson

the following result, by the standard connection between decision tree lower bounds and oracle
separations [30].

LEMMA 4.2. Every N-BPP decision tree for Fpa, uses Q(2™) queries.

ProoF. Let us abbreviate Fma, as F. Suppose for contradiction there exists an N-BPP decision
tree for F using at most 2" queries. Define M(¥) to be the 2" X 2" matrix that has all 1’s in its first
row and 0’s everywhere else. Since F(M(®) = 1, there is a distribution D (which we fix henceforth)
in the set of the N-BPP decision tree that accepts M(¥) with probability > 2/3.

We claim that there exists a sequence of 2" x 2" matrices M©, M®_ . M®@"™) such that for
eachi=1,...,2" 1 M® has 2" — i 1’s in its first row and 0’s everywhere else, and the probability
D accepts M) is within 1/8 of the probability D accepts M1 Inductively assuming M@~ has
been constructed, there must be a 1-entry that gets queried with probability < 2"7#/(2" — (i —
1)) < 1/8 under D (since the sum over the 2" — (i — 1) many 1 entries of the probability it gets
queried is at most the worst-case number of queries, which is < 2"7%), so we can obtain M) by
flipping this entry to a 0. The claim is proved.

Since F(M®@" ™) = 0,D accepts ME") with probability < 1/3. Hence there exists an i* such that
D accepts M) with probability within 1/16 of 1/2. This is an illegal probability, but we do not
yet have a contradiction, since M (i") is not in the domain of F. Now there must be a row of M(")
such that the probability (under D) that a bit in that row gets queried is <2"~*/2" = 1/16. Flipping
all the 0’s to 1’s in that row results in a matrix M that D accepts with (illegal) probability within
1/16 + 1/16 of 1/2. This is a contradiction, since F(M) = 1 and so D is supposed to accept M with
probability in [0,1/3] U [2/3,1]. O

APPENDIX
A DEFINITIONS

In these definitions, we assume any reasonable model of algorithms that have random access to
the input and memory. Probabilities are always over a uniform distribution.

Definition. L € MA;-TIME(t) iff there exists a deterministic algorithm M that takes inputs x, y, z
where |y| = |z| = O(t(|x])), runs in time O(¢(|x])), and such that for every x,

x € L= dy P,[M(x,y,z) accepts] = 1
x & L= Yy P,[M(x,y,z) accepts] < 1/2.
Definition. L € MA,-TIME(t) iff there exists a deterministic algorithm M that takes inputs x, y, z
where |y| = |z| = O(t(|x])), runs in time O(¢(|x|)), and such that for every x,
x € L = Jy P,[M(x, y, z) accepts] > 2/3
x ¢ L= Yy P,[M(x,y,z) accepts] < 1/3.
Definition. L € N-coR-TIME(t) iff there exists a deterministic algorithm M that takes inputs
x,y,z where |y| = |z| = O(t(|x|)), runs in time O(¢(|x])), and such that for every x,
x € L= Ay P,[M(x,y, z) accepts] = 1 and Yy P,[M(x, y, z) accepts] € [0,1/2] U {1}
x ¢ L= Yy P,[M(x,y,z) accepts] < 1/2.
Definition. L € N-BP-TIME(t) iff there exists a deterministic algorithm M that takes inputs x, y, z
where |y| = |z| = O(t(|x])), runs in time O(#(|x])), and such that for every x,
x € L= Jy P,[M(x,y, z) accepts] > 2/3 and Yy P,[M(x, y, z) accepts] € [0,1/3] U [2/3,1]
x ¢ L = Yy P,[M(x,y,z) accepts] < 1/3.
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Definition. L € AM;-TIME(t) iff there exists a deterministic algorithm M that takes inputs x, y, z
where |y| = |z| = O(t(|x])), runs in time O(t(|x])), and such that for every x,

x € L = Py[dz M(x,y, z) accepts] = 1
x ¢ L = P,[3z M(x,y, z) accepts] < 1/2.
Definition. L € AM,-TIME(¢) iff there exists a deterministic algorithm M that takes inputs x, y, z
where |y| = |z| = O(t(|x])), runs in time O(t(|x])), and such that for every x,
x € L = Py[3z M(x,y, z) accepts] > 2/3
x ¢ L = Py[Jz M(x,y,z) accepts] < 1/3.
Definition. L € S,-TIME(t) iff there exists a deterministic algorithm M that takes inputs x, y, z
where |y| = |z| = O(t(|x])), runs in time O(t(|x])), and such that for every x,
x € L = Jy Vz M(x,y,z) accepts
x ¢ L = dz Yy M(x,y, z) rejects.
Definition. L € S;-BP-TIME(t) iff there exists a deterministic algorithm M that takes inputs
x,y,z, w where |y| = |z| = |[w| = O(t(|x])), runs in time O(¢(|x|)), and such that for every x,
x € L= dyVz P, [M(x,y,z, w) accepts] > 2/3
x ¢ L= Az Vy P,,[M(x,y, z, w) accepts] < 1/3.
Definition. L € %,-TIME(?) iff there exists a deterministic algorithm M that takes inputs x, y, z
where |y| = |z| = O(t(|x])), runs in time O(#(|x])), and such that for every x,
x € L = Jy Vz M(x,y, z) accepts
x ¢ L = Yy dz M(x, y, z) rejects.
Definition. L € P-TIME(t) iff there exists a deterministic algorithm M that takes inputs x,y
where |y| = O(t(]x])), runs in time O(¢(]x|)), and such that for every x,
x € L = Py[M(x,y) accepts] > 1/2
x ¢ L = Py[M(x,y) accepts] < 1/2.
Definition. L € P-BQ-TIME(t) iff there exists a quantum algorithm M that takes inputs x,y
where |y| = O(t(]x])), runs in time O(¢(]x|)), and such that for every x,
Yy P[M(x,y) accepts] € [0,1/3] U [2/3,1]
x € L =Py[P[M(x,y) accepts] > 2/3] > 1/2
x ¢ L =P, [IP[M(x,y) accepts] > 2/3] < 1/2.
Definition. L € P-P-TIME(t) iff there exists a deterministic algorithm M that takes inputs x, y, z
where |y| = |z| = O(t(|x])), runs in time O(t(|x])), and such that for every x,
Yy P,[M(x,y, z) accepts] # 1/2
x € L =P, [P.[M(x,y,z) accepts] > 1/2] > 1/2
x ¢ L =P, [P,[M(x,y,z) accepts] > 1/2] < 1/2.
MA;, MA,, N-coRP, N-BPP, AM;, AMy, S,P, S,-BPP, 3,P, PP, P-BQP, and P-PP are defined as
the corresponding polynomial time bounded classes. It is known that MA; = MA;, so MA refers to
this common class. Similarly, it is known that NPBPP = N-BPP = N-coRP. Also, AM;-TIME could

be called coR-N-TIME, and AM5-TIME could be called BP-N-TIME. It is known that AM, = AM;,
so AM refers to this common class.
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