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Quadratic Simulations of Merlin–Arthur Games

THOMAS WATSON, University of Memphis

The known proofs of MA ⊆ PP incur a quadratic overhead in the running time. We prove that this qua-

dratic overhead is necessary for black-box simulations; in particular, we obtain an oracle relative to which

MA-TIME(t ) � P-TIME(o(t2)). We also show that 2-sided-error Merlin–Arthur games can be simulated by

1-sided-error Arthur–Merlin games with quadratic overhead. We also present a simple, query complexity

based proof (provided by Mika Göös) that there is an oracle relative to which MA � NPBPP (which was pre-

viously known to hold by a proof using generics).
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1 INTRODUCTION

There are several complexity class inclusions for which all the known proofs consist of “black-
box” simulations incurring at least a quadratic overhead in the running time. There have also
been lower bounds showing that for some of these inclusions, the quadratic overhead is neces-
sary for black-box simulations (which also yields corresponding oracle separations). We begin by
giving an overview of this topic. For convenience, we abbreviate “quadratic-overhead black-box
simulation” as “quadratic simulation.” (Some relevant complexity class definitions can be found in
Appendix A.)

• BPP ⊆ Σ2P [16, 25] holds by quadratic simulations, and Viola [31] proved that the quadratic
overhead is necessary. Some known strengthenings of this inclusion include S2·BPP ⊆ S2P

[22] and the facts that 2-sided-error Merlin–Arthur and Arthur–Merlin games are equiva-
lent to their 1-sided-error counterparts: MA2 ⊆ MA1 and AM2 ⊆ AM1. Of course, the lower
bound in Reference [31] also applies to these strengthenings.

• Arthur–Merlin games can simulate Merlin–Arthur games (MA1 ⊆ AM1 and MA2 ⊆ AM2)
quadratically [3]. Diehl [8] proved that the quadratic overhead is necessary, even for MA1 ⊆
AM2. (As a side result, we complement this by giving a quadratic simulation even for MA2 ⊆
AM1.)
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• MA2 ⊆ PP [28] holds by quadratic simulations. As our main result, we prove that the qua-
dratic overhead is necessary (which was stated as an open problem in Reference [8]), even
for the weaker inclusion N·coRP ⊆ PP.1 A strengthening of the latter inclusion is the qua-
dratic simulation for P·BQP ⊆ PP [12].

• PP is closed under intersection by quadratic simulations [4] (for all L1,L2 ∈ P-TIME(n), we
have L1 ∩ L2 ∈ P-TIME(n2)). Sherstov [23] proved that the quadratic overhead is necessary.

1.1 Statement of Result

A randomized decision tree withq queries and r random bits consists of a uniform distribution over
a multiset of 2r deterministic decision trees that each make at mostq queries on every computation
path. A randomized decision tree computes a Boolean function with unbounded error if on each
input the output is correct with probability >1/2.

Consider the partial function FN·coR that takes a 2n × 2n Boolean matrix with the promise that
each row has either all 1’s or at most half 1’s, and evaluates to 1 if there exists an all-1 row,
and to 0 otherwise. Note that FN·coR is computable by a randomized unbounded-error decision
tree with O (n) queries and O (n2) random bits2; this is what underlies the standard proof that
MA1-TIME(n) ⊆ P-TIME(n2).

Theorem 1.1. Every randomized unbounded-error decision tree for FN·coR uses either Ω(n) queries

or 2Ω(n) random bits.

For our interpretation about the necessity of a quadratic overhead (see the corollaries below), it

suffices to have Ω(n2) random bits (rather than 2Ω(n)) at the end of the theorem statement. We con-
jectured that an Ω(n) query lower bound holds regardless of the number of random bits, and based
on a suggestion from an anonymous reviewer, we can confirm this conjecture by combining our
argument with some machinery due to Sherstov [24]. We explain how to do this after presenting
our self-contained proof of Theorem 1.1 in Section 2.

Corollary 1.2. There is an oracle relative to which N·coR-TIME(n) � P-TIME(o(n2)).

Corollary 1.2 holds in the standard model of relativization where the oracle tape is erased after
each query. This forces each query to cost linear time, which makes sense in our context, since a
query is intended to correspond to running a simulation of the deterministic algorithm underlying
an N·coR-TIME(n) algorithm. Corollary 1.2 follows in a completely routine way from Theorem 1.1
(see References [8, 31] for examples of how such diagonalization arguments go).

Our result can also be interpreted in terms of what we call “black-box proofs of
N·coR-TIME(n) ⊆ P-TIME(t ).” Such a proof consists of a uniform randomized algorithm that takes
1n as input, computes FN·coR with unbounded error on an instance it has oracle access to, and runs
in timeO (t (n)),where each oracle query is charged time n. All known proofs of that inclusion are
indeed black-box.

Corollary 1.3. There is no black-box proof of N·coR-TIME(n) ⊆ P-TIME(o(n2)).

1We mention that in the world of communication complexity, a nearly quadratic separation between N·coRP-type com-

plexity and PP-type complexity is witnessed by the inner product mod 2 function—see Reference [1] for the N·coRP upper

bound and References [15, §3.5–3.6 and references therein] for the PP lower bound. However, this is not directly relevant

to our results, since the upper bound is really specific to communication complexity.
2First, consider picking uniformly at random a row and a sequence of n + 1 bits from that row and accepting iff all those

bits are 1. This accepts 1-inputs with probability ≥ 1/2n and 0-inputs with probability ≤1/2n+1. Now modify this by using

n + 3 more uniformly random bits, interpreted as the binary representation of an integer k < 2n+3: If k < 2n+2 − 3, then

accept; if k ≥ 2n+2, then run the algorithm from the previous sentence; otherwise reject. The modified algorithm accepts

1-inputs with probability ≥1/2 − 3/2n+3 + 1/2n+1 > 1/2 and 0-inputs with probability ≤1/2 − 3/2n+3 + 1/2n+2 < 1/2.
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Corollary 1.3 follows immediately from Corollary 1.2, since black-box proofs relativize. Corol-
lary 1.3 also follows directly from Theorem 1.1, since such a black-box proof is just a uniform,
time-efficient implementation of a randomized unbounded-error decision tree for FN·coR that uses
o(n) queries and o(n2) random bits.

For convenience, we have focused on time n vs. n2, but our lower bound also works for any
time-constructible t (n) vs. t (n)2.

1.2 Relevance to Time-space Lower Bounds

There is a line of research on time-space lower bounds for problems related to satisfiability [26].
One of the motivations for Viola [31] to initiate the study of quadratic simulation lower bounds
was that they can provide barriers to improving such time-space lower bounds. It is known that
for every constant ϵ > 0,

(i) SAT (which is NP-complete) cannot be solved by a deterministic algorithm running in time

n2 cos(π /7)−ϵ ≈ n1.8019 and space no (1) [33];
(ii) Σ2SAT (which is Σ2P-complete) cannot be solved by a bounded-error randomized algorithm

running in time n2−ϵ and space no (1) [9];
(iii) MajMajSAT (which is P·PP-complete) cannot be solved by a bounded-error quantum algo-

rithm running in time n1+o (1) and space n1−ϵ [2, 27].

It is open to prove a nontrivial randomized time-space lower bound for SAT rather than Σ2SAT
(the first rather than the second level of the polynomial hierarchy). A natural approach to prove this
(following Reference [9]) would involve “swapping Arthur and Merlin” (i.e., using MA2 ⊆ AM2);
however, the quadratic overhead is too inefficient to yield any nontrivial lower bound. Indeed, one
of the motivations for the result of Reference [8] is that it implies this approach cannot be made
to work via a subquadratic black-box simulation.

Similarly, it is open to prove a nontrivial quantum time-space lower bound for MajSAT rather
than MajMajSAT (the first rather than the second level of the counting hierarchy). A natural ap-
proach to prove this (following Reference [27]) would involve “absorbing quantumness into a ma-
jority quantifier” (i.e., using P·BQP ⊆ PP [12]); however, the quadratic overhead is too inefficient
to yield any nontrivial lower bound. Our result implies this approach cannot be made to work via
a subquadratic black-box simulation (since N·coR-TIME(n) ⊆ P·BQ-TIME(n)).

2 PROOF OF THEOREM 1.1

Suppose for contradiction that FN·coR has a randomized unbounded-error decision tree using ≤n/6
queries and ≤2n/4 uniformly random bits. Such a decision tree can be expressed as a polynomial

threshold function (PTF) with integer coefficients, having degree ≤n/6 and weight ≤22n/3
(the

weight is the sum of the absolute values of the coefficients).3 We use a two-step argument: first,
we show that a particular approach for designing such a PTF fails; second, we essentially show
that if that approach fails then every approach fails (by using an adaptation of Vereshchagin’s
machinery from Reference [29]).

If there were a univariate polynomialp of degree ≤ n/6 such thatp (2n ) > 2n andp (i ) ∈ [0, 1] for
all i ∈ {0, 1, 2, . . . , 2n−1}, then we could get a PTF of degree ≤ n/6 for FN·coR by taking the sum over
all rows of p applied to the sum of the bits in that row, and using 2n as the threshold. (Moreover,

3Specifically, the polynomial is the sum over all deterministic decision trees in the support, and over all that tree’s accepting

computation paths, of the conjunction expressing that path. The bound on the weight has a factor of 22n/4
, since there are

≤2n/4 random bits; rounding this up to 22n/3
loosely accounts for the deterministic decision trees’ contributions to the

weight.
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14:4 T. Watson

if the coefficients of p were all integer multiples of some a > 0 and p had weight ≤ a22n/4
, then we

could use p/a to get a PTF having weight ≤ 22n/3
.) However, this approach cannot work:

Claim 1. There is no univariate polynomial p of degree ≤ n/6 such that p (2n ) > 2n/2 and p (i ) ∈
[0, 1] for all i ∈ {0, 1, 2, . . . , 2n−1}.

Proof. Let us modify p by transforming the input interval [0, 2n−1] to [−1, 1] and shifting
the graph down by 1/2, i.e., define the polynomial q(x ) � p ((x + 1)2n−2) − 1/2. Then we have
q(3) > 2n/2 − 1/2 and q(−1 + i/2n−2) ∈ [−1/2, 1/2] for all i ∈ {0, 1, 2, . . . , 2n−1}. We claim the lat-
ter property implies that for all x ∈ [−1, 1] we have

|q(x ) | ≤ (1/2)/(1 −O (deg(q)2/2n )) ≤ 1. (1)

The second inequality holds, since deg(q) = deg(p) ≤ n/6 ≤ o(2n/2). The first inequality is by a
standard result that has been widely used in the literature (starting with Reference [18]) and is
generally attributed to References [10, 21]. Specifically, taking maxima over x ∈ [−1, 1], we have

2n−1 (max |q(x ) | − 1/2) ≤ max |q′(x ) | ≤ deg(q)2 ·max |q(x ) |, (2)

where the first inequality of Equation (2) is by the mean value theorem and the second inequality
of Equation (2) is by Markov’s inequality in approximation theory. Rearranging gives the first
inequality of Equation (1).

In summary,q(3) > 2n/2 − 1/2, |q(x ) | ≤ 1 for all x ∈ [−1, 1], and deg(q) ≤ n/6. To show that this
is impossible, we appeal to a classic result stating that Chebyshev polynomials are extremal in the
following sense (see Reference [20, Theorem 1.10] or Reference [6, Theorem 4.12] for a proof): If
Td is the degree-d Chebyshev polynomial of the first kind (defined by the recurrence T0 (x ) � 1,
T1 (x ) � x , and Td+1 (x ) � 2xTd (x ) −Td−1 (x ) for d ≥ 1) and q is any degree-d polynomial such
that |q(x ) | ≤ 1 for all x ∈ [−1, 1], then for all x ≥ 1 we have |q(x ) | ≤ Td (x ). To get a contradiction,
note that the recurrence trivially implies thatTd (3) ≤ 6d , and thus q(3) ≤ 6d ≤ 2n/2 − 1/2 for d ≤
n/6. �

Now we begin the “bootstrapping,” using Claim 1 to show that not only does the most natural
approach to designing a PTF fail, but every approach fails.

Claim 2. There exist distributions D0 and D1 over {0, 1, 2, . . . , 2n−1} ∪ {2n } such that PD0 [2n] = 0,

PD1 [2n] = 2−n/2, and Ei∼D0 [ik ] = Ei∼D1 [ik ] for all k ∈ {0, 1, 2, . . . ,n/6}.

Proof. The claim is equivalent to the feasibility of the following system with variablesvi andwi

for i ∈ {0, 1, 2, . . . , 2n−1} (representingPD0 [i] andPD1 [i], respectively), where we define δ � 2−n/2.
∑

i vi = 1∑
i wi = 1 − δ∑

i vi · ik −
∑

i wi · ik = δ · (2n )k for all k ∈ {0, 1, 2, . . . ,n/6}
vi ,wi ≥ 0 for all i ∈ {0, 1, 2, . . . , 2n−1}

By Farkas’s Lemma, this is equivalent to the infeasibility of the following system with variables x ,
y, and zk for k ∈ {0, 1, 2, . . . ,n/6}.

x +
∑

k zk · ik ≥ 0 for all i ∈ {0, 1, 2, . . . , 2n−1}
y −∑k zk · ik ≥ 0 for all i ∈ {0, 1, 2, . . . , 2n−1}

x + y · (1 − δ ) +
∑

k zk · δ · (2n )k < 0.

Defining the polynomial Z (i ) �
∑

k zk · ik , this system can be rewritten as follows:
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Z (i ) ∈ [−x ,y] for all i ∈ {0, 1, 2, . . . , 2n−1}, (3)

x + y · (1 − δ ) + δ · Z (2n ) < 0. (4)

Suppose for contradiction this system is feasible; in particular y ≥ −x . We cannot have y = −x ,
since then by Equation (3), Z would either be the constant y = −x , thus violating Equation (4), or
have degree > 2n−1 > n/6. Thus, we may assume x + y > 0. If we define the polynomial Z ∗ (i ) �
(y − Z (i ))/(x + y), then Z ∗ (i ) ∈ [0, 1] for all i ∈ {0, 1, 2, . . . , 2n−1} by Equation (3) and Z ∗ (2n ) >
1/δ = 2n/2 by Equation (4); yet deg(Z ∗) = deg(Z ) ≤ n/6, contradicting Claim 1. �

Forb ∈ {0, 1}, define μb as the distribution over 2n × 2n Boolean matricesM obtained by, for each
row independently, sampling i ∼ Db and then taking a uniformly random length-2n bit string of
Hamming weight i . Let “P (M ) > t” be the purported PTF for FN·coR (where t is an integer). The
following two claims provide a contradiction.

Claim 3. Eμ1 [P (M )] > Eμ0 [P (M )].

Claim 4. Eμ1 [P (M )] = Eμ0 [P (M )].

Proof of Claim 3. Let us abbreviate FN·coR as F . Observe that Pμ0 [F−1 (0)] = 1 and

Pμ1 [F−1 (1)] = 1 − (1 − 2−n/2)2n ≥ 1 − e−2n/2
. Also, notice that |P (M ) | ≤ weight(P ) ≤ 22n/3

for all

M ; in particular, t < 22n/3
. Thus,

Eμ1 [P (M )] = Eμ1 [P (M ) | F−1 (1)] · Pμ1 [F−1 (1)] + Eμ1 [P (M ) | F−1 (0)] · Pμ1 [F−1 (0)]

≥ (t + 1) · (1 − e−2n/2

) − 22n/3 · e−2n/2

> t

≥ Eμ0 [P (M )]. �

Proof of Claim 4. DefineUi to be the uniform distribution over length-2n bit strings of Ham-

ming weight i . For any C ⊆ [2n], we have Pu∼Ui
[uC is all 1’s] = i (i−1) · · ·(i−|C |+1)

2n (2n−1) · · ·(2n−|C |+1) (most easily

seen by imagining that u is fixed and C is random); this is a polynomial of degree |C | in i , which

we write as Q |C | (i ) �
∑ |C |

k=0
Q |C |

k
· ik . We also write P (M ) �

∑
S PS
∏

(r,c )∈S Mr,c , where the sum
ranges over S ⊆ [2n] × [2n] with |S | ≤ n/6. For a row index r ∈ [2n], let Sr � {c ∈ [2n] : (r , c ) ∈
S }. For each b ∈ {0, 1}, we have

Eμb
[P (M )] =

∑

S

PS Pμb
[MS is all 1’s]

=
∑

S

PS

∏

r

Ei∼Db
Pu∼Ui

[uSr
is all 1’s]

=
∑

S

PS

∏

r

Ei∼Db
[Q |Sr | (i )]

=
∑

S

PS

∏

r

∑

k

Q |Sr |
k

Ei∼Db
[ik ].

By Claim 2, this value does not depend on b (since k ≤ |Sr | ≤ |S | ≤ n/6 always holds). �

This concludes the proof of Claim 1.1. We now explain how to strengthen the result to show
that every randomized unbounded-error decision tree for FN·coR uses Ω(n) queries, no matter how
many random bits (although this is unnecessary for Corollary 1.2 and Corollary 1.3). We use the
following definition and technical lemma due to Sherstov.

ACM Transactions on Computation Theory, Vol. 12, No. 2, Article 14. Publication date: May 2020.



14:6 T. Watson

Definition 1. The one-sided ϵ-approximate degree of a partial function f : {0, 1}L → {0, 1}, de-
noted deg+ϵ ( f ), is the least degree of a real polynomial P such that |P (x ) | ≤ ϵ for x ∈ f −1 (0) and
P (x ) ≥ 1 − ϵ for x ∈ f −1 (1).

The block composition of д : {0, 1}N → {0, 1} and f : {0, 1}L → {0, 1} is the (partial) function
д ◦ f N : ({0, 1}L )N → {0, 1} defined by (д ◦ f N ) (x1, . . . ,xN ) = д( f (x1), . . . , f (xN )). The follow-
ing, which concerns the OrN function on N bits, is a special case of Reference [24, Corollary 6.10
(or Corollary 6.8 in the ECCC version)].

Lemma 2.1. For all f and ϵ > 0, every randomized unbounded-error decision tree for OrN ◦ f N

uses Ω(min(deg+ϵ ( f ),N
√
ϵ )) queries.

Defining GapAndL to be the partial function that evaluates to 1 if all input bits are 1, and eval-
uates to 0 if at most half of the input bits are 1, we have FN·coR = Or2n ◦ GapAnd2n

2n . Combining
Claim 1 with the classic symmetrization technique [5, 17] shows that deg+ϵ (GapAnd2n ) ≥ Ω(n)
for ϵ = 1/2n/2. Combining this with Lemma 2.1 implies that every randomized unbounded-error
decision tree for Or2n ◦ GapAnd2n

2n uses Ω(min(n, 23n/4)) = Ω(n) queries.

3 QUADRATIC SIMULATION FOR MA2 ⊆ AM1

Theorem 3.1. MA2-TIME(n) ⊆ AM1-TIME(n2).

For historical context, the four diagonal arrows in
the figure represent known simulations with quadratic
overhead: MA2-TIME(n) ⊆ MA1-TIME(n2 polylogn)
and AM2-TIME(n) ⊆ AM1-TIME(n2 polylogn) fol-
low by the “covering by shifts” argument of Refer-
ence [16], while MA2-TIME(n) ⊆ AM2-TIME(n2) and
MA1-TIME(n) ⊆ AM1-TIME(n2) follow by amplification
and swapping the quantifiers, as shown in Reference [3]. The
horizontal arrow represents Theorem 3.1. The dashed verti-
cal arrow represents the lower bound of Reference [8] show-
ing that black-box or relativizing techniques cannot even yield MA1-TIME(n) ⊆ AM2-TIME(o(n2)).

Of course, a fourth-power simulation for MA2 ⊆ AM1 follows from the previous results by car-
rying out the two steps (swapping the quantifiers and making the error 1-sided) in either order.
To prove Theorem 3.1, we need a single quadratic simulation that handles both steps at the same
time. Our proof ends up resembling the proof of S2·BPP ⊆ S2P in Reference [22], but (similarly to
Reference [9]) we start by doing randomness-efficient amplification with very explicit expanders,
and we also set parameters differently (in particular, using constant numbers of shifts).

Lemma 3.2. An expander is defined as an infinite family of constant-degree undirected graphs,

each of whose normalized adjacency matrix has at least a positive constant gap between the first and

second eigenvalues.

• [7, 14] A constant-error randomized algorithm can be amplified to have error probability <
ε by taking an O (log(1/ε ))-step random walk on an expander whose vertices correspond to

outcomes of the original algorithm’s randomness, running the original algorithm using each

of the outcomes on the walk, and outputting the majority vote.

• [13] There is an expander whose vertices are bit strings of length O (n), where each vertex’s

neighborhood can be computed in time O (n).

Combining these shows that any O (n)-time constant-error randomized algorithm can be amplified

to have error probability < 2−n while using O (n) random bits and running in time O (n2). This holds
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by taking an O (n)-step random walk on the expander, using O (n) random bits to specify the initial

vertex andO (n) random bits to specify the edge labels on the walk, and for each step usingO (n) time

to compute the vertex from the previous one and O (n) time to run the original algorithm again.

Proof of Theorem 3.1. By the randomness-efficient amplification of Lemma 3.2, we may
assume that Arthur has error probability < 2−n while using O (n) random bits and running in
time O (n2). That is, for L ∈ MA2-TIME(n) there is a deterministic O (n2)-time algorithm M and
a constant c such that if x ∈ L, then ∃w ∈ {0, 1}cn Pr ∈{0,1}cn [M (x ,w, r ) accepts] > 1 − 2−n , and
if x � L, then ∀w ∈ {0, 1}cn Pr ∈{0,1}cn [M (x ,w, r ) accepts] < 2−n . Consider the O (n2)-time algo-
rithm M ′ that, letting a � c2 + c + 1 and b � c , interprets its input as x ∈ {0, 1}n , r ′ � r1 · · · ra ∈
({0, 1}cn )a , andw ′ � ws1 · · · sb ∈ {0, 1}cn × ({0, 1}cn )b , and accepts iff ∀i ∈ [a]∃j ∈ [b]M (x ,w, ri ⊕
sj ) accepts. We claim that M ′ witnesses L ∈ AM1-TIME(n2). First suppose x ∈ L, and fix w ∈
{0, 1}cn such that Pr [M (x ,w, r ) accepts] > 1 − 2−n . If we pick s1 · · · sb ∈ ({0, 1}cn )b uniformly at
random, then for each r ∈ {0, 1}cn we have Ps1 · · ·sb

[¬∃j M (x ,w, r ⊕ sj ) accepts] < (2−n )b = 2−cn .
Hence by a union bound, there exists s1 · · · sb such that for all r there exists a j such that
M (x ,w, r ⊕ sj ) accepts. Letting w ′ � ws1 · · · sb , we have ∃w ′ ∀r ′ M ′(x , r ′,w ′) accepts, and thus
Pr ′[∃w ′ M ′(x , r ′,w ′) accepts] = 1. Now suppose x � L. If we pick r ′ ∈ ({0, 1}cn )a uniformly at
random, then for each w ′ � ws1 · · · sb we have Pr ′[∀i ∃j M (x ,w, ri ⊕ sj ) accepts] < (b2−n )a ≤
1
2 · 2

−(cn+bcn) . By a union bound, Pr ′[∃w ′ M ′(x , r ′,w ′) accepts] ≤ 1/2. �

4 RELATIVIZED MA � NPBPP

The distinction between MA1 and N·coRP is that when Merlin sends a “wrong” witness for a 1-
input, MA1 allows Arthur to accept with arbitrary probability, whereas N·coRP requires Arthur to
accept with a “legal” probability (in [0, 1/2] ∪ {1}). The distinction between MA2 and N·BPP is sim-
ilar but where the legal probabilities are [0, 1/3] ∪ [2/3, 1]. Since the relativizing polynomial-time
class equalities MA � MA2 = MA1 and NPBPP = N·BPP = N·coRP hold, the following theorem
shows that the distinction is significant.

Theorem 4.1. There is an oracle relative to which MA � NPBPP.

Theorem 4.1 was shown in Reference [11] using the machinery of generics. In contrast, most
oracle separations of pairs of ordinary complexity classes are known to hold directly via separa-
tions of the corresponding query complexity (decision tree) models. When we asked Mika Göös
whether a query complexity style argument could be used to prove Theorem 4.1, he promptly man-
ufactured such an argument. He declined coauthorship but graciously gave permission to present
the argument for the sake of recording it in the literature. Furthermore, this argument even yields
an oracle relative to which MA � NPBQP (by using a quantum rather than randomized query lower
bound for the OR function in the appropriate places), which appears to be a new result.

We define a q-query N·BPP decision tree for a partial function F : {0, 1}N → {0, 1} to be a set of
probability distributions over depth-q deterministic decision trees, such that for every 0-input, each
distribution in the set accepts with probability ≤ 1/3, and for every 1-input, each distribution in the
set accepts with probability in [0, 1/3] ∪ [2/3, 1] and at least one of them accepts with probability
≥ 2/3.4

Consider the partial function FMA1 that takes a 2n × 2n Boolean matrix and evaluates to 1 if
there exists an all-1 row, and to 0 if each row has at most half 1’s. Theorem 4.1 is a corollary of

4It would also be natural to charge the log of the size of the set—i.e., the number of nondeterministic guess bits—to the

cost of the decision tree. For Theorem 4.1 it would suffice to consider this more restricted model, but our lower bound

holds even for the more powerful model that does not charge for guess bits. Reference [19] explores this distinction in the

context of MA decision trees.
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the following result, by the standard connection between decision tree lower bounds and oracle
separations [30].

Lemma 4.2. Every N·BPP decision tree for FMA1 uses Ω(2n ) queries.

Proof. Let us abbreviate FMA1 as F . Suppose for contradiction there exists an N·BPP decision

tree for F using at most 2n−4 queries. Define M (0) to be the 2n × 2n matrix that has all 1’s in its first

row and 0’s everywhere else. Since F (M (0) ) = 1, there is a distribution D (which we fix henceforth)
in the set of the N·BPP decision tree that accepts M (0) with probability ≥ 2/3.

We claim that there exists a sequence of 2n × 2n matrices M (0),M (1), . . . ,M (2n−1 ) such that for

each i = 1, . . . , 2n−1, M (i ) has 2n − i 1’s in its first row and 0’s everywhere else, and the probability

D accepts M (i ) is within 1/8 of the probability D accepts M (i−1) . Inductively assuming M (i−1) has
been constructed, there must be a 1-entry that gets queried with probability ≤ 2n−4/(2n − (i −
1)) ≤ 1/8 under D (since the sum over the 2n − (i − 1) many 1 entries of the probability it gets

queried is at most the worst-case number of queries, which is ≤ 2n−4), so we can obtain M (i ) by
flipping this entry to a 0. The claim is proved.

Since F (M (2n−1 ) ) = 0,D acceptsM (2n−1 ) with probability ≤ 1/3. Hence there exists an i∗ such that

D accepts M (i∗ ) with probability within 1/16 of 1/2. This is an illegal probability, but we do not

yet have a contradiction, since M (i∗ ) is not in the domain of F . Now there must be a row of M (i∗ )

such that the probability (under D) that a bit in that row gets queried is ≤2n−4/2n = 1/16. Flipping
all the 0’s to 1’s in that row results in a matrix M that D accepts with (illegal) probability within
1/16 + 1/16 of 1/2. This is a contradiction, since F (M ) = 1 and so D is supposed to accept M with
probability in [0, 1/3] ∪ [2/3, 1]. �

APPENDIX

A DEFINITIONS

In these definitions, we assume any reasonable model of algorithms that have random access to
the input and memory. Probabilities are always over a uniform distribution.

Definition. L ∈ MA1-TIME(t ) iff there exists a deterministic algorithmM that takes inputs x ,y, z
where |y | = |z | = O (t ( |x |)), runs in time O (t ( |x |)), and such that for every x ,

x ∈ L ⇒ ∃y Pz[M (x ,y, z) accepts] = 1

x � L ⇒ ∀y Pz[M (x ,y, z) accepts] ≤ 1/2.

Definition. L ∈ MA2-TIME(t ) iff there exists a deterministic algorithmM that takes inputs x ,y, z
where |y | = |z | = O (t ( |x |)), runs in time O (t ( |x |)), and such that for every x ,

x ∈ L ⇒ ∃y Pz[M (x ,y, z) accepts] ≥ 2/3

x � L ⇒ ∀y Pz[M (x ,y, z) accepts] ≤ 1/3.

Definition. L ∈ N·coR-TIME(t ) iff there exists a deterministic algorithm M that takes inputs
x ,y, z where |y | = |z | = O (t ( |x |)), runs in time O (t ( |x |)), and such that for every x ,

x ∈ L ⇒ ∃y Pz[M (x ,y, z) accepts] = 1 and ∀y Pz[M (x ,y, z) accepts] ∈ [0, 1/2] ∪ {1}
x � L ⇒ ∀y Pz[M (x ,y, z) accepts] ≤ 1/2.

Definition. L ∈ N·BP-TIME(t ) iff there exists a deterministic algorithmM that takes inputsx ,y, z
where |y | = |z | = O (t ( |x |)), runs in time O (t ( |x |)), and such that for every x ,

x ∈ L ⇒ ∃y Pz[M (x ,y, z) accepts] ≥ 2/3 and ∀y Pz[M (x ,y, z) accepts] ∈ [0, 1/3] ∪ [2/3, 1]

x � L ⇒ ∀y Pz[M (x ,y, z) accepts] ≤ 1/3.
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Definition. L ∈ AM1-TIME(t ) iff there exists a deterministic algorithmM that takes inputs x ,y, z
where |y | = |z | = O (t ( |x |)), runs in time O (t ( |x |)), and such that for every x ,

x ∈ L ⇒ Py[∃z M (x ,y, z) accepts] = 1

x � L ⇒ Py[∃z M (x ,y, z) accepts] ≤ 1/2.

Definition. L ∈ AM2-TIME(t ) iff there exists a deterministic algorithmM that takes inputs x ,y, z
where |y | = |z | = O (t ( |x |)), runs in time O (t ( |x |)), and such that for every x ,

x ∈ L ⇒ Py[∃z M (x ,y, z) accepts] ≥ 2/3

x � L ⇒ Py[∃z M (x ,y, z) accepts] ≤ 1/3.

Definition. L ∈ S2-TIME(t ) iff there exists a deterministic algorithm M that takes inputs x ,y, z
where |y | = |z | = O (t ( |x |)), runs in time O (t ( |x |)), and such that for every x ,

x ∈ L ⇒ ∃y ∀z M (x ,y, z) accepts

x � L ⇒ ∃z ∀y M (x ,y, z) rejects.

Definition. L ∈ S2·BP-TIME(t ) iff there exists a deterministic algorithm M that takes inputs
x ,y, z,w where |y | = |z | = |w | = O (t ( |x |)), runs in time O (t ( |x |)), and such that for every x ,

x ∈ L ⇒ ∃y ∀z Pw [M (x ,y, z,w ) accepts] ≥ 2/3

x � L ⇒ ∃z ∀y Pw [M (x ,y, z,w ) accepts] ≤ 1/3.

Definition. L ∈ Σ2-TIME(t ) iff there exists a deterministic algorithm M that takes inputs x ,y, z
where |y | = |z | = O (t ( |x |)), runs in time O (t ( |x |)), and such that for every x ,

x ∈ L ⇒ ∃y ∀z M (x ,y, z) accepts

x � L ⇒ ∀y ∃z M (x ,y, z) rejects.

Definition. L ∈ P-TIME(t ) iff there exists a deterministic algorithm M that takes inputs x ,y
where |y | = O (t ( |x |)), runs in time O (t ( |x |)), and such that for every x ,

x ∈ L ⇒ Py[M (x ,y) accepts] > 1/2

x � L ⇒ Py[M (x ,y) accepts] < 1/2.

Definition. L ∈ P·BQ-TIME(t ) iff there exists a quantum algorithm M that takes inputs x ,y
where |y | = O (t ( |x |)), runs in time O (t ( |x |)), and such that for every x ,

∀y P [M (x ,y) accepts] ∈ [0, 1/3] ∪ [2/3, 1]

x ∈ L ⇒Py[P [M (x ,y) accepts] ≥ 2/3] > 1/2

x � L ⇒Py[P [M (x ,y) accepts] ≥ 2/3] < 1/2.

Definition. L ∈ P·P-TIME(t ) iff there exists a deterministic algorithm M that takes inputs x ,y, z
where |y | = |z | = O (t ( |x |)), runs in time O (t ( |x |)), and such that for every x ,

∀y Pz[M (x ,y, z) accepts] � 1/2

x ∈ L ⇒Py[Pz[M (x ,y, z) accepts] > 1/2] > 1/2

x � L ⇒Py[Pz[M (x ,y, z) accepts] > 1/2] < 1/2.

MA1, MA2, N·coRP, N·BPP, AM1, AM2, S2P, S2·BPP, Σ2P, PP, P·BQP, and P·PP are defined as
the corresponding polynomial time bounded classes. It is known that MA2 = MA1, so MA refers to
this common class. Similarly, it is known that NPBPP = N·BPP = N·coRP. Also, AM1-TIME could
be called coR·N-TIME, and AM2-TIME could be called BP·N-TIME. It is known that AM2 = AM1,
so AM refers to this common class.
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