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Complexity of Unordered CNF Games

MD LUTFAR RAHMAN and THOMAS WATSON, University of Memphis

The classic TQBF problem is to determine who has a winning strategy in a game played on a given conjunctive

normal form formula (CNF), where the two players alternate turns picking truth values for the variables in a

given order, and the winner is determined by whether the CNF gets satisfied. We study variants of this game

in which the variables may be played in any order, and each turn consists of picking a remaining variable

and a truth value for it.

For the version where the set of variables is partitioned into two halves and each player may only pick vari-

ables from his or her half, we prove that the problem is PSPACE-complete for 5-CNFs and in P for 2-CNFs.

Previously, it was known to be PSPACE-complete for unbounded-width CNFs (Schaefer, STOC 1976). For the

general unordered version (where each variable can be picked by either player), we also prove that the prob-

lem is PSPACE-complete for 5-CNFs and in P for 2-CNFs. Previously, it was known to be PSPACE-complete

for 6-CNFs (Ahlroth and Orponen, MFCS 2012) and PSPACE-complete for positive 11-CNFs (Schaefer, STOC

1976).
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1 INTRODUCTION

Conjunctive normal form formulas (CNFs) are among the most prevalent representations of
Boolean functions. All sorts of computational problems concerning CNFs—such as satisfying them,
minimizing them, learning them, refuting them, fooling them, and playing games on them—play
central roles in complexity theory. The CNF format is so prevalent because it can represent all
Boolean functions and can do so in a succinct way for many functions of interest. A CNF is a
conjunction of clauses, where each clause is a disjunction of literals; a w-CNF has at most w lit-
erals per clause. The width w is often the most important parameter governing the complexity of
problems concerning CNFs; this is because problems often turn out to be tractable for small width
(e.g., satisfiability of 2-CNFs) and intractable for larger width (e.g., satisfiability of 3-CNFs). The
following are three classical two-player games played on a CNF φ (x1, . . . ,xn ):
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• In the ordered game, player 1 assigns a bit value for x1, then player 2 assigns x2, then player 1
assigns x3, and so on, and the winner is determined by whetherφ gets satisfied. Note that the
variables must be played in the prescribed order x1,x2,x3, . . .. Deciding who has a winning
strategy—better known as TQBF or QSAT—is PSPACE-complete for 3-CNFs [17] and in P for
2-CNFs [3, 8]. Many PSPACE-completeness results have been shown by reducing from the
ordered 3-CNF game; classic examples include Generalized Geography [13, 14] and Node
Kayles [13, 14].

• In the unordered game, each player is allowed to pick which remaining variable to play next
(as well as which bit value to assign it), and again the winner is determined by whether
φ gets satisfied. Deciding who has a winning strategy is PSPACE-complete for 6-CNFs [1]
and for 11-CNFs with only positive literals [13, 14]. The unordered game on positive CNFs
is also known as the maker–breaker game, and a simplified proof of PSPACE-completeness
for unbounded-width positive CNFs appears in the work of Byskov [7]. Many PSPACE-
completeness results have been proven by reducing from the unordered positive CNF game
[2, 4, 7, 9–11, 15, 16, 19, 20]. For the general unordered CNF game, nothing was known for
width < 6; in particular, the complexity of the unordered 2-CNF game was not studied in
the literature previously. An experimental evaluation of heuristics for the unordered CNF
game appears in the work of Zhao and Müller [21].

• In the partitioned game, the set of variables is partitioned into two halves, and each player
may only pick variables from his or her half. This is, in a sense, intermediate between or-
dered and unordered: the ordered game restricts the set of variables available to each player
and the order in which they must be played; the unordered game restricts neither; and the
partitioned game restricts only the former. Deciding who has a winning strategy was shown
to be PSPACE-complete for unbounded-width CNFs in the work of Schaefer [13, 14], where
it was explicitly posed as an open problem to show PSPACE-completeness with any con-
stant bound on the width. This game has been used for PSPACE-completeness reductions
[5], and a variant with a matching between the two players’ variables has also been studied
[6]. The partitioned 2-CNF game has not been studied in the literature.

Study of the unordered and partitioned games is motivated by their resemblance to real-world
two-player games that also lack a prescribed “order” for possible moves. For example, the game of
Hex has an unordered flavor since any cell can potentially be played by either player at any time.
In addition, the game of Checkers has a partitioned flavor since for any configuration of pieces,
the set of moves one player is allowed to make is disjoint from the set of moves the other player
is allowed to make, and each player may pick any of his or her available moves. Hardness results
for the unordered and partitioned CNF games may translate via reduction more easily (than the
ordered game) to other games of interest.

We prove that the unordered and partitioned games are both PSPACE-complete for 5-CNFs; the
former improves the width 6 bound from the work of Ahlroth and Orponen [1], and the latter
resolves the 42-year-old open problem1 from the work of Schaefer [13, 14]. We also prove that
the unordered and partitioned games are both in P for 2-CNFs. The complexity for width 3 and 4
remains open. In the following section, we give the precise definitions and theorem statements.

1.1 Statement of Results

The unordered CNF game is defined as follows. There are two players, denoted T (for “true”) and
F (for “false”). The input consists of a CNF φ, a set of variables X = {x1, . . . ,xn } containing all

1From Schaefer [14, top of p. 216]: “We have not been able to produce any fixed integer bound k such that L%free (CNF) is

complete when restricted to formulas with at most k disjuncts in each conjunct.”
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the variables that appear in φ (and possibly more), and a specification of which player goes first.
The players alternate turns, and each turn consists of picking a remaining variable from X and
assigning it a value 0 or 1. Once all variables have been assigned, the game ends and T wins if φ is
satisfied, and F wins if it is not. We let G (for “game”) denote the problem of deciding which player
has a winning strategy, given φ, X , and who goes first.

The partitioned CNF game is similar to the unordered CNF game, except X is partitioned into
two halvesXT andXF, and each player may only pick variables from his or her half. If n is even, we
require |XT | = |XF |, and if n is odd, we require |XT | = |XF | + 1 if T goes first, and |XF | = |XT | + 1 if
F goes first. We let G% denote the problem of deciding which player has a winning strategy, given
φ, the partition X = XT ∪ XF, and who goes first.

We let Gw and G%
w denote the restrictions of G and G%, respectively, to instances where φ has

width w (i.e., each clause has at most w literals). Now, we state our results as the following theo-
rems.

Theorem 1. G5 is PSPACE-complete.

Theorem 2. G%
5 is PSPACE-complete.

Theorem 3. G2 is in P, in fact, in Linear Time.

Theorem 4. G%
2 is in P, in fact, in Linear Time.

Here, linear time means O ( |X | + number of clauses in φ).
We prove Theorem 1 and Theorem 2 in Section 2 by showing reductions from the PSPACE-

complete games G and G%, respectively. For Theorem 3 and Theorem 4, in Section 3 we prove
characterizations in terms of the graph representation from the classical 2-SAT algorithm—who
has a winning strategy in terms of certain graph properties—and we design linear-time algorithms
to check these properties.2

In the proofs, it is helpful to distinguish four patterns for “who goes first” and “who goes last,”
so we introduce new subscripts. For a,b ∈ {T, F}, the subscript a · · ·b means player a goes first and
player b goes last, a · · · means a goes first, and · · ·b means b goes last. These may be combined
with the width w subscript. For example, G%

T· · ·F (which was denoted L% free (CNF) in the work of
Schaefer [13, 14]) corresponds to the partitioned game where T goes first and F goes last (son = |X |
must be even), and G5, · · ·T corresponds to the unordered game with width 5 where T goes last (so
either n is even and F goes first, or n is odd and T goes first).

2 5-CNF

We prove Theorem 1 in Section 2.1 and Theorem 2 in Section 2.2. We use the ≤ symbol to indicate
the existence of a polynomial-time mapping (Karp) reduction from one problem to another.

2.1 G5

In this section, we prove Theorem 1. It is trivial to argue that G5 ∈ PSPACE. We prove PSPACE-
hardness by showing a reduction GT· · ·F ≤ G5,T· · ·F in Section 2.1.2. GT· · ·F is already known to be
PSPACE-complete [1, 7, 13, 14]. We will talk about the other three patterns GF· · ·F, GT· · ·T, GF· · ·T in
Section 2.1.3. Before the formal proof, we develop the intuition in Section 2.1.1.

2We remark that it is not automatic that two-player games on 2-CNFs are solvable in polynomial time. For example, the

game played on a positive 2-CNF in which players alternate turns assigning variables of their choice to 0 and where the

loser is the first to falsify the 2-CNF, as well as the partitioned variant of this game, are PSPACE-complete [13, 14].

ACM Transactions on Computation Theory, Vol. 12, No. 3, Article 18. Publication date: May 2020.



18:4 Md L. Rahman and T. Watson

2.1.1 Intuition. In NP-completeness, recall the following simple reduction from SAT with un-
bounded width to 3-SAT. Suppose a SAT instance is given by φ over set of variables X . If
(�1 ∨ �2 ∨ �3 ∨ · · · ∨ �k ) is a clause in φ with width k > 3, then the reduction introduces fresh vari-
ables z1, z2, . . . , zk−1 and generates a chain of clauses in φ ′ as follows:

(�1 ∨ z1) ∧ (z1 ∨ �2 ∨ z2) ∧ · · · ∧ (zi−1 ∨ �i ∨ zi ) ∧ · · · ∧ (zk−2 ∨ �k−1 ∨ zk−1) ∧ (zk−1 ∨ �k ).

Each clause of φ gets a separate set of fresh variables for its chain, and we let Z = {z1, z2, . . .} be
the set of all fresh variables for all chains. The reduction claims that φ is satisfiable if and only if
φ ′ is satisfiable. We will make use of the following specific property of the reduction.

Claim 1. For every assignment x to X : φ (x ) is satisfied if and only if there exists an assignment z
to Z such that φ ′(x , z) is satisfied.

Proof. Suppose x satisfies φ. If x satisfies (�1 ∨ �2 ∨ �3 ∨ · · · ∨ �k ) in φ by �i = 1, then in the
corresponding chain of clauses in φ ′, the clause having �i also gets satisfied by �i = 1 and the rest
of the clauses in that chain can get satisfied by assigning all z’s on the left side of �i as 1 and right
side of �i as 0.

Now suppose x does not satisfy φ. Then at least one of the clauses of φ has all literals assigned
as 0. The corresponding chain of clauses in φ ′ essentially becomes

(z1) ∧ (z1 ∨ z2) ∧ · · · ∧ (zi−1 ∨ zi ) ∧ · · · ∧ (zk−2 ∨ zk−1) ∧ (zk−1).

To satisfy the preceding chain, z1 = 1 and zk−1 = 0. It also introduces the following chain of impli-
cations: z1 ⇒ z2 ⇒ z3 ⇒ · · · ⇒ zk−1. Following the chain, we get (z1 ⇒ zk−1)= (1⇒ 0). Therefore,
we conclude that φ ′(x , z) cannot be satisfied for any assignment z. �

Now this reduction does not show GT· · ·F ≤ G3,T· · ·F since the games on φ and φ ′ are not equiv-
alent. We show a simple example to make our point. Consider the following GT· · ·F game over
variables {x0,x1, . . . ,xk }:

φ = x0 ∧ (x1 ∨ x2 ∨ x3 ∨ · · · ∨ xk ),where k > 1.

In the preceding GT· · ·F game, T has a winning strategy. On the first move T plays, x0 = 1. Then
whatever F plays, T plays one of the k − 1 many unassigned xi from {x1,x2, . . . ,xk } as 1. T wins.

But if we introduce fresh variables {z1, z2, z3, . . .} as in the NP-completeness reduction, then we
get a game over variables {x0,x1,x2, . . . ,xk } ∪ {z1, . . . , zk−1}:

φ ′ = x0 ∧ (x1 ∨ z1) ∧ · · · ∧ (zi−1 ∨ xi ∨ zi ) ∧ · · · ∧ (zk−1 ∨ xk ).

In the preceding G3,T· · ·F game, F has a winning strategy. On the first move, T must play x0 = 1;
otherwise, F wins by x0 = 0. Then F plays x1 = 0 and T must reply by z1 = 1; otherwise, F wins by
z1 = 0. Then F plays x2 = 0 and T must reply by z2 = 1; otherwise, F wins by z2 = 0. The strategy
goes on like this until the last clause and F wins by xk = 0.

The G3,T· · ·F game is disadvantageous for T compared to the GT· · ·F game. The disadvantage arises
from F having the beginning move in a fresh chain of clauses.

Now the intuition is to design a game version of the NP-completeness reduction by fixing the
imbalance. We designψ in such a way that the games on φ andψ stay equivalent. To counter the
unfairness for T due to fresh variables {z1, z2, z3, . . .}, we replace zi by a pair of variables (ai ,bi ),
which gives T more opportunities to satisfy the clauses. The construction of a chain of clauses in
ψ from a clause (�1 ∨ �2 ∨ �3 ∨ · · · ∨ �k ) in φ goes as follows:

(�1 ∨ a1 ∨ b1) ∧ · · · ∧ (ai−1 ∨ bi−1 ∨ �i ∨ ai ∨ bi ) ∧ · · · ∧ (ak−1 ∨ bk−1 ∨ �k ).

Let us consider a G5,T· · ·F game on ψ . In an optimal gameplay, no player should play a’s or b’s
before playing x ’s. Intuitively, this is because if F plays any ai or bi , then T can reply by making
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ai � bi and both clauses involving ai and bi will be satisfied, which benefits T. If T plays any ai

or bi , F can reply by making ai = bi , which satisfies one clause involving ai and bi but the other
clause gets two 0 literals. Since only one of the two clauses gets satisfied by ai ,bi , T would like to
wait for more information before deciding which one to satisfy with ai ,bi : it depends on whether
they are on the right side or left side of a satisfied �i in a chain, which in turn depends on the
assignment x .

Thus, an optimal gameplay consists of two phases. In the first phase, players should play only
x ’s. The second phase begins when all of the x ’s have been played and someone must start playing
a’s and b’s. Since the number of fresh variables is even (2|Z |) and F plays last, T must be the one
to start the second phase, which is essential because if F started the second phase, then T could
satisfy all of the clauses regardless of what happened in the first phase.

In the second phase, after T plays any ai or bi , it is optimal for F to reply by making ai = bi .
Assuming this optimal gameplay by F, we can consider a pair (ai ,bi ) as a single variable zi that
can be assigned only by T. Effectively, the second phase just consists of T choosing an assignment
z to φ ′ from the NP-completeness reduction. Thus, ψ (x ,a,b) is satisfied if and only if φ ′(x , z) is
satisfied, which by Claim 1 is possible if and only if φ (x ) is satisfied, where x is the assignment
from the first phase.

2.1.2 Formal Proof. We show GT· · ·F ≤ G5,T· · ·F. Suppose an instance of GT· · ·F is given by (φ,X ),
where φ is a CNF with unbounded width over set of variables X . We show how to construct an
instance (ψ ,Y ) for G5,T· · ·F, where ψ is a 5-CNF over set of variables Y . Suppose (�1 ∨ �2 ∨ �3 ∨
· · · ∨ �k ) is a clause in φ. If k ≤ 3, the same clause remains in ψ . If k > 3, we show how to con-
struct a chain of clauses in ψ . We introduce two sets of fresh variables {a1,a2,a3, . . . ,ak−1} and
{b1,b2,b3, . . . ,bk−1} and clauses as follows:

(�1 ∨ a1 ∨ b1) ∧ · · · ∧ (ai−1 ∨ bi−1 ∨ �i ∨ ai ∨ bi ) ∧ · · · ∧ (ak−1 ∨ bk−1 ∨ �k ).

Each clause of φ gets separate sets of fresh variables for its chain, and we let A = {a1,a2,a3, . . .}
and B = {b1,b2,b3, . . .} be the sets of all fresh variables for all chains. Finally, we get a 5-CNF ψ
over set of variables Y = X ∪A ∪ B.

We claim that T has a winning strategy in (φ,X ) if and only if T has a winning strategy in (ψ ,Y ).
Suppose T has a winning strategy in (φ,X ). We describe T’s winning strategy in (ψ ,Y ) as Al-

gorithm 1. To see that the strategy works, note that the winning strategy in (φ,X ) ensures that
φ (x ) is satisfied by the assignment x to X in the first phase, so according to Claim 1, there is an
assignment z to Z (the set of fresh variables introduced in the definition of φ ′) such that φ ′(x , z)
is satisfied. T can ensure that for each i , either ai = zi or bi = zi (since ai = zi or bi = zi due to
line 8, or ai � bi due to line 4 or line 7) and thus ψ (x ,a,b) gets satisfied, since φ ′(x , z) is satisfied
and each clause of ψ is identical to a clause from φ ′ but with each zi replaced with ai ∨ bi and zi

replaced with ai ∨ bi .
Suppose F has a winning strategy in (φ,X ). We describe F’s winning strategy in (ψ ,Y ) as Al-

gorithm 2. To see that the strategy works, note that the winning strategy in (φ,X ) ensures that
φ (x ) is unsatisfied by the assignment x to X , so according to Claim 1, for all assignments z to Z ,
φ ′(x , z) is unsatisfied. F can ensure that for each i , ai = bi ; let us call this common value zi . Thus,
ψ (x ,a,b) is unsatisfied, since φ ′(x , z) is unsatisfied andψ (x ,a,b) = φ ′(x , z).

2.1.3 GF· · ·F, GT· · ·T, GF· · ·T.

Corollary 1. G5,F· · ·F is PSPACE-complete.

Proof. The reduction is GT· · ·F ≤ GF· · ·F ≤ G5,F· · ·F. First we show GT· · ·F ≤ GF· · ·F. Suppose φ =
c1 ∧ c2 ∧ c3 ∧ · · · ∧ cm over set of variablesX is an instance of GT· · ·F. We introduce a fresh variable

ACM Transactions on Computation Theory, Vol. 12, No. 3, Article 18. Publication date: May 2020.
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ALGORITHM 1: T’s winning strategy in (ψ ,Y ) when T has a winning strategy in (φ,X )

1 while there is a remaining X -variable do

2 if (first move) or (F played an X -variable in the previous move) then

3 play according to the same winning strategy as in (φ,X )

4 else if F played ai or bi in the previous move then play the other one to make ai � bi

5 while there is a remaining A-variable or B-variable do

6 if (F played ai or bi in the previous move) and (one of ai or bi remains unplayed) then

7 play the other one to make ai � bi

8 else pick a remaining ai or bi and assign it zi ’s value from Claim 1

ALGORITHM 2: F’s winning strategy in (ψ ,Y ) when F has a winning strategy in (φ,X )

1 while there is a remaining variable do

2 if T played an X -variable in the previous move then

3 play according to the same winning strategy as in (φ,X )

4 else if T played ai or bi in the previous move then play the other one to make ai = bi

z and constructψ = (c1 ∨ z) ∧ (c2 ∨ z) ∧ (c3 ∨ z) ∧ · · · ∧ (cm ∨ z) over set of variablesY = X ∪ {z}.
Now in the GF· · ·F game on (ψ ,Y ), F’s first move must be z = 0; otherwise, T wins by z = 1 as the
first move. Then the rest of the winning strategy for T or F is the same as in (φ,X ). This completes
the reduction GT· · ·F ≤ GF· · ·F.

Now the reduction GF· · ·F ≤ G5,F· · ·F is identical to Section 2.1.2 except it is F’s move first. �

To handle the patterns where T moves last, we do not rely on our proof of Theorem 1 but rather
derive corollaries of the result from Schaefer [13, 14].

Corollary 2. G11,T· · ·T is PSPACE-complete.

Proof. The reduction is G+11,T· · ·F ≤ G+11,T· · ·T ≤ G11,T· · ·T, where G+11 is the restriction of G11 to

instances with only positive literals (and G+11,T· · ·F is known to be PSPACE-complete [13, 14]). Given

a positive 11-CNFφ+ over set of variablesX , we simply introduce a dummy variable z that does not
appear in φ+ and use Y = X ∪ {z}. We claim that T has a winning strategy in G+11,T· · ·F on (φ+,X )

if and only if T has a winning strategy in G+11,T· · ·T on (φ+,Y ).

Suppose T has a winning strategy on (φ+,X ). We show T’s winning strategy on (φ+,Y ). T can
start by the same strategy as in (φ+,X ) and continue as long as F does not play z. If F never plays
z, then T plays z at the end and wins as in (φ+,X ). If F plays z, then T can respond by playing any
remaining variable xi = 1, then T resumes his strategy from (φ+,X ) until that strategy tells him
to play xi . At this time, T again picks any other remaining variable and assigns it 1. Then T again
resumes his strategy from (φ+,X ). The game goes on like this in phases. At the end, T has played
all of the variables he would have played in the (φ+,X ) game and possibly one more. Since φ+ is
positive, it must still be satisfied when one of the variables is 1 instead of 0.

A similar winning strategy works for F as well (making xi = 0). This completes the reduction.
Trivially, G+11,T· · ·T ≤ G11,T· · ·T. �

Corollary 3. G12,F· · ·T is PSPACE-complete.

ACM Transactions on Computation Theory, Vol. 12, No. 3, Article 18. Publication date: May 2020.



Complexity of Unordered CNF Games 18:7

Proof. The reduction is G11,T· · ·T ≤ G12,F· · ·T (similar to GT· · ·F ≤ GF· · ·F in Corollary 1). Intro-
duce a fresh variable z to every clause in φ. Then F must play z = 0 as the first move; otherwise,
T wins by z = 1 as the first move. Like in Corollary 2, this in fact shows PSPACE-completeness of
G+12,F· · ·T. �

2.2 G
%

5

In this section, we prove Theorem 2. It is trivial to argue that G%
5 ∈ PSPACE. We prove PSPACE-

hardness by showing a reduction G%
T· · ·F ≤ G%

5,T· · ·F in Section 2.2.2. G%
T· · ·F is already known to be

PSPACE-complete [13, 14]. We will talk about the other three patterns G%
F· · ·F, G%

T· · ·T, G%
F· · ·T in Sec-

tion 2.2.3. Before the formal proof, we develop the intuition in Section 2.2.1.

2.2.1 Intuition. This intuition is a continuation of Section 2.1.1. The reduction is the same as
GT· · ·F ≤ G5,T· · ·F reduction except giving A-variables to T and B-variables to F. In the general un-
ordered game, if any player plays ai or bi , then the other player can immediately play the other
one from ai ,bi in a certain advantageous way. In the partitioned version, they can do the same
thing if ai belongs to T and bi belongs to F.

2.2.2 Formal Proof. We show G%
T· · ·F ≤ G%

5,T· · ·F. Suppose an instance of G%
T· · ·F is given by

(φ,XT,XF), where φ is a CNF with unbounded width over sets of variables XT and XF. We show
how to construct an instance (ψ ,YT,YF) for G%

5,T· · ·F, where ψ is a 5-CNF over sets of variables YT

and YF. Suppose (�1 ∨ �2 ∨ �3 ∨ · · · ∨ �k ) is a clause in φ. If k ≤ 3, the same clause remains inψ . If
k > 3, we show how to construct a chain of clauses inψ . We introduce two sets of fresh variables
{a1,a2,a3, . . . ,ak−1} for T and {b1,b2,b3, . . . ,bk−1} for F and clauses as follows:

(�1 ∨ a1 ∨ b1) ∧ · · · ∧ (ai−1 ∨ bi−1 ∨ �i ∨ ai ∨ bi ) ∧ · · · ∧ (ak−1 ∨ bk−1 ∨ �k ).

Each clause of φ gets separate sets of fresh variables for its chain, and we let A = {a1,a2,a3, . . .}
for T and B = {b1,b2,b3, . . .} for F be the sets of all fresh variables for all chains. Finally, we get a
5-CNFψ over sets of variables YT = XT ∪A and YF = XF ∪ B.

We claim that T has a winning strategy in (φ,XT,XF) if and only if T has a winning strategy in
(ψ ,YT,YF).

Suppose T has a winning strategy in (φ,XT,XF). We describe T’s winning strategy in (ψ ,YT,YF)
as Algorithm 3. To see that the strategy works, note that the winning strategy in (φ,XT,XF) ensures
that φ (x ) is satisfied by the assignment x to XT ∪ XF in the first phase, so according to Claim 1,
there is an assignment z to Z (the set of fresh variables introduced in the definition of φ ′) such
that φ ′(x , z) is satisfied. T can ensure that for each i , either ai = zi or bi = zi (since ai = zi due to
line 8, or ai � bi due to line 4 or line 7) and thus ψ (x ,a,b) gets satisfied, since φ ′(x , z) is satisfied
and each clause of ψ is identical to a clause from φ ′ but with each zi replaced with ai ∨ bi and zi

replaced with ai ∨ bi .
Suppose F has a winning strategy in (φ,XT,XF). We describe F’s winning strategy in (ψ ,YT,YF)

as Algorithm 4. To see that the strategy works, note that the winning strategy in (φ,XT,XF) ensures
thatφ (x ) is unsatisfied by the assignment x toXT ∪ XF, so according to Claim 1, for all assignments
z to Z , φ ′(x , z) is unsatisfied. F can ensure that for each i , ai = bi ; let us call this common value zi .
Thus,ψ (x ,a,b) is unsatisfied, since φ ′(x , z) is unsatisfied andψ (x ,a,b) = φ ′(x , z).

2.2.3 G%
F· · ·F, G%

T· · ·T, G%
F· · ·T.

Corollary 4. G%
5,F· · ·F is PSPACE-complete.

Proof. The reduction is G%
T· · ·F ≤ G%

F· · ·F ≤ G%
5,F· · ·F. First we show G%

T· · ·F ≤ G%
F· · ·F. Suppose

(φ,XT,XF) is an instance of G%
T· · ·F. We introduce a dummy variable z that does not appear in φ
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ALGORITHM 3: T’s winning strategy in (ψ ,YT,YF) when T has a winning strategy in
(φ,XT,XF)

1 while there is a remaining XT-variable do

2 if (first move) or (F played an XF-variable in the previous move) then

3 play according to the same winning strategy as in (φ,XT,XF)

4 else if F played bi in the previous move then play ai to make ai � bi

5 while there is a remaining A-variable do

6 if (F played bi in the previous move) and (ai remains unplayed) then

7 play ai to make ai � bi

8 else pick a remaining ai and assign it zi ’s value from Claim 1

ALGORITHM 4: F’s winning strategy in (ψ ,YT,YF) when F has a winning strategy in
(φ,XT,XF)

1 while there is a remaining variable do

2 if T played an XT-variable in the previous move then

3 play according to the same winning strategy as in (φ,XT,XF)

4 else if T played ai in the previous move then play bi to make ai = bi

and give it to F: YT = XT, YF = XF ∪ {z}. Thus, (φ,YT,YF) is an instance of G%
F· · ·F. The reduction

works for the following reason. When F has a winning strategy in (φ,XT,XF), F can play z as the
first move, then continue the winning strategy as in (φ,XT,XF). Conversely, when T has a win-
ning strategy in (φ,XT,XF), T can use the same strategy from (φ,XT,XF) if F plays z as the starting
move. If F plays xi instead of playing z at the beginning, then T can ignore F’s first move and start
playing with the same strategy from (φ,XT,XF). The game can continue as usual until F plays z,
then T can pretend that F just played xi and continue the usual strategy from there. At the end, T
and F have both played the same assignment as they would have in (φ,XT,XF), so T still wins.

This completes the reduction G%
T· · ·F ≤ G%

F· · ·F. Now the reduction G%
F· · ·F ≤ G%

5,F· · ·F is identical to

Section 2.2.2, except it is F’s move first. �

Observation 1. G%
3,T· · ·F, G%

3,F· · ·F, G%
3,T· · ·T, G%

3,F· · ·T are NP-hard.

Proof. First we show that 3-SAT ≤ G%
3,T· · ·F. Suppose (φ,X ) is an instance of 3-SAT. We construct

the instance (φ,YT,YF) of G%
3,T· · ·F, where YT = X and YF is a new set of fresh variables such that

|YF | = |X |. F’s moves do not matter. If φ is satisfiable, then T can play a satisfying assignment;
otherwise, T cannot satisfy φ.

The reductions for the other patterns are similar. Only the number of dummy variables |YF |
changes: |YF | = |X | + 1 for G%

3,F· · ·F, |YF | = |X | − 1 for G%
3,T· · ·T, and |YF | = |X | for G%

3,F· · ·T. �

3 2-CNF

To analyze the complexity of the games G2 and G%
2 , we construct a directed graph д(φ,X ) by the

classical technique for 2-SAT:

• For each variable xi ∈ X , form two nodes xi and x i . Let �i refer to either xi or x i .
3

3In Section 2, �i represented an arbitrary literal; in Section 3, �i always represents either xi or x i .
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• For each clause (�i ∨ �j ), add two directed edges �i → �j and �i ← �j . In case of a single

variable clause (�i ), consider the clause as (�i ∨ �i ) and add one directed edge �i → �i .

In our arguments, we write �i � �j to mean there exists a path from node �i to node �j . In the

graph, every path �i � �j has a mirror path �i � �j . If there exist two paths �i � �j and �i � �j ,
we express this as �i � �j . We are interested in strongly connected components, which we call
strong components for short. We say an edge is incident to a node if the node is an endpoint of the
edge (head or tail). We say two nodes are neighbors if there exists an edge between them (in either
direction).

The 2-CNF game analogy on this graph is as follows. If any variable xi is assigned a bit value
in φ, then in the graph both nodes xi and x i are assigned. Conversely, if say a player assigns a bit

value to a node �i , then the complement node �i simultaneously gets assigned the opposite value.
If �i refers to xi , then xi gets assigned the same value as �i and similarly for �i referring to x i . Thus,
we can describe strategies as assigning bit values to nodes in the graph.

In a satisfying assignment for φ, there must not exist any false implication edge (1→ 0) in the
graph. In fact, the graph must not have any path (1 � 0) since the path will contain at least one
(1→ 0) edge. Player F’s goal is to create a false implication, and player T will try to make all
implications true.

We prove Theorem 3 in Section 3.1 and Theorem 4 in Section 3.2. In terms of the graph
representation, linear time means O (n +m), where n = number of nodes and m = number of
edges.

3.1 G2

G2 is the unordered analogue of the 2-TQBF game. We prove Theorem 3 by separately considering
the cases G2,F· · ·F in Section 3.1.1, G2,F· · ·T in Section 3.1.2, and G2,T· · · in Section 3.1.3. Our algorithm
for G2 is to run either Algorithm 5 or Algorithm 6 or Algorithm 7, depending on the pattern of
who goes first and who goes last.

3.1.1 G2,F· · ·F ∈ Linear Time.

Lemma 1. F has a winning strategy in G2,F· · ·F if and only if at least one of the following statements

holds in the graph д(φ,X ):

(1) There exists a node �i such that �i � �i .
(2) There exist three nodes �i , �j , �k such that �j � �i � �k .

(3) There exist two nodes �i , �j such that �i � �j .

Proof. Suppose at least one of the statements holds.
If statement (1) holds, F can win by �i = 0 as the very first move.
If statement (2) holds but statement (1) does not, there can be two cases:

• In the first case, �i , �j , �k represent three distinct variables. At the beginning, F can play
�i = 0, then whatever T plays, F still has at least one of �j or �k to play. F can assign �j or �k
as 1 and wins.

• In the second case, �i , �j , �k do not represent three distinct variables. The only possibility is

that �k is �j —that is, �j � �i � �j (because otherwise �i would represent the same variable

as either �j or �k , in which case we would have �i � �i , which is covered by statement (1)).
F can play �i = 0, then whatever the value of �j , F wins.
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Fig. 1. T has a winning strategy in G2,F· · ·F for (x2 ∨ x3) ∧ (x4 ∨ x5).

ALGORITHM 5: Linear-time algorithm for G2,F· · ·F

Input: φ,X Output: which player has a winning strategy

1 construct д(φ,X )

2 foreach xi ∈ X do

3 if (xi → x i ) or (xi ← x i ) or (xi has at least two incident edges) then output F

4 output T

If statement (3) holds but statement (1) does not, F can wait by playing variables other than xi , x j

with arbitrary values until T plays xi or x j . Then F can immediately respond by making �i � �j
and win. As F moves last, he or she can always wait for that opportunity.

Conversely, suppose none of the statements hold. Then we claim the graph has no two edges
that share an endpoint. Otherwise, two edges that share an endpoint would cause statement (2) or
statement (3) to be satisfied. We show this by considering all possible ways of two edges sharing
an endpoint:

• �i ↔ �j : Satisfies statement (3).

• �j → �i ← �k or its mirror �j ← �i → �k : Satisfies statement (2).
• �k → �j → �i : Satisfies statement (2).

Thus, the graph can only have some isolated nodes and isolated edges. Since statement (1)
does not hold, there are no edges between complementary nodes. An example of such a graph
looks like Figure 1. Conversely, in any such graph (like Figure 1), none of statements (1), (2), (3)
hold. �

Now, we describe a winning strategy for T on such a graph. If F plays �i or �j of any fresh (both
endpoints unassigned) edge �i → �j , T plays in the same edge by the same bit value for the other
node (i.e., making �i = �j ). Otherwise, T picks any remaining node �i . If �i is isolated, T assigns
any arbitrary bit value. If �i has an incoming edge, T plays �i = 1. If �i has an outgoing edge, T
plays �i = 0.

The strategy works, since all edges �i → �j will be satisfied by either �i = �j or �i = 0 or �j = 1.
The characterization of such a graph in the proof of Lemma 1 can be verified in linear time, and

that yields a linear-time algorithm for G2,F· · ·F. Details of the idea have been described as Algo-
rithm 5.

3.1.2 G2,F· · ·T ∈ Linear Time. The characterization is the same as for G2,F· · ·F but without state-
ment (3).

Lemma 2. F has a winning strategy in G2,F· · ·T if and only if at least one of the following statements

holds in the graph д(φ,X ):

(1) There exists a node �i such that �i � �i .
(2) There exist three nodes �i , �j , �k such that �j � �i � �k .
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Fig. 2. T has a winning strategy in G2,F· · ·T for (x3 ∨ x4) ∧ (x5 ∨ x6) ∧ (x7 ∨ x8) ∧ (x7 ∨ x8).

ALGORITHM 6: Linear-time algorithm for G2,F· · ·T

Input: φ,X Output: which player has a winning strategy

1 construct д(φ,X )

2 foreach xi ∈ X do

3 if (xi → x i ) or (xi ← x i ) or (xi has at least two neighbors) then output F

4 output T

Proof. Suppose one of the statements holds. In Lemma 1, we have already seen that statement
(1) and statement (2) allow player F to win at the beginning.

Conversely, suppose none of the statements hold. The graph can have strong components of
size 2. Other than that, there are no two edges sharing an endpoint because statement (2) does
not hold. Thus, the graph can only have some isolated nodes, isolated edges, and isolated strong
components of size 2. Since statement (1) does not hold, there are no edges between complemen-
tary nodes. An example of such a graph looks like Figure 2. Conversely, in any such graph (like
Figure 2), none of statements (1) and (2) hold.

Now, we describe a winning strategy for T on such a graph. If F plays �i or �j of any fresh (both
endpoints unassigned) edge �i → �j or strong component �i ↔ �j , T plays in the same edge or
strong component by the same bit value for the other node (i.e., making �i = �j ). Otherwise, T
picks any remaining isolated node and gives it any arbitrary bit value. Since |X | is even, T can
always play such a node.

The strategy works, since all of the edges �i → �j will be satisfied by �i = �j . �

The characterization of such a graph in the proof of Lemma 2 can be verified in linear time,
and that yields a linear-time algorithm for G2,F· · ·T. Details of the idea have been described as
Algorithm 6.

3.1.3 G2,T· · · ∈ Linear Time. To win G2,T· · ·, at the beginning T must locate a node �i such that
after playing it, the game is reduced to a G2,F· · · game such that T still has a winning strategy in it.
Thus, T’s success depends on finding such a node �i . However, F’s success depends on there not
existing such a node �i .

Lemma 3. T has a winning strategy in G2,T· · · if and only if there exists an �i with no outgoing

edges such that after deleting �i , �i and their incident edges, in the rest of the graph T has a winning

strategy in G2,F· · ·.

Proof. Suppose T has a winning strategy in G2,T· · ·. Let T’s first move in the winning strategy

be �i = 1 (or �i = 0). Then, �i must not have any outgoing edge; otherwise, either that edge goes

to �i or F could play the other endpoint node of that edge as 0 and win.
Conversely, suppose there exists such an �i . At the beginning, T can play �i = 1, and all incoming

edges to �i and outgoing edges from �i get satisfied. Then T can continue the game according to the
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Fig. 3. T’s winning graph in G2,T· · · (all edges incident to �i or �i are optional).

winning strategy in G2,F· · · for the rest of the graph and win. For example, in Figure 3, T’s winning
strategy is to play �i = 1 at the beginning, then continue the winning strategy for G2,F· · ·. �

We define L as the set of all nodes that have no outgoing edges. If |L| = 0, then according to
Lemma 3, T has no winning strategy in G2,T· · ·. If |L| > 0, then the trivial algorithm for G2,T· · · is,
checking for each node �i ∈ L, whether or not after playing �i = 1 the rest of the graph becomes a
winning graph for T in G2,F· · ·—for instance, running Algorithm 5 or Algorithm 6 for O ( |L|) times,
which is a quadratic-time algorithm. We argue that we can do better than that.

We filter the possibilities in L and show that there are only three cases to consider:

• There exists a node �i ∈ L such that statement (1) from Lemma 1 and Lemma 2 holds. We
consider this case in Claim 2.

• There exists a node �i ∈ L such that statement (2) from Lemma 1 and Lemma 2 holds. We
consider this case in Claim 3.

• There exists no node �i ∈ L such that statement (1) or statement (2) from Lemma 1 and
Lemma 2 holds. We consider this case in Claim 4.

Then in Claim 5 and Claim 6, we analyze the efficiency of this approach.

Claim 2. If there exists �i ∈ L such that �i � �i and T has a winning strategy in G2,T· · ·, then T’s

first move must be �i = 1.

Proof. Suppose T’s first move is not �i = 1. If T’s first move assigns 1 to a node with an outgoing
edge, then T loses as in Lemma 3. Otherwise, T’s first move must not involve any variable on the

path �i � �i (since if it assigns 1 to a node on the path other than �i , then that node has an outgoing

edge, and if it assigns 0 to a node on the path other than �i , then that node’s complement has an
outgoing edge). In this case, in the rest of the game T loses by statement (1) from Lemma 1 and
Lemma 2. �

Claim 3. If there exists �i ∈ L such that �j � �i � �k for two other nodes �j , �k and T has a

winning strategy in G2,T· · ·, then T’s first move must be �i = 1 or �j = 1 or �k = 1.

Proof. Suppose T’s first move is not �i = 1 or �j = 1 or �k = 1. If T’s first move assigns 1 to
a node with an outgoing edge, then T loses as in Lemma 3. Otherwise, T’s first move must not
involve any variable on the paths �j � �i � �k (since if it assigns 1 to a node on the paths other
than �i , then that node has an outgoing edge, and if it assigns 0 to a node on the paths other than
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�j or �k , then that node’s complement has an outgoing edge). In this case, in the rest of the game,
T loses by statement (2) from Lemma 1 and Lemma 2. �

Claim 4. If there exists no �i ∈ L such that �i � �i or �j � �i � �k for two other nodes �j , �k and

T has a winning strategy in G2,T· · ·, then for all �i ∈ L, T has a winning strategy in G2,T· · · beginning

with �i = 1.

Proof. For all nodes �i ∈ L, statement (1) and statement (2) from Lemma 1 and Lemma 2 do
not hold. Thus, all nodes �i ∈ L are either isolated single nodes or have only one isolated incom-
ing edge, from another variable’s node outside L. (The argument is similar to the situation when
statement (1) and statement (2) do not hold in Lemma 1 and Lemma 2.) If T plays any �i ∈ L as
�i = 1, then it does not affect whether or not statements (1), (2), (3) from Lemma 1 and Lemma 2
hold on the rest of the graph. Thus, if T indeed has a winning strategy, then it does not matter
which �i ∈ L is assigned as 1 as the first move. �

The overall idea is as follows. If we can find an �i for which statement (1) or statement (2) from
Lemma 1 and Lemma 2 holds, then Claim 2 and Claim 3 allow us to narrow down T’s first move to
O (1) possibilities. If we cannot find such an �i , then Claim 4 allows T to play any arbitrary �i ∈ L
as the first move because all of them are equivalent as the first move. We define L∗ as the O (1)
possibilities in L. Then we can run Algorithm 5 or Algorithm 6 for |L∗ | = O (1) times.

In the following two claims, we show how we can efficiently verify whether or not there exists
such an �i for which statement (1) or statement (2) from Lemma 1 and Lemma 2 holds.

Claim 5. There exists a constant-time algorithm for the following: given �i , find two other nodes

�j , �k such that �j � �i � �k or determine they do not exist.

Proof. It is sufficient to check three cases:

• �i has indegree > 1: Then we can find �j → �i ← �k .
• �i has indegree = 1: There exists �j with �j → �i . Then look for �k with �k → �j .
• �i has indegree < 1: Such �j , �k do not exist. �

Claim 6. There exists a constant-time algorithm for the following: given �i for which there are no

�j , �k as in Claim 5, decide whether there exists a path �i � �i .
Proof. Since �j � �i � �k does not hold, �i has indegree ≤ 1 and any incoming neighbor has

indegree 0. It is sufficient to check two cases:

• �i has indegree = 1: Then check if �i → �i .
• �i has indegree < 1: Such a path does not exist. �

Now combining the whole idea from Claim 2 to Claim 6, we can develop an algorithm for G2,T· · ·.
Details of the idea have been described as Algorithm 7.

3.2 G%

2

In this section, we prove Theorem 4 by separately considering the cases G%
2, · · ·F in Section 3.2.1 and

G%
2, · · ·T in Section 3.2.2. Our algorithm for G%

2 is to run either Algorithm 8 or Algorithm 9, depending

on the pattern of who goes first and who goes last. We let VT and VF be the sets of nodes created
from XT and XF, respectively. In addition, let V = VT ∪VF be the set of all nodes.

3.2.1 G%
2, · · ·F ∈ Linear Time.

Lemma 4. F has a winning strategy in G%
2, · · ·F if and only if at least one of the following statements

holds in the graph д(φ,X ):
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ALGORITHM 7: Linear-time algorithm for G2,T· · ·

Input: φ,X Output: which player has a winning strategy

1 construct д(φ,X )

2 let L = {}, L∗ = {}
3 foreach node �i do

4 if �i has no outgoing edges then L = L ∪ {�i }
5 if |L| = 0 then output F

6 foreach �i ∈ L do

7 if �j � �i � �k for two other nodes �j , �k (using Claim 5) then

8 L∗ = L ∩ {�i , �j , �k } (Claim 3), break loop

9 else if �i � �i (using Claim 6) then L∗ = {�i } (Claim 2), break loop

10 if |L∗ | = 0 then L∗ = {�i } for an arbitrary �i ∈ L (Claim 4)

11 foreach �i ∈ L∗ do

12 form graph д′ from д(φ,X ) by deleting nodes �i , �i and their incident edges

13 run Algorithm 5 or Algorithm 6 on д′ as the G2,F· · · game

14 if T has a winning strategy in G2,F· · · then output T

15 output F

(1) There exists a node �i ∈ V such that �i � �i .
(2) There exist two nodes �i , �j ∈ VF such that �i � �j .
(3) There exist two nodes �i ∈ VF and �j ∈ VT such that �i � �j .

Proof. Suppose at least one of the statements holds.
If statement (1) holds, F can win by any strategy since φ is unsatisfiable.

If statement (2) holds, F can play �i = 1, and either �j is �i = 0 or F can play �j = 0 and win.
If statement (3) holds, F can wait by playing variables other than xi with arbitrary values until

T plays x j . Then F can respond by making �i � �j and win. As F moves last, he or she can always
wait for that opportunity.

Conversely, suppose none of the statements hold. Since statement (1) does not hold, the graph
has a satisfying assignment [3]. Since statement (2) does not hold, there is no edge or path between
any two nodes of VF. Since statement (3) also does not hold, there is no node in VF that belongs
to a strong component of size > 1. Intuitively, if VF is reachable from a node �i ∈ VT, then F can
force T to assign �i = 0 by assigning the other endpoint of the path as 0, and similarly if �i ∈ VT

is reachable from VF, then F can force T to assign �i = 1. All other nodes in VT are intuitively free
from the influence of F’s strategy, meaning T is free to assign any bit value he or she likes. This
motivates us to partition VT into three sets VT,0, VT,1, VT, free, defined as follows:

• VT,0 = {�j ∈ VT : �j � �i for some �i ∈ VF}
• VT,1 = {�j ∈ VT : �j � �i for some �i ∈ VF}
• VT, free = VT \ (VT,0 ∪VT,1).

This is indeed a partition: there must not be any common node that is in both VT,0 and VT,1, be-
cause this would create either a path between two nodes ofVF (satisfying statement (2)) or a cycle
touching both VT and VF (satisfying statement (3)). Note that there cannot be any edge entering
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Fig. 4. T has a winning strategy in G%
2, · · ·F.

VT,0, leavingVT,1, or betweenVT, free andVF. In general,VF may have many isolated nodes. A general
case of the graph looks like Figure 4.

Now we describe a winning strategy for T on such a graph. Whatever F plays, T picks any
remaining node to play. If the node is in VT,0, T assigns it 0. If the node is in VT,1, T assigns it 1. If
the node is inVT, free, T assigns it according to a satisfying assignment that exists since statement (1)
does not hold.

The strategy works since each edge �i → �j has either �i ∈ VT,0, in which case it gets satisfied
by �i = 0, or �j ∈ VT,1, in which case it gets satisfied by �j = 1, or �i , �j ∈ VT, free, in which case it
gets satisfied by the satisfying assignment. �

Now, we develop a linear-time algorithm to check statements (1), (2), (3) in Lemma 4. We start
by creating a topologically sorted DAG of strong components for the whole graph. The DAG con-
struction can be done in linear time [18]. We can check statements (1) and (3) by directly inspecting
the strong components. To check statement (2), we do dynamic programming over the topologi-
cal order of strong components to see whether any strong component containing a node in VF is
reachable from any other such strong component. The idea has been described as Algorithm 8.

3.2.2 G%
2, · · ·T ∈ Linear Time. The characterization is the same as for G%

2, · · ·F, except statement (3).

Lemma 5. F has a winning strategy in G%
2, · · ·T if and only if at least one of the following statements

holds in the graph д(φ,X ):

(1) There exists a node �i ∈ V such that �i � �i .
(2) There exist two nodes �i , �j ∈ VF such that �i � �j .
(3) There exist three nodes �i ∈ VF and �j , �k ∈ VT such that �j � �i � �k .

Proof. Suppose at least one of the statements holds. In Lemma 4, we have already seen that
statement (1) and statement (2) allow player F to win.

If statement (3) holds, F can wait by playing variables other than xi with arbitrary values until
T plays x j or xk . Then F can respond by making �i � �j or �i � �k and win.

Conversely, suppose none of the statements hold. The graph structure remains the same as we
had for G%

2, · · ·F, except it is allowed to have shared strong components of size 2 that form a matching

between some nodes ofVT andVF. Intuitively, F can force T to assignVT,sc nodes as any bit values
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ALGORITHM 8: Linear-time algorithm for G%
2, · · ·F

Input: φ,X Output: which player has a winning strategy

1 construct д(φ,X )

2 construct д∗ as the DAG of strong components from д(φ,X )

3 let S = set of all strong components of д(φ,X ) (nodes of д∗)

4 foreach �i ∈ V do

5 let s = �i ’s strong component

6 if (�i ∈ s) or (�i ∈ VF and |s | > 1) then output F

7 let SF = set of strong components containing nodes from VF

8 let ST = set of strong components containing nodes from VT

9 mark all s ∈ SF as “reachable from SF”

10 topologically order s1, s2, s3, . . . ∈ S so edges of д∗ go from lower to higher indices

11 foreach i = 1, 2, 3, . . . , |S | do

12 if ∃j < i such that sj → si and sj is marked then

13 if si ∈ ST then mark si as “reachable from SF”

14 else output F

15 output T

he or she likes, by assigning the corresponding matching endpoints, and T must wait to find out
what those values are. We partition VT into four sets VT,sc, VT,0, VT,1, VT, free, defined as follows:

• VT,sc = {�j ∈ VT : �j ↔ �i for some �i ∈ VF}
• VT,0 = {�j ∈ VT : �j � �i for some �i ∈ VF} \VT,sc

• VT,1 = {�j ∈ VT : �j � �i for some �i ∈ VF} \VT,sc

• VT, free = VT \ (VT,sc ∪VT,0 ∪VT,1).

This is indeed a partition: there must not be any common node that is in bothVT,0 andVT,1, because
this would create either a path between two nodes of VF (satisfying statement (2)) or a cycle of
length > 2 that touches both VT and VF (satisfying statement (2) or statement (3)). Note that there
cannot be any edge entering VT,0, leaving VT,1, between VT, free and VT,sc ∪VF, between nodes of
VT,sc, or between VT,sc and VF except the matching edges. In general, VF may have many isolated
nodes. A general case of the graph looks like Figure 5.

Now we describe a winning strategy for T on such a graph. If F’s previous move was in a shared
strong component �j ↔ �i , then make �j = �i . Otherwise, T picks any remaining node not inVT,sc.
If the node is in VT,0, T assigns it 0. If the node is in VT,1, T assigns it 1. If the node is in VT, free, T
assigns it according to a satisfying assignment that exists since statement (1) does not hold.

The strategy works since T has the last move, so T will always be able to respond when F plays
in a shared strong component to ensure these edges gets satisfied. Each other edge �i → �j has
either �i ∈ VT,0, in which case it gets satisfied by �i = 0, or �j ∈ VT,1, in which case it gets satisfied
by �j = 1, or �i , �j ∈ VT, free, in which case it gets satisfied by the satisfying assignment. �

The algorithm for checking the characterization of such a graph is almost identical to Algo-
rithm 8, except in line 6 it is necessary to check for the size of strong components being greater
than 2 instead of 1. The idea has been described as Algorithm 9.
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Fig. 5. T has a winning strategy in G%
2, · · ·T.

ALGORITHM 9: Linear-time algorithm for G%
2, · · ·T

Input: φ,X Output: which player has a winning strategy

1 construct д(φ,X )

2 construct д∗ as the DAG of strong components from д(φ,X )

3 let S = set of all strong components of д(φ,X ) (nodes of д∗)

4 foreach �i ∈ V do

5 let s = �i ’s strong component

6 if (�i ∈ s) or (�i ∈ VF and |s | > 2) then output F

7 let SF = set of strong components containing at least one node from VF

8 let ST = set of strong components containing only nodes from VT

9 mark all s ∈ SF as “reachable from SF”

10 topologically order s1, s2, s3, . . . ∈ S so edges of д∗ go from lower to higher indices

11 foreach i = 1, 2, 3, . . . , |S | do

12 if ∃j < i such that sj → si and sj is marked then

13 if si ∈ ST then mark si as “reachable from SF”

14 else output F

15 output T

4 CONCLUSION

In this article, we have determined the ordered and partitioned game complexities for 2-CNFs and
5-CNFs, thereby providing new algorithmic techniques for solving games and new starting points
to prove hardness of other games. Interestingly, any completeness result for 3-CNFs or 4-CNFs, for
either the unordered or partitioned version, remains open. In this direction, we boldly conjecture
that the unordered game on 3-CNFs is tractable. Thus far, we have already proven this conjecture
is indeed true for 3-CNFs under a certain restriction—that each width-3 clause has a variable that
occurs in no other clauses [12]. We have also proven that the unordered 4-CNF game is at least NL-
hard. Future work could also explore hardness of approximation for the unordered and partitioned
CNF games.

ACM Transactions on Computation Theory, Vol. 12, No. 3, Article 18. Publication date: May 2020.



18:18 Md L. Rahman and T. Watson

ACKNOWLEDGMENTS

We thank anonymous reviewers for helpful comments.

REFERENCES

[1] Lauri Ahlroth and Pekka Orponen. 2012. Unordered constraint satisfaction games. In Proceedings of the 37th Interna-

tional Symposium on Mathematical Foundations of Computer Science (MFCS’12). 64–75.

[2] Argimiro Arratia and Iain Stewart. 2003. A note on first-order projections and games. Theoretical Computer Science

290, 3 (2003), 2085–2093.

[3] Bengt Aspvall, Michael Plass, and Robert Tarjan. 1979. A linear-time algorithm for testing the truth of certain quan-

tified Boolean formulas. Information Processing Letters 8, 3 (1979), 121–123.

[4] Boštjan Brešar, Paul Dorbec, Sandi Klavžar, Gašper Košmrlj, and Gabriel Renault. 2016. Complexity of the game

domination problem. Theoretical Computer Science 648 (2016), 1–7.

[5] Kyle Burke, Erik Demaine, Harrison Gregg, Robert Hearn, Adam Hesterberg, Michael Hoffmann, Hiro Ito, et al. 2015.

Single-player and two-player buttons and scissors games. In Proceedings of the 18th Japan Conference on Discrete and

Computational Geometry and Graphs (JCDCGG’15). 60–72.

[6] William Burley and Sandy Irani. 1997. On algorithm design for metrical task systems. Algorithmica 18, 4 (1997),

461–485.

[7] Jesper Byskov. 2004. Maker-Maker and Maker-Breaker Games Are PSPACE-Complete. Technical Report RS-04-14.

BRICS, Department of Computer Science, Aarhus University.

[8] Chris Calabro. 2008. 2-TQBF Is in P. Retrieved May 6, 2020 from https://cseweb.ucsd.edu/ ccalabro/essays/complexity_

of_2tqbf.pdf.

[9] Stephen Fenner, Daniel Grier, Jochen Messner, Luke Schaeffer, and Thomas Thierauf. 2015. Game values and com-

putational complexity: An analysis via black-white combinatorial games. In Proceedings of the 26th International

Symposium on Algorithms and Computation (ISAAC’15). 689–699.

[10] Aviezri Fraenkel and Elisheva Goldschmidt. 1987. PSPACE-hardness of some combinatorial games. Journal of Com-

binatorial Theory, Series A 46, 1 (1987), 21–38.

[11] Robert Hearn. 2009. Amazons, Konane, and cross purposes are PSPACE-complete. In Games of No Chance 3. Cam-

bridge University Press, 287–306.

[12] Md Lutfar Rahman and Thomas Watson. 2019. Tractable Unordered 3-CNF Games. Technical Report TR19-160. Elec-

tronic Colloquium on Computational Complexity (ECCC). https://eccc.weizmann.ac.il/report/2019/160/.

[13] Thomas Schaefer. 1976. Complexity of decision problems based on finite two-person perfect-information games. In

Proceedings of the 8th Symposium on Theory of Computing (STOC’76). ACM, New York, NY, 41–49.

[14] Thomas Schaefer. 1978. On the complexity of some two-person perfect-information games. Journal of Computer and

System Sciences 16, 2 (1978), 185–225.

[15] Wolfgang Slany. 2000. The complexity of graph Ramsey games. In Proceedings of the 2nd International Conference on

Computers and Games (CG’00). 186–203.

[16] Wolfgang Slany. 2002. Endgame problems of Sim-like graph Ramsey avoidance games are PSPACE-complete. Theo-

retical Computer Science 289, 1 (2002), 829–843.

[17] Larry Stockmeyer and Albert Meyer. 1973. Word problems requiring exponential time. In Proceedings of the 5th Sym-

posium on Theory of Computing (STOC’73). ACM, New York, NY, 1–9.

[18] Robert Tarjan. 1972. Depth-first search and linear graph algorithms. SIAM Journal on Computing 1, 2 (1972), 146–160.

[19] Sachio Teramoto, Erik Demaine, and Ryuhei Uehara. 2011. The Voronoi game on graphs and its complexity. Journal

of Graph Algorithms and Applications 15, 4 (2011), 485–501.

[20] Jan van Rijn and Jonathan Vis. 2013. Complexity and retrograde analysis of the game Dou Shou Qi. In Proceedings of

the 25th Benelux Conference on Artificial Intelligence (BNAIC’13).

[21] Ling Zhao and Martin Müller. 2004. Game-SAT: A preliminary report. In Proceedings of the 7th International Conference

on Theory and Applications of Satisfiability Testing (SAT’04). 357–362.

Received February 2019; revised February 2020; accepted April 2020

ACM Transactions on Computation Theory, Vol. 12, No. 3, Article 18. Publication date: May 2020.

https://cseweb.ucsd.edu/ ccalabro/essays/complexity_of_2tqbf.pdf
https://cseweb.ucsd.edu/ ccalabro/essays/complexity_of_2tqbf.pdf
https://eccc.weizmann.ac.il/report/2019/160/

