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Abstract

We consider a dynamic model of interconnected banks. New banks can emerge, and
existing banks can default, creating a birth-and-death setup. Microscopically, banks
evolve as independent geometric Brownian motions. Systemic effects are captured
through default contagion: as one bank defaults, reserves of other banks are reduced
by a random proportion. After examining the long-term stability of this system, we
investigate mean-field limits as the number of banks tends to infinity. Our main results
concern the measure-valued scaling limit which is governed by a McKean—Vlasov
jump-diffusion. The default impact creates a mean-field drift, while the births and
defaults introduce jump terms tied to the current distribution of the process. Individual
dynamics in the limit is described by the propagation of chaos phenomenon. In certain
cases, we explicitly characterize the limiting average reserves.
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1 Introduction

Lending and trading relationships between banks create dependence which can exac-
erbate financial crises through systemic risk. With this motivation in mind, we study a
dynamic model of interacting particles representing the banking network. A particle
represents the capital (or net assets) of a financial entity. On the individual level, a
particle evolves in time according to a stochastic differential equation, in analogue to
classical models of risky assets. On an aggregate or economy-wide level, the particles
interact due to inter-bank lending and contractual obligations (such as bilateral deriva-
tive claims) that tie the assets and liabilities of different entities, generating mean-field
effects.

Focusing on systemic stability, the key aspect of the macroscopic dynamics con-
cerns bank defaults. Each particle is viewed as a defaultable asset, meaning it can enter
the default state when reserves become low. Financial contagion is then represented
through the interaction mechanism which increases default likelihood of other banks
once a given bank defaults. Systemic risk emerges as the event of a large number, or
cluster, of defaults.

To model such defaults, one may draw upon the two fundamental paradigms in
credit risk.

1. Structural credit models Defaults modeled by the first entrance times v := inf{z :
X;(t) € D}, 1i.e., bank capital entering the default region D (e.g., D = (—o0, 0]).
In that case, default contagion is usually viewed as a default of bank i affecting the
reserves X j(t) of bank j, which can generate cascading defaults, i.e., multiple
banks defaulting simultaneously.

2. Reduced-form credit models Defaults modeled by the death time t of the particle,
captured by a (hazard) rate process that controls the instantaneous probability
of default. In this setting, contagion represents heightened default rate of bank
Jj following default of bank i, so that defaults cluster, but default events are still
spaced out in time.

In this work we develop an extension of the interacting particles approach to sys-
temic risk that makes the financial system dynamic not only on the individual level
(bank reserves modeled by stochastic processes), but also in the aggregate (number of
banks fluctuates). Thus, we explicitly capture the death (i.e. default) of existing banks,
and the birth of new ones. Indeed, a limitation of existing models is that the size of the
system N is either kept constant or is decreasing over time due to defaults. In reality
defaulted entities disappear and new entities are created in analogy to death and birth
events in population dynamics. Therefore, aggregate reserves change continuously
due to infinitesimal fluctuations in individual reserves, as well as discontinuously due
to births/defaults.

Including birth and death of banks carries several important implications. First, it
brings the opportunity to obtain stationary models (otherwise the number of active
banks will just shrink over time), which is convenient for mathematical analysis, and
especially for investigation of scaling limits. Stationarity is also necessitated econom-
ically for any longer-term model that covers more than a couple of years. Second, our
setup offers further contagion mechanisms: We tie individual dynamics both to total
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system reserves S(¢), as well as the number of banks N (¢). Third, it brings more real-
ism, paving the way to the next-generation dynamic models and helping to close the
gap to the increasingly sophisticated static versions. Fourth, working with a varying
dimension brings nontrivial mathematical challenges in studying the properties of the
system, in particular to handle the non-standard state space X below. To do so, we use
McKean—Vlasov jump-diffusions.

To summarize, our main contribution is to describe a class of interacting particle
models with a dynamic dimension and mean-field birth and death interactions. Toward
this end we: (i) rigorously construct the interacting banking system with local + mean-
field default intensities, including investigating its stability; (iii) analyze convergence
to a mean field limit for the average bank reserves that leads to a novel jump-diffusion
McKean—Vlasov stochastic differential equation (SDE). The drift and diffusion coef-
ficients, as well as the jump measure, of the resulting representative particle depend
both on the current position of the process, and the current distribution of the process.

1.1 Review of existing literature

Systemic risk and financial contagion in financial systems serves as a focus of much
recent research, see for instance the handbook Fouque and Langsam (2013b) describ-
ing many different approaches. In the context of a dynamic system with diffusing par-
ticles representing bank assets, there are at least three related mean-field approaches.

Using the reduced-form credit framework, Bo and Capponi (2017), Giesecke et al.
(2013), Cvitanic et al. (2012) and Spiliopoulos et al. (2014) modeled the default rates
A" of N particles as an interacting diffusion, adding in systemic effects, such as self-
exciting defaults and common exogenous shocks. Bo and Capponi (2015), Fouque and
Ichiba (2013a) and Sun (2018) used diffusions interacting through drift to model bank
assets, with defaults arising structurally from crossing a given default threshold. A
related system with interaction through hitting a boundary is discussed in Lipton et al.
(2018). Systems of banks organized into clusters are studied in Capponi et al. (2019).

In the paper Campi and Fischer (2018), a mean-field game of interacting particles
is introduced, where particles get absorbed upon exiting a certain domain (but there
is no emergence of new banks). In the paper Delarue et al. (2015a) a discrete-space
system of interacting particles is used to quantify systemic risk.

Finally, a nonlocal interaction arising from the default hitting times was recently
investigated in the mean-field limit in Nadtochiy and Shkolnikov (2019), Hambly et al.
(2018), Hambly and Sojmark (2018) and Kaushansky and Reisinger (2018). All of the
above models either fix the size N of the system, or take N (¢) to be non-increasing,
representing, say, a fixed pool of defaultable assets that is monitored over time. To our
knowledge, the only works that allow N (¢) to change have appeared in the context of
bank splits/mergers in stochastic portfolio theory (Strong and Fouque 2011; Karatzas
and Sarantsev 2016).

Compared to existing models who tend to focus on short-term (i.e. a few months to a
couple of years), our population-dynamics-inspired setup targets the longer timescale,
whereby the concept of a time-stationary banking system becomes appropriate. While
there is an ongoing churn among individual banks, our focus is on the macroscopic
quantities such as total/mean reserves and number of banks. In line with adoption of
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the birth-and-death perspective, we focus exclusively on default contagion, eschew-
ing the other mechanisms of systemic dependence, such as interacting drifts or default
cascades.

In terms of the mean-field scaling limit, we adapt the results of Graham from
the 1990s (Graham 1992a,b). Recently several other works investigated mean-field
models with particles undergoing jump diffusions. In particular, a growing strand of
literature (Delarue et al. 2015a, b; De Masi et al. 2015; Fournierand Locherbach 2016;
Mehri et al. 2018) investigates neuronal networks where X;(¢) are electrical states of
individual neurons. These models feature jump diffusions that capture spikes from
neurons firing, however the mean-field interaction is limited to the drift and jump size
terms; jump activity is taken to be a Poisson process with a deterministic local intensity.

An extension to simultaneous jumps which transform to a drift term in the limit
and are similar to our contagion mechanism appears in Andreis et al. (2018). While
the above works also establish the hydrodynamic McKean—Vlasov limit existence and
propagation of chaos, their pre-limit models always feature a constant number of par-
ticles N so the scaling procedure of N — oo is standard. In contrast, endogenizing
N creates multiple scaling alternatives which is one of the main foci of our work.
Finally, we should also mention (Benazzoli et al. 2015a, 2017b) who analyzed mean-
field games with jump-diffusions, however again they only consider interaction in the
jump sizes.

1.2 Informal description of the model

We model the system by a vector of continuous-time stochastic processes (individual
“particle” locations) X; = (X;(¢), t > 0), with X; (¢) > 0 standing for the reserves of
the corresponding bank i at time ¢ > 0. Low X; (¢) means that the bank has minimal
reserves and is close to being financially insolvent; healthy banks should have large
reserves. Let 1 (1) € 2 be the finite set of banks at time 7 > 0 and

N =10, SE) =Y X0,

iel(t)

so that N (¢) is the number of banks and S(¢) is the sum of their reserves at time ¢.
Locally, each X; behaves as an independent geometric Brownian motion, representing
the idiosyncratic shocks to the reserves of the ith bank. Banks randomly emerge and
default. Birth of new banks has time-varying intensity 1. and starting size distribution
B, both depending on N (7) and S(z). The respective dependence captures the idea that
forming a new bank is easier with less competition.

An existing bank i defaults (X; is killed) with intensity «; depending on N (%),
X;(t),and S(¢). Default becomes more likely as X; drops; safety from default requires
larger reserves. Such structural link between reserves and default intensity is supported
empirically (Das et al. 2007). A default by i affects other banks j # i: Their reserves
X j(t) decrease at the default epoch by a random factor &;;, which is dependent on
N(t), Xi(t), S(t), and idiosyncratic factors related to these particular banks i and ;.
This models financial contagion in the interconnected financial system, including the
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intuition that defaults of larger banks X;(r—) trigger more contagion than smaller
ones. The overall rules governing the system dynamics are thus:

(a) As long as the number of banks stays constant, each of them behaves as a
geometric Brownian motion with drift r and volatility o, independently of other
banks.

(b) A new bank is added to the system with rate Ay (S(¢)). This bank has initial
reserves distributed according to a probability measure 53, ; on (0, co) when
N(@—) =n, S(t—) = s. When n = 0, we write B, s = Bp for all s > 0; this
governs the distribution of the new bank reserves when it is the first emerging
bank. We denote by B(n, s) the mean size of a new bank, i.e. the first moment
of By 5.

(c) Anexisting bank i € I(t) defaults with rate k) (S(t), X;(t)). At the moment
of default, reserves of remaining banks j € I(¢), j # i, decrease by a fraction

£ji ~ DN@y,s@) X (0)

which are i.i.d. random variables with values in (0, 1). The measure Dy, 5 ,, with
mean D(n, s, x), governs the proportional impact of default given the number
of banks, their total reserves, and the size of the defaulting bank x’.

Remark 1 One may consider including bank splits and mergers into our framework
as additional versions of births and defaults. If two banks merge, this is equivalent to
one bank disappearing, and the other bank gaining reserves (instead of losing assets
due to default contagion), akin to negative contagion. If a bank splits into two, this is
equivalent to a birth of a new bank, and a loss in reserves by the existing bank, so can
be handled as a birth contagion. Moreover, splits and mergers of banks might change
indirectly and directly their relative performance in the financial markets. Incorporat-
ing these additional features to extend our model is left for future research.

1.3 Questions of interest

First, we investigate conditions on this system to be well-defined probabilistically. In
particular, we establish conditions for the system to be conservative: defined on the
infinite time horizon. Next, we study the stronger notion of stability of this system:
Whether the vector of X;(#) converges to some limiting distribution as ¢ — oo. To
find sufficient conditions for stability we use two different methods: (a) Lyapunov
functions, developed in classic papers (Meyn and Tweedie 1993a,b); (b) comparison
of {N(¢)} with a birth-death process.

Our main analysis is devoted to the limiting behavior of this system as the number
of banks tends to infinity. After the proper scaling of birth and default intensities,
the empirical distribution of X; (¢) converges to a measure-valued process, which is a
solution to a certain McKean—Vlasov stochastic differential equation with jumps, i.e., a
nonlinear diffusion with discrete jump sets. For this process, the drift and diffusion
coefficients, as well as the jump measure, depend not only on the current location
of the process (as would be for a classical jump-diffusion), but also on the current
distribution of this process. This is a mean field limit.
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Infact, we find two different mean-field limits, with parameters scaled: (a) according
to the current number of banks; (b) according to the initial number of banks. In both
cases, the limit is a McKean—Vlasov jump-diffusion, but in case (b), the parameters
(drift and diffusion coefficients, jump measures) depend on the whole history, rather
than on the current state and distribution, of the process. Both limits are financially
viable, depending on the birth-and-death rates A, «.

In certain cases, the McKean—Vlasov equation turns out to allow an explicit solution:
geometric Brownian motion with time-dependent drift, killed with certain rate and then
resurrected at a certain given probability distribution. Financial contagion described
above leads to an additional drift coefficient in the limit, while emergence of banks
creates the phenomenon of resurrection. Economically, this limit offers an equilibrium
justification for using a local-intensity defaultable geometric Brownian motion model
for an individual risky asset. Furthermore, we show that the time-stationary version
of this limiting process is a mixture of lognormal distributions.

Systemic risk corresponds to a large number of defaults in our system. This can be
interpreted as an event in terms of N (7') for some horizon 7', or a joint event about
{N(T), S(T)}. Probabilities of such events can be evaluated numerically with our
model; the mean field limit offers additional insights into the distribution of the mean
bank size.

Lastly, we examine the behavior of an individual bank under these limits. It con-
verges to a diffusion process, similar to geometric Brownian motion, with constant
diffusion coefficient and an (easily computable) time-dependent drift, killed at a cer-
tain rate. For two banks (or any finite number), dependence vanishes in the limit. The
corresponding processes converge to independent copies of such processes, similar to
geometric Brownian motions. This phenomenon is called propagation of chaos.

1.4 Organization of the paper

In Sect. 2, we introduce necessary notation, and construct our model formally. In
Sect. 3, we find sufficient conditions for no explosions and for stability of this system,
as well as estimating rate of convergence. In Sect. 4, we consider large systems, to
obtain the (first) mean field limit (scaling by current number of banks) and the resulting
McKean—Vlasov-Ito-Skorohod process. We apply this to systemic risk. Finally, we
consider behavior of individual banks in these large systems. In Sect. 5, we establish

the second result (scaling by the initial number of banks). Sections 69 are devoted to
proofs. “Appendix” in Sect. 1 collects auxiliary results.

2 Definitions and formal description
2.1 Notation

Before constructing the system, let us define the state space
oo
X = J0.00",
N=0
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with the understanding that (0, o00)! = (@}, corresponding to the case of no banks
(empty banking system). This is a Hausdorff topological space with disconnected
components (0, oo)N, N = 0,1,2,.... We define the Lebesgue measure p on X,
which coincides with the N-dimensional Lebesgue measure on (0, 00)N for each
N > 1,and p({@}) = 1 for N = 0. We denote the integral of a measurable function
f :(0,00) — R with respect to a probability measure v as (v, f) = f f(x) v(dx).
Let f,(x) := x? for p, x > 0. Foreach x = (x1, ..., xnx)) € X, define:

(a) the dimension n(x) of x, i.e., if x € (0, oo)N, thenn(x) = NforN =1,2,...,
and n(@) = 0;

(b) the sum s(x) := Zk | Xk, with 5(2) := 0;

(c) the empirical measure corresponding to x(# ©) :

1 n(x)

Hx = s Zax,o and pg = 8o @

(d) for any function f : (0, 00) — R, a corresponding function 7 : X — R:
(x)
Er() = (ux, f) = Z f@x); 22)
=1

(e) the mean (average) X = 5(X)/n(x) = (ux, f1) = Ep (X).

A subset E C X is compact if it intersects only finitely many levels (0, co)", and
if the intersection with each such level is compact in the usual Euclidean topology.
Denote by P, the family of all probability measures on R with finite p-th moment.
This is a metric space under the Wasserstein distance:

Wy v = inf ELIE =171 Ve P 2.3)

where the infimum in (2.3) is taken over all couplings (¢', £”) of random variables
with marginals v, v”, respectively from the family P, for p > 1. For p € (0, 1), the
distance (2.3) is not a metric, but it generates a topology. It is known that convergence in
this space is equivalent to the weak convergence plus convergence of the pth moments.
Here weak convergence of probability measures or random variables is denoted by
=.

We denote uniform on interval [a, b], exponential with mean 1/a, and beta dis-
tributions with parameter a, b, by Unila, b], Exp(a), and Beta(a, ), respectively. A
geometric Brownian motion with drift i and diffusion 0% is defined as

xoexp (ui + WD), 120

for a Brownian motion W on a filtered probability space and starting point xo. We
assume that all banks share fixed volatility o and drift © :=r — o2 /2 where r > 0 is
the asset growth rate. (Those quantities could be also straightforwardly randomized,
in an i.i.d. manner across the banks.) Let C, Cp, and C? be the spaces of continuous,
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bounded continuous, and twice continuously differentiable functions (0, co) — R,
respectively. For bounded functions f : (0, 00) — R, define || f|| := sup,. o |f(x)].
Define the following operators on C2:

2
Dif(x)i=xf'(x). Daf(x):=x2f"(x). Gf=rDif+ %sz, 2.4)

so that G is the infinitesimal generator of a geometric Brownian motion. Operators
in (2.4) preserve the monomial function f}, up to a constant multiple:

Difp=rpfp, Dafp=p(p—Dfp, Gfp=(0*p(p—1/2+pr)fp. (2.5

For a measure v € P, we denote its mean by v := (v, f1). In particular, vy = X.
Define the space

Ch={feC*| f.Dif,Daf €Cp}

with the norm which makes it a Banach space:

AN = ILFIF+ DI+ D2 f (2.6)

The total variation distance between two probability measures P and Q on X:

1P —Qllty = sup (P, ) —(Q, /Hl =2 sup |P(A) — Q(A)|. (2.7)
[ X=R, [ fI<1 ACX

A generalization of (2.7) is defined as follows: Fix a function V : X — [1, 00), and
let

1P —Qlly = sup (P, f)—(Q, Nl (2.8)
[ X=R|fI<V
For V = 1, the norm (2.8) becomes the usual total variation norm from (2.7).
Convergence in such norms is in some sense stronger than weak convergence or con-
vergence in Wasserstein distance: The former requires convergence for all measurable
test functions (bounded by a constant or by a function, depending on the measure),
while the latter does only for continuous test functions.
Finally, for a metric space (E, p), define the Skorohod space D([0, T'], E) of
E-valued, right-continuous functions with left limits (rcll) on [0, T]. In particular,
DI0, T] :=D([0, T], R).

2.2 Formal description of the system

Take a filtered probability space (€2, §, (§(¢)), P) endowed with the following inde-
pendent random objects:

(a) an initial condition xg € X;

(b) i.i.d.random variables; j 5. x ~ Dpyxfors > 0,0 <x <mns,i,j=1,2,..;
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(¢) i.i.d. Brownian motions W; ; fori =0,1,2,...and j =1,2,...

(d) i.i.d. (0, co)-valued random variables ¢k , ¢ ~ By s forevery k,n =0,1,2, ...
and s > 0;

(e) i.i.d. exponential random variables ny ; withmean 1 fori,k =0,1,2, ..,

where D, s . is a probability distribution on (0, 1) with average default impact D,
depending on n, x, s, and B, s is a probability distribution on (0, co) with average
size BB of new bank, depending on n, s. See Sect. 1.2 for informal description.

Our model consists of three components (X, I, M):

(A) an X'-valued continuous-time process X := (X (¢), t > 0) with right continuous
with left limits (r.c.1.1.) trajectories, which jumps at random times 0 = 7y < 7] <
7o < ..., and on each time interval [tx, Tx+1), kK = 0, 1,2, ... has constant
dimension N (t) := n(X(t));

(B) aset-valued process I := (I(t), t > 0) such thatfort > 0, I(¢) € 2N is a finite
set of positive integers, which is constant on each time interval [tg, T+1) for
k=0,1,2,...,with |I(t)| = N(¢); this is the set of the names of current banks.
Initially, 7(0) = {1,2, ..., n(xp)}.

(C) a nondecreasing positive integer-valued process M := (M(t), t > 0), which
is also constant on each interval [k, Tx+1), such that M (t) := max{k : k €
Usero,:11 (s)}; this is the maximum index or name of a bank which existed so far
at some point.

We define (X, I, M) inductively with |7(-)| = n(X(-)) < M (-) onthe time interval
[0, 7o), Where oo := limy_, o Tx. The detailed, formal construction is discussed in
Appendix. By construction, this is a Markov process on the state space

E:={(x,i,m e X x2¥ x N : |i| = n(x) < m}, (2.9)

and its law is uniquely determined up to explosion time. The generator £ of (X, I, M)
is given by
2
Lfx,im=>" (rxig—){i + %o%?%)
iei i

+)"11(X) (5(X)) f()oo [f((xs }’)7 iU {m + 1}7 m+ 1) - f(X7 iv m)] BH(X),E(X) (dy)

. . ) Rnx)—1
+ X k), x) [ [f(xmjele—z), i\ (i}, m)—fx,im)] D  (dz_y),
iei (0, Hne-1 n(x),x;,5(x)

where we denote by x_; any vector x € X with its i-th component x; removed; e is the
vector of units of size n(x) — 1; z_; is a vector in (0, 1)*®~! o is used for the Schur
product, i.e., element-wise multiplication of vectors, and O®™ is the direct product of
m copies of a probability measure Q. The three terms on the different lines of (2.10)
represent the continuous diffusion, births, and defaults of the banks, respectively. The
domain of £ in (2.10) is the space of functions f : & — R such that for every (i, m)
the restriction X — f (X, i, m) belongs to the space

CXX):={f: X > R: flgey € C((0,00"), YN =1,2,..}.
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Fig. 1 The sample paths of X, S, N with N(0) := 5, 0 := 0.2, r := 0.05. The initial distribution of X
is i.i.d. standard log normal. Default rate is hyperbolic in bank reserves x: x5 (s, x) = 0.2 - n/(0.01 + x).
The contagion measure (default impact) is uniform, i.e., Dy 5 » ~ Uni[O, nil], the birth rate is constant
An(s) = 1, and the new bank distribution is B3,y ~ Exp(1) for every n and s. The x markers in the left
panel represent defaults.

X
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53

A sum over the empty set is understood to be zero. Sometimes, abusing the notation
slightly, we shall apply £ to a function f : X — R, f € C*>(X), and regard £f as a
function only on &, in effect ignoring auxiliary variables and concentrating only on
the state space X

A sample path of X, together with the corresponding S(-) = Ziel(.) X;and N(-),
is shown in Fig. 1. One can clearly observe the contagion mechanism: as one bank
defaults, the other reserves also drop, which due to the increased « (default rate being
hyperbolic in available reserves) is likely to trigger further defaults. Consequently,
there is a self-excitation effect to the downward jumps of N(¢) (while the upward
jumps corresponding to births have a constant rate 1).

3 Existence and stability
3.1 Conditions for existence
The following two lemmas describe the elementary properties of the Markov transition

kernel of X. First, the process X is fotally irreducible. That is, its transition kernel
P'(x, -) is positive with respect to the Lebesgue measure g on X.

Lemma 2 For all Borel subsets A C X with L(A) > 0, we have:

Pi(x,A):=P(X(t) e A|X(0)=x) >0 forall t>0,xeX. @3.1)
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This positivity property is used for the stability of X. The Proof of Lemma 2 is in
Sect. 6.4.

Second, due to local boundedness of the intensities of birth and default, X satisfies
the Feller property. The following Lemma follows from construction of X by patching:
constructing the continuous parts jump-after-jump (see Bass 1979; Sawyer 1970).

Lemma 3 The process X is Feller continuous: That is, for any bounded continuous
function f : X — R, with convention that f(A) = 0, where A is the (isolated)
cemetery state, the function P' f is also bounded and continuous for every t > 0.

We proceed to state some sufficient conditions when X is conservative, i.e., well-
defined on the infinite time horizon so that 7o, = o0 a.s. We sometimes say in this case
that the system does not explode. To this end, it suffices to find a Lyapunov function.
This is a standard tool to prove that a random process is conservative or stable: See for
example classic papers (Meyn and Tweedie 1993a,b; Down et al. 1995). Essentially,
for our proof that X is conservative, we need a function V : X — [0, co) such that:

(a) forevery ¢ > Otheset {x € X | V(x) < ¢} is compact (informally “V (c0) =
OO” ;
(b) V € Cz(X),andfor some constants k, ¢ > 0, £V (x) < kV(x)+cforallx € X.

For our setting, let us take the following Lyapunov function:
W (x) :=5(x) +n(x), xeX. (3.2)

This function trivially belongs to C%(X). By construction of the topology on X, the
function Vj from (3.2) satisfies the property (a) above. Plugging (3.2) in (2.10), we get
after calculations (recall that B and D are the means of the respective distributions):

P(x) = LVo(x) = rs(X) + Ano (5(x)) [B(n(x), 5(x)) + 1]
n(x)

— Zl Kn) (5(X), 1)) [D(n(x), s(x), x)s(x) +1]  (3.3)
=
n(x)

— gl Xiknx) (5(X), x;) (1 = D(n(x), 5(x), x7)) .

Under some assumption on this function ¢(-), we claim the following. Its proof is
in Sect. 6.5.

Theorem 4 Assume there exist positive constants cy, ca, c3 such that ¢(-) in (3.3)
satisfies

P(x) < c15(x) + oon(x) +c¢3 for x € X.

Then the system exists and is conservative: It does not explode.

Example 5 The simplest conservative example is described when the birth A and default
rates « are independent of N (¢) and S(¢). Then the number N (¢) of banks at time ¢
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forms a birth-death process with birth intensity A and death intensity « N (¢). Hence,
we can apply the usual sufficient conditions for this process being conservative. If this
process is conservative, then the whole system is also conservative, since on each level
{n(x) = N} (for a given number N of banks), the system behaves as a collection of
independent geometric Brownian motions.

3.2 Stability of the system

On amacro-level, to obtain stability we need some balance between births and defaults.
Recall that a probability measure I on X is called a stationary distribution or invariant
measure for the system above if the following holds: If we start X (0) ~ I, then for
all + > 0, we remain at X () ~ I1. The system is called stable if it is nonexplosive,
there exists a unique stationary distribution IT, and for every given initial condition
X (0) € X, the distribution of X (¢) converges to IT as ¢ — 00 in the total variation
distance:

lim sup |P(X(f) € A) — TI(A)| = 0. (3.4)
t—00 ACX

Theorem 6 The system is stable if the set {x € X | ¢(x) > —¢} is compact for some
e > 0, i.e., the function ¢ from (3.3) satisfies limx_, 5 ¢ (x) < O.

This result immediately follows from Meyn and Tweedie (1993a,b) and Lemmata 2,
3 (Sarantsev 2017, Proposition 2.2, Lemma 2.3). From the definition of compactness
in X from Sect. 2, there exist constants ¢, so, No > 0 such that p(x) < —¢q for
5(x) > sg or n(x) > No.

Example 7 A simple condition for stability is to have banks with finite lifetime, i.e., the
default time t; of any bank i is finite a.s. In that case the system will be stable as long
as the birth rate remains bounded. Assume B,, s and D,, s depend only on 7, and

1
Ay 1= sup —A,(s) < 0o, and iy (s, x;) = g(x;),
n n

for some decreasing function g : (0, co) — R, with g(0+) = 400 and g(+o0) =:
kx > 0. Then each bank has finite lifetime, which is dominated from above by an expo-
nential random variable with rate k.. Therefore, the quantity of banks is stochastically
dominated by a birth-death process with birth intensities A.n and death intensities
kyn atlevel n > 1. If k. > A, then this birth-death process is stable. Combining this
observation with the independence of B, s and D,, . of x and s, we get that the whole
system X is stable.

3.3 Refinements of stability results
A stronger convergence than (3.4) (in the total variation distance from (2.7)) can

happen exponentially fast as # grows: There exist positive constants C (depending on
the initial condition X (0)) and « such that
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sup [P(X(1) € A) — T1(A)| < Ce ™. (3.5)
ACX

Theorem 8 The system X satisfies (3.5) if there exist constants cy, ¢, c3 > 0 such
that
p(x) = —c15(x) —can(x) +¢3, X € X, (3.6)

where ¢(X) is defined in (3.3). More generally, the system satisfies a stronger conver-
gence statement: For the function Vjy defined in (3.2), there exist positive constants C
and a such that for all x € X, the transition function P'(X, -) of the Markov process
X satisfies

|P'(x, ) =IOy, = CVox)e™. (3.7

Example 9 Assume the following parameters do not depend on n, x, and s:
A(s) = A, Kkn(s,x) =k, E(n, s) = B, Z_D(n, 5, X) = D
with some constants A, k, E, D > 0. Then the function ¢ from (3.3) becomes
9(x) =rs(x) + [B+ 1] 1 — Dk - s(x)n(x) — kn(x) — k(1 — D) - 5(x).

Since n(x) > 1forx € X'\ {0}, the condition of Theorem 6 holds when k (1 — D) >
r; that is, when the intensity of defaults, adjusted by the average contagion effect
exceeds the growth rate of non-defaulting bank reserves.

Finally, we can sometimes find an explicit estimate for the rate o of exponential con-
vergence. This is done using the coupling argument from Lund et al. (1996), Sarantsev

(2016) and Ichiba and Sarantsev (2018).

Theorem 10 Assume 1, (y) < A} and k,(y,x) > «, for all n, x,y. Take a nonde-
creasing function V. {0,1,2,...} = [1, 00) such that ‘7(0) =1, and

MVa4+1D) +ncVin—1)— 5 +ncHV(n) < —aVn), n=1,2,... (3.8)
Define V:X = [1,00) via V(x) := V(n(x)). (The function 1% depends only on the
quantity of components in the vector X.) Then there exists a positive constant C such
that

|P'x,) =) |y SCV®E™, xeX, t>0.
Example 11 Assume A} < A, < ki < k,; for constants A, k.. Then we can take
V(n) =n+1and o := (ks — Ay)/2, since the left-hand side of (3.8) is less than or

equal to

niy —niky < 2na < —(n+ Ha = —oc\7(n), n=12,....
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4 Large-scale behavior: first setting

To analyze the distribution of bank reserves we consider the following scaling limit
as the number of banks tends to infinity. Fix an index p > 2. Consider a sequence of
systems (X ™))y~ governed by the same dynamics as described in Sect. 2, with the
same parameters A.(-), B.., k.(-, -) such that n(X¥) (0)) = N: the system X starts
with N banks at time ¢ = 0. With the empirical measure p. in (2.1) let us define the
empirical measure process

N N
™ =™, 12 0), 1™ = - 4.1
We focus on the current level and current size
Ny(@) :=n (X(N)(t)) and Sy (1) = s(XM (1)), 1 > 0,

of the systems, as well as the current mean reserves:

my (f) = J‘\S/’IVV((?) = XM

4.1 McKean-Vlasov jump-diffusions

Now, let us describe the limiting measure-valued process which is a McKean—Vlasov
jump-diffusion. This is a generalization of a McKean—Vlasov diffusion (with drift and
diffusion coefficients depending not only on the current process, but on its distribution)
to a jump-diffusion.

Consider a filtered probability space (2, §, (§:):>0, P) with the filtration satisfying
the usual conditions, and another measurable space (U4, 1) with a finite measure n.
Fix p > 1. Recall that P, is the space of probability measures on R with finite pth
moment, which is a metric space with respect to the Wasserstein distance W,,.

Assume W = (W(t), t > 0) is an (§;)s>0-Brownian motion, and N = (N(¢), ¢ >
0) is an (§;);>0-Poisson process with intensity A, independent of W. Fix drift and
diffusion functions g, 0 : R x P, — R, as well as a Pp-valued function p : R x
P, — Pp for jump size distributions. Also, fix a positive number A > 0. A process
Z = (Z(t), t = 0) with paths in the Skorohod space D[0, co) is called a McKean—
Vlasov jump-diffusion if it satisfies

t N(r)

Z(t) = Z(0) +/ [g(Z(s), v(s))ds +o0(Z(s), v(s))dW(s)] + ZAZ(rk), 4.2)
0 k=1

where 0 = 79 < 71 < T2 < ... are the jump times of the Poisson process N =

(N(#), t = 0) with intensity A, and AZ(t) = Z(t) — Z(t—) ~ pnz@—).vq—) fort > 0.
Here, v(t) is the distribution of Z(z); and v(z—) is the weak limit of v(s) as s 1 ¢
(similarly to Z(z—)). Somewhat abusing the notation, we also call v, which is the
distribution of the process Z, a solution to (4.2).
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To give some explanation about the process Z: Between jumps it behaves as a
continuous McKean—Vlasov nonlinear diffusion, with drift and diffusion coefficients
dependent not only on its current state, but also on its current distribution. The jump
measure corresponds to killing Z with rate A, and restarting it according to the measure
IZ(t—),v(z—) at every jump moment .

We now state an existence and uniqueness result for W,, p > 1. Its proof is very
similar to the result of (Graham 1992b, Theorem 2.2) for W;.

We refer the interested reader also to Graham (1992a) and Funaki (1984).

Lemma 12 Fix p > 1. Assume g, o are jointly Lipschitz (with respect to VW), for their
second argument), and h is jointly Lipschitz with respect to the L? -norm. That is, there
exists a constant C > 0 such that for all x1, x, € Rand ¢, & € Pp, we have:

lg(x1,¢1) — g(x2, &) < C (Ix1 — x2| + Wy (21, 82))
o (x1. 01) — 0(x2, 82)| < C (Ix1 — X2l + Wp (81, 02))
Wy (ixy.crs Monaea) < C (Ix1 — x2 + Wp (81, £2)) - (4.3)

Take an initial condition Z(0) ~ v(0) € P,. Then the equation (4.2) has a unique
solution, which is an element of P, (D0, T]) for every T > 0.

Remark 13 Note that within this framework it is possible to accommodate varying
intensity of jumps, that is, A dependent on Z(¢) and v(¢). Indeed, assume that A =
A(Z(t), v(1)) is bounded from above by a constant A. Instead of the measures Hzvs
we can consider measures

fow =% [ e + G — Az, )5 4.4)

under the assumption that the intensity of jumps is now constant and is equal to A. If
A(z, v) is Lipschitz in z and v, and the third among (4.3) holds for the family (u; ,),
then the family (fi; ,) of measures from (4.4) also satisfy the third condition in (4.3).

Next, we can prove that the McKean—Vlasov jump-diffusion Z in (4.2) satisfies for
p=>1

limE[|Z(s) = Z(0)P1 = 0 Vi €[0T,

This implies that the mapping ¢ +— v(¢) is continuous, i.e., v € C([0, T], W)).
We can state the McKean—Vlasov-It6 process in an equivalent form as a martingale
problem. For a function f € C% ascalarz € R, and a probability measure v € P,
define

1
L7 ) =80 f '@+ 50°@ 0 @)+ /R LF 2+ 1) — ()] o (du).
4.5)
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We say that a probability measure v in P,(D[0, T']) is a solution to a McKean—
Vlasov jump-diffusion martingale problem, if for every function f € Cl% the process

t
J(Z(@) = f(Z(0)) —/0 Lf(Z(s),v(s))ds, 1 €[0,T], (4.6)

is a martingale, where v(s) is the projection of v at time s, and Z ~ v is a canonical
stochastic process with trajectories in D[0, T']. Taking expectations of this martingale,
taking derivatives with respect to time, and then using that Z(¢#) ~ v(t), we arrive at
the following ODE

d
E(V(t)’ =0, LfCv@), t€][0,T] 4.7

Equation (4.7) characterizes the McKean—Vlasov-Itd equation via martingale prob-
lems. The following lemma summarizes our description of McKean—Vlasov jump-
diffusions.

Lemma 14 Under the assumptions of Lemma 12, an adapted process Z = (Z(t), t >
0) with rcll trajectories, with distribution v(t) ~ Z(t), is a McKean—Vlasov jump-
diffusion as in (4.2), if and only if for every test function f € Cg, the process in (4.6)
is a martingale; or, equivalently, if for every test function f € C2, the equation (4.7)
holds.

The Proof of Lemma 14 follows standard arguments (see for example Karatzas
and Shreve 1991, Section 5.4 or Ethier and Kurtz 1986, Section 4.4) and is therefore
omitted.

Remark 15 In Sect. 5 we shall need a version of (4.2) with parameters g, o, u,depend-
ing not only on Z(¢) and v(¢), but on the whole history Z(s), v(s),0 < s <, as well
as on time ¢. Thus, this McKean—Vlasov jump-diffusion is path-dependent and time-
inhomogeneous. Similar to (4.3) we then modify the Lipschitz conditions as follows:
Fort € [0,T], z1,z2 € D[0,t], and vy, v € C([0, t], Pp), with vi(s), v2(s) being
push-forwards of vy, v, with respect to the projection mapping x — x(s) for each
0 < s <t, we define the distance function:

A(t) := sup |z1(s) — z2(8)| + sup W, (vi(s), va(s)),

O=s=t 0<s<t

and impose the following Lipschitz conditions:

lg(t, z1,v1) — g(t, 22, v2)| = C - AQ@), (4.8)
|G(tv 21, Vl) - G(tv 22, v2)| =< C- A(t),
Wp (/Lt,zl,vl’ Mt,zz,vz) <C-A().

Then Lemmas 12 and 14 still hold, with the formula for the generator (4.5).
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4.2 Mean-field limit: first main result

We investigate the limiting behavior of the empirical measure process (qu), t>0)
as N — oo. We shall show that these measure-valued processes converge, in fact,
to a deterministic measure-valued process, governed by a certain McKean—Vlasov
equation. To this end, we impose some additional assumptions on the parameters of
our model as the number of banks n tends to infinity. Note that in our scaling, we
re-parametrize in terms of n and y = s/n (i.e., s = ny) in reference to the mean size
m above.

Assumption4.1 As n — o0, By, 5y — Beo,y in the Wasserstein distance WV, uni-
formly over y > 0, with the family (Bso,y)y~0 continuous in W, ; and the measures
By, n >0, s > 0 have uniformly bounded p-th moments.

Assumption 4.2 As n — 0o, we assume uniform convergence to a continuous limit
Aoo:

A(n
”;y) — hoo(y). ¥ > 0

uniformly in y > 0. Moreover, there exists a constant C such that 1,,(s) < C,(n+s)

forall n, s.

Examples of birth rates satisfying Assumption 4.2 are A,(s) = As (new banks
formed at rate proportional to total reserves) and A,(s) = Jn (new banks formed
at rate proportional to current number) for a constant A > 0, which both lead to
Ao (¥) = X y. Note that birth rates must increase as system size N grows to avoid the
trivial limit Ao = O.

Assumption4.3 If &, 5 » ~ Dy 5 x, then n&, ny v —> &0,y x ~ Doo,y,x @81 — 00 in
the Wasserstein distance VW, uniformly overall x, y > 0, where the family of measures
(Doo,y,x)x,y>0 is continuous in W, jointly in x and y; support of measures Do,y x
is bounded from above uniformly in x and y; and £, x has uniformly bounded pth
moment over all x, y.

Remark 16 From (4.3) it follows that for g < p,

1
Cp,q4 = sup [N? / 29 Dy x,s(d2)] < o0, 4.9)
N,x,s 0

and there exist ng and g9 € (0, 1) such that a.s. for all n > ng, 0 < x < ny,
|En,y,x| <1-—e.

The requirement in Assumption 4.3 is that the default impact decreases inversely
proportional to the scaling parameter. Larger banking systems will experience more
defaults (namely proportionally to N, see the next assumption), so the impact of each
default must shrink to compensate. Note that the limiting distribution Dy y  does
not matter and only its mean will appear in the limit equation. An example would be
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&n.s.x ~ Uni(0, d/n) so that §co,y,x ~ Uni(0, d). The next assumption is about the
convergence of the default rates. Another example would be the case when default
rates are independent of 7, §: kKoo (X) = Ky (X).

Assumption 4.4 As n — oo, uniformly over y, x € (0, 0o), we have: «, (ny, x) —
Koo (¥, x), wWith ks (¥, x) continuous in y. Moreover, there exists a constant C, inde-
pendent of x, n and s such that «, (s, x) < C, forall n, s, x.

Denote the means of the limiting measures Boo , and Doy« by Eoo(y) and
Doo(y, x). Define

Y(x,y) =71 — Doo(y, koo (¥, %), ¥ >0, (4.10)
2 —
Gy f(x) == (x, y)D1f(x) + %Dz.f(X) =G f(x) = Doo(x, Y)koo(x, y) D1 f,
@.11)

where G is from (2.4). This will be the limiting diffusion term, corresponding to the
original geometric Brownian motion dynamics, summarized by G plus the additional
mean-field-based drift term due to the default interactions. Define the measure-valued
process () = (,ut(oo), t > 0) as the law of a McKean—Vlasov jump-diffusion with
generator

Lof@)=Grf +roo® [3° [f (W) — f(2)] Boos(dw) (4.12)
+ koo, 2) o7 [f (W) — f(2)] v(dw).

We can apply current distribution v to this generator and get:

AW, ) =W, L, ) = 0, G5 f) + hoo O) [ (Boow. [) — (v, )] (4.13)
+(V7 f) (V’ Koo (i, )) - (V, Koo (Ev ) f) .

The main result below is that 1(° is a suitable limit of 1‘™s from (4.1). To explain
the form of A we discuss each term. First, the Gy; term arises from the additional average
downward drift from the defaults. Next, there are two different jump mechanisms: The
second piece

Aoo (V) (Boo,w, ) = hoo (V) (v, ) (4.14)

arises from births from the pre-limit finite system which translate into killing and
restarting according to the measure B .. This can be viewed as exogenous “regener-
ation” with a source measure By 7. The third piece

(V, f) (V, Koo (vs )) - (U, Koo (v» ) f) (415)

is an endogenous push due to the non-constant default intensity. Regions where « is
higher experience higher rates of defaults, whereby the respective banks “dis-appear”;
in the limit they immediately “re-appear” according to v. This can be thought of as
a genetic mutation: particles in high-default regions get killed and replaced with new
particles sampled according to v.
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If koo (¥, ¥) = koo(y) depends only on y, then the term (4.15) vanishes. Indeed,
this term then becomes proportional to the action (v, f) of the current distribution
v on the test function f. This means we kill the process and restart it at the same
distribution, which is equivalent to doing nothing. Thus, only the decrease of reserves
of all remaining banks by i.i.d. fractions influences the empirical measure, turning the
drift from r into i from (4.10).

Financially, we see that defaults from the pre-limit finite system translate into two
effects. On the one hand, defaults themselves create additional downward drift inside
Y from (4.10), as compared with the original drift 7. On the other hand, financial
contagion after a default creates reset times when the process is killed and restarted,
which corresponds to the term (4.15). Let us mention how bankruptcies occur in this
limit: The fraction of banks defaulting at time [7, t + A7] is koo (m(?)) dz. That is, the
fraction of banks defaulted during time interval [s, 7] is L ! Koo(m(u)) du. This fraction
can be greater than 1, because new banks emerge all the time.

In the notation of (4.2), we interpret the mean field limit as a McKean—Vlasov
jump-diffusion Z which has drift ¢ (Z(¢), v;) Z(t), diffusion o Z(¢) and the following
family of jump measures:

Mz (dw) = Aoo (V) Boow(dw) + koo (V, 2) v(dw). (4.16)

The process Z can be thought of as a ‘representative particle’.

Lemma 17 Under Assumptions4.1,4.2,4.3, 4.4, there exists a unique McKean—Vlasov
Jump-diffusion Z with generator (4.13).

Proof We verify the conditions of Lemma 12. Both terms in (4.16):
Aoo (V) Boo p(dw) and  koo(z, V) v(dw)

have the pth moment uniformly bounded for p > 2. Note the Lipschitz property of
these measures with respect to the measure v in W,. Together with the Lipschitz
property of the functions x +— ¥ (x, y)x and x — o x, this completes the proof. O

The following is the main result of this section, with proof postponed to Sect. 7.
Theorem 18 Suppose the initial empirical measures converge in W, with p > 1:

(N) (00)

Ko = = Mg as N — oo.

Under Assumptions 4.1, 4.2, 4.3, 4.4, we have the following convergence in law in the
Skorohod space D([0, T1, Py), for every T > 0 and q € (1, p):

™ = 1 as N - oo.

By Lemma 26, the functional v + v (taking the mean) is continuous in P, . Thus
we have:
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Corollary 19 As N — 00, we have weak convergence in D[0, T]:
my () = m() where m(t) :=E[Z(1)] = (u™, f1),

4.3 Default intensity independent of size

Under Assumptions 4.1, 4.2, 4.3, 4.4, if the killing rate and the mean of the contagion
measure

Koo (¥, X) = koo(y) and Dog(y, x) = Deo(y)

are independent of the individual size x but dependent only on the average of the
system, we can solve the McKean—Vlasov equation explicitly. Indeed, in this case,
in the limit N — oo default intensities and default impacts are independent of the
size of defaulting banks. In this case, we can rewrite (4.10) as ¥ (x,y) = ¥ (y) =
r—Doo (¥)k00 (). Then we rewrite the McKean—Vlasov equation for M(oo) as follows:

N()

1
Z(1) = Z(0) +/(; [Y(m(s)) Z(s) ds + 0 Z(s) dB(s)] + Z AZ(7g), m()=E[Z@)],
k=1
4.17)

with B = (B(t), t > 0) being a Brownian motion; N(7) is a time-nonhomogeneous
Poisson process with rate Ao, (m(t)), with jump times 7z, and Z(tx) ~ Boo.m(r—)-
Assuming the function v is Lipschitz continuous, equation (4.17) has a unique solution
for any initial condition, see for example Funaki (1984). Let us now solve (4.17). Its
parameters: drift, volatility, and jump measure Ao (-)Bo,., depend on the distribution
of Z(¢t) only through its mean m(¢). Therefore, we can solve first for m(-) and then
for Z(t). Take expectations in (4.17):

m' (1) = Y (m()M(1) +hoo (1)) (Boo(m()) —m(r)), m(0) = /0 ™ (dx).

(4.18)
Assuming this (deterministic) ODE has a unique solution m(-) we plug it in (4.17)
to obtain that Z is a geometric Brownian motion with time-dependent drift:

t
Z(1) = Z(0) exp U I:lﬁ(m(s)) — 02/2] ds + oB(t):| , (4.19)
0

killed at rate Ao, (m(t)), and resurrected according to Bso,m(s). Let us find constant
solutions ,ut(oo) = I, or, equivalently, stationary solutions for the process Z in (4.19).
For any such solution, its mean m(¢) = M is also independent of 7. Therefore, we let

the right-hand side of the ODE (4.18) to be equal to zero. This is an algebraic equation:

Y(M)M + hoo(M) (Boo (M) — M) = 0. (4.20)
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Fig.2 Left panel: distribution of m () on ¢ € [0, 10] and N = 5, 25, 100 based on 100 simulated trajec-

tories of X(N). The initial distribution is 1"’ ~ Exp(0.5) so that m y (0) = 2. Right panel: distribution of

dy = (M(TN), 110, p})» proportion of banks with reserves less than D = 1 at T = 10.

For every solution M > 0 of this equation (which is notably independent of o),
from (4.19) we get geometric Brownian motion:

dZ(t) = Z() [y (M) dt + o dB(®)],

killed at constant rate Ao (M), and resurrected according to the probability measure
Boo.m- The most elementary case is when all limiting parameters are constant:

)"009 KOO? BOO’ 5OO (421)
Then the differential equation (4.18) takes the form

m' (1) = AooBoo + ym(r), where y := (r — Dockoo — koo) .

Given the initial condition m(0), the solution of this first-order linear equation is

. (4.22)

m() = (m(O) - ’\°°B°°> eV 4 *ooBoo

v

If y # 0, there exists a unique solution to the algebraic equation (4.20), which is
the limit for the solution m(¢) of the differential equation (4.22): M = Y MhooBoo =
lim;_, oo m(¢). The left panel of Fig. 2 illustrates the mean field limit in the constant
default intensity case. We take A, (s) = 0.2n, k,(s,x) = 0.1, B, s ~ Exp(1) and
Dysx ~ Uni(0, n~1), and r = 0.05. Note that in the mean field limit Ao, = 0.2,
Koo(x) = 1 and Bo = 1, Do = 0.5, leading to

B 021 .
T 0240.1-05-0.05 "

In Fig. 2 we initialize with uf)N) ~ Exp(0.5) so that m(0) = 2 and the solution of
(4.22) reads as m(t) = 1 exp(—0.2¢) + 1. The figure shows the simulated distribution
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of m(f) based on running 100 paths of the pre-limit system X V) with N = 5, 25, 100.
Foreachruni = 1, ..., 100 we compute the resulting m’N () as the empirical average
bank size at step ¢ and finally plot Ave(mﬁv(t)), as well as the 5% — 95% quantiles of
m?v(t) across the 100 runs. The latter visualize the variance of m y (¢); as expected as
N increases, my (t) converges in distribution to the deterministic limit m(z) reported
above. We note that in this example due to the limited interaction among the banks
and the light-tailed default and birth distributions, the convergence is very rapid so
already E[my ()] >~ m(¢) even for very small N = 5.

4.4 Capital distribution

The mean field limit offers insight into the bank reserves distribution which is key to
analyzing the probability of systemic events: when many banks default or have low
reserves. For example, in structural models there is typically a risk threshold D > 0
so that banks whose reserves are below D are viewed as insufficiently capitalized.
Taking fp(x) := l{x<py, the systemic risk of the banking network at epoch ¢ can be
assessed as

[#i e I(t) | Xi(t) = D} _

(V)
0 (", fp)- (4.23)

As N — o0, empirical measures pL,(N) converge in P, (and therefore weakly) to a

deterministic measure 1\°, which is absolutely continuous and hence (™), fp) —

/L;OO) (0, D). At the same time, as ¢ becomes large, /L,(oo) converges to its stationary
distribution IT, so the fraction of banks below D approaches IT(0, D].

The right panel of Fig. 2 shows the distribution of dy := (qu), fp) at fixed ¢ as
we vary N. Specifically, we use the same setting as in the left panel of that figure and
take D = 1. As expected, (MSN), fp) becomes more deterministic as N grows and
the empirical fluctuations decrease. In the figure, we see that about 60% of the banks
will have assets below D = 1 at T = 10. The take-home message is that analysis of
IT (and MFOO) for shorter-term objectives) holds the key for understanding the financial
riskiness of the system, for example whether the banks tend to cluster into distinct

groups (small banks, large banks, etc.)

4.5 Propagation of chaos

Let us further describe the behavior of a typical bank as the number of banks tends to
infinity. Consider, for example, the first bank X starting from time ¢ = 0.

Theorem 20 Assume X%N) (0) is deterministic for every N > 1, and XiN) 0) = x;
as N — 00.As N — oo, XgN) = Xgoo) weakly in D[0, T, where Xgoo) is a solution
to the following stochastic differential equation:

dX @) = (X0, m0)) X () dr + o XD dW (@), (4.24)
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starting from x1, killed with rate koo (m(t), Xioo) 0).

The Proof of Theorem 20 is in Sect. 9. Observe that compared to (4.2), the limiting
dynamics of X are simpler: there is still a mean-field interaction through m(z), but
solely via a mean-field killing rate. Births and hence jumps disappear. We can state this
result as follows, recalling the definition of the generator (4.11): (4.24) is a McKean—
Vlasov diffusion with generator

AL f ) = Guf (x1) — koo (U, x1) f(x1). (4.25)

Similarly to Theorem 20, we have propagation of chaos. Namely, consider the first k
banks instead of only the first one: (X EN), X ,EN)). One can show that the resulting
limit in D([0, T, ]Rk) as N — oo is a vector of k independent copies of the killed
geometric Brownian motion described above: Dependence between the banks vanishes
in the limit.

Financially, propagation of chaos offers two convenient features: (1) it abstracts
away the complex bilateral dependencies that may exist between individual banks;
(2) it distinguishes clearly between the global recurrent nature of the banking system
and the individual banks that have finite lifetime (assuming suitable conditions on
Koo Which are expected to hold in realistic settings). The latter is the major difference
between a representative particle Z that is infinite-lived, and the prototypical bank X
that lives for some time and eventually defaults.

4.6 Impact of default contagion

The default contagion in our model differs from intensity-based default models. In
the latter framework, contagion modifies the default likelihood, and there is a direct
attribution between the respective model parameters and more defaults. In our setting,
the overarching stationarity of the banking system generates a churn between new
banks emerging and existing banks defaulting. The contagion effect through &’s is
primarily about increasing the interconnectedness among banks.

Indeed, when & = 0, then bank reserves evolve independently. Stochastically
increasing & makes defaults percolate through the system and lower reserves of other
banks. As a result, higher interconnectedness leads to increased system diversity,
i.e. bank reserves becoming of roughly similar size. Conversely, low contagion effect
allows for some banks to randomly grow very large and skew the distribution of X; ()’s
at any given t.

The right panel of Fig. 3 shows the Gini coefficient (a common metric for system
diversity) of X(T') at T = 25 for the illustrative system in Sect. 2.2 as a function of
contagion parameter a that governs the distribution of £ ~ D, s : n§ ~ Beta(a, 1).
From here, we get:

— a
thus Dy =

— a
D(n, s, x) = ———;
na+1) a+1
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Density
Gini coefficient of X(T)

r T T T 1
0 1 2 3 4

Contagion Parameter a

Fig. 3 Left panel: Density of v; approximated through an empirical distribution of X of size N/ = 500
(smoothed via built-in kernel density estimator in R) at t = 1, 8, 16, 25, with parameters inherited from
Fig. 1. The initial condition vy has the law of ¢Z for Z ~ N(0, 1) with time step Az = 1073, Right
panel: System diversity as a function of contagion strength. We plot the Gini coefficient of X(7'), T = 25
against the contagion parameter a with n&, s x ~ Beta(a, 1). Results are based on 400 simulations with
N(0) = 25.

Low a implies low contagion impact; the original setting Do, ~ Uni[0, 1] corresponds
to a = 1. We observe that the Gini coefficient of X(7) is high for low a (the banking
system is dominated by a few very large banks). As a grows, Gini coefficient decreases.
Higher contagion impact reduces the reserves of large banks and makes their size
distribution more even and uniform.

The parameter a has only a secondary impact on E[N(7")] and on frequency of
defaults. The latter are dominated by the bulk of the short-lived small banks that
constantly emerge and quickly disappear without being much affected by contagion.
We further remark that a also carries a direct impact on the mean bank size Ave(X; (7)),
which can be surmised from the relation between m(7') ~ M and Do driving ¥ (-),
cf. (4.10)—(4.22). To summarize, our default contagion is primarily about the large
banks, and therefore affects mean bank size and system diversity, while having little
impact on median (representative) reserves and frequency of defaults.

4.7 lllustrating the McKean-Vlasov equation

The limiting McKean—Vlasov equation can be studied using Monte Carlo approx-
imation. Namely, the measures ,uioo) can be approximated through an empirical
distribution of a system X of N’ interacting particles. The particles follow the dynam-
ics of the dummy {Z(#)}, i.e., behave like geometric Brownian motions that are killed
and restarted. Note that in contrast to the pre-limit systems X V), X has a fixed dimen-
sion, n()V( (t)) = N’ for every t. Thus, its dynamics are only in terms of the empirical
mean m(t) := # ZlNz/l X® (1), rather than system size N and sum S. In turn, we may
simulate X using standard tools, for example an Euler scheme with a fixed time-step
At.
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To do so, each particle X@ follows on [t,t + At] the geometric Brownian motion
dynamics with drift i ()V( D), m (1)) and volatility o, driven by independent Brownian
motions Wi(~). In addition, each particle carries two exponential clocks that fire off
at rates Aoo(111(1)) and koo (M1(1), X® (1)) respectively. Alarms of the first type result
in regeneration, i.e., the respective particle instantaneously jumps from its current
location X (1—) to a location ¢ ~ Be i ;> generated independently of everything
else. Alarms of the second type result in resampling due to non-uniform default rates:
the particle jumps from X® (=) to the location of another particle j, XDy =
)v((f)(t), with index j sampled uniformly from {1,2,...,i —1,i+1,..., N'}. After
this mutation procedure, which can be interpreted as killing particle i and replacing it
with a child of particle j, the two “sibling” particles resume independent movements
as geometric Brownian motions.

The left panel of Fig. 3 shows the distribution of the McKean—Vlasov solution:
the density v; (which has no closed-form expression) for several values of ¢ with the
state-dependent default rates. We take limits of parameters from Fig. 1. That is,

0.2

hoo(y) =1, Booyy ~Exp(l), koo(y,x) = m Doo,y,x ~ Uni[0, 1].

5 Large-scale behavior: second setting

For a systemic risk application, our main interest is to build a model with a stationary
{N(?)}. Indeed, we wish to have a dynamic banking network that expands and shrinks
over time but is globally infinite-lived, even if individual banks have finite lifetimes.
However, observe that in the setup above, asymptotically both the birth rate A, (s)
and the aggregate default rate n - k,, (s, x) are linear in n. Thus they are comparable,
and either births or defaults will ultimately dominate, so that the number of banks
N(¢) will exponentially grow/shrink in ¢. In other words, starting with a finite N (0),
E[N(z)] will then either exponentially grow to +o0o or exponentially collapse to 0,
neither of which are financially plausible.

To circumvent this issue (which is ultimately not important in the mean-field limit),
in this section we consider the case when all parameters of the Nth system, with
N the initial number of banks, are independent of n, the current number of banks,
but depend on the initial N. The motivation is to have models with constant birth
rates, whereby {N(#)} roughly behaves as a linear birth-and-death process with the
classical Poisson stationary distribution. We then again scale the systems to recover
a (different!) McKean—Vlasov limit. This setting also intrinsically ensures the global
recurrence.

To do so, we need to adjust Assumptions 4.1, 4.2,4.3,4.4, accordingly. Everywhere
instead of subscript n we now write NV, because we now index parameters by the initial
size N.

Consider a sequence (X™))y>; of banking systems with the initial values
XM ) = x" e RV, nx{") = N. The Nth system X is governed by birth
intensities Ay ,(ny) = An(y), birth measures By .,y = By, default intensities
knn(ny, x) = kn(y, x), and default contagion measures Dy , nyx = Dy, y x. In all
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these assumptions, we abuse the notation by dropping the dependence on #n (there is
now only indirect dependence through y = s/n, the mean of the system).

Assumption 5.1 As N — o0, By, — B,y in the Wasserstein distance WV, uni-
formly over y > 0, with the family (B, y)y>0 continuous in WV,; and the measures
By y have uniformly bounded p-th moments for all N, y.

Assumption 5.2 As N — oo, we assume uniform convergence to a continuous limit
Aoo:

An(Y)

= Aco(¥), ¥y >0

uniformly in y > 0; and for some constant Cj, we have Ay (y) < C (N + y) for all
N,y.

Assumption 5.3 If &y ~ Dy y.x, then Néy y» — &x,y,x @88 N — 00 in the
Wasserstein distance ¥V, uniformly over all x, y > 0, where the family of measures
(6c0,y,x)x,y>0 is continuous in W, jointly in x and y; and N&y y . has uniformly
bounded pth moment over all N, x, y. We denote the corresponding limiting measure
by Do, y,x-

Assumption 5.4 As N — oo, uniformly over y, x € (0, 0o), we have: ky(y, x) —
Koo (¥, X), With koo (¥, x) continuous in y. Moreover, there exists a constant C, inde-
pendent of x, y, N such that ky (y, x) < C, forall N, x, y.

Example 21 Continuing the example from Fig. 2, we take Ay(s) = AN = 0.2N;
Kn(s,X) = Keo(x) = 0.1; Dy 5 x = Uni(0, 1/N), so_that Doo.s.x :_Uni(O, 1), and
By .n.s = Exp(1) so that Bo, = Exp(1). This implies Dog = 0.5 and Bo, = 1.

Similarly to (4.11), (4.12), define

Aoo (V)
n

+ koo(T, 2) fo LF () — ()] v(dw);

P F(D) = Gun f(2)+ /0 LF () — £(2)] Boos(dw) 5.1)

where Gy y f(2) = [r — nkoo (¥, 2)Doo(y, 2)] D1 f(2) + %Gzsz(z)-

Similarly to (4.13), we apply the current distribution v to the generator En’v in (5.1)
and define

A, v, ) = [r —koo @, DDoc @, Dos |0, DL ) + 3020, D2 ) (52)

1 [ @) (Boes. ) = hoe ) 0, 1)
+(U7 f) [(U’ Koo (va )) - (U7 Koo (67 ) f)] .

Consider the following McKean—Vlasov jump-diffusion Z = (Z@), t > 0), with
m@) = E[Z(t)], and [Lfoo) ~ Z(1). Tts generator at time ¢ is the version of the
generator (5.1) (cf. (4.12)):
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ﬁ; = ENoo(t),;lﬁw)’ (53)

where the function My : Ry — Ry is the solution to the following linear first-order
ODE:

N (1) = Ao (1)) = Noo () (1%, koo (-, 10(1))), N (0) = 1. (5.4)

The role of N (2) is to scale the system size at time ¢ relative to its initial size N
at time O:

lim

Ny(@)
N—oo N _NOO(I).

Solving this deterministic ODE (5.4) as follows:

Noo(®) = EO1 1+ f§ oo i(s)K(s) ds | (5.5)

K@) = exp [ fy (47, oo (R, ) du]

and plugging back into (5.3), we rewrite it as a McKean—Vlasov jump-diffusion, which
is time-inhomogeneous: Its parameters (specifically, the drift coefficient and the jump
measure) depend on time 7; in fact through N, the 7-dynamics depend on the whole
history: 1{°, 0 < s < ¢, rather than ;15‘”) and Z(1).

In the following formulae (5.6), (5.7), (5.8), z € DI0, t], where ¢ is another
argument. The argument /1> represents a measure-valued function (7>, 0 < s <
t). Its mean at time ¢ is denoted by m(#). The diffusion coefficient is very similar to
the one in the first mean-field limit. (Slightly abusing the notation, we use ¢ both for

this coefficient and for the original volatility of each bank.)

o (r, i), z) — o2(0). (5.6)

The new drift coefficient is, however, different; it is given by
g (18 2) = 200F Wool). (1), 2(0) (5.7)

Y(n,y,v) i=r —nkeo(y, 1)Doo(y. V).

Thus, the counterpart G, ,, of G, from (4.11) can be written as

2

- o
Gnyf() =V (n,y,v)D1f(v) + 7D2f(v)-
Finally, the new jump measure is given by (compare with (4.16)):

A2 oo ([dw) = N (koo (0(0)) Boo s (dw) + koo (01(0), 2() 2™ (dw).
(5.8)
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Remark 22 The magnitude Ny (f), as a function of (ﬁf,oo), 0 < u < s), is bounded

and Lipschitz with respect to W), in P, (B[0, t]), with Lipschitz constant uniform in
t. Then, the drift and diffusion coefficients from (5.6), (5.7), (5.8) are Lipschitz with
respect to

2=(w),0<u<rn, (@™ 0<u<r),

uniformly in ¢. This allows us to use the result of Remark 15.

The following is a counterpart of our result in Theorem 18, with proof given in
Sect. 8.

Theorem 23 Fix p > 1. Assume initial empirical measures converge in WW,: /L(()N) =

/lf)oo). Forevery T > 0 and q € [1, p), under Assumptions 5.1, 5.2, 5.3, 5.4, we have
convergence in law in the Skorohod space D([0, T, Py):

u™M = 1 as N - o0

where [1° is a McKean—Vlasov-Ito process with generator (5.3).

For g € (1, p), the functional v — (v, f1) is continuous in W,. This immediately
implies the following about the mean bank capital distributions:

Corollary 24 We have weak convergence of mean reserves as N — oo in D[0, T]:
my (-) = m(-).
5.1 Defaults independent of size

Under Assumptions 5.1, 5.2, 5.3, 5.4, if koo (¥, X) = koo(y) and Z_)Oo(y, x) are inde-
pendent of x, the diffusion part of McKean—Vlasov equation for Z is

dZ(t) = [r — Doo(M(t))koo (0(1))Noo ()| Z(t) dt + 0 Z(t) dB(t), (5.9)

with Z is killed with rate Noo(t)Aoo (M(2)), and resurrected according to the probability
measure By, ). As before, only the first component in the jump measure (5.8)
remains because k(y, x) does not depend on x. To solve (5.9) we first compute
m(?). Taking expectations, we obtain

NEo() = koo (11(1)) = Noo (1o (1)), o
(1) = [r = Doo (M (1) koo M) Noo (D] (1) + 2B (Bog (1) — (1)

(5.10)

Assume this (deterministic) system (5.10) of ODEs has a unique solution (N, 1)
with the initial condition

m(0) = / Ooxuff’")(dx), Nio(0) = 1.
0
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Plug this in (4.17) to get that Z is a geometric Brownian motion with time-dependent
drift:

t
7(1) = Z(0) exp [ / [r — Do (1 () Koo (1)) N (5) — 02/2] ds + oB(t)] ,
0
(5.11)

killed at rate A~ ((¢)), and resurrected according to Bo ;). We revisit the case when
all limiting parameters are constant. Then the system of differential equations (5.10)
takes the form

N (1) = hoo — Noo (D)oo, (5.12)
(1) = ri(t) — DookocNoo (M) + hooNg' (1) (Bos — (1)) .

The first equation in (5.12) starting at N, (0) = 1 is solved as

Nao(t) = oo |:)io — 1] exp (—Koot) .

Koo Koo

The second equation of (5.12), which is also linear, can similarly be solved explic-
itly. As t — 00, Noo(t) = Noo(00) := Aoo/Koeo. Therefore, we can find the long-term
limit of m(z) by plugging Ny (00) instead of Noo () into (5.12) and letting the right-
hand side be equal to zero. This gives

- KooEoo
m(t) »> — , ast — oo.
coroo + Koo — T

The left panel of Fig. 4 illustrates such convergence to the mean field limit. We take
An(n,s) = 02N, ky(n,s,x) = 0.1, By s ~ Exp(1) and Dy . 5.» ~ Uni(0, 1/N),
and r = 0.05. Note that in the mean field limit Ao = 0.2, koo(x) = 0.1, and
Boo = 1, Do = 0.5. Therefore,

0.1-1 2
0.5-024+0.1-0.05 3’

lim m() =
11— 00

In Fig. 4, we initialize with 1§’ ~ Exp(2), so that f@(0) = 0.5. We see that the
solution m(#) converges to its limiting value more slowly than in Fig. 2, which is not
surprising since the ODE (5.12) contains N4, which is also not constant. Moreover,
the more complicated ODE governing the evolution of m leads to r — m(z) being
non-monotone in this particular setup.

Note the difference to the model in Sect. 4. There, N (¢) did not have a stationary
distribution, since atlevel N'(t) = n, the birthrate was 0.2n, larger than the total default
rate 0.1n. As a result, AV/(r) was growing exponentially in 7. In the present Section,
the birth rate is 0.2N (constant with respect to n) and the death rate is 0.1, so that
Ny () is a constant-birth, linear-death process which has a stationary distribution of
Nso ~ Poi(2N). Comparing to Ny (0) = N, the relative ratio of E[Neo] /Ny (0) = 2
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Fig. 4 Left panel: distribution of my () on t € [0,25] and N = 5,25, 100 based on 100 simulated

(N)

trajectories of X (V) The initial distribution is Hy Exp(2), so mpy(0) = 0.5. The deterministic limit

m(-) is also shown. Right panel: distribution of dy := (}L(TN), 1[0, p1), proportion of banks with reserves
lessthan D =1 at T = 25.

matches the limit Noo (00) = Ao /Koo- Similarly to Theorem 20 we have a propagation
of chaos based on Theorem 23.

Corollary 25 We work under Assumptions 5.1, 5.2, 5.3, 5.4. Assume XgN)(O) is deter-
ministic for every N > 1, and X%N) 0) —> xjas N - 0. As N — o0, X%N) = Xgoo)
weakly in D[0, T], where XEOO) is a solution to

dX ) = ¥ (1, X0, m(0) X (0) dr + o XX 1) dW (1),  (5.13)

starting from x1, killed with rate ks (M(t), Xioo) 0).

6 Proofs for sections 2 and 3

We start with the following three technical lemmata and their proofs.
Lemma 26 Ifv, — vo in W), for some p > 1, then (v,, f) — (vo, f) for functions
f R4 — R with the following property:

Cy :=sup [x7q|f(x)|] < oo forsome 0 <gq < p.

x>1

In particular, the functional of taking the mean v > V is continuous in VWp.

Lemma27 For 0 < g < p and any C > O, the set {v € P, : (v, fp) < C}is
precompact in Py.

Lemma 28 Foreverye € (0, 1), there exists a constant C, such that for every function
fe c? and for x > 0, z € (0, 1 — ¢), we have:

If(x(1 = 2)) = f(x) —zD1 f(X)] < C22IF .
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6.1 Proof of Lemma 26

Let us take a sequence (&,) of random variables: &, ~ v, for every n. By the Skorohod
representation theorem, we can assume &, — &p a.s., as n — oo. We also have
E|&,|? — El&l?, as v, — vg in the Wasserstein metric WV,. Since | f(x)|P/e <

C’;/qxp for f € Hy, we get sup,~; E[|£(&,)17/9] < co. Thus for p > g the family
(f(&1))n>1 is uniformly integrable, and hence, (v, f) = Ef(,) — Ef(&) =
(vo, f) asn — oo.

6.2 Proof of Lemma 27

Take a sequence (v,),>1 of measures in {v € P, : (v, fp) < C}, and generate
random variables &, ~ v,. Since sup,~; E|§,|” < C < oo, the sequence (£,),>1
is tight. Extract a weakly convergent subsequence; without loss of generality, we
assume this sequence itself converges weakly to some random variable &y. By the
Skorohod representation theorem, we can assume &, — & a.s. Moreover, the sequence
(1€219)p>1 is uniformly integrable for ¢ < p, since E[(|€,]7)P/4] < C. Therefore,
E|&,]19 — El|&]?, and hence, &, — & in W,.

6.3 Proof of Lemma 28

Take a function g(x) := f(e*). Then

g =" f'(e)=(D1f)(e"), g"(x)=e"f(e")+e™ f"(e)=(D1 f+D2f)(e").
We can rewrite it for some y € [Inx + In(1 — z), Inx]:

Fx(=2)) = f(x) —zD1f(x)
=g(nx +1In(l —z)) — g(Inx) — zg’(Inx)
=g(nx+In(1—z))—g(nx)+In(1—z)g’'(nx)—(Un(1—z)+z)g’(In x)
= %lnz(l —2)¢"(y) — (In(1 — 2) + 2)¢'(In x).

There exists a C, such that for z € [0, 1 — €],
l 201 _ 2 . 2
> In“(1 —z) < Cez”, In(1—2)+2z=<Cez".

It suffices to note that for all y € R, we have: |g”(y)| < ||| fll; and for all x > 0, we
have: |g’(Inx)| < ||| f|ll. This completes the proof.

6.4 Proof of Lemma 2

We need to establish (3.1), i.e., P'(x, A) > 0V > 0. Assume first that A C (0, co)V
for N = n(x) > 1; that is, the target set A lies on the same level as the initial point

@ Springer



520 T.Ichiba et al.

x. Observe that the intensities of births and defaults of banks are locally bounded on
(0, 00)" aslong as there are N banks in the system; therefore, with positive probability
there are N banks at every time s € [0, ], and the process X behaves as the solution
to a certain stochastic differential equation on (0, oo)" with a nonsingular covariance
matrix. But such processes have the positivity property.

If N =n(x) = 0,and A = {@}, then P’(x, A) = e %' > 0: This is the probability
that, starting with an empty system, no banks emerged during time [0, #].

Assume now that A € (0, c0)™ for M # N = n(x) > 1. Then with pos-
itive probability we have: n(X(s)) = M for some s € [0, ¢), since the rates of
birth and default are everywhere positive. Let t/ be the first moment of hitting level
M:

= inf{s > 0 | n(X(s)) = M}.

Observe that the integral of a positive function over a set of positive measure is
positive. Applying this and conditioning on 7’ and X (z”), by the Markov property of
X we get:

t
P(X(t) € A) = / P(z' eds, X(r) edy)P(X(t —s) € A| X(0) =y) > 0.
0

This completes the Proof of (3.1) for subsets A which are on one level of X. Any
general set A € X can be split into its subsets, at least one of which has positive
Lebesgue measure.

6.5 Proof of Theorem 4

The statement of Theorem 4 then follows from Lemmata 2, 3, and the classic results
of Meyn and Tweedie (1993a,b), together with (Sarantsev 2017, Proposition 2.2,
Lemma 2.3). In fact, since the last two terms in (3.3) are non-positive, the condition
in Theorem 4 is effectively about the term due to births

Anx) (8(X)) [E(n(x), 5(x)) + 1] , growing at most linearly in n(x) and s(x).

6.6 Proof of Theorem 8

Without loss of generality, assume ¢; = ¢a = ¢ by taking the smaller one among c
and c¢;. Compare (3.3) with (3.6) and observe that for every ¢ € (0, 1)

EVo(x) = p(x) = —cVo(x) +c3 = —(1 —&)cVo(X) +¢3- 1x(x), X € X,

where I := {x € X' : Vp(x) < ¢3/(ec)} is a compact subset of X'. The bound (3.7)
follows from Lemmata 2, 3, and from the theory of Lyapunov functions, e.g. Meyn
and Tweedie (1993a,b) and Sarantsev (2017)
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6.7 Proof of Theorem 10

Take two copies XV = (XD (1), 1 > 0) and XP = (XP (1), ¢ > 0) of this process,
starting from X (0) = x; and X®(0) = x,. The idea is to couple them when the
dimension-counting processes NDOGO =XV () and NP () = n(XD(-)) meet at
0. Then the original processes X (! and X® meet at @. Define this coupling time 7:

t:=inf{t >0 | NV@)=NP@) =0). 6.1)

By classic Lindvall’s inequality, the total variation distance from (2.7) between
P'(x1,-) and P’(xp,-) is less than or equal to 2P(r > ). Next, compare
these dimension-counting processes N) with birth-death processes: N@ (1) =
n(XD() < NO@),i = 1,2, t = 0, where N = (N (1), t > 0) is a birth-
death process with birth intensity A’ and death intensity n«, at site n € Z,, starting
from N®(0) := ND(0), i = 1,2. Similarly to Lund et al. (1996) and Sarantsev
(2016), we find that the moment 7 satisfies the following estimate:

E[e*"] < VIV ©0) v NP (0) = Vixi) v V(x2). (6.2)
The coupling time (6.1) for the processes N® and N@ is also a coupling time for the

processes X () and X @ The rest of the proof is similar to Lund et al. (1996, Theorem
2.2) and Sarantsev (2016, Section 5).

7 Proof of Theorem 18
7.1 Overview of the proof

Recall the definition of £ from (2.2). Itd’s formula applied to &£7(X M@y =
(,uEN), f) for some function f € Cl% reads as:

t .
& (X(N)(t)> =& (XW) (0)) n /O LEH(XM(5)) ds + M), 71.1)

where (/\/l']f\',(t), t > 0) is a real-valued rcll local martingale. Between jumps (while

the number of banks n(X ™) (1)) = Ny (1) stays constant), the local martingale M{]
is given by

Ny (@)

dML ) = =2 3" 01 H(E™M 1) dW; ().
N Ny (@) ;

First, let us state the main convergence lemma, which makes the analytical crux of
the proof.
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Lemma 29 Take a function f € C,%. Recalling (2.1), take a sequence (x(k))kzl inX
with
n (X(k)) =k and pyw —v inW, as k— oo. (7.2)

Then we have the following convergence of means and generators, as N — 00:

0 -7, and L&y <X(k)> — A(v, f) from (4.13). (7.3)

The following technical estimate is used repeatedly in the subsequent proofs.

Lemma 30 For a constant C depending on the parameters, we have

|2,()| < CIL+XI-NIfIL, feCl xeX\ (o).

We next show that the term /\/11’:, tends to zero. The rough idea is as follows:
Since jump sizes tend to zero, the process converges to a continuous limit. Since the
quadratic variation converges to zero, the limit is a continuous martingale with zero
quadratic variation, which implies that the limit itself is identically zero. To formalize
this argument and apply it to our more complicated situation, we state and prove the
following series of lemmata.

Lemma31 ForeveryT > 0,r > 1, and f € C?,

IE[ sup [M{,(s)]r] — 0, as N — oo.

0<s<T

Lemma 32 Forevery T > 0, there exists a constant Ct > 0 such that

]E[ sup (,L§N),f,,)] <Cr forall N> 1.
t€l0,7T]

Lemma 33 The sequence (M§N>, 0 <t < T)nx1 is tight in D([0, T, P,) for every
q <Pp-

Assume we already proved Lemmata 29, 31, 32, 33. Let us complete the Proof of
Theorem 18. In light of Lemma 33, it suffices to show the following statement: For
q € [1, p), every weak limit point (1{°”, ¢ € [0, T]) of (u™), 0 <1 < T),_, in
D([0, T], P,) is governed by the McKean—Vlasov equation (4.17). Indeed, for any
function f € C2, we can rewrite (7.1) as follows:

t .
0= 1+ [ 25 () o
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Lettting N — oo in (7.4) with Lemmata 29, 31 and 32, we have that the last term

vanishes while the key middle term converges to A(,LJ,§°°), f). Overall we thus obtain
that the limit obeys

t
(4. 1) = W% 1)+ [ A, pras.

Since this holds true for all f € C2, then, as explained in Sect. 4.1, this is the
equivalent definition of the McKean—Vlasov jump-diffusion. This completes the Proof
of Theorem 18.

7.2 Proof of Lemma 29

Convergence of means follows from Lemma 26. Now, let us show the second statement
in (7.3). Apply the generator £ from (2.10) to £ from (2.2), for f € C?, with the
argument X = (xl, e, xn(x)) # . At first, we just do calculations of the generator,
and only afterwards we plug in x*) instead of x. Corresponding to the three lines in
the right-hand side of (2.10) we shall use the shorthand £ &y = I + I + I3. The first
term /1 involving the diffusion operator is calculated as follows:

@()_L/(.) azﬁ()_Lu(') 1 )
dx; X_n(x)f Xi), ax2 X_n(x)f xi), i=1,...,n(x),
which leads to
1 n(x) 0_2 5 1 n(x)
=1 ;[”if i)+ 3 £ | = s ;gﬂxi) = (ux.G). (15)

Next, the second term with the birth rates is equal to

n(x) n(x)
o0 1
b=t [ [ (210041 00) =5 3060 B o @
S — (())% (‘>+Mfoo () Bacxys0 @)
= 1x) (1 + n(x)) n(x)(8(X £ S (xi ") +1 Jo fQ n(x),s(x)(dy
_ _)\n(x)(5(x)) )\n(x)(5(x)) o
— 22D G, )+ 2 [ £05) B, @), 7.6)

Finally, the third term is
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n(x)

n(x)
1
b= k(0 (80, %) 5= ; Jo F&j(1=2)) Dagxy s, (d2)
1= JFL
. n(x) n(x) 1
—m Y ke (8(X), xi) Y [y F(X) Dagxy,sx.x (dz),
i=1 j=1

which we re-arrange as

n(x) n(x)

1
I3 = s Z Kn(x) (5(X), x;) Z /(; [f&(1=2) = f&))] Puwy,s.x; ([d2))
i=1 j=1

1 n(x) nx) .1
+m . Kl‘l(X)(ﬁ(X)ﬂxi);/(‘) Fxj(1=2) Duxy,s(x).; (d2)

n(x)

1
T =1 Z Kn(x)(s(X),x,‘)/O Fxi(1=2i) Dn(x),s(x).x; (dzi) =1 I31 + 132+ 13 3.
i=1

(7.7)
Now, substitute the following sequence in the formulae above:
x ;= x®, n(x(k)) =k, sp:=5 (x(k)) . (7.8)
The first term of £E¢ (x(k)), given in (7.5), converges as k — oo as follows:
I = (uxw, G f) = v, G f). (1.9)

This follows from the observation that G f € H,, and Lemma 26. Next, we get
convergence of the second term I given in (7.6):

I = doo ) (Boo,ss ) — Aoo () (v, f) (7.10)

from Assumptions 4.1 and 4.2, together with the observation that f € C2, and another
application of Lemma 26. Finally, let us show convergence of I3 from (7.7), i.e.,

> —W koo, ) )+, (v, ko (V,-)), as k — oo. (7.11)

The first term /3 1 in (7.7) can be expressed, using Lemma 28:

k k 1
1
— (k) (k) —.
La=—v E 1 Kk (Sk> X;7) - E 1 Dy f(x; )/(; 2Dy 0 D) + 8 = Ji + 8,
= j=

(7.12)
where the residual §; for k > ng can be estimated as

k 1
1
8¢l = Ceoll £l lﬁxk(sk,x,-(“) k- /0 2D, ().
i=
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By Remark 16 and Assumption 4.4,
16kl <k 'CeyCcC 2 - I £ I (7.13)
Finally, the main term J in (7.12) of I3 ; can be written as
1< 1 &
k k)\7S k
== > kilse. 1) - - Y kD f (D, sic x)
i=1 j=1
= — (1xw . KDk, sk, Irr (se. ) (1xr, D1f). (7.14)
As k — 00, the expression (7.14) tends to

Jim i = - (v, koo (W, VDo (V, 1)) (v, D1 f) . (7.15)
From (7.12), (7.13), and (7.15), we get
I — — (v, koo (¥, VDo (V. ) (v, D1 f) (7.16)

which becomes the mean-field drift term in (4.11). Similarly, we can show that the
second and third terms /3 2, /3 3 in (7.7) converge respectively to:

klim Lo=4+W, f)(V,ke (V,-)) and klim LBy=—Wkeo(V,-)f) (7.17)

Let us show this for I3 »; the proof for I3 3 is similar. It follows from Assumption 4.3
that the default contagion measures D. . . converge to §p (delta mass measure at zero)
uniformly in W,,. Because f € Cg, we have the following convergence as k — oo,
uniformly over j:

1
/0 Sl (1 — Zj))Dk,Sk’xl_(m(de) - f(x;),
which together with the assumption (7.2) yields
k 1
1
%Z/o f(xj(l_Zj))Dk,Sk,xi(k)(de)_) w, ), (7.18)
j=1
as k — oo. Finally, by uniform boundedness of «.(-, -) together with (7.2), we get:
1 k
o DKk ) = (v, ko (7, 4))- (7.19)
i=1

Combined, (7.16) and (7.17) complete the Proof of (7.11), and of Lemma 29.
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7.3 Proof of Lemma 30

From Assumptions 4.1, 4.2, 4.3, 4.4, we estimate separately each term for f in
L£Er(x) = I + I + I3, given in (7.5)~(7.7). The first term from (7.5) is estimated
as:

0.2
(Ll =7 Difll+ = ID2£1]-

For the second term in (7.6), from Assumption 4.2, we get:
L] <2C IfI1A +%).

Finally, consider the third term in (7.7). Via Assumptions 4.3 and 4.4, similarly to
the Proof of Lemma 29, this term is estimated as

1131 < 2Cc 1 fIl + CeCp i IDLf Il + Ce Cpa D2 f I + CCey Cp 2 - LIl

where Cp,, was defined in (4.9). Combining these estimates, we complete the Proof
of Lemma 30.

7.4 Estimation of the number of banks from above and below

These results will be needed for the Proof of Lemma 32 and Lemma 33. Define the
minimal and maximal number of banks in the system X ) on time horizon [0, T]:

My (T) == OgigTNN(t), MY (T) == OmaXTNN(t).

<t<
We start by estimating 91, (T) from below. First, we claim that 9T\, (T') stochasti-
cally dominates a Binomial random variable &y with parameters £y ~ Bin(N, e~ CeT)
with mean § := Ne ST Indeed, Ny (0) = N, and the default intensities are uni-
formly bounded from above by the constant C,. Then assume there is no birth of
new banks, and all default intensities are exactly C, on [0, T] as an extreme case.
This makes the number of banks at T fewer than for our original system X®) and
distributed as the binomial random variable &y. The latter tends to infinity in law:
My (T) — oo as N — oo from Chernov’s inequality

P(sy < £/2) <exp(—£/8) (7.20)

and from it, we get
the following estimate: there exists a constant Cgy such that

E[OMy(T) v D] <E[¢Ev v D] <(£/2) +exp(—£/8) <CoqN ™", r>0.
(7.21)
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Now, let us estimate the maximal number of banks from above. Consider a pure
birth process By = (By(t), t > 0) on {1, 2, ...} starting from By (0) = N, such
that the intensity of births from level n to n + 1 is equal to Cyn. Recall the estimate
An(s) < C) N in Assumption 4.2. We have the following observation: If there are no
defaults, then Ny (¢) is dominated by the above birth process By: Ny (1) < Bn(T),
where By (0) = N. At the same time,

dE[Bn(t)]/dt = CLE[Bn(¢)], whichimplies E[Sn(T)] = TN,
Therefore, for every N > 1,

E[M(T)] < e“TN. (7.22)

What is more, we can estimate the second moment: The generator of N -1 B is

Lnf()=Nx (f+ N = f).
Applying this to function f := f>, we get:
Lyfr(x) =2x>4+xN"L
Ifmy@) =N _2]E:312v (t), we can write Kolmogorov equations:
my (1) =E[Ly o(N"' By ()] =2my (1) + N~'eST, my(0) = 1.
Solving this, it is easy to see that supy my(T) < oo. We can rewrite this as

E[B%(T)] < CgN>. (7.23)

7.5 Proof of Lemma 31

Consider the size of each jump of the process (M(N ) f ) At the emergence of a new
bank with reserves y at time ¢, the empirical measure process jumps

w 1 Nn(t—-) w 1 Ny (1—)
from My :NN(t—) ; 8X;N)([—) to My :m[ ; 8X}N)(t—)+8y:|'
(7.24)
Therefore, the displacement of (1™, f) is equal to
1 Ny (@t-) w | Ny@-) W
_ X (t— - X(t—)).
NN(t—)+1|: ; Fx ))+f(y)] N ; (XM a-)

This random variable is dominated a.s. by 2 || || /Ny (t—). Similarly, at the default
of the ith bank (assume without loss of generality that i = 1), the displacement in
™, f)is
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Ny(-) w Ny (t-) W
1—zH) XV (@—) — ——— xM -y,
]Z:; F( =X =) = 5 ; FXM )

(7.25)

1
Ny(t—=) —1

2~ Doy, Swa—o x™ -y

The expression in (7.25) is dominated by 2(|| Dy £ || + || £ 1) /N (t—). To conclude, in
both cases, recalling the definition of || - || in (2.6), the displacement of (1™, f) is

dominated by
2

. 7.26
NN(I_)IIIfIII (7.26)
Next, the quadratic variation (M)):/> satisfies
dMby = 2 (™, (D1 £)?) dr. 7.27
(MN)I ./\/N(t)(ut ( lf)) t ( )
From (7.27), it follows that
o (7 o’T - |Di fI
My < / M (D f)?) ds < — U0 7.28
Wiir = g | (W i) a5 < (7.28)

On the time intervals when there are no banks at all, with Ay () = 0, the martingale

Mﬁ stays in fact constant, therefore we can neglect these intervals in our calculations.
Apply (7.21) with r /2 instead of r to get:

E [(M;Q)T] - 0. (7.29)

Next, from Lemma 30 we get that (M 1{,) ~N>11suniformly a.s. bounded on [0, T'] (by
aconstant CT - || f |l +2 || f |I). Extract a subsequence (M 1{,/, (T)) j>1 which converges
a.s. and (by Lebesgue dominated convergence theorem) in L? to a random variable .
Let /\/lgo(t) := [E(& | §;). Then by the standard martingale inequality

E sup (M) - M,)? < 4B(s — M )* > 0.

0<t<T

Therefore, we can extract a subsequence such that
/\/lf{ — M{o a.s. uniformly on [0, T].
J

From (7.26), combined with estimates from below in Sect. 7.4, we conclude that the
process /\/lgQ is a.s. continuous. Moreover, it has zero quadratic variation by (7.29). Any
continuous martingale with zero quadratic variation is constant. Therefore, Mgo(t) =
./\/lgo(O) = 0. Finally, every subsequence (M ]]:,) N>1 contains its own subsequence
which converges to 0 uniformly in L2. The result of Lemma 31 immediately follows
from here.
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7.6 Proof of Lemma 32
Recall that

1 Ny (@)

p
(™, £,) = Yo (xM for Ny(r) > 1.
LT N @) P [ ]

If My (¢) =0, then (/,LZ(N), fp) = 0. Therefore,

1 M, (T)
(N) PN

sup (u; s fp) < =——— sup | X;7 (@) | . (7.30)
O§Z§T( ! p) My(T) v 1 ; (<T [ ! ]

The supremum inside the sum in the right-hand side of (7.30) is taken over all
t € [0, T] such that Xl.(N) (¢) is well-defined; that is, the ith bank exists at time 7.
Recall that Bx(T) is defined as a pure birth process in Sect. 7.4. Use for (7.30) the
estimate EIR;(T) < Bn(T), Wald’s identity and the estimate (7.21) for I, (T) with
r = 2. We get:

2

2 BN(T)
E[OsupT(uﬁN’,fp)} <E[@ v B Y s [xMo]"| a3
<t< k=1 1<

The second multiple in the right-hand side of (7.31) is stochastically dominated by
the random sum of random variables

Bn(T)
Z g0, &= exp( sup [rt +0W,~(t)]> . (7.32)

i=1 0<t<T

Here, n; ~ v are i.i.d. random variables, v is a probability measure in P, which
stochastically dominates each u(()N) and Bso n. Such measure exists because these
measures have uniformly bounded pth moment. This, in turn, follows from M(()N )

u(()oo) in W, (this is an assumption of Theorem 18) and Assumption 4.1. Finally,

Wi, W, ... are i.i.d. Brownian motions, independent of 7;, and the birth process j
is independent of these Brownian motions and of 7;. By Wald’s identity, we get for
some constant C;:

By (T)
E[ Y & | =By (@)1-Elgl1 = OIN. (7.33)
i=1

Combining (7.32) with (7.33), we get for some constant C5:
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B (T)
B[ Y s?p{xl?“’)(t)}p] <N, (7.34)

i=1
Next, the variance of this random sum (7.32) is equal to
Var By (T) - E&;” + EBn(T) - Var &) < C3N2. (7.35)

Here we used the estimate (7.23). Combining (7.33) and (7.35), we get the following
estimate: For some constant Cy,

EB%(T) < C4N>. (7.36)

In turn, combining (7.31), (7.32), we complete the proof.

7.7 Proof of Lemma 33

Recall C7 from Lemma 32. Take any n > 0, and let C := C7 /7. Consider the subset
K :=1{veP,; | (v, fp) < C}, which is compact in P, by Lemma 27. From the
standard Markov inequality, we have:

P[MEN)eIC Vte[O,T]] S~ 1—1.

Next, take the algebra 2l in Cj,(P;) generated by I := {(-, ) | f € C}f}. This
set M separates points: for every v" and v” in P,, there exists an f € CZ such that
(', f) # (v, f). This set 9 also contains 1, because fy = 1 € C7. By the Stone-
Weierstrass theorem (Folland 1999, Section 4.7), the algebra 2 is dense in Cp(P;) in
the topology of uniform convergence on compact subsets.

From Lemmas 31, 30, the sequence ((uﬁN), f), t €0, T)y>1 istightin D[O, T]
for every f € C,f. Since (/,LEN) , f) is uniformly bounded by || f||, for every collection
gl,---,8m € Cl% the following sequence is tight in D[0, T']:

(™M g) (™, g2) o (1™, ).

Therefore, for every & € 2, the following sequence is tight in DI[0, T']:
(@(1i), 1 € [0, T1) v=1- Apply the criteria of relative compactness: (Ethier and
Kurtz 1986, Proposition 3.9.1), and complete the proof.

8 Proof of Theorem 23
8.1 Overview of the proof

The proof is similar to the Proof of Theorem 18, except the following changes. We
cannot apply Lemma 29 directly, because the birth intensities and the default contagion
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measures are scaled according to the initial number of banks Ay (0) = N, rather than
the current one Ny (7). Therefore, we need to take into account the ratio N~ ' Ny (1),
and its limit as N — o0 is Ny ().

Lemma 34 For every g > 0, we have the following estimates:
q
sup IE[N_1 max NN(t)] < 00; 8.1)
N>1 0<t<T

q
sup IE[N_l max SN(t)] < 00.
N>1 0<t<T

Lemma 35 The sequence (N“INMNG@), 0<t<T) of processes in D[0, T] is tight.

From Lemma 34, we prove the statement of Lemma 33: the sequence
(uWM)y=1 s tightin D0, T1, Wy).

Next, take a weak limit point Ny = (Noo(?), 0 <t < T) from Lemma 35, and a
weak limit point (> of (/L(N))Nzl in D([0, T'], W), for some g € (1, p). Denote
by m(r) the mean of 1> (r). The functional v — (v, f}) is continuous in W, for
q > 1. Therefore, taking a limit as N — oo, we get that the following process Nisa
martingale:

. t
N(r) = Noo(t)—/o [Joo (01(5)) = Noo(5) (foo (5, koo ((s), )] ds.

It is continuous, and has zero quadratic variation; therefore, N is constant (equal
to its initial value N (0) = 1). Thus N is, in fact, a deterministic function satisfying
(5.4). Finally, let us adjust Lemma 29, so that the expression converges to the right
type of the generator.

Lemma 36 Take a function f € Cg. Consider a sequence (X(k))kzl in X with

n (x0)
k

— Noo and pgw —> v in Wp. (8.2)

For A defined in (5.2), we have: £ (x(k)) — fl(noo, v, f)as k — oo.
From Lemma 36, we get that every weak limit point
Woo®). i, 0<1<T) of (NTINy@. u™. 0<1<7) in D(O.TL.R x Pp)

satisfies the system (5.3), (5.4). By uniqueness from Remark 22, we complete the
proof.
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8.2 Proof of Lemma 34

The estimation of the number of banks from above and below remains the same as
in Lemma 32: In the proof of the upper estimate, we now have the intensity of births
from level n to level n 4 1 for the benchmark process Sy (now dependent on N) equal
to Cy N, independent of n. Therefore,

N7'8y() =14+ N0y, 65 ~ Poi(C,N).

Applying the law of large numbers to N ~'6y and observing that convergence holds in
every space L4, we prove the first formula in (8.1). Let us show the second formula:

(V1w ] = [V Ao [N osvo] = VIO (1, 1)
< NN (™, £y)- (83)
In the last step of (8.3), we applied the inequality (E£)? < E&? for the random

variable f] integrated against the probability measure uﬁN). Taking the supremum
of (8.3) and applying expected value, by the Cauchy-Schwarz inequality,

O0=<t=<T 0<t<T 0<t<T

2
[E sup [N‘18N<t>]q] <E sup [N"Ny@]"E sup (™, £,)*

<E sup [N_IJ\/'N(t)]zq -E sup (,qu),fzq),

0<t<T 0<t<T

(8.4)

where we use the inequality (E£)*> < E&2 with & = fq and the probability measure

;L§N) in the second inequality. Finally, in (8.4) we may apply the second estimate

in (8.1) to the first term in the right-hand side, and estimate the second term similarly
to Lemma 32:

N
sup E sup (ug ),fzq) < 0.
N>1 0=<t<T

This completes the proof that the right-hand side of (8.4) is bounded from above
by a constant, independent of N.

8.3 Proof of Lemma 35
The N'th process starts from 1, jumps upward by N~! with intensity
AN (SN (1) < Cu(N 4 Sy (1)) = NC,. (1 + N™'Sy (1)), (8.5)
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and downward by —N ~! with intensity

Ny (@)
ST kn(NTIsy ). XM (@) = CeNw (). (8.6)

i=1

These estimates in (8.5) and (8.6) are taken from Assumptions 5.2 and 5.4, respec-
tively. By Lemma 34, there exists a constant C > 0 such that the intensities of jumps
of N~!' Ny (-) are bounded (in L? for every g > 0) by CN, and the size of jumps is
equal to N ~1 Therefore,

1 Ny ()

l t
NNN(n—N/O [AN<N*ISN(s>>— ; KN(NflsN(s),X,FN)(s))]ds, 0<t<T,

8.7)
is a local martingale, and because it is in L? an actual martingale. Similarly to
Lemma 31, we can imply that the sequence (8.7) converges to 0. From Lemma 34
we get that for some constant C, for all s,z € [0,7T] and N > 1, we get:
E(N"'Ny(@) — N"'Ny(s))> < C(t — 5)?, which implies tightness by Karatzas
and Shreve (1991 Chapter 2, Problem 4.11).

8.4 Proof of Lemma 36

By Lemma 26, ™) — 7. The rest of the proof is similar to that of Lemma 29, but with

the following changes. As N — oo, [n(x(N))]_l ANE) = Ng'Aoo (V). Therefore,
instead of (7.10), we have:

I — nidheo ) [(Booss f) = (v, )] (8.8)

A similar difference between Assumptions 4.3 and 5.3 means that, instead of (7.16),
we have:

I — —neo (u,xoo(v, ) - Do (n(x™)7, .)) v, D1 f). (8.9)

Convergence statements (7.9) and (7.17) stay the same. This completes the Proof of
Lemma 36.

9 Proof of Theorem 20

9.1 Overview of the proof

This is similar to the Proof of Theorem 18, but easier, since we deal with real-valued
processes instead of measure-valued ones. Let us split this proof into lemmas. For every
function f : (0, 00) — R, we can define a corresponding function ¢ : X — R as
follows:

pr(x) = f(x1), x#9; ¢p@):=0.
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This function ¢ s effectively depends only on x;. The generator £ from (2.10) applied
to @ gives

Lor (x) =G f(x1) — knx (8(X), x1) f(x1) .1
n(x)

+ ; Kn(x) (s(x), x;) fooo [f(x1(1 =2)) — flx1)] Dn(x),s(x),x,- (dz).

By It6’s formula:
t
ey = o+ [ o (xV0) ds+ M. ©2)
0

Here we denote by ML = (./T/l\{;, (t), t = 0) alocal martingale. Its trajectories are
right-continuous with left limits. Between jumps, it behaves according to the following
stochastic equation:

dML @) == o (D1 (XN (5)) dWi(s), >0, (9.3)
The following two lemmas are proved similarly to Lemmas 29, 30.

Lemma 37 Take a sequence (X(k))kzl as in (7.2) with xl(k) — xl(oo) as k — oo. For

f € C?, we get: Loy (x(k)) — A*(V, f), where A* is defined in (4.25).

Lemma 38 For a constant Cy and all f € C2, x € X \ {@}, we have: |£(pf(x)‘ <
CulllLF1I-

Next, let us state some new lemmas.

Lemma 39 For some constant Ct 4 > 0, we get:

E[oy, (XM 0)] =E[(x{V0)*] = €1y 11071 94)

Lemma40 For f < Cg, the sequences (.A’/Tﬁ)]\]z] and (XgN))Nzl are tight in D[0, T.

Extracta convergent subsequence X iNj ) =X goo) in DJ0, T]. From Theorem 18,
Lemmata 37, 38, we conclude that for every f € CZ (with the usual convention that
f(A) = 0 at the cemetery state), the following process is a local martingale:

t
S @0) - £ (x10) - /0 Gm(s) /(X% () ds — koo (m(0), X% 1) £ (X1 (1)).

By uniqueness of the martingale problem for geometric (killed) Brownian motion,
this completes the Proof of Theorem 20.
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9.2 Proof of Lemma 39

The process X EN) can only jump down. As long as it does not jump, it behaves as a
geometric Brownian motion. Thus, XEN) (1) < XEN)(O) exp[(r — 02/2)t +oWi()].

Fix a ¢ € (0, p]. Take the expectation of the gth degree of the maximum of X }N) (1)
over t € [0, T]. Analogous to Lemma 32, we get (9.4).

9.3 Proof of Lemma 40

For any function f € C?, the process f (X iN) (t)) (until its killing time) is represented
as in (9.2). The local martingale M 1{, has quadratic variation (./T/l\ 1{,) with
d(MY)

NIt 2
=o”[ID1fll <oo.

The intensity of jumps of M 1{, at time ¢ can be estimated from Assumption 4.4:

Ny (@)

Y knin (Sv@. XMV (1) < Ny (@) C. ©.5)
i=2

The displacement due to a default of X; at time ¢ is equal to
N N
ni= FGV 0 =80 = FEXV D E~ Dy s x® e

Because || D1 f|| is a well-defined finite quantity for f € C2, this displacement 7;
can be estimated from above as || D1 f|| & < || D1 f||. Combining Assumption 4.3 with
this estimate, we get that the maximum size of jumps of /\//\lﬁ tends to zero in L”, as
N — oo. For f e C2, the functions f, D1 f, D, f have finite norm ||-||. From the
representation (9.2), we get: supy- IEI[/\//\I‘Z{,(T)]2 < 00.

Therefore, similarly to the Proof of Lemma 31 in Sect. 7, we show that the sequence
(/T/l\ 1{,) ~>11stightin D[0, T']. Lemma 39, together with the Markov inequality, implies
compact containment condition: for every ¢ > 0 and 7 > 0, there exists a compact
set IC C (0, co) such that

P(XM(1)eK Vie[0,T])>1—e. (9.6)
This, together with (Ethier and Kurtz 1986, Proposition 3.9.1), Lemma 37, 38,

tightness of (M 1{,), and convergence of initial conditions, proves tightness of f (X gm)
in D[0, T] forevery T > O.
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Appendix: System construction

We define (X, I, M) inductively, and the corresponding generator £ in (2.10) above.
The initial conditions are defined as follows:

X(0) :=x9, M) = No:=n(xg), 1(0):={1,..., Nol

Assume we already defined the system (X (¢), I(¢), M(¢)) for t < 1t, where k =
0,1,2,...1s given. Let us define it on [tx, Tx+1). First, assume Ny := N(tg) > 1
with I(tx) # . Define auxiliary stochastic processes X;:J. = (X,f,l.(s), s > 0) for
i € I(tx) to be independent geometric Brownian motions with drift  and diffusion
o2, and with initial value X; (tx). Define stopping times i ;:

2

o
X{:6) = Xi(w) exp[(r — 7>t +0Wk,i(s)]; Sp(u) = Z Xii(s), s=0;
iel(t)
(10.1)
N
i = inf{s >0 f N (S*(u), X5 (u)) du > nk,,»}, i€ l(n): (10.2)
0
N
o = inf{s >0 f Jon (S*(u)) du > nk,o}, (10.3)
0

given the killing rate «, (s, x) and birth rate A, (s) functions forn € Ng,x € X, s € R;..
Here 74 o represents the necessary inter-arrival random time for the potential birth, and
Tk.; represents the potential default of bank i. The next event is now determined almost
surely uniquely by the minimal arrival min{zy ;, i € I(tx) U {0}} of these potential
events. We set 7y := 7% + 7%, with the index j := arg min; ez )ufoy Tk,i» and define
fort € [Tk, Tk+1):

Xi(t):=X;,(t =), i € [(w); (1) :=I(w), M(t) = M(w).
Then we consider two cases. If j = 0, a new bank emerges at time tx4 and set

M(tkt1) == M) + 1, I(tkt1) == I(m) UM ()}
Xi(tet1) = Xi(er1-), i € 1), XMy = Sk M), S(ts1—) -

If j € I(tk41), the j-th bank defaults at time 71 with X ;(tx41) := & and

M (tt1) == M(te), 1(tes1) == 1(m) \ {j};
Xi(teq1) = Xi(m1-) [1 = & j Ve S X (o) | - | € Tt
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Second, for the case of N(tx) = Ny = 0 we have no banks at time tz, i.e., I (1) =
. In that case the system regenerates via a birth. Let us set 7441 := % + (1x,0/A0(0)),
and

N(@):=0, I(t):=9, X(t):=9, teln, )
M(tit1) = M(t) +1; I(tkt1) = (M (T Db Xm(og) (Trr1) 7= Sk M (i), 0

The triple (X, I, M) is now well-defined with |[I(-)| = n(X(-)) < M(-) on the
time interval [0, 7o), Where 7o := limg_  Tx. By construction, this is a Markov
process on the state space

= {x,i,m) e X x 2V x N : [i| = n(x) < m}, (10.4)

and its law is uniquely determined up to explosion time.
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