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Abstract

1

The dynamic endomembrane system facilitates sorting and transport of diverse cargo. Therefore, it is 8
crucial for plant growth and development. Vesicle proteomic studies have made substantial progress in 9

recent years. In contrast, much less is known about the identity of vesicle compartments that mediate the
transport of polysaccharides to and from the plasma membrane and the types of sugars they selectively
transport. In this chapter, we provide a detailed description of the protocol used for the elucidation of the
SYP61 vesicle population glycome. Our methodology can be easily adapted to perform glycomic studies of
a broad variety of plant cell vesicle populations defined via subcellular markers or different treatments.
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1 Introduction

The plant endomembrane system is a complex and dynamic net-
work of membranous compartments playing crucial roles in plant
growth, development, and adaptation to the environment. It facil-
itates the transport of proteins and other cargoes and is pivotal for
cell wall biosynthesis and assembly [1-5].

The cell wall is a complex structure made of polysaccharides,
structural proteins and other molecules that surrounds and protects
plant cells and is essential for their development. While many
enzymes responsible for polysaccharide biosynthesis have been
identified, our understanding of how polysaccharides are trans-
ported and assembled is still limited. Polysaccharides originate at
distinct cellular locations; cellulose and callose are synthesized at
the plasma membrane, whereas the synthesis of hemicellulose and
pectin and the glycosylation of proteins take place in the Golgi
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apparatus and the zrans-Golgi Network [6, 7]. Cell wall polysac-
charides not synthesized iz muro, associated enzymes and glyco-
proteins are carried to their specific cell wall deposition sites by
vesicle transport pathways that remain elusive [1, 8—11]. The highly
dynamic nature of the endomembrane system makes it challenging
to assign unequivocal roles to specific vesicle populations in the
transport of cell wall material and assembly of the cell wall.

The plant zrans-Golgi Network/Early Endosome (TGN /EE)
is a distinct compartment on the Golgi #rans-side comprising
diverse vesicle populations and serving as a hub of secretory and
endocytic traffic [12-16]. The plant TGN /EE is unique in that it
orchestrates the trafficking of cell wall polysaccharides from the
Golgi, the point of their synthesis, to the plasma membrane,
for cell wall deposition, assembly, and modification (Fig. la)
[1, 11, 17].

Because polysaccharide composition determines the biological
function of plant cell walls, the dynamics of polysaccharide trafficis a
decisive factor in mechanisms that control cell wall deposition and
assembly. Thus, the development of approaches to illuminate the
glycome of plant vesicles is of great significance. Protocols for the
isolation of specific plant vesicle populations have recently become
available [18-20]. They are allowing us to identify the protein cargo
of vesicles and to shed light into their biochemical properties, such
as membrane lipid composition [13], for a better understanding of
vesicle heterogeneity and vesicle functional compartmentalization.

Recent technical advances have made it possible to start piecing
polysaccharides biosynthesis, assembly, and modification together.
These include the application of chemical methods for composi-
tional analysis of the plant cell wall [21] and the use of oligosaccha-
ride mass profiling (OLIMP) to retrieve compositional data from
preparations of Golgi-enriched fractions or isolated cell walls [22-
24]. Additionally, the labeling and imaging of sugars modified via
click chemistry [25-29] can provide kinetic details of cell wall
formation. Cell wall glycan-directed antibodies are an elegant
option for the identification of plant cell carbohydrates in diverse
tissues and species [30-34]. During glycome profiling, antibody
libraries are paired with an automated large scale enzyme-linked
immunosorbent assay (ELISA), enabling the fingerprinting of
plant cell wall glycan content with both high sensitivity and
specificity [31].

To interrogate the glycome of intracellular vesicles, we opti-
mized our vesicle isolation protocols for this specific application. In
previous studies, we established a methodology for the isolation of
the syntaxin of plants 61 (SYP61) TGN /EE vesicle subpopulation
to high purity levels, suitable for subsequent proteomic studies
[18, 19]. The SYP61 vesicle population has been implied in post-
Golgi trafficking of the wall biosynthetic machinery, a notion sup-
ported by the analysis of the SYP61 proteome, which revealed
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Fig. 1 Structural polysaccharide transport and deposition, and a hybrid methodology for vesicle glycomic
analysis. (a) Schematic representation of structural polysaccharide synthesis, transport and deposition. The
structural polysaccharides xyloglucan and pectin are synthesized in the Golgi and transported via trans-Golgi
Network/Early Endosome (TGN/EE) vesicles to the apoplast. The type of vesicles carrying specific polysaccha-
ride cargo to the cell wall is unknown. Three different vesicle subpopulations, indicated with magenta, green
and blue vesicle protein markers are depicted to illustrate the heterogeneity of the TGN/EE. (b) Schematic
representation of vesicle isolation. Plant extracts derived from liquid-grown plantlets are sucrose fractionated.
A heterogeneous TGN/EE vesicle population is isolated from the Golgi/TGN/EE enriched sucrose fractions after
which the specific vesicle subpopulation of interest (magenta surface protein marker) is purified with the aid of
an antibody against the target protein. (¢) Vesicle cargo release and glycome analysis. Vesicle cargo is
released by sonication for glycome analysis. An ELISA-based method of glycome detection is used and the
resulting data are summarized in a heat map for analysis. mAb, monoclonal antibody; PM, plasma membrane

several cellulose synthase subunits and cell wall modifying enzymes
as cargo of the SYP61 vesicles [ 19, 35]. Such findings prompted the
question whether not only cell wall biosynthetic and modifying
enzymes but also cell wall structural polysaccharides are transported
in this specific TGN/EE vesicle compartment. Such information
could help mapping the intracellular transport of polysaccharides.
Toward answering this critical question, we designed an exper-
imental approach combining an optimized protocol for SYP61
TGN/EE vesicle isolation with the large-scale profiling of
TGN /EE vesicle through a polysaccharide carbohydrate antibody
arraying technique investigating 155 carbohydrate epitopes
[36]. The implementation of this hybrid approach revealed traffick-
ing and sorting of diverse glycans of pectins, xyloglucans (XyGs),
and structural cell wall glycoproteins through the SYP61 TGN /EE
compartment in Arabidopsis [36]. Since TGN is a major intersec-
tion in post-Golgi trafficking, its comparison with the Golgi or
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sub-Golgi glycome(s) [37, 38] can offer major insights into poly-
saccharide biosynthesis and transport within the secretory pathway.

This chapter describes in detail our (1) separation of vesicles by

immunopurification, optimized for CFP-SYP61, combined with
(2) large-scale automated carbohydrate antibody arraying method-
ology using an ELISA (Fig. 1b, c¢). Adopting this approach, difter-
ent vesicle populations can be characterized, complementing our
proteomic perspective of cellular pathways with glycomics.

2 Materials

2.1 Plant Material

2.2 \Vesicle
Fractionation
Components

O 0 NN QN Ul W

10.

11.

. 50-100 transgenic Arabidopsis seeds for each flask, expressing

CFP-SYP61 [19] (see Notes 1 and 2).

. Seed sterilization solution: 75% ethanol, 0.1% Triton X-100,

24.9% autoclaved deionized water.

. Liquid Murashige and Skoog (MS) medium: Full strength 1x

MS medium, 1% (w/v) sucrose. Dissolve 4.26 g of MS minimal
media and 10 g of sucrose in 1000 mL deionized water. Ali-
quot 200 mL of media into a 500 mL Erlenmeyer flask and
autoclave (sec Notes 3 and 4).

. Flask shaker placed in a temperature- and photoperiod-

controlled environment (long day light cycle, 16 h of light at
22-24 °C) (see Note 5).

. Vesicle immunoprecipitation extraction bufter (VIB): 50 mM

HEPES, pH 7.5, 0.45 M sucrose, 5 mM MgCl,, 1 mM DTT,
0.5% PVP (w/v), protease inhibitors (cOmplete™ Protease
Inhibitor Cocktail, ROCHE).

. Sucrose gradient solutions: 38% (w/v) sucrose (1.1 M), 33%

(w/v) sucrose (0.96 M), and 8% (w/v) sucrose (0.23 M) in
50 mM HEPES pH 7.5 (see Note 6).

. Mortar and pestle.

. Razor blades.

. Miracloth.

. Small funnel.

. Refrigerated benchtop centrifuge.
. 50 mL conical centrifuge tubes.

. Ultracentrifuge (e.g., Optima L-90 K Beckman Coulter, or

equivalent) with rotors SW28 and 70Ti.

Centrifuge tubes for SW28 rotor (thickwall, polyallomer,
32 mL tubes).

Centrifuge tubes for 70Ti (polycarbonate aluminum bottle
with cap assembly).
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13.

2.3 Vesicle 1.

Immunoisolation
Components

2.4 Material for 1.

Enzyme-Linked
Immunosorbent Assay
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Disposable serological 5, 10, and 25 mL pipettes.
Pasteur pipettes.

Resuspension buffer: 50 mM HEPES, pH 7.5, 0.25 M
sucrose, 1.5 mM MgCl,, 150 mM NaCl, protease inhibitors
(see Note 7).

. Wash buffer: 50 mM HEPES, pH 7.5, 0.25 M sucrose,

1.5 mM MgCl,, 150 mM NaCl.

. Phosphate buffered saline (PBS): 137 mM NaCl, 2.7 mM KCl,

10 mM Na,HPO,-H,0, KH,PO,, pH 7 4.

. Protein-A agarose beads.
. Anti-GFP rabbit IgG (2 mg mL™") (e.g., Invitrogen A11122,

anti-GFP IgQG) (see Note 8). Alternatively, magnetic agarose
beads covalently coupled to GFP antibodies (e.g.,
GFP-Trap®_MA ChromoTek) can be used for immunoisola-
tion with non-coupled beads as controls.

. Rabbit IgG (sec Note 9).
. Tube rotator.

. Refrigerated benchtop centrifuge.

Enzyme-linked immunosorbent assay (ELISA) acid-resistant
384 well flat bottom plates (e.g., Costar 3700 from Corning
Life Sciences).

. Automated platform mover (e.g., Orbitor RS Microplate

Mover ORB2006 from Thermo Scientific).

. Microplate sample processor (e.g., BioTek™ Precision™ XS

from Biotek).

. Washer Dispensers (e.g., MicroFlo™ and EL406™ Washer

Dispensers from BioTek).

. 0.1 M Tris-buffered saline (TBS), pH 7.6: 23.38 g of sodium

chloride, 1.11 g of Tris-Base, 4.85 g of Tris-HCI, in 4 L of
ultrapure water. Store at room temperature.

. Blocking Bufter: 1.0% (w/v) milkin 0.1 M TBS,pH 7.6: 10 g

of nonfat dry milk in 1 L of 0.1 M TBS. Store at 4 °C.

. Wash Butffer: 0.1% (w/v) milk in 0.1 M TBS pH 7.6.

. Primary antibodies: CCRC series of antibodies generated in

mouse; JIM, MAC, and LM series of antibodies generated in
rat. A web-accessible database listing most of the available plant
cell wall glycan-directed mAbs and providing information
about their characteristics and suppliers can be found at Wall-
MabDB (http: //www.wallmabdb.net). The three main suppli-
ers of plant glycan-directed antibodies are CarboSource
(http: //www.carbosource.net), PlantProbes (http:/www.
plantprobes.net), and BioSupplies (http://www.biosupplies.
com.au/).
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10.

11.

12.
13.
14.

Secondary antibody: anti-mouse or anti-rat IgG whole mole-
cule goat antibody, conjugated with horseradish peroxidase
diluted in wash buffer according to the manufacturer’s instruc-
tions. Secondary antibody stocks are stored at —20 °C when
not in use.

Substrate: TMB KPL 2-Component Microwell Peroxidase
Substrate Kit (SeraCare Life Science Inc.).

Stop solution: 0.5 N sulfuric acid: 100 mL of 0.5 N sulfuric
acid, 1 mL of 18 M sulfuric acid, 71 mL of deionized water.

Microplate spectrophotometer reader.
Probe sonicator, Branson 250—450 Sonifier or equivalent.

R-Console software.

3 Methods

3.1 Plant Preparation

3.2 Golgi/TGN
Fractionation by
Sucrose Density
Gradient
Ultracentrifugation

. Two weeks before vesicle isolation, sterilize seeds and stratify

them at 4 °C overnight.

Grow 50-100 seeds in 200 mL liquid MS in each 500 mL
Erlenmeyer flask while shaking at 150 rpm under a long day
cycle at 22-24 °C for ~10 days. For the analysis of TGN
compartments, more than 12 g of tissue are required. Plants
should be grown ~10 days in liquid media to yield sufficient
root tissue.

Plant extracts from liquid grown plantlets are fractionated using
discontinuous sucrose gradient centrifugation to enrich for SYP61
vesicles. During vesicle isolation, maintain all buffers and rotors at
4 ° C. All steps after harvesting tissues should be performed on ice.
Figure 2 illustrates the sucrose fractionation procedure.

1.

Rinse plants carefully in deionized water and pat-dry with paper
towels in a large petri dish. Weigh plants.

. Slice plants with a razor blade in the petri dish set on ice.

Transfer the finely sliced tissues into a cold mortar on ice.

. Add ice-cold VIB to a final v/w ratio of 2:1 (e.g., 2 mL of VIB

buffer for 1 g of plant tissue) and grind the plant tissue as gently
as possible to a rough pulp (see Note 10). Place funnel with
Miracloth over a 50 mL conical centrifuge tube to filter the
plant extract and centrifuge at 1000 x gat 4 °C for 20 min.

. Meanwhile, using a 10 mL pipette, add 8 mL of 38% sucrose to

a thickwall 32 mL centrifuge tube. Load gently the supernatant
from step 3 (S1 fraction) on top of the sucrose cushion (see
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Fig. 2 Enrichment of Golgi/trans-Golgi Network compartments by sucrose gradient ultracentrifugation.
Schematic illustration of the sequential sucrose gradient ultracentrifugation to isolate Golgi/TGN compart-
ments. Briefly, the Supernatant (S1) fraction of plant homogenates is loaded onto a 38% sucrose cushion and
centrifuged at 100,000 x g for 1.5 h (Subheading 3.2, step 4). The upper phase is removed and a
discontinuous gradient is formed by adding the two 33 and 8% sucrose layers (Subheading 3.2, step 5).
The interface between 8% and 33% sucrose fractions is collected (Subheading 3.2, step 6) and transferred
onto a 30 mL centrifuge tube for centrifugation at 100,000 x g, 1 h (Subheading 3.2, step 7). The resulting
pellet is kept for vesicle immunoisolation. UP, upper phase; IF, interface. Note: Sucrose gradients can be
adjusted for the isolation of different vesicle populations

Note 11). Centrifuge at 100,000 x gat 4 °C for 1.5 h using a

SW28 rotor or equivalent.

. Place the tube on ice, and remove the plant extract liquid above

the green interface band, without disturbing it. Using a 25 mL
pipette, carefully add 15 mL of 33% sucrose on top of the
collected green band, and then add 5 mL of 8% sucrose.
Centrifuge at 100,000 x gat 4 °C in SW28 rotor or equivalent

for 2 h (see Note 12).

Using a 5 mL pipette, slowly remove and discard 4-5 mL of the
top gradient layer (8% sucrose). Using a Pasteur pipette, collect
the interface band between the 8% and 33% sucrose layers into
an ice-chilled 30 mL centrifuge tube and add 0.5 x the volume

of 50 mM HEPES (pH 7.5).
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3.3 Immunoisolation
of SYP61 Vesicles

3.4 Proceed to the
Following Steps if You
Are Using Beads
Covalently Bound to
the Antibody

7.

Centrifuge at 100,000 x g at 4 °C using a fixed angle 70Ti
rotor or equivalent for 1 h. Decant the supernatant and keep
the pellet at 4 °C overnight (see Note 13).

SYP61 vesicles are isolated by immunopurification from the frac-
tion obtained in the previous section.

1.

Couple the GFP antibody to protein-A agarose beads. First,
mix the protein-A agarose beads and place 25 pLintoa 1.5 mL
microfuge tube. Add 500 pL of ice-cold PBS, mix well by
inverting the tube, and centrifuge at 10,000 x g for 30 s (see
Note 14). Alternatively, use magnetic agarose beads directly
coupled with GFP antibodies, for example, GFP-Trap®_MA
ChromoTek. In this case, follow the protocol from Subheading
3.4,step 1.

. Discard supernatant using a pipette and add 2 pL of the anti-

GFP antibody to the pellet. Add cold PBS containing protease
inhibitors to a final volume of 100 pL, mix well by inverting the
tube and incubate on a rotator for 2 h. Centrifuge at
10,000 x g for 30 s and discard the supernatant.

. Equilibrate the antibody coupled-agarose beads with 200 pL

resuspension buffer on a rotator at 4 °C for 20 min. Centrifuge
at 1000 x g for 30 s. Carefully discard the supernatant.

. Meanwhile, resuspend the vesicle pellets from Subheading 3.2,

step 7 in 400 pL of resuspension buffer and incubate with
25 pL of protein-A agarose beads (see Note 15). Gently mix
the suspension for 20 min using a rotator at 4 °C and then
centrifuge at 1000 x g for 30 s. Collect the supernatant.

. Add 300 pL of the supernatant collected in step 4 to the

antibody coupled agarose beads collected in step 3 and mix
for 1 h on a rotator at 4 °C. Centrifuge at 100 x g for 1 min (see
Note 16). Discard supernatant.

. Wash the pellet with 1 mL of wash buffer under gentle agita-

tion at 4 °C for 2 min and centrifuge at 100 x g for 1 min.
Repeat this step three times (see Notes 17 and 18). Keep the
pellet.

. Vortex GFP-Trap®™_MA beads and pipette 25 pL bead slurry

into 500 pL resuspension buffer. Magnetically separate beads
until supernatant is clear. Carefully discard the supernatant and
repeat the bead wash/equilibration step twice.

. Add 300 pL of the supernatant collected in subheading 3.3,

step 4 to the equilibrated GFP-Trap®™_MA beads collected in
subheading 3.4, step 1 and mix for 1 h on a rotator at 4 °C.
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3.5 Glycome
Analysis
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. Magnetically separate beads until supernatant is clear. If

desired, save 50 pL supernatant for immunoblot analysis. Dis-
card remaining supernatant.

. Wash the beads with 1 mL of wash buffer under gentle agita-

tion at 4 °C for 2 min and magnetically separate until superna-
tant is clear. Discard supernatant. Repeat this step three times
(see Notes 17 and 18). Keep the pellet.

. Dilute isolated vesicles to a final volume of 8 mL with double

distilled water and sonicate on ice using a micro-tip with
attachment, with output setting of 21.5 microns amplitude.
Pulse-sonicate using 1s cycles followed by subsequent 1 s rest
for a period of one min.

. Repeat sonication three times to ensure complete disruption of

vesicles.

. Centrifuge for 15 min at 2200 x g at 4 °C. Collect the

supernatant.

. Coating of the ELISA plates: 15 pL per well of collected

supernatant (after sonication and centrifugation) of each poly-
saccharide extract dilutions are added to the 384-well ELISA
plates (with the number of coated wells equaling the number of
mAbs to be tested plus controls) using a microplate sample
processor. Evaporate to dryness overnight in a ventilated 37 °C
incubator. Handling of the acid-resistant flat-bottom 384-well
plate and incubation times are performed by the automated
platform microplate mover.

. Blocking: Nonspecific sites in the coated ELISA plates are

blocked by adding 15 pL of blocking buffer per well, with the
aid of a washer dispenser, followed by incubation for 1 h at
room temperature.

. Addition of primary antibodies (mAbs): The blocking bufter is

aspirated and 15 pL of primary mAb are dispensed into each
well using different washer dispensers (e.g., the MicroFlo™
Washer Dispenser for CCRC anti-mouse series and EL406™
for JIM and MAC for anti-rat series). Incubate plates with the
primary antibodies for 1 h at room temperature.

. Washing the plates: Aspirate the primary antibodies using

MicroFlo™ and E1406™ washer dispensers. Wash each well
with 20 pL wash buffer. Completely aspirate the buffer after
5 s. Repeat washes three times.

. Secondary antibodies: After washing, add 15 pL of secondary

antibody per well. Dispense anti-mouse or anti-rat secondary
antibodies (mixed at a 1:5000 dilution in wash buffer) using
the MicroFlo and E1.406 washer dispensers into the respective
mouse (e.g., CCRC series, using the MicroFlo™ washer
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10.

11.

dispenser) and rat (e.g., JIM series, using the EL406™ washer
dispenser) primary antibody-bound wells and incubate at room
temperature for 1 h.

. Washing secondary antibodies: Aspirate the secondary antibo-

dies from each well after the incubation. Wash each plate well
with 20 pL of wash buffer for 5 s and repeat four more times for
a total of five washes using the washer dispensers.

Adding substrate and termination: Mix KPL TMB solution A
with KPL TMB solution B in a 1:1 ratio (for 500 mL, mix
250 mL of Solution A with 250 mL of Solution B onto a
separate container) without the stabilizer included in the kit.
Dispense 10 pL of the prepared KPL TMB mix into each well.
Allow each plate to incubate for precisely 30 min and stop the
reaction with 10 pLL of 0.5 N sulfuric acid per well using a
microplate sample processor (see Note 19).

Quantitation: Immediately after termination, measure the net
OD values of the color formation in the wells of the ELISA
plates using a microplate spectrophotometer reader at 450 nm
and subtract a background reading at 655 nm. Assemble the
ELISA results into a heatmap using a modified version of the
R-Console software [39] (Fig. 3) (see Note 20).

4 Notes

. This protocol uses SYP61-CFP expressing plants for vesicle

isolation. The CFP N-terminally fused to SYP61 interacts
with the antibody during isolation, while the SYP61
C-terminus facilitates the attachment to the vesicle mem-
branes. Special consideration should be given to the “bait”
protein that will be used for isolation, in particular the accessi-
bility to the antibody.

. It is important to start with sufficient plant material. Only a

selected fraction from the sucrose gradient will be used for
vesicle isolation. Note that more than 12 g of plant tissues are
required.

. Growth in liquid media yields more root tissues. However,

when the target protein is highly abundant in specific tissues
or developmental stages, collect the appropriate tissues to
obtain a higher yield.

. The MS media used in this protocol are pH-adjusted. When

other MS media are used, adjust the pH to 5.8-6.0.

. Adjust growth conditions favoring the tissue expressing the

bait protein.
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Fig. 3 Example of a vesicle glycome profiling showing diverse epitopes of pectic
glycans in isolated SYP61 vesicles. The mean of three biological replicates is
shown, after subtraction of negative controls. White to red scales indicates
signal intensity in the ELISA assays, with white corresponding to no binding
and intense red to strong binding

6.

10.

11.

12.

The sucrose gradient procedure is adapted from Drakakaki
et al. (see Ref. 40). If necessary, the sucrose gradient can be
adjusted with more layers or different sucrose densities to
enrich for the specific target vesicles.

. The composition of the resuspension buffer can be modified to

enable the best binding of the bait protein.

. Due to its ready availability and reactivity with CFP, the GFP

antibody is used.

. Rabbit IgG is used as a control, since the GFP antibody is raised

in rabbit. Similarly, the control must be chosen according to
the antibody host.

In this step, it is very important to keep the plant material cold,
but not frozen. Ground tissue should be maintained as slurry.

A sharp interface between the sucrose cushion and supernatant
should be visible. Carefully set up the sucrose layers and place
the centrifugation tubes on the rotor without disturbing the
sharp interface.

The extent of centrifugation might depend on the model of the
centrifuge used. If the interfaces between the sucrose layers are
not sharp, increase the centrifugation time.
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13. Keeping the pellet overnight at 4 °Ciis fine. If time permits, the 385
next steps can be performed immediately. 386

14. Instead of agarose beads, other types, such as magnetic beads, 387
can be used. 388

15. This step is necessary to minimize nonspecific binding to the 389
protein-A agarose beads. 390

16. After centrifugation, the supernatant can be stored and used to 391
determine the vesicle purification efficiency by Western blot 392
analysis. 393

17. Before the last washing step, keep a small fraction of ~10% of 394
the suspension to test the isolation efficiency. Centrifuge at 395
100 x g for 1 min. Resuspend in 50 pL. PBS and mix with 396
appropriate SDS protein loading buffer to prepare the sample 397
for SDS-PAGE and Western blot analysis. 398

18. In addition to the sample collected in [17], we recommend 399
that samples from the original enriched vesicle fraction (Sub- 400
heading 3.3, step 4), the flow through (Subheading 3.3, step 401
5) and the immunoisolated fraction (Subheading 3.3, step 6) 402
are analyzed by Western blot. The presence of CFP-SYP61 in 403
those samples can be evaluated using a monoclonal antibody 404
against GFP. In addition, antibodies against subcellular mar- 405
kers for the endoplasmic reticulum (ER) marker, BiP [41] and 406
the pre vacuolar compartment (PVC) marker, SYP21 [42],can 407
be used to test the purity of the isolated SYP61 vesicles. The 408
physical integrity of the isolated vesicles can be assessed by 409
transmission electron microscopy [19]. 410

19. The reproducibility and robustness of the data are superior 411
when the ELISAs are performed with an automated platform, 412
which minimizes human errors, particularly during the color 413
development step. 414

20. Background noise from control data generated using no anti- 415
gen (water) are subtracted from the mean values obtained, 416

417 making the data more error resilient and statistically significant.
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