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ABSTRACT Spatial structure patterns are prevalent in many real-world data and applications. For example,
in biochemistry, the geometric topology of a molecular surface indicates protein functions; in hydrology,
irregular geographic terrains and topography on the Earth’s surface control water flows and distributions; in
civil engineering, wetland parcels in remote sensing imagery are oftenmade up of contiguous patches. Spatial
structured prediction aims to learn a prediction model whose input and output data contain a spatial structure.
Modeling spatial structural information in prediction models is critical for interdisciplinary applications due
to two reasons. First, explicit spatial structural information often indicates the underlying physical process,
and thus enhances model interpretability. Second, spatial structural constraints also have positive side-effects
of enhancing model robustness against noise and obstacles and regularizing model learning when training
labels are limited. However, spatial structured prediction also poses several unique challenges, such as the
existence of implicit spatial structure in continuous space, structural complexity in geometric topology, and
high computational costs. Over the years, various techniques have been proposed for spatial structured pre-
diction in different applications. This paper aims to provide an overview of the spatial structured prediction
problem. We provide a taxonomy of techniques based on the underlying approaches. We also discuss several
future research directions. The paper can potentially not only help interdisciplinary researchers find relevant
techniques but also help machine learning researchers identify new research opportunities.

INDEX TERMS Machine learning, structured prediction, spatial structured model, geometric deep learning,
interdisciplinary applications.

I. INTRODUCTION
Structured prediction (also called structured learning,
or structured output learning) aims to learn a predictive
model whose input or output data contain a structure between
samples [1], [2]. Structural prediction is important in many
real-world applications. In natural language processing,
words in a sentence often follow a syntactic structure called
a parse tree. In biology, a protein consists of amino acids in a
network structure, and an amino acid consists of atoms such
as carbon, nitrogen, and oxygen again in a network structure.
In speech recognition, vocals follow a sequential structure
with a current element correlated with its precedents. The
existence of structure is non-trivial in supervised learning
because learning samples are no longer independent and iden-
tically distributed (i.i.d.). The i.i.d. assumption is prevalent
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in many supervised learning methods such as decision tree,
random forest, maximum likelihood classifiers. The assump-
tion simplifies model representation and learning algorithms
since an identical model can be used to predict each sample
independently. Removing the i.i.d. assumption dramatically
increases the complexity of models and learning algorithms.

Spatial structured prediction, as its name suggests, aims to
learn a prediction model for which input or output samples
follow a spatial structure [3]–[6]. Such a prediction model is
also called a spatial structured (prediction) model. For exam-
ple, in biochemistry, the geometric topology of a molecular
surface indicates protein functions; in hydrology, irregular
geographic terrains and topography on the Earth’s surface
control water flows and distributions; in civil engineering,
wetland parcels in remote sensing imagery are often made
up of contiguous patches.

Modeling spatial structure is important because the
structural information is often closely related to the

38714 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-3576-6976
https://orcid.org/0000-0002-8623-5526


Z. Jiang: Spatial Structured Prediction Models: Applications, Challenges, and Techniques

underlying physical process. It provides an opportunity to
bridge machine learning models with existing theories or
knowledge in a scientific discipline. For example, hydrol-
ogists have long studied the distribution and flow of water
on the Earth’s surface based on geographic terrain and
topography, and have developed various simulation mod-
els. Incorporating such geographic terrain structure into
machine learning models helps enhance interpretability of
the black-box models. From this perspective, structured pre-
diction is intrinsically interdisciplinary, involving the con-
vergence of multiple disciplines. It represents an intersection
between data-driven machine learning models in
computer science and physics-driven models in an applica-
tion discipline.

However, learning spatial structured models is non-trivial
due to several unique challenges. First, the spatial depen-
dency structure is often implicit in continuous space. Second,
the dependency structure can be complex both in Euclidean
space and in geometric topology space. Third, spatial struc-
tural patterns can be further complicated by additional spa-
tial effects such as spatial heterogeneity (local effects) and
multi-scale effects. Fourth, learning spatial structured models
is computationally challenging due to model structural com-
plexity. Finally, the problem can be challengingwhen training
labels are limited.

Over the years, various techniques have been developed
for different applications. Existing surveys on relevant topics
such as spatial prediction [3] often focus on the general
challenges of spatial data (e.g., spatial autocorrelation, het-
erogeneity, multi-scale hierarchy, etc.) without a systematic
review of methods from the structured prediction perspec-
tive, particularly geometric topology structures. This paper
fills the gap with a systematic review of different types
of spatial structures. We provide a taxonomy of techniques
based on the underlying approaches (Section V), includ-
ing spatial contextual feature generation, spatial structured
model representation, and deep neural networks. Specifically,
within structured model representation, we further group the
methods based on the types of spatial structures, including
spatial neighborhood graph, spatial distance kernel, and geo-
metric topology. Finally, we discuss several future research
directions, including geometric deep learning, enhancing
model transparency and interpretability, and scalable infer-
ence (Section VI). The paper can potentially not only help
interdisciplinary researchers find relevant techniques but also
help machine learning researchers identify new research
opportunities.

II. PROBLEM STATEMENT
In order to formally define the spatial structured prediction
problem, we need to first introduce the concept of spatial
learning sample. In traditional prediction problems, input
data is often viewed as a collection of sample records. Sim-
ilarly, in spatial structured prediction, input spatial data can
be viewed as a collection of spatial data samples, whereby
each sample corresponds to a spatial object (e.g., point, line

TABLE 1. Math symbols and descriptions.

or polygon), or a cell in a raster grid. A spatial data sam-
ple has multiple non-spatial attributes, one of which is the
target response variable to be predicted and the others are
explanatory features. Additionally, a spatial data sample also
has location information and spatial attributes (e.g., distance
to another point, length of a line, area of a polygon). These
additional information distinguish spatial data samples out
from traditional data samples in two important ways: first,
the location information and corresponding spatial attributes
can provide additional contextual information in the explana-
tory feature list; second and more important, implicit spa-
tial structure exists based on sample locations, violating the
common i.i.d. assumption. For example, in ground sensor
observations on soil properties, a sample corresponds to infor-
mation from one geo-located sensor. Explanatory features
can include soil texture, nutrient level, and moisture. The
response variable can be whether a type of plant can grow
or not at the location.

Formally, spatial data is a set of spatial data samples
{(x(si), y(si))|i ∈ N, 1 ≤ i ≤ n}, where n is the total
number of samples, si is a 2 by 1 spatial coordinate vector
for the ith sample, x(si) is am by 1 explanatory feature vector
(m is the feature dimension), and y(si) is a scalar response (it is
categorical for classification, and continuous for regression).
The set of spatial samples can also be written in the matrix
format, (X,Y), where X = [x(s1), x(s2), . . . , x(sn)]T is a n
by m feature matrix, and Y = [y(s1), y(s2), . . . , y(sn)]T is
a n by 1 response vector. A list of all symbols and descriptions
are summarized in Table 1.

Given a set of spatial data samples with explanatory fea-
tures X = [x(s1), x(s2), . . . , x(sn)]T and responses Y =
[y(s1), y(s2), . . . , y(sn)]T , the spatial structured prediction
problem aims to learn a model (or function) f such that
Y = f (X). Once the model is learned, it can be used to predict
the responses at other locations based on their explanatory
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FIGURE 1. Spatial structure on 2D Euclidean plane.

features. The problem can be further categorized into spatial
classification for categorical response and spatial regression
for continuous response.

The problem defined above is called spatial structured
prediction because there exists spatial dependency (instead
of independence) between variables at different locations
(x(s1), x(s2), . . . , x(sn), y(s1), y(s2), . . . , y(sn)). It is different
from other types of structured prediction (e.g., classifying
sentences based on syntactic structure such as parse tree,
recognizing speech signals based on the sequential structure
of vocals) in that the dependency structure is related to spatial
locations. Spatial structured prediction is different from tradi-
tional non-structured prediction problems. In non-structured
prediction problems, samples are commonly assumed to be
independent and identically distributed (i.i.d.). Thus, a same
model can be used to predict every sample independently.
In other words, a same model y(s) = f (x(s)) can be applied
to ∀s individually. However, the i.i.d. assumption is often
violated in spatial data due to implicit spatial structure based
on sample locations. Therefore, a model needs to capture
the relationship between entire feature maps and response
variable map, as indicated by Y = f (X).

Scope: There are other types of spatial structure prediction
problems beyond the geospatial domain. Examples include
image and video classification as well as retrieval in the com-
puter vision community, where spatial structures between
image parts play a critical role in prediction models. Exam-
ples include fine-grained image classification [7], [8], video
captioning [9] and multi-media retrieval [10], [11]. However,
we realize that the amount of literature on these topics in
the computer vision community is so extensive that the topic
these topics alone could be a separate survey. Thus, we do not
provide exhaustive coverage in this paper.

A. TYPE OF SPATIAL STRUCTURES
This subsection introduces several common types of spatial
structures based on the underlying spatial domain. A spatial
domain is an underlying space in which locational coor-
dinates are measured. Here we listed three most common
spatial domains, including two-dimensional (2D) Euclidean
plane, spatial network, and three dimensional (3D) geomet-
ric topological surface. Various spatial structures exist in
each spatial domain. For example, in a 2D Euclidean plane,

spatial dependency structure can be established based on a
distance between spatial points, adjacency between spatial
raster cells, or topological relationships between geometric
objects. On spatial networks, point samples often follow lin-
ear patterns along network paths (e.g., traffic crashes along
road segments). On a geometric topological surface, spatial
structure can be both regular geometry shapes and irregular
terrains, topography, as well as contours and flow directions.
We now introduce each category in detail below.

1) SPATIAL PROXIMITY ON 2D EUCLIDEAN PLANE
In a 2D Euclidean plane, spatial samples can be points, raster
grid cells, or geometric objects (lines, polygons). For spatial
point samples, implicit spatial structure exists between spatial
points based on their distances. According to Tobler’s first
law of geography, ‘‘everything is related to everything else,
but near things are more related than distance things’’ [15].
The law indicates that geographical data is essentially struc-
tured, with nearby locations mutually dependent on each
other. The law is consistent with our common sense, e.g.,
households in the same neighborhood often have similar
income levels. Thus, spatial structure can be modeled as a
function of distance, with stronger dependency (or correla-
tion) between sample attributes or classes that are closer to
each other, as illustrated in Figure 1(a).

For raster grid cell samples such as earth image pixels,
the most common spatial structure is the cell adjacency in
a grid graph (Figure 1(b)). The most common assumption
is the Markov property, i.e., a cell’s attribute only depends
on its neighbors. In this way, the joint distribution of all
cells’ attributes can be decomposed into a set of neighbor-
hood cliques. The entire map is called a Markov random
field, which has been widely used in image segmentation
applications.

For spatial samples as complex geometric objects such
as lines or polygons, the spatial structure between sample
objects can be based on topological relationships, such as
touch, overlap, disjoint, within, as shown in Figure 1(c). For
example, a railroad (spatial line) may ‘‘cross’’ theMississippi
(spatial line) that ‘‘passes through’’ a national park (poly-
gon) ‘‘within’’ the state of Minnesota (polygon). As another
instance of example, in a construction field, the spatial
relationship structure between the footprints of building,
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FIGURE 2. An example of US interstate highway networks (source: [18]).

pathways, and instruments are critically important for safety
maintenance.

2) LINEAR DEPENDENCY ALONG SPATIAL NETWORKS
A spatial network (also called geometric graph) is a unique
type of network whose nodes and edges are geometric
objects. In other words, a spatial network combines the spa-
tial relationships both in the Euclidean space and in the
network space. Common examples include road networks
and river stream networks. As illustrated by Figure 2, in a
road network, a node is a road intersection (spatial point),
while an edge is a road segment between two intersections
(spatial line segment). The spatial structure of samples in a
spatial network domain has several unique characteristics.
First, samples are embedded in the geometric lines of network
edges. Thus, samples show a linear dependency structure
along network edges [16], [17]. For example, when predicting
traffic volume, samples are not spreading across an entire
Euclidean plane but are constrained by the direction of a
network path. Second, between different network edges, there
is also a network topology structure (e.g., direction, neighbor,
predecessor, and successor). For example, in a highway sys-
tem, a road segment (edge) has one or two directions, and
different road segments are connected based on intersections
(turns).

3) GEOMETRIC TOPOLOGICAL SURFACE
A geometric topology surface is a 2D manifold embedded
in a 3D Euclidean space. Complex spatial structure patterns
can exist on the surface based on geometric and topolog-
ical features. For example, on a geographical terrain map
collected from LiDAR point clouds (Figure 4(a)), the ter-
rain structures not only show the shape of the Earth’s sur-
face but also control water distributions (surface extents)
and water flow directions. Another example is 3D point
clouds in building information modeling (Figure 3). The
geometric shape of objects and their topological relation-
ships can indicate the structural properties of buildings,
which is very important in construction and structural
engineering.

FIGURE 3. Spatial structure on geometric topology surface based
on 3D point cloud (source: [19]).

III. APPLICATIONS
This section introduce several representative applications for
spatial structured prediction, with a particular focus on appli-
cations that involve complex spatial structures in geometric
topology surface.

A. HYDROLOGY
One fundamental problem in hydrology is to map the dis-
tribution of water (e.g., flood, river streams) on the Earth’s
surface from remotely sensed imagery. The problem plays a
critical role in flood disaster response [23] and national water
forecasting at the NOAA National Water Center on the Uni-
versity of Alabama campus [24], [25]. The problem, however,
is significantly more complex than image classification, since
the flow and distribution of water is constrained by the com-
plex terrain on the Earth’s surface, as shown in Figure 4(a).
Integrating such complex spatial structures into a data-driven
model can significantly enhance the model’s interpretability
and allow for comparison with existing hydrological simula-
tion models.

B. MATERIAL SCIENCE
The properties of materials arise from atomic struc-
tures. Exploring atomic structures requires a compre-
hensive understanding of the potential energy landscape,
a function between all atomic positions and their potential
energy [26]–[32]. Figure 4(b) is an illustrative example. Com-
plex topological structures on the landscape indicate the phys-
ical process of materials transiting from a stable state (local
minimum energy) to a saddle state, and then relaxing to a
nearby stable state. Modeling such complex spatial patterns
into data-driven models helps reveal the relationship between
local atomic displacement and material properties (e.g., shear
strain) towards developing new materials.

C. BIOCHEMISTRY
Analyzing the chemical properties of a molecular system
plays an important role in understanding the life process.
Various data have been collected on the spatial structures of
molecules through X-ray crystallography, NMR, and elec-
tron microscopy [33]. Theoretical chemistry has shown that
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FIGURE 4. Motivation applications in hydrology, material science, and biochemistry.

FIGURE 5. A taxonomy of spatial structured prediction models based on underlying approaches.

spatial structural information can predict protein function
and interaction [34]. Building transparent data-driven models
with such complex geometrical and topological structures
(Figure 4(c)) can enhance model interpretability by the exist-
ing theories in the field [22], [34], [35].

IV. CHALLENGES
Learning spatial structured prediction models is challenging
for several reasons. First, spatial structural dependency is
often implicit in continuous space. For example, in disease
risk mapping, nearby locations tend to have a similar level
of disease risks due to the spatial autocorrelation effect.
The effect is implicit from input data, which contains con-
tinuous maps such as environmental variables and human
movements. This requires machine learning algorithms to
explicitly model the spatial dependency structure. Second,
spatial structural dependency can be very complex, both in
an Euclidean plain and in a geometric topology surface. For
example, in flood mapping, flood locations are derived not
only based on spectral pixels in an earth imagery, but also con-
strained by the topography (e.g., contours, flow directions) of
elevation map (a 3D surface). Third, spatial structure can be
further complicated by additional effects such as spatial het-
erogeneity and the multi-scale effect. Spatial heterogeneity
means that the dependency may be local instead of global.
The multi-scale effect means that the spatial dependency
structure may exist at different spatial scales in a spatial

hierarchy. For instance, in traffic prediction along road net-
works, the spatial network structured patterns can bemodeled
both at a coarse scale (only with major highways) and a fine
scale (with county roads and local streets). Fourth, learning
a spatial structured model for a large data volume can be
computationally challenging, due to the structural complexity
in model representation. Many learning problems related to
graph structures are NP-hard. Finally, there can be limited
ground truth. For example, in earth science applications,
collecting ground truth training class labels often involves
sending a field crew on the ground or visually interpreting
earth images, which is tedious and time consuming. This is a
particularly challenge for spatial structured prediction since
a complex model often requires more training samples in the
learning process in order to avoid overfitting.

V. A TAXONOMY OF TECHNIQUES BY APPROACHES
We now introduce a taxonomy of existing spatial struc-
tured prediction models, as shown in Figure 5. Based on
the underlying approaches to capture spatial structure depen-
dency, existing works can be categorized into three groups:
spatial contextual feature representation, spatial structured
model representation and deep neural network. Spatial struc-
tured feature representation approach focuses on creating or
learning contextual features that captures spatial dependency
structure. Examples of such features include spatial rela-
tionships between geometric objects (e.g., within, overlap),
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outputs of spatial raster operators (e.g., texture), as well
as learning contextual features to implicitly reflect spatial
dependency (e.g., spatial network embedding). Spatial struc-
tured model representation approach aims to explicitly cap-
ture spatial dependency structure within machine learning
model representation. Examples include modeling spatial
neighborhood graphs in Markov random fields, modeling
spatial correlation over distance in Gaussian process (Krig-
ing) and modeling geometric topology in flow direction trees.
Finally, deep neural network approach focuses on learning
a blackbox model to automatically learn complex spatial
structure dependency in an end-to-end manner. Specifically,
it can be categorized into deep convolutional neural networks
for raster imagery or regular spatial grid and graph neural
networks for spatial graphs. We now introduce each approach
and its specific methods, and compare different methods in
their advantages and disadvantages.

A. SPATIAL CONTEXTUAL FEATURE GENERATION
One way of incorporating spatial dependency into prediction
methods is to augment input data with additional spa-
tial contextual features. The spatial context of a sample
location refers to information related to the spatial struc-
ture surrounding it, such as relationships to other objects or
locations, attributes of nearby samples, auxiliary semantic
information from additional data sources. Once spatial con-
textual information is added into explanatory features, tradi-
tional non-spatial prediction methods can be used. We now
introduce several approaches to generate spatial contextual
features.

1) SPATIAL RELATIONSHIP FEATURES
Spatial contextual features can be generated based on spatial
relationships with other locations or objects, such as dis-
tance or direction, touching, lying within or overlapping with
another object. Spatial relationship features can be readily
used in rule-based or decision tree-based models. Exam-
ples of techniques include spatiotemporal probability tree
model to classify meteorological data on storms [36], [37],
multi-relational spatial classification [38], prediction based
on spatial association rules [39].

2) SPATIAL CONTEXTUAL FEATURES BASED ON RASTER
OPERATORS
Spatial contextual features have long been used in classify-
ing raster data (e.g., earth observation imagery) to reduce
salt-and-pepper noise [40]. Specific methods include neigh-
borhood window filters (e.g., median filter [41], weighted
median filter [42], adaptive median filter [43], decision-based
filter [41], [44], etc.), spatial contextual variables and
textures [45], neighborhood spatial autocorrelation statis-
tics [46]–[48], morphological profiling [49], object-based
image analysis (e.g., mean, variance, texture of object
segments) [50], and spatial zone ensembles [51], [52].
Sometimes, these methods are used in the post-processing
step [53].

3) SPATIAL CONTEXTUAL FEATURE LEARNING
Spatial contextual feature learning aims to learn a low dimen-
sional feature representation of spatial samples that reserve
spatial structural information in the original feature space.
Common techniques include embedding [54]–[56], matrix
factorization [57], as well as recent unsupervised deep learn-
ing methods such as auto-encoder [58]. Recently, deep con-
volutional neural networks have been used to automatically
learn complicated structured features in spatial raster data
with convolutional operators [58]–[64]. One unique property
of spatial data is that information from different sources can
be fused into the same spatial framework, providing impor-
tant spatial contexts for learning samples. For example, when
predicting a fine-grained air quality map for an entire city,
we can generate contextual features by fusing air quality
records at ground stations, weather information, road network
and traffic data, as well as POIs [65]. When predicting human
behaviors from location history, auxiliary data from geosocial
media can provide important semantic annotations [66], [67].
Generating contextual features through data fusion can have
its own challenges (e.g., multi-modality, sparsity, noise). Var-
ious techniques have been explored, such as coupled matrix
factorization, and context-aware tensor decomposition with
manifold [68].

Spatial contextual feature generation is important in many
practical applications (e.g., urban computing) due to two
main advantages. First, generating appropriate contextual
features can significantly enhance prediction accuracy due to
the effectiveness of those features in explaining the response
variable. Second, after spatial contextual features are gen-
erated, many traditional non-spatial predictive models can
be used (e.g., random forest, support vector machine). This
is sometimes convenient since there is no need to modify
non-spatial prediction models or learning algorithms. At the
same time, spatial contextual feature generation may require
significant knowledge about the application domain.

B. STRUCTURED MODEL REPRESENTATION
Another general approach for spatial structured prediction
problems is to incorporate spatial structural constraints into
machine learningmodel representation. One of themost com-
mon framework to model dependency structure in machine
learning is probabilistic graphical models [69]–[74], which
use nodes and edges in a graph to model variables and depen-
dency between variables. Graphical models can be further
grouped intoMarkov randomfield for undirected graphs [75],
Bayesian networks for directed graphs [76], andMarkov logic
networks for graphics with first order logic [77]. We now
introduce several categories of techniques based on the type
of spatial structural constraints being incorporated, including
spatial neighborhood graph, spatial distance kernel, and geo-
metric topology.

1) SPATIAL NEIGHBORHOOD GRAPH BASED MODELS
Spatial neighborhood graph based models assume that
the spatial dependency structure follows a neighborhood
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graph, i.e., dependency exists between neighboring locations.
Spatial neighborhood graph can be derived based on cell
adjacency on a raster framework or spatial distance in a
continuous field. These models are generally considered as
the Markov random field model family.

Markov random field (MRF) [71], [73], [74], [78]–[81] is
a widely used model for areal data such as earth observa-
tion images, MRI medical images, and county-level disease
count map. An MRF is a random field that satisfies the
Markov property: the conditional probability of the obser-
vation at one cell given observations at all remaining cells
only depends on observations at its neighbors. This property
is consistent with the first law of geography that ‘‘nearby
things are more related than distant things’’. According to the
Brook’s lemma [82], the joint distribution of cell observations
can be uniquely determined based on conditional probability
specified in the Markov property. Furthermore, according to
the Hammersley-Clifford theorem [83], the corresponding
joint distribution of MRF has a unique structure: it can be
expressed by a set of potential functions on spatial neighbor
cliques (i.e., symmetric functions that are unchanged by any
permutations of input variables within a clique). Such a joint
distribution is also called Gibb’s distribution. Equation 1
is an example. Its potential function is Wi,j(y(si) − y(sj))2

based on cliques of size two (si, sj). The Markov property
simplifies the modeling process: as long as the neighborhood
structure is specified, the joint distribution of an MRF can be
expressed by a potential function on neighbor cliques. Spatial
predictionmethods based onMRF include ones that explicitly
capture spatial dependency such as Simultaneous Autore-
gressive models (SAR), ones that implicitly capture spatial
dependency such as Conditional Autoregressive models, and
ones integrating MRF with other models such as Bayesian
classifiers and support vector machines.

P(y(s1), . . . , y(sn))∝exp{−
1

2σ 2

∑
i,j

Wi,j(y(si)−y(sj))2} (1)

Simultaneous Autoregressive models (SAR) explicitly
express spatial dependency across response variables [84],
[85]. The SAR model extends traditional linear regression
with an additional spatial autoregressive term, as shown in
Equation 2, whereY is a n by 1 column vector of all response
variables, X is a n by m sample covariate (feature) matrix,
β is a m by 1 column vector of coefficients, and ε is a n
by 1 column vector of i.i.d. Gaussian noise (residual errors),
W is row-normalized W-matrix, and ρ reflects the strength
of spatial dependency effect. The ith row of the spatial
autoregressive term WY is a weighted average of response
variables at all neighboring locations of si. Parameters in
SAR can be estimated based on the maximum likelihood
method. SAR model can also be extended for spatial clas-
sification via logit transformation. It is worth noting that
the spatial autoregressive term can also be added into other
variables than the responses, such as covariates as in the
spatial Durbin model or residual errors as in the spatial error

model [86].

Y = ρWY+ Xβ + ε (2)

Another model similar to MRF is conditional random field
(CRF) [87]–[90], which directly models spatial dependency
within the conditional probability function P(Y|X). Its poten-
tial function on class labels within a clique is conditioned
on feature vector X. Several variants of CRF have been
proposed including decoupled conditional random field [88],
discriminative random field [89] and support vector random
field [90]. The difference between MRF and CRF is that the
former is generative while the latter is discriminative.

The advantage of MRF-based models is that spatial depen-
dency can be modeled in a very intuitive and simple way
(designing potential functions). The limitations include high
computational costs in parameter estimation and strong
assumptions on the structure of joint probability distribution.
In addition, neighborhood relationships are assumed to be
given as inputs. Thus, fixed neighborhoods such as square
windows are often used for simplicity. For applications where
spatial data is anisotropic, determining spatial neighborhood
structure is also a challenge.

There are other models for spatial model representa-
tions, including spatial statistics and spatial economet-
rics [84], [85] such as spatial panel model and spatial Dublin
model [86], [91], as well as spatial regularization on loss
function [92]–[94]. Methods based on spatial network con-
nectivity are relatively less studied, including spatial network
Kriging [95], and spatial network autoregressive models [96].

2) SPATIAL DISTANCE BASED MODELS
Spatial distance based methods assume that the strength of
dependency is only determined by the distance between sam-
ple locations, regardless of directions. The most common
method is the Gaussian process model (also called Kriging).

Different from MRF based models that are used for areal
data, Gaussian process based models are used for spatial
prediction (interpolation) on point reference data [85]. Given
observations of a variable at sample locations in continu-
ous space, the problem aims to interpolate the variable at
an unobserved location. The Gaussian process assumes that
observations at any set of sample locations jointly follow
a multivariate Gaussian distribution. The mean term at a
location is determined by its local covariates. The residual
error term at a location is assumed to be weakly stationary
and isotropic, so that the covariance matrix can be expressed
as a function of distance (covariogram).

Specifically, Gaussian process (Kriging) assumes that any
set of sample observations Y = [y(s1), . . . , y(sn)]T follows a
multivariate Gaussian distribution N (µ,6), where µ = Xβ
and 6 is the covariance matrix 6ij = Cov(y(si), y(sj)) =
C(si − sj). The main difference of Gaussian process from
classical regression is that the residual errors are not mutually
independent (the covariance matrix is not diagonal and the
non-diagonal elements can be determined based on covar-
iogram C(h), which is a function describing the degree of
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spatial dependence over location differences [85]). It can
be shown that the optimal predictor (minimizing expected
square loss) of y(s0) given other observations y(s1), . . . , y(sn)
is the conditional expectation as shown in Equation 3,
which can be estimated based on the covariance structure
from covariogram [85]. This method is also called univer-
sal Kriging since it involves covariates X. Special cases
without covariates include simple Kriging (with known con-
stant mean) and ordinary Kriging (with unknown constant
mean) [97].

ŷ(s0) = E[y(s0)|y(s1), . . . , y(sn)] (3)

Gaussian process shares some similarities with MRF in
that both of them incorporate spatial dependency (autocorre-
lation) across sample locations into model structure. There
are several differences, however: first, Gaussian process is
developed for point reference data while MRF is devel-
oped for areal data; second, MRF models spatial dependency
throughW-matrix (W ) while Gaussian process models spatial
dependency through covariance function on spatial distance
(covariogram). Similar toMRFwhich assumes a given neigh-
borhood structure and theMarkov property, Gaussian process
has assumptions on spatial stationarity and isotropy.

3) GEOMETRIC TOPOLOGY BASED MODELS
Geometric topology based models learn spatial structures
on a topological surface (e.g., 3D terrain map) beyond the
common Euclidean space (e.g., raster image or video). Such
spatial structure is often related with geometric shapes or con-
tour patterns. It has been extensively studied in computational
geometry, or more specifically computational topology [33],
[98]–[100].

One such spatial structured model is geographical hidden
Markov tree (g-HMT) [101], [102], a probabilistic graph-
ical model that generalizes the common hidden Markov
model (HMM) from a total order sequence to a partial order
tree. The tree structure is motivated by disciplinary knowl-
edge in hydrology. As illustrated in Figure 6, due to gravity,
water flows from a high elevation to nearby lower elevations.
If location 5 is in the flood class, locations 2-4 and 6-7 should
also be flood. Such partial order is captured in a tree structure
(Figure 6(b)) in the hidden class layer. Each hidden class node
has an associated observed feature node for the same pixel.
Such a spatial dependency structure can potentially reduce
classification errors due to noise, obstacles, and heterogeneity
among spectral features of individual pixels. Compared with
existing spatial structuredmodels (e.g., Markov randomfield,
post-processing label propagation), proposed g-HMT can
reflect directed dependency following physics in hydrology.
Empirical evaluations have shown that g-HMT significantly
improves accuracy over existing methods due to overcoming
noise and obstacles in feature maps [101]. The model has also
been extended to address limited observation based on the
physics-aware spatial structural constraints (e.g., water flow
directions on a terrain surface) [103].

FIGURE 6. Illustration of geographical hidden Markov tree.

FIGURE 7. Illustration of hidden Markov contour tree.

Another model example is hidden Markov contour tree
(HMCT) [104]. HMCT is a probabilistic graphical model
that generalizes the common hidden Markov model from a
total order sequence to a partial order contour tree. It extends
geographical hidden Markov tree with 2D structures such as
contours. Figure 7 illustrates an example in flood mapping
in hydrology. Due to gravity, floodwater flows from one
location to nearby lower locations, as illustrated by arrows
in Figure 7(b). Such dependency structure is represented by a
contour tree, as shown in Figure 7(c), where a node represents
the class (flood or dry) of a contour segment (e.g., the three
contiguous pixels with elevation 1), and an edge represents
the flow direction between two adjacent contour segments.
In the HMCT model, each hidden class node in the contour
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tree is also associated with a set of observed feature nodes,
corresponding to the spectral information of pixels in the
same contour segment, as shown in Figure 7(d). In this way,
class inference is based on not only local spectral information
but also flow direction and contour structure. Empirical eval-
uations on datasets from Hurricane Mathew floods showed
that HMCT outperformed existing methods with 10% to 30%
gain in F-score, due to overcoming noise and obstacles in
features [104]. It can bemore robust to g-HMT in cases where
different sides of river banks should model the dependency
structure separately.

Geometric topology based methods are different from the
previous two methods in that they capture topological struc-
ture on a 3D surface instead of 2D spatial plane. Such topo-
logical structures can be directed (e.g., flow directions based
on surface gradient). The specific techniques discussed above
can be considered as special cases of Bayesian network (they
are directed trees or polytrees instead of general directed
graph). Such unique topological structures on 3D surface are
important for applications in hydrology, material science, and
biochemistry.

C. DEEP NEURAL NETWORKS
Deep neural network is a new approach that becomes
increasingly popular in recent years for structured predic-
tion problems. Compared with the previous two approaches,
i.e., spatial contextual feature generation and structured
model representation, the deep learning approach could auto-
matically learn structured features in an end-to-end manner
(without manually handcrafting spatial contextual features,
or explicit specifying spatial structural in model representa-
tion). Deep learning methods for spatial structured prediction
can be generally categorized into deep convolutional neu-
ral networks (DCNN) and graph neural networks (GNN).
DCNN is originally developed for image data in the computer
vision community, and thus is naturally applicable to spatial
raster data such as earth imagery [60]–[62] and a discretized
spatial grid [63], [64]. Graph neural networks are generaliza-
tion of deep neural networks from images to graphs. GNN can
be used for spatial structured prediction because spatial data
can be represented as graphs with nodes representing loca-
tions and edges representing spatial relationships between
locations [105], [106]. We put deep learning as a separate
approach from the previous two due to its wide popularity
in recent years. Since DCNN is widely known, we introduce
more details on GNN in this subsection.

Graph neural networks are a set of techniques that gener-
alizing deep neural networks to graphs. Generalizing deep
learning to graph data is non-trivial due to the lack of a
regular input domain like imagery or videos, and the struc-
tural complexity of graphs. Several surveys exist on this
important emerging topic [107]–[110]. Existing techniques
can be categorized based on the underlying approaches to
capture graph dependency between nodes, such as graph con-
volutional neural networks, graph recurrent neural networks,
and graph attention neural networks.

Graph convolutional neural networks generalize deep con-
volutional neural networks into graph data. The main chal-
lenge is that there is no regular neighborhood window
as in imagery data. There are two general approaches:
the spectral-based approach and the non-spectral-based
approach. The spectral-based approach uses the spectral rep-
resentation graph (i.e., eigenvalues and eigenvectors of the
graph Laplacian matrix). Techniques have been proposed to
reduce the number of parameters and computational com-
plexity, such as ChebyNet [111] and simple Graph Neural
Network [112]. The non-spectral approach directly general-
izes convolutional operations from a regular grid to a graph,
such as using different weight matrices for nodes with differ-
ent degrees [113] and graph diffusion neural networks [114].
Graph convolutional networks can generalize convolutional
filters from raster imagery to graph neighborhoods. One
potential issue is that the methods often assume a fix graph
topology (and corresponding Laplacian matrix), and thus are
not applicable to cases where the underlying graph structure
changes from training data to test data.

Graph recurrent neural networks generalize recurrent
neural networks from sequences to graphs. Its main advan-
tage is the capability of capturing directed dependency
(directed graph). The main idea is to use gating mech-
anism to control the flow of information across graph
nodes along directed paths. The most common technique is
graph Long Short-TermMemory (graph LSTM) [115]–[119].
An LSTM [58] is a special recurrent neural network that uses
internal gates to control the memory of information from
previous steps in a sequence, possibly capturing long range
dependency. An LSTM can be generalized from sequences to
trees and graphs by allowing for multiple predecessors or suc-
cessors of a node. Such models have been applied to natural
language processing [115]–[117], but the underlying directed
graph is often small. Graph recurrent neural networks can
potentially be applied to directed spatial graphs (e.g., river
networks, road networks considering traffic directions). The
potential issue is the high computational costs in learning
when the graph is large.

Graph attention networks [120] uses the self-attention
mechanism on graphs to perform node classification a graph
structure. The main idea is to compute the hidden repre-
sentations of each node in the graph by learning weights
over its neighbors. Weights between a node to its neighbors
are learned by a self-attention strategy. Self-attention means
mapping a graph to the same graph itself while learning the
weights between a node and its neighbors (the amount of
attention on its neighbors required to classify the current
node). The self-attention mechanism can address the issue
of varying node degrees in graph convolution (this violates
the assumption of a fixed window size in traditional convolu-
tional operations) through averaging hidden representations
from all neighbors based on their weights.

Research on the field of deep neural network, particularly
graph neural network, is still quickly growing. The main
advantages of this approach, compared with the traditional
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TABLE 2. Comparison of different methods under structured model representation.

approaches, are that it does not require handcrafting or learn-
ing spatial contextual features, and it is able to learn complex
spatial structure dependency patterns. The main limitations
include that deep neural networks are often black-box models
and thus are hard to interpret and that it requires a large
amount of training labels.

D. SUMMARY AND COMPARISON
Table 2 provides a summary of comparisons between the
three major approaches of spatial structured prediction mod-
els: spatial contextual feature generation, structured model
representation, and deep neural networks. Incorporating spa-
tial structures through contextual feature generation is an
effective approach when the generated features are effective
predictors for the response variable. It does not require the
change of machine learning models, and thus traditional
non-spatial machine learning methods can be used (e.g.,
random forests, support vector machine). Due to this rea-
son, it is often used in practice by interdisciplinary appli-
cation domain scientists. The limitation is that the approach
requires sufficient domain knowledge on the application and
the process needs to be repeated for different applications.
In contrast, the approach of incorporating spatial structure
in model representation provides general tools that can be
used for different applications, but it also has the limitation
of high computational costs of model learning compared
with the traditional non-spatial models. Finally, the emerging
deep learning approach reduces the burden of handcrafting
spatial features (the deep neural networks automatically learn
effective feature representations), and is able to learn complex
spatial structure patterns. The main disadvantages are that the
models are often hard to interpret and model training requires
a large amount of training labels.

VI. FUTURE DIRECTIONS
This section identifies research gaps and discusses some
potential future research directions in the field of spatial
structured prediction.

A. GEOMETRIC DEEP LEARNING
Recently, the topic of geometric deep learning [121]
has attracted growing interests from the deep learn-
ing research community. Geometric deep learning gen-
eralizes traditional deep learning from regular raster

frameworks (e.g., images and videos) in Euclidean
to irregular spatial structures on a geometric surface
(e.g., 3D point cloud, protein surface). The problem is very
challenging due to several reasons: First, there is no fix input
spatial domain that we can easily learn a local invariant con-
volutional operator; Second, explicit topological relationship
can exist on a geometric surface (e.g., water flow direction
along a terrain map); Third, there may be limited training
labels. According to a recent overview article [121], exist-
ing methods are largely based on graph convolution neural
networks [107], [108], which rely on a fix graph topology
structure, and thus cannot generalize to cases where the graph
structure changes from one data to another.

Addressing the challenges require the integration of deep
learning with computational geometry (or computational
topology, computer graphics). There is already extensive
research on modeling complex spatial structures in the field
of computational geometry (e.g., topological data analysis,
contour trees, shape analysis). These existing works provide
unique opportunities to extract spatial structural constraints
from observed geometric surface data. Such spatial struc-
tural constraints can then be integrated with graph neural
network models. The integration of data-driven approaches
(graph neural networks) with physics-aware structural con-
straints (computation topology) into the backbone of model
representation has several advantages. First, explicit spatial
structural information often indicates the underlying physical
process, and thus enhances model interpretability. Second,
spatial structural constraints also have a positive side-effect
of providing regularization for model learning when training
labels are limited. For example, we can potentially integrate
a contour tree from an elevation surface with graph recur-
rent neural networks to capture both non-linear relationships
between variables and the flow direction and contour patterns
on an elevation surface.

B. MODEL TRANSPARENCY AND INTERPRETABILITY
Another potential future research direction is to improve
model transparency and interpretability. Existing spatial
structured prediction models based on deep learning tech-
niques are often based on a black-box model representation,
making it hard to interpretable by the existing knowledge
and theories in an application domain. This is a particular
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handicap for scientific applications such as earth science,
biology, and chemistry. Recently, there is a growing interest
on interpretability in the machine learning research com-
munity. Interpretable machine learning [122]–[126] (also
called explainable machine learning or AI [127], [128])
refers to techniques that help human users better under-
stand the behavior of machine learning models. Accord-
ing to a recent survey [124], existing approaches can be
categorized into intrinsic interpretation that focuses on con-
structing self-explanatory models, and post-hoc interpreta-
tion that creates a second model to provide explanations
for an existing black-box model. Techniques for intrinsic
interpretation include transparent model structures [129]
such as decision trees, rule-based models [130], linear
models with sparse features; adding globally interpretable
constraints [131] such as regularizing loss to learn disentan-
gled representations in CNN [132] or constructing a capsule
network [122]; and locally interpretable structure such as
attention mechanism [133]. Techniques for post-hoc interpre-
tation [134], [135] includes learning interpretable models to
mimic a black-box model [136]; testing model sensitivity to
input features [137]–[139]; and explaining representations in
black-box models [140]–[143]. Spatial structured prediction
seems more suitable for intrinsic interpretation techniques
given the existence of structural information. However, exist-
ing methods that build transparent model representation often
assume simple structures such as trees or rules. Techniques
for transparent models with complex spatial structural con-
straints are largely underexplored.

There are two potential strategies to address the challenge.
One strategy is to incorporate domain knowledge into the
design of model structures or model components [144], [145]
so that the model is aware of the underlying physics. The
other strategy is to explicitly model the spatial structural
constraints (e.g., from computational topology) and build it
into the backbone of model representation.

C. SCALABLE INFERENCE
Inference of structured prediction models are computation-
ally very challenging due to structural complexity, which
violates a common assumption that data samples are indepen-
dent and identically distributed. Indeed, inference on a gen-
eral graph is NP-hard [72]. Existing approximate inference
algorithms include loopy belief propagation [146], variational
inference [147], and sampling methods [148]. However,
these methods are largely based on statistical properties
instead of considering unique spatial structural properties.
For example, spatial data can show a local effect (i.e., depen-
dency is stronger within local areas) and a multi-scale effect
(i.e., spatial patterns can be analyzed at different spatial scales
and resolutions). Based on the local effect, we can poten-
tially develop techniques of divide-and-conquer to conduct
inference within individual zones and synchronize results
together towards a global solution. Based on the multi-scale
effect, we can potentially investigate multi-resolution filter-
ing that first infers unknown classes on a coarse spatial scale

(much smaller data size) and refine the inferred class bound-
aries on a finer spatial scale. Another potential direction is
to develop parallel algorithms for scalable inference. The
problem is further complicated by the lack of a regular grid
structure in input data like images or videos, making it hard
to utilize existing parallel computational frameworks such as
GPU. Several works have been done on parallelizing graph
neural networks in GPU [149], [150], but the problem is
largely underexplored.

VII. CONCLUSION
This paper provides an overview of the spatial structured
prediction problem. We define the problem with different
types of spatial structures and their applications. We also
provide a taxonomy of common techniques categorized by
the underlying approaches. In the end, we discuss several
potential research directions.
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