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Abstract—Spatial structured models are predictive models that capture dependency structure between samples based on their
locations in the space. Learning such models plays an important role in many geoscience applications such as water surface mapping,
but it also poses significant challenges due to implicit dependency structure in continuous space and high computational costs. Existing
models often assume that the dependency structure is based on either spatial proximity or network topology, and thus cannot
incorporate complex dependency structure such as contour and flow direction on a 3D potential surface. To fill the gap, we recently
proposed a novel spatial structured model called hidden Markov contour tree (HMCT), which generalizes the traditional hidden Markov
model from a total order sequence to a partial order polytree. HMCT also advances existing work on hidden Markov trees through
capturing complex contour structures on a 3D surface. We proposed efficient model construction and learning algorithms. This paper
extends our initial HMCT model into a post-processor that can refine the classified results from other existing models. We analyzed the
theoretical properties of the extended model. Evaluations on real-world flood mapping datasets show that HMCT outperforms multiple
baseline methods in classification performance and the HMCT can also effectively enhance the results of other baseline methods.
Computational experiments also show that HMCT is scalable to large data sizes (e.g., classifying millions of samples in seconds).

Index Terms—Hidden Markov Contour Tree; 3D Surface Classification; Spatial Structured Prediction

1 INTRODUCTION

PATIAL structured models are predictive models that
Scapture dependency structure between samples based
on their locations. Given data samples in a spatial raster
framework with explanatory feature layers and a potential
field layer, as well as an independent set of training samples
with class labels, the spatial structured learning problem
aims to learn a model that can predict sample classes in the
same framework [1]. For example, in flood extent mapping
from earth imagery, data samples are imagery pixels in
a regular grid, the explanatory feature layers are spectral
bands, and the potential field can be elevation that controls
water flow directions. The goal is to predict the classes
(flood or dry) of pixels based on not only the spectral
features but also the implicit flow directions on an elevation
surface.

The problem is important in many societal applications
such as flood extent mapping for disaster response and
national water forecasting. Flood extent mapping plays a
crucial role in addressing grand societal challenges such as
disaster management, national water forecasting, as well as
energy and food security. For example, during Hurricane
Harvey floods in 2017, first responders needed to know
where flood water was in order to plan rescue efforts.
In national water forecasting, detailed flood extent maps
can be used to calibrate and validate the NOAA National
Water Model [2], which can forecast the flow of over 2.7
million rivers and streams through the entire continental
U.S. [3]. In current practice, flood extent maps are mostly
generated by flood forecasting models, whose accuracy is
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often unsatisfactory in high spatial details [3]. Other ways
to generate flood maps involve sending a field crew on the
ground to record high-water marks, or visually interpreting
earth observation imagery [4]. However, the process is both
expensive and time consuming. With the large amount of
high-resolution earth imagery being collected from satel-
lites (e.g., DigitalGlobe, Planet Labs), aerial planes (e.g.,
NOAA National Geodetic Survey), and unmanned aerial
vehicles, the cost of manually labeling flood extent becomes
prohibitive. Note that though we use flood mapping as a
motivation example, the problem can potentially be applied
to many other applications such as water quality moni-
toring and air pollution mapping in which pollutants are
transmitted following flow directions [5], protein structure
learning in biochemistry [6], and geometric shape analysis
in computer graphics [7].

However, the problem poses several unique challenges
that are not well addressed in traditional classification
problems. First, implicit spatial dependency structure exists
between pixel locations. For example, due to gravity, flood
water tends to flow from one location to nearby lower
locations. Such dependency structure is complex, following
contour patterns on a 3D surface. Second, data contains
rich noise and obstacles. For example, high-resolution earth
imagery often has noise, clouds and shadows. In addition,
the spectral features of image pixels can be insufficient to
distinguish classes (also called class confusion) due to het-
erogeneity. For instance, pixels of tree canopies overlaying
flood water have the same spectral features with those
trees in dry areas, yet their classes are different. Finally,
the problem is also computationally challenging due to the
cost of modeling complex spatial structure on a large data
volume (e.g., millions of sample locations).

Existing spatial structured models often assume that
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the dependency structure is based on spatial proximity or
spatial network topology. Models based on spatial proxim-
ity assume that adjacent or nearby locations have stronger
dependency. The assumption comes from the first law of
geography [8], “everything is related to everything else, but
near things are more related than distant things”. Exam-
ples include Markov random field [9] , conditional random
field [10], spatial network embedding [11], [12], [13], [14],
[15], and convolutional neural networks [16]. Other works
incorporate spatial structures by spatial regularization on
loss function (to penalize difference between nearby loca-
tions) together with efficient optimization [17], [18], [19].
Models based on spatial network topology assume that
dependency between sample locations only follows an un-
derlying spatial network structure. These models are useful
for samples that are only located along spatial networks
(e.g., traffic accidents along road networks). Examples of
such models include spatial network Kriging [9], [20] and
spatial network autoregressive models [21]. In summary,
related works often capture undirected spatial dependency
structure based on distance or network topology. Complex
dependency structure that is both directed and prevalent
at all locations in the continuous space are largely unex-
plored. Recently, a geographical hidden Markov tree (HMT)
model [22] has been proposed, which captures directed
spatial dependency based on flow directions across all lo-
cations, but it is largely motivated by a one dimensional
spatial view and does not consider complex spatial struc-
tures such as contours on a 3D surface.

To fill the gap, we recently proposed a novel spa-
tial structure model called hidden Markov contour tree
(HMCT) [23]. It is a probabilistic graphical model that
generalizes the common hidden Markov model (HMM)
from a total order sequence to a partial order polytree.
Specifically, the hidden class layer contains nodes (pixels) in
a contour tree structure to reflect flow directions between
all locations on a 3D surface. We also proposed efficient
learning algorithms based on contour tree node collapsing
and value pre-aggregation. Preliminary results showed that
HMCT significantly outperforms several baseline methods
on real-world flood mapping datasets and the proposed
model is scalable to a large data volume [23]. This paper ex-
tends our preliminary results with the following additional
contributions.

e We proposed an extension of the HMCT model from
generative to discriminative so that the model can be
used as a post-processor (HMCT-PP). We analyzed
the theoretical properties of the extended model.

e We conducted evaluations on real-world flood map-
ping datasets. Results show that HMCT-PP can sig-
nificantly enhance the results from baseline methods.

e We also conducted sensitivity analysis of the pro-
posed approaches to initial parameters. We also in-
terpreted the results through visualization and anal-
ysis.

2 PROBLEM STATEMENT
2.1 Preliminaries

Definition 1. A spatial raster framework is a tessellation of
a two dimensional plane into a reqular grid of N cells. Spatial
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Fig. 1: Example of raster framework and flow dependency

neighborhood relationship exists between cells based on cell ad-
jacency. The framework can contain m non-spatial explanatory
feature layers (e.g., spectral bands in earth imagery), one potential
field layer (e.g., elevation), and one class layer (e.g., flood, dry).

Definition 2. Each cell in a raster framework is a spatial data
sample, noted as sy, = (Xp, n, Yn ), wheren € N;1 <n < N,
xn, € R™1 is a vector of m non-spatial explanatory feature
values with each element corresponding to one feature layer, ¢, €
R is a cell’s potential field value, and y,, € {0, 1} is a binary class
label.

A raster framework with all samples is noted as F =
{snln € N,;1 < n < N}, non-spatial explanatory features
of all samples are noted as X = [xy,...,xx]|’, the potential
field layer is noted as ® = [¢1, ..., o7, and the class layer
isnotedas Y = [y1, ..., yn]".

Definition 3. A contour in a raster framework is a set of
contiguous samples whose potential field values are equal. For
example, in Figure 1(a), there are two contours for the elevation
value 1. Note that our definition of contour here is discrete.
Original definition based on a continuous field in topology can
be found in [24], [25].

Definition 4. Spatial flow dependency exists between cells fol-
lowing the gradient on the potential field layer. Formally, a flow
dependency s; ~+ s; exists if and only if there exist a sequence of
neighboring (adjacent) cells < $;,Sp,,Spy, ..., Sp,, S5 > such that
¢i < ¢P1/ ¢pz < ¢j/ and ¢Pk < ¢pk+1 f01’ any 1 < k<l-1
For example, due to gravity, flood water can flow from cells with
elevation 3 to neighboring cells with elevation 2 in Figure 1(a).

2.2 Formal problem definition

We now formally define the spatial structured learning
problem.
Input:
e Spatial raster framework F = {s,|n € N,1 <n < N}
e Explanatory features of samples X = [x1,...,xx]|7
e Spatial potential field values of samples: ® = [¢1, ..., o] T
e Training samples {s;|k € training set} outside F
Output: A spatial structured model f : Y = f(X)
Objective: minimize classification errors
Constraint:
e Explanatory feature layers contain noise and obstacles
e Sample classes follow partial order flow dependency
e Sample class is binary, y,, € {0,1}
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3 PROPOSED APPROACH

The section introduces a novel spatial structured model
called hidden Markov contour tree together with effective
and efficient learning algorithms.

3.1 Modeling Spatial Contour Structure

Our goal is to explore a data structure to represent
flow dependency between pixel locations on a potential
field (e.g., 3D elevation surface). Such dependency structure
can be represented by contour tree [25], [26]. A contour
tree is a polytree (directed acyclic graph whose underlying
undirected graph is a tree) that captures the evolution of
contours (level sets) of a potential field. Figure 2(b) shows
an example based on the elevation surface in Figure 1.
Assume we increase an elevation threshold from 1 to 6. For
threshold 1, two separate contours appear, corresponding
to the two leaf nodes on the bottom of Figure 2(b). For
threshold 2, the two contours both grow bigger but remain
separated. For threshold 3, the two contours merge into one
(corresponding to the central node with number 3), and a
new separate contour appears based on the bottom right
pixel in Figure 1(a) (corresponding to the tree node 3 on
a side branch). For threshold 4, a contour of elevation 3
splits into three. Then, each contour grows separately as the
threshold further increases. Contour tree is naturally a good
representation for flow direction dependency between loca-
tions on an elevation surface. For example, in Figure 2(b),
if the central node with elevation 3 is in the flood class, all
its parent nodes (the ones with elevations 1 and 2 below it)
must be in the flood class, since flood water flows from a
high elevation to nearby lower elevations.

(a) Uncollapsed contour tree (c) Hidden Markov contour tree
(circle in box is feature node set)

Fig. 2: Illustration of hidden Markov contour tree

Existing research on contour tree often focuses on the
critical nodes (such as local minimum and maximum, saddle
point) [24], [25]. Tree construction algorithms often require
an input elevation surface to be represented as a mesh with
unique values [26] . In order to run the algorithms on an
elevation surface with duplicated values, we can use per-
turbation to enforce an arbitrary order on locations with an

equal elevation. This makes the tree unnecessarily large, as
shown in Figure 2(a). To address this limitation, we propose
a collapsed contour tree, which starts from a contour tree
from existing algorithm but then collapses nodes in the same
contour. Figure 2(a-b) shows an example. For instance, two
connected nodes with elevation 3 in Figure 2(a) are merged
into one in Figure 2(b). Node collapsing can dramatically re-
duce the size of a contour tree, potentially reducing the cost
of learning and inference algorithms. Algorithm 1 shows
the detailed steps for node collapsing. The main idea is
to use breadth-first search to find each collapsable contour
component, and then to collapse tree nodes within that
component. The time complexity is O(N) where N is the
total number of nodes in the uncollapsed contour tree.

Algorithm 1 Collapse Contour Tree

Input:
e An uncollapsed contour tree
Output:
o A collapsed contour tree
1: Initialize all nodes as unvisited
2: for each tree node s, by topological order do
3. if sy, is unvisited then
4 Mark s, as visited
5: Breadth First Search (BFS) from sy, to its contour
6 Collapse BFS traversed nodes, mark them visited
7: return the collapsed contour tree

3.2 Hidden Markov Contour Tree (HMCT)

We propose a hidden Markov contour tree (HMCT), a
probabilistic graphical model that generalizes the common
hidden Markov model from a total order sequence to a par-
tial order polytree. A HMCT model consists of two layers:
a hidden class layer in the form of a collapsed contour tree,
and an observation feature layer. Each contour tree node in
the hidden class layer represents a same unknown hidden
class shared over all pixels in the contour. Each contour tree
edge represents the class transitional probability between
pixels from two contours based on flow dependency. A
hidden class node in contour tree is connected to a set of
observed feature nodes (circle in boxes in Figure 2(c)), which
correspond to the explanatory feature vectors of all pixels in
that contour.

The joint distribution of all samples’ features and classes
can be formulated as Equation 1, where P, is the set of
parent samples of the nth sample in the dependency tree
(P, = 0 for a leaf node), and yrep, = {yx|k € Py} is the
set of parent classes of node n. x,, = {x,,,|1 < i < N,} is
the set of feature nodes corresponding to hidden class node
n (i.e., x,, is the feature vector for a pixel n; in the nth
contour). Note that our notation of x,, here represents a set,
and should not be confused with notations in Section 2.

N Ny N
P(X,Y) = PXY)P(Y) = [ ] [] PGen;lyn) [T Pynlyrer,)
n=1:=1 n=1

)
For simplicity, observed feature nodes are assumed condi-
tionally independent given their hidden class node, follow-
ing an i.i.d. Gaussian distribution, as shown in Equation 2,
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where p, and X, are the mean and covariance matrix of
feature vector x,,, for class y,, (y, = 0,1).

P(xn,|yn) ~ N(l’l'yn?z:yn) )

Class transitional probability follows the partial order
flow dependency constraint. For example, due to gravity,
if any parent’s class is dry, the child’s class must be dry;
if all parents’ classes are flood, then the child has a high
probability of being flood due to spatial autocorrelation.
Consider flood as the positive class (class 1) and dry as the
negative class (class 0), the product of all parents’ classes
is yp, = [lpep, Yk Class transitional probability can be
modeled as Table 1, where p is a parameter close to 1. The
prior class probability of a node without parents is also
shown on the right of Table 1, where 7 is another parameter.

TABLE 1: Class transition probability and prior probability

Plynlyp,) | yp, =0 | yp, =1 Pyn)
yn =0 1 1—p yn =0 1—7
yn =1 0 P yn =1 7T

3.3 HMCT Learning and Inference

The parameters of hidden Markov contour tree include
the mean and covariance matrix of sample features in each
class, prior probability of leaf node classes, and class transi-
tion probability for non-leaf nodes. We denote the entire set
of parameters as ©® = {p, 7, ., X.|c = 0,1}. Learning the
set of parameters poses two major challenges: first, there
exist unknown hidden class variables Y = [y, ...,yn]7,
which are non-i.i.d.; second, the number of node variables
can be large.

To address these challenges, we propose to use the
expectation-maximization (EM) algorithm and message (be-
lief) propagation. Our EM-based approach has the following
major steps:

(a) Initialize parameter set @

(b) Compute posterior distribution of hidden classes:
P(Y|X,0)

(c) Compute posterior expectation of log likelihood:
LL(®) =Eyx.e,log P(X,Y|O)

(d) Update parameters:
®p + argmaxg LL(O)
Return Oy if it’s converged, otherwise goto (b)

Algorithm 2 shows the details. First, we initialize param-
eters either with random values within reasonable range (for
p and ) or with initial estimates based on training samples
(e.g., the mean and covariance of features in each class for p,,
and 3.). Then we conduct a breadth-first search on the tree
from any start node as a root. After this, the algorithm starts
the iteration till parameters converge. In each iteration, it
propagates messages first from leaves to root (steps 6-7)
and then from root to leaves (steps 8-9). Marginal posterior
distribution of node classes are then computed (steps 10-
11). Based on this, the algorithm updates parameters (step
12). Message propagation is based on the sum and product
algorithm [27], [28]. Propagation of message along nodes in
a graph (or tree) is equivalent to marginalizing out node
variables in the overall joint distribution in Equation 1.

Algorithm 2 EM Algorithm for Hidden Markov Tree

Input:
e X = [x1, ..., xy]7: cell sample feature matrix
e 7 a contour tree for spatial dependency
e c: parameter convergence threshold
Output:
e O = {p, 7, p.,Xc|c = 0,1}: set of model parameters
: Initialize @g, ©
: Find a node ng in 7 as the root
: Do a breadth-first search (BFS) on 7 from root ng
: while [|©g — ®l|> e do
@0 +~— 06
for each y,, from leaves to root in BFS do
Compute messages £ (yn), £ (yn) by (3)-(6)
for each y, from root to leaves in BFS do
Compute messages g’ (yn), 9% (yn) by (7)-(12)
10: for each y,,1 <n < N do
11: // Compute marginal distributions:
P(yn|X7 @O)v P(yna Ykep, |X, 60)
12:  Update © based on marginal distributions:
O« argénax Ey|x,e, log P(X,Y|O®) by (13)-(16)

13: return ©

D N N I > o

Figure 3 illustrates the forward message propagation
process from leaves to root (denoted as f). Each node
can have only one outgoing message (denoted as f2(yn),
but can have multiple incoming messages (incoming mes-
sages from a child ¢ and the parent side are denoted as
f;w—child c(y’ﬂ) and frzleparent(yn) re;spectively). As illus-
trated in Figure 3(a), computing f. ...14 .(Yn) involves
integration (sum) over the product of outgoing messages
from the child ¢ and c’s other parents, together with the
conditional probability between ¢ and c’s all parents, as
specified in (3). The outgoing message from node n has
two cases: to its child ¢ or to its parents. In the first case,
we first need to compute another incoming message from
parents f.. ,u.cni(yn) based on (4). Then the outgoing
message to a child ¢y can be computed based on (5). These
are also illustrated in Figure 3(a). In the second case, we
only need to compute outgoing message to parent based
on (6) (also illustrated in Figure 3(b)). Note that we denote
P (X |yn) = [T, P(Xp, |yn) in these equations for brevity.

(a) Case 1: f out to child ¢; (b) Case 2: f out to parent

Fig. 3: Illustration of message propagation leaves to root

P(yelyrer ) fSwe) |1

kEPc,k#n

f2 (yr)
®)

f?i(—child (yn) = Z

Yer Y{kePe k#n}
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P(yn) if n no parent
> Pynlyker,) TI fP(yr) otherwise

YeePn kEPn

f’ri(—pa'rent (y") = {
*)

f'g(y") = P(X’ﬂlyn)f’:;tepa'rent(y’ﬂ) H f?i(—shild c(y") (5)
cE€Cp,c#co
7 (yn) = P(xn|yn) H f'ri(—child (yn) (6)
ceCp

Backward message propagation from root to leaves also
follows a recursive process. Each node only has one incom-
ing message but several outgoing messages. There are three
cases as shown in Figure 4(a-c): incoming message g’ (»)
can be from a child, a child’s parent, or a parent. In the first
two cases, g’ (y») is computed from outgoing messages on
the child side based on (7) and (8) respectively. The outgoing
messages to another child or parent can be computed based
on (9) and (10) for both of the first two cases. In the third
case, ¢’ (yn) is computed based on outgoing messages from
the parent side, as specified in (11). The outgoing message
to a child can be computed based on (12). Since in the
third case, the incoming message is from the parent side,
we do not need to compute outgoing message to parent

g?L—)parent (yn)

(a) Case 1: g from(b) Case 2: g from a(c) Case 3: g from
child child’s parent parent

Fig. 4: Illustration of message propagation leaves to root

9 (yn) = > 92— parent Yeo) P(Yeo [Ypep,, )
YeorYpePey ,p#n
° i W)
H fp (yp)
PEPc ,pF#n
7 _ o o
In (yn) = Z ngO —child cg (ypco )fco (yco)P(yco ‘ykGPCO )

Yeg Y{pEPcy ,p#n}

H f{,’(yp)

PEPcq ,P#Pcqy PFEN
8
=g% (yn)P(xn |yn)f7il<—parent (yn)
H friLechild o (Un) ©)

! €Cp ¢’ #cp,c’ #c

I —schitd ¢(Yn)

g%—)parent(y") = QZ(yn)P(ann) H f'jL(—ch'ild c(yn)  (10)
c€Cn,c#co
gnyn) = D> Pnlyker,)9po—npe) [ fows) (1)
YkePn PEPn
o _ 0 i
In—schitd ¢(Yn) = 95, (Yn) P(Xn|yn) H Frichitd oo (yn)  (12)

c’€Cp,c’#c

After both forward and backward message propagation,
we can compute marginal posterior distribution of hidden
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class variables. The unnormalized marginal posterior dis-
tribution of the class of a leaf node (without parents), as
well as the class of a non-leaf node (with parents) can be
computed by multiplying all messages coming into these
nodes. We do not provide details due to space limit. Results
can be normalized by dividing them over the total sum of
all variable configurations.

After computing the marginal posterior distribution, we
can update model parameters by maximizing the posterior
expectation of log likelihood (the maximization or M step in
EM). Taking the marginal posterior distributions computed
above together with the prior and transitional probabilities
in Table 1 into the posterior expectation, we can get the
following parameter update formulas (the M step in EM).

> 2 > yr,ynP(yn,ypr, X, Oo)
_ n|Pp#0 Yn YP,

(13)
> X X yr, Pyn,ypr,1X, ©o)
n|Pn#D Yn YP,
lz @ZynP(yn‘Xy 90)
n|Pp=0Yn
= 14
T Y S P.X,00) 1
n|Pp=0Yn
Ny,
Z Z Xn (yn = C‘Xv 60)
e =""1% e=0,1 (15)
> Z P(yn = c|X, O0)
n=1i=
N'L
Z > (kn; = pe)(xn; — )" P(yn = X, ©o)
EC:n 14i=1 7620,1
Zl Z P(yn = c|X, Oo)
n 1=
(16)

Class inference: After learning model parameters, we can
infer hidden class variables by maximizing the overall prob-
ability. A naive approach that enumerate all combinations
of class assignment is infeasible due to the exponential cost.
We use a dynamic programming based method called max-
sum [29]. The process is similar to the sum and product
algorithm above. The main difference is that instead of using
sum operation, we need to use max operation in message
propagation, and also memorize the optimal variable val-
ues. We omit the details due to space limit.

3.4 Computational Performance Tuning

Time complexity of Algorithm 2: The cost includes contour
tree traversal, message calculation, marginal probability
calculation, and parameter update. Tree traversal cost is
O(Nt) where Nt is the number of collapsed contour tree
nodes. Message calculation for the nth contour tree node
is O(N,2%), where N, is the number of feature nodes for
tree node n, and d is the in-degree. The exponential term 2¢
comes from the sum of products on all parent combinations.
The term N,, comes from the a§§regatlon over individual
feature nodes in P(x,|yn) = [, P(Xn,|yn) as well as in
updating . and X.. Thus, the cost per iteration is O(N2%)
where N is the total number of feature nodes or pixels
(N > Nr). The overall cost is O(N2?I) where I is the
number of iterations.

From the analysis above, we can see that the total cost
is linear to the total number of feature nodes N instead
of the number of collapsed contour tree nodes Np, due
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to the need of aggregating over individual feature nodes.
To improve computational efficiency, we propose to pre-
aggregate feature node values for each contour tree node
(class node) once, and later to use the pre-aggregated results
in message calculation. In this way, the remaining cost after
pre-aggregation is O(Nr) instead of O(V). Pre-aggregation
can be done during contour tree node collapsing.

The next question is how to do the pre-aggregation
correctly (returning the same final results). In fact, there
are only three parts involving aggregation over feature
nodes: calculating P(x,|y,) in Equation 17, updating .
in Equation 15, and updating X, in Equation 16. Our goal
here is to compute these three parts based on pre-aggregated
feature nodes over each class node (x,,;, with 1 < n; < N,,).
The specific process is described in Theorem 1.

N
T N,
log P(xn|yn) = log H P(xn;lyn) = ff(mlog(%r) +log|Xy.,. 1)

=1

N,
1 <= _
= 5 DG = 1) 8y (k= 1)
i=1

(17)

N, Ny
Theorem 1. Assume A, = Y. Xp, XL, By = Y Xy, Cp =

i=1 i=1
N,,. We can calculate Equation 15, Equation 16 and Equation 17
based on pre-aggregated results A,, B,, and C,, on each class
node n.

Proof. Equation 18, Equation 19, and Equation 20 show how
to calculate Equation 15, Equation 16 and Equation 17 based
on pre-aggregated values A,,, B,, and C,,. Note that (-, -) is
inner product between two matrices. We omit details due to
space limit.

(18)

Nn,
g Xn,;, = By
i=1

N,
> kni 1) (Kny =) " = Ap—Bppl —(Bppl) T +Crpopl (19)
=1

N,

Z(x’ni - ”’yn)TE;nl (an‘ - l‘l‘yn) = <E;nlv An - Bn“gw - (BWHZW)T

i=1

+ N"”yn “Z;)
(20)

O

Time complexity of refined algorithm: Pre-aggregation part
(i.e., computing A,,, By, and C,, for all contour tree node
n) is O(N), but this can be done for only once during
contour tree construction and node collapsing. After pre-
aggregation, the time complexity for learning and inference
part is reduced from O(2¢N - I) to O(2¢ Nz - I) where d
is node in-degree. Since N is the number of contour tree
nodes after node collapsing, it is significantly smaller than
the total number of pixels N.

3.5 Using HMCT for Post-processing

The original hidden Markov contour tree model is a
generative model based on the joint probability distribution
of both sample classes and features. Sample feature distri-
bution is conditioned on hidden class nodes (i.e., P(Xy|yx))-

Fig. 5: An illustrative example of the discriminative version
of hidden Markov contour tree

Sometimes in practice, we are given initial class proba-
bilities of test samples predicted based on their features
(i-e., P(yn|xy)) from an existing classifier (without knowing
about details in their feature values or training data). Such
initial class probabilities can be erroneous due to feature
noise and obstacles. In this case, we still hope to incorporate
the similar structural dependency between class labels like
before but cannot directly apply the HMCT model. Thus,
we extend the HMCT model into a post-processing version
called HMCT-PP. The input of HMCT-PP include initial
class probabilities predicted by an existing classifier based
on sample features as well as the dependency tree structure
between samples, the output is refined class probability after
incorporating the structural dependency between classes in
the tree. Since HMCT-PP directly models sample classes
conditioned on features, the model becomes discriminative.
We use the uncollapsed version of contour tree in HMCT-
PP because the initial class probability is provided for each
individual sample pixel.

3.5.1 Model Structure

An example of the new model architecture (HMCT-PP)
is shown in Figure 5. In the figure, white nodes represent
hidden classes of pixels and gray nodes represent the cor-
responding feature values. We can see that the same flow
dependency structure exists between hidden class nodes
(except that the nodes are uncollapsed), but arrow directions
between feature nodes and hidden class nodes are reversed
to make the model discriminative. In other words, the
hidden class layer is now conditioned on the feature layer.
The arrows from a feature node to its corresponding hidden
class note indicates the class probability of a sample (pixel)
based on relevant feature values. Such a design of the new
model structure is to allow the model to input initial class
probabilities based on feature values (P(y,|x;)). Note that
in this example, the hidden class node y,, of a sample is
conditioned on only its own features x,, for simplicity. The
idea can be extended to allow initial input class probabilities
of samples based on spatial contextual features such as
those from the U-Net model. The arrows between class
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nodes in the hidden class layer enforce structural depen-
dency between sample classes. The reason why we do not
use collapsed contour tree in the hidden class layer is that
every individual sample may have a unique initial class
probability based on relevant feature values in the model
input. Even though two samples are on the same contour
segment (i.e., their class nodes could have been collapsed in
a collapsed contour tree), their initial class probabilities may
differ. Using the uncollapsed contour tree in the hidden class
layer of HMCT-PP provides flexibility to allow such input
cases. It is worth noting that though the model has feature
nodes of all samples in the overall structure, the model
may not need the actual feature values in the input for
class inference, since the initial class probability P(y,|x,)
implicitly contains feature information.

3.5.2 Probabilistic Formulation

We now introduce the probabilistic formulation of the
revised discriminative model. Based on the conditional in-
dependence assumption captured by the model tree struc-
ture in Figure 5, the overall conditional probability of all
sample classes given all sample features P(Y|X) can be de-
composed into local factors as shown in Equation 21, where
P(yn|yp, , X) represents the conditional class probability of
a sample given its relevant features and parents’ classes.
For a sample without parents (i.e., leaf nodes in the contour
tree), yp, = . If the input initial class probabilities of sam-
ples are produced by an ii.d. classifier (i.e., the initial class
probability of a sample is based on their its own feature),
then we can assume P(y,|yp,,X) = P(yn|yp,,%xn). Oth-
erwise, if the input initial class probabilities of samples are
produced by a spatial contextual classifier, we can assume
that P(yn|yp,,X) = P(yn|lyp,,Xs(n)), where Xg(,) is the
spatial contextual features for sample n. For example, for
the U-Net model, the spatial context for a pixel is all the
pixels in the input image chunk. However, we still need to
estimate the local factors, which we will discuss next.

P(Y|X) = HP(yn‘yanx) (21)

We first discuss how to estimate the local factors in the
case that the input class probabilities of pixels are provided
by an i.i.d. classifier, i.e., the input class probability of each
pixel is based on its own feature (P(y,|X) = P(yn|xn)).
Many i.i.d. classifiers such as decision tree, random forest,
and gradient boosted model fall into this category. This
also corresponds to the example of model structure in
Figure 5. The corresponding estimation of local factors in
Equation 21 is shown in Equation 22. The deductions in the
second row and the third row are based on Bayes’ theorem
and the product rule. In the third row, the local factor
I1,, P(ynlyp, , xn) is expressed by P(y,|x5), P(yp, |yn) and
P(yp, |xn). In the fourth row, we make an approximation
that P(yp,|x.) = P(yp,, i.e., the classes of parent nodes
yp, are independent from the feature of the current node
Xy. This approximation is reasonable based on the model
structure in Figure 5. In the fifth row, we use Bayes’ theo-
rem again to express P(yp, |yn) by P(yn|yp,) and P(yn).
Finally, we cancel out the term P(yp,) in both numerator
and denominator and get the expression in the last row.

In this expression, the local factor is expressed by the
class probability of a sample conditioned on its feature
P(yn|x,), class transitional probability from physical con-
straints P(y,|yp, ) and the marginal class probability of a
sample P(y,). Among these factors, P(y,|x,) is given as
inputs from an existing classifier, e.g., decision tree, random
forest or gradient boosted tree. P(y,|yp, ) can be computed
by a hyper-parameter p as in the original HMCT model.
Based on the physical constraint, we can set p close to 1 (e.g.,
p = 0.99999). (Note that for leaf nodes without parents, the
factor P(y,|yp, ) in the numerator cancels out with factor
P(yy) in the denominator.) For marginal class probability
P(yy,), it is hard to estimate for all individual samples. We
make a further approximation that P(y,) is specified by
a fixed parameter for all samples, ie, P(y, = 1) = 7,
where 7 can be set as 0.5. In the final expression, the term
P(yn|x,) incorporates the local class probability based on a
sample’s feature itself, and the term % incorporates
the effect of adding structural dependency on a node’s
class probability. In this way, the class label of one node is
determined not only by the local feature information itself
but also the class labels at other locations based on the
physical constrains.

HP Ynlyp,,Xn)

I

— H ynlxzpn | )z::) |yn) N
~ H ynlj; ypny)m |yn)

_ 1:[ (ynlxn)(lgiy;vn )( (iJnlym)

_ 1:[ ynlxn)(lg;’gnlym)

We now discuss the case that the input class probabilities
of pixels are provided by a spatial contextual classifier
such as the deep learning model U-Net [30]. In this case,
P(yn|X) = P(yn|Xg(n)), where S(n) is the set of contextual
pixels being used in predicting the class P(y, ). In general,
we can follow the same deduction as in the case above
by replacing x,, by xg(,). The only difference is that the
approximation in the fourth row is less accurate in theory
now since the parents’ classes may be dependent on the
current sample’s feature in a spatial contextual classifier.
But the final expression is still very intuitive. The term
P(yn|xs(n)) reflects the initial class probability. The term

% reflects the effect of adding structural dependency

on a node’s class probability.

3.5.3 Class Inference

The class inference can be done based on the probabilis-
tic formulation of the joint conditional distribution P(Y|X)
as expressed in Equation 22. The problem is non-trivial due
to the combinatorics of all possible classes of tree nodes.
We use the same message propagation method called max-
sum [29] as in HMCT. The main idea is to use dynamic
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programming to only memorize the current maximum class
assignment along a tree traversal order. The only difference
from HMCT is that the messages are defined differently
due to the change of the terms in the local factors. We do
not discussed the details of the inference algorithm due
to space limit. For class inference, we use fixed hyper-
parameters without parameter learning since the model is
post-processing on the outputs of an existing classifier. As
discussed in the probabilistic formulation section, there are
only two hyper-parameters in the revised model HMCT-PP:
class transitional probability p and approximated marginal
class probability 7. For the hyper-parameter p, we can
easily set a value that is close to 1 based on the physical
constraint. The hyper-parameter = (P(y, = 1) = ) is less
straightforward. Since the term appears in the denominator
of the term M, a lower value of m enhances the
chance of nodes be?ng inferred as class 1 (flood). In practice,
the value of 7 can be selected based on a rough estimation of
the flood extent over the area (7 should be small if the flood
class is largely under-estimated in the original classifier).
For example, in the flood mapping application as tested in
this paper, the flood class is often under-estimated by many
classifiers because pixels of tree canopies overlaying flood
water are often mistakenly classified into the dry (non-flood)
class. Thus, we should use a generally smaller 7 (e.g., 0.1).
In the case of lacking such prior knowledge, we can choose
to set m = 0.5 (no preference for either class). We test the
sensitivity of the class inference algorithm to the two hyper-
parameters in the evaluation.

4 EVALUATION

In this section, we compared our proposed method
with baseline methods in classification performance on two
real world datasets. We also evaluated the computational
scalability of our method, particularly on the effect of tree
node collapsing. Experiments were conducted on Intel(R)
Xeon(R) CPU E5-2687w v4 @ 3.00GHz, 64GB main memory,
and Windows 10. Unless specified otherwise, we used de-
fault parameters in open source tools for baseline methods.
Candidate classification methods include:

e Non-spatial classifiers with raw features: We tested
decision tree (DT), random forest (RF), maximum
likelihood classifier (MLC), and gradient boosted
tree (GBM) in R packages on raw features (red,
green, blue spectral bands).

e Non-spatial classifiers with additional potential
field feature (elev.): We tested DT, RF and MLC here.

e Non-spatial classifier with post-processing label
propagation (LP): We tested DT, RF and MLC based
on label propagation with 4-neighborhood [31].

e Markov random field (MRF): We used open
source implementation [32] based on the graph cut
method [33].

e Deep learning: We used U-Net [30] implemented in
Python and Tensorflow (source codes [34]). We used
a batch size of 16, a dropout rate of 0.2, and a learning
rate of 0.0001. We trained the model in 50 epochs. The
model uses double convolution layers with batch-
normalization. The downsample path contains five

pooling layers. We used a loss function based on the
dice coefficient and the Adam optimizer.

o Hidden Markov Tree (HMT): We used HMT [22] in
C++.

o Hidden Markov Contour Tree (HMCT): This is
our proposed methods. Both collapsed (HMCT-C)
and uncollapsed (HMCT-UC) versions were imple-
mented in C++.

e Hidden Markov Contour Tree - Post Processing
(HMCT-PP): This is our TKDE extension on dis-
criminative HMCT model as post-processing imple-
mented in C++.

Dataset description: We used two flood mapping datasets
from the cities of Greensville and Grimesland in North
Carolina during Hurricane Mathew in 2016. Explanatory
features were red, green, blue bands in aerial imagery from
NOAA National Geodetic Survey [35]. The potential field
was digital elevation map from the University of North
Carolina Libraries [36]. All data were resampled into 2 meter
by 2 meter resolution. The number of training and test
samples were 5000 per class (flood, dry) in both datasets.
The test region size was 1856 by 3149 in Greensville and
2757 by 3853 in Grimesland. Training samples in Greensville
were drawn beyond but close to the test region. Training
samples in Grimesland dataset were drawn far away from
the test region to evaluate model generalizability. Note that
for the deep learning method U-Net, we had to provide
extra training set in form of contiguous segmented flood
imagery. We used 240 image blocks (each of a size of 224 by
224) for training, and 60 blocks for validation.

4.1 Classification Performance Comparison

Results on the Greensville dataset were summarized in
Table 2. Decision tree, random forest, gradient boosted tree,
and maximum likelihood classifier achieved overall F-scores
between 0.69 and 0.72 on raw features. Adding the elevation
feature improved the overall F-score dramatically. The im-
provement was due to the relatively lower elevations among
flood class pixels. However, the recall of the flood class
was still mostly below 0.7 even after adding the elevation
feature. The reason is that the right elevation threshold in
models differ between training samples and test samples.
Post-processing based on label propagation (LP) slightly im-
proved performance of non-spatial classifiers (MLC) due to
the removal of salt-and-pepper noise errors. Similar results
were found in Markov random field. The deep learning
method (U-Net) outperformed non-spatial classifiers (with
an F-score of 0.84) due to its capability to learn complex tex-
tures from aerial images. HMT performed poorly with very
low precision for the dry class and low recall for the flood
class, meaning that it mis-classified a significant amount of
flood class samples into the dry class. Further investigation
showed that many large scale obstacles (tree canopies with
dry class features) in the flood area biased the learning
and inference of HMT model. In contrast, HMCT models
performed significantly better. The reason was that HMCT
model flow dependency of locations on two sides of the
river in separate tree branches (conditionally independent
from each other), mitigating the impact of feature obstacles
on model learning and inference.
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Results on the Grimesland dataset were summarized in
Table 3. In this dataset, training samples were drawn far

TABLE 2: Classification on Real Dataset in Greenville, NC away from the test region to evaluate model generalizabil-

Classifiers  Class  Precision Recall F  Avg F ity. We can see that most non-spatial classifiers performed
DT+Raw 1:IIDryO1 828 8.2;; S.Zi 0.69 poorly except for GBM and MLC (overall F-score 0.73 and
DOO o, T 0.76). Adding elevation features improved DT and RF but
RF+Raw Florgd 0.94 045 o061 069 dggraded MLC. This is beca}lse training area was overall
GBMAR Dry 0.72 073 0.2 07 higher than the entire test region. Thus, elevation thresholds
TRAW T Flood 0.73 072 072 ' learned from training area were not generalizable to test
MLC+Raw FIIDry f 8;; 822 8;91 0.77 area. Post-processing also had mixed effect on non-spatial
Dor(; 0:76 100 0:87 classifiers, because it sometimes mistakenly smoothed out
DT+elev. Flood 1.00 070 082 0.84 corrected classified samples. U-Net outperformed the other
RE+elev. Flljryd (1)33 (1)22 8;; 0.81 ’Fraditional nqn—spatial models due to it's capability of learn-
DOO 5= 055 ing complex image textures. HMT again performed poorly
MLC+elev. Florg’d 0.97 059 o073 078 due to the same reason as in Greensville dataset. HMCT
DT+LP Dry 0.64 096 077 (.o outperformed others with an overall F-score of 0.94. HMCT
Flood 0.93 046 061 i showed better generalizability because its flow dependency
RF+LP Flljorgd (1)83 égg 823 0.69 was based on relative elevation values in test region. In
Dr 0 096 082 HMCT, training samples were only used for providing a
MLC+LP Y ' ' : 0.79 it
Flood 0.94 0.63  0.75 reasonably well initial model parameters {p., X.|c = 1,2}
Dry 0.71 0.98 082 Sensitivity of HMCT to initial parameters: We con-
MRF Flood 0.96 0.60 0.74 0.78

Doro 05 R ducted sensitivity of our HMCT (with node collapsing)
U-Net Flog’d 081 090 o085 084 model to different initial parameter values on prior class
Dry 0.60 099 075 probability 7 and class transitional probability p (the param-
HMT 0.63 e 1 .
Flood 0.98 034 050 eters of {u,., X.|c = 1,2} were initialized based on maxi-
HMCT-UC Flljorgd 832 832 822 0.96 mum likelihood estimation on the training set). Due to space
: ' : limit, we only showed results on the Greensville dataset.

HMCT-C Dry 0.97 0.96 0.96 0.96 . ) T ' SVIL
Flood 0.96 097  0.96 ) First, we fixed initial p = 0.99 and varied initial 7= from

0.1 to 0.9. Results of converged values of p together with
their corresponding final F-scores were shown in Figure 6(a-
b). It can be seen that our HMCT model was quite stable
with different initial = values. Similarly, we fixed initial

TABLE 3: Classification on Real Data in Grimesland, NC = 0.5, and varied initial p from 0.2, 0.3, to 0‘99' Results
in Figure 6(c-d) showed the same trend. In practice, we can

Classifiers  Class  Precision Recall F  Avg F select an initial 7 value around 0.5 and a relatively high
DT+Raw P 0.53 092 067 7 initial p value such as 0.9 (because flood pixels’ neighbor is
Flood 0.69 0.17 0.27 ) likel b dd ial lati
Dry 054 098070 more likely to be flood due to spatial autocorrelation).
RE+Raw o024 0.90 018 030 090 Parameter iterations and convergence in HMCT: Here
Dry 0.69 084 076 we fixed the initial 7 = 0.5 and initial p = 0.99, and mea-
CBM+Raw  giood 079 062 o070 973 itorati
DOO o T sured the parameter iterations and convergence of HMCT
MLC+Raw Y 087 06l o7 076 (with node collapsing) on the Greensville dataset. Our con-
DTl Dry 0.79 055 066 -9 vergence threshold was set 0.001%. The values of 7 and p
TV Flood 0.66 0.85 0.72 ) at each iteration were summarized in Figure 7 (we omitted
RE-+elev. Flljryd égg (1)33 8‘% 0.58 L., X due to the large number of variables. The parameters
Dor(; 05a 088 067 converged after 14 iterations. The converged value of p was
MLC+elev. gy 069 026 038 052 close to 1 as expected.
Dry 0.52 0.98 0.67
DT+LP pood 083 009 o017 04
RE+LP Dry 053 100 069 45 4.2 Computational Performance Comparison
Flood 0.96 0.11 0.21 .
MLCALP Dry 071 0% 081 We evaluated the computational performance of the
" Flood 0.93 0.60  0.73 ) proposed HMCT model. We particularly compared the time
MRE Dry 0.70 097 081 4 ¢ costs of HMCT-UC (without node collapsing) and HMCT-
Flood 0.96 0.57 0.72 d the eff f d 1 .
Dry 08T 090085 C to understand the effect of node collapsing and pre-
U-Net Flood 0.89 077 o083 084 aggregation. The time cost of HMT should be very close
Dry 057 096 072 to HMCT-UC since they both have the same number of
HMT Flood 0.89 0.27 0.41 0.56 i i i
DOO 057 I m—E tree nodes and same set of node operations in learning and
HMCT-UC Florg d 0.93 097 095 0.95 inference. Thus, we did not include the cost of HMT to avoid
HMCT.C Dry 0.99 094 096 op redundancy. For HMCT-C, we further controlled the maxi-
) Flood 0.94 099 097 ) mum in-degree (the number of parents) for each tree node.

This was done simply by stopping the collapsing operations
on a node when its in-degree reached the maximum. We
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compared the two methods on different input data sizes,
different number of iterations in parameter learning, and
different settings of maximal in-degree per node (in HMCT-
C only).

Results were summarized in Figure 8. We fixed input
parameters p = 0.99 and © = 0.3. First, we chose the
number of iterations as 5 and the maximum allowed in-
degree in HMCT-C as 5. We varied the size of the test
region from around 2 million pixels to around 10.6 million
pixels. Results in Figure 8(a) showed that the time costs
of both HMCT-UC and HMCT-C increased almost linearly
with the test region size. The rate of increase in HMCT-C
was smaller. This was consistent with the O(Ny) term in
our cost model. Note that Ny is much smaller in HMCT-
C due to node collapsing. HMCT-C ran very fast, costing
less than 30 seconds on over 10 million pixels. In the second
experiment, we chose a test region with around 10.6 million
pixels, and set the maximum allowed in-degree in HMCT-
C as 10. We varied the number of iterations in parameter
learning from 1 to 20. Results in Figure 8(b) showed that
the costs of both methods increased almost linearly with
the number of iterations. This is consistent with our cost
model. In the third experiment, we chose a test region with
around 10.6 million pixels, and set the number of iterations
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Fig. 8: Computational performance of HMCT-C versus
HMCT-UC on varying test region sizes (a), number of
iterations (b), and maximum node in-degree (c)

TABLE 4: Time costs of individual components (seconds)

HMCT-UC HMCT-C  HMCT-C

Max in-degree N/A 4 16
Tree construction 13.47 13.47 13.47
Node Collapsing N/A 6.64 6.64
Pre-aggregation N/A 0.28 0.28
Parameter learning 152.51 1.80 394.01
Class inference 10.71 0.21 21.09
Total time 176.69 2241 435.49

as 5. We varied the maximum allowed in-degree in HMCT-
C from 4 to 16 (we did not choose values smaller than 4
because the maximum in-degree of uncollapsed tree nodes
is already 4 due to the four-neighborhood we used). Results
in Figure 8(c) showed that as the maximum allowed in-
degree increases, the cost of HMCT-C grew exponentially,
exceeding the cost of HMCT-UC when the maximum in-
degree was 16. This is consistent with the 2¢ term in our
cost model.

Table 4 showed detailed time costs for individual com-
ponents in HMCT algorithms. We chose an input data
with a test region of 10.6 million pixels, and the number
of iterations as 5, and a max in-degrees of 4 and 16 for
HMCT respectively. From the table, we can see that when
the max in-degree is 4, learning and inference in HMCT-
C were significantly faster than HMCT-UC due to node
collapsing. However, when the max in-degree is 16, the costs
of HMCT-C was almost twice as that of HMCT-UC, due to
the exponential cost in terms of in-degree (2¢). In practice,
we can set the maximum allowed in-degree as 4.

We also measured the computational cost of U-Net
model on one NVIDIA Tesla P100 GPU. The training set
contains 240 image chunks with an equal size of 224 by
224 pixels. The validation set contain 60 image chunks. The
total time of model training is 208 seconds for 50 epochs.
The time costs of predicting classes on test images are 2.44
seconds for the Grimesland dataset (204 image chunks) and
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1.04 seconds for the Greensville dataset (112 image chunks).

4.3 Evaluation of HCMT as Post Processing

Classification performance: We now evaluate the
HMCT as a post-processor on top of class probability pre-
dictions from five existing methods: decision tree, random
forest, maximum likelihood classifier, gradient boosted tree
and U-Net. Note that we did not run HMCT-PP on top of
HMCT itself because HMCT class inference is based on the
maximum likelihood method instead of drawing a threshold
(e.g., 0.5) on class probabilities of individual pixels. In other
words, the inference algorithm of HMCT only tells which
class assignment of all pixels has the highest overall likeli-
hood without providing the class probabilities of individual
pixels. Results on the two datasets were summarized in
Table 5 and Table 6 respectively. For initial parameters, we
set p = 1 — 107 and chose 7 based on the situation. If
the pre-classified flood extent is largely under-estimated,
then we set 7 to a low value (e.g., 7 = 0.1 for DT, MLC,
GBM) to enlarge the extent. If the pre-classified flood extent
is moderate, then we set a moderate value of 7 (e.g., 7 = 0.4
for U-Net). From the two tables, we can find that HMCT-PP
significantly enhanced the performance of base classifiers,
improving F-cores from below 0.8 to above 0.9. Among
all the base methods, HMCT-PP with U-Net achieved the
best performance with an F-score of 0.99 and 0.96 in two
datasets. The reason for the significant improvement is that
HMCT can utilize the high-confident predictions of flood
areas from base methods and leverage the class dependency
structure from topography constraint to fill the gap of
missing flood extent or fine tune the correct flood extent
boundary.

One important observation is that HMCT-PP with U-
Net outperforms HMCT-C itself. The reason is that HMCT
assumes that explanatory feature values of samples in each
class follows an i.i.d. Gaussian distribution. This assumption
can be over simplistic for our real-world datasets. The main
advantage of HMCT is that it captures spatial structural de-
pendency between different class nodes in the contour tree.
In other words, HMCT models P(y,|yp, in a sophisticated
contour tree structure but makes a simplistic assumption
on P(x,|y,) (ie., iid. Gaussian). In contrast, HMCT-PP
with U-Net combines the strength of HMCT in modeling
P(yn|yp, in a contour tree structure and the strength of
U-Net in learning P(y,,|X) with spatial contexts of feature
X. Thus, we observed that HMCT-PP with U-Net has an
average F-score of 0.99, higher than the average F-score of
0.96 in HMCT-C.

TABLE 5: HMCT as post-processing on Greenville dataset

Classifiers Class  Precision Recall F Avg. F
HMCTPP+DT ¥ 00 000 0 oo
HMCTPP+sMLC 0, 000 091 0%% 003
HMCTPP+RE Y 085 08 070 o1
HMCT-PP+GBM Flljorg'd 8:22 8:28 8:33 0.93
HMCTPP+UNet % 008 bos 099 0%

TABLE 6: HMCT as post-processing on Grimesland dataset

Classifiers Class Precision Recall F Avg. F
HMCTPP+DT Y 056 081 oeg 091
HMCTPP+MLC D 088 090 00 003
HMCTPP+RE D 086 999 095 0
HMCTPPeGBM % (2 (98 (e 096
HMCT-PP+U-Net F]i)rg' f 8:22 8:32 8:32 0.9

Sensitivity to initial parameters: We conducted sensi-
tivity analysis of our HMCT-PP on the five base models
to different values of input parameters p and 7. Due to
space limit, we only showed results on the Grimesland
dataset. When evaluate the sensitivity to 7, we fixed the
parameter p = 1 — 10710 and varied the value of 7 from
0.1 to 0.9. The results on five base methods are shown in the
left sub-figures in Figure 9, Figure 10, Figure 11, Figure 12,
and Figure 13 respectively. From the results, we can find
that the initial value of m made a significant effect on the
final classification performance. For HMCT-PP on DL and
RE, only m = 0.1 is effective. The reason is that the initial
classified flood map has very low recall (under-estimation).
Thus, we need to set m small enough to compensate for
the errors. For HMCT-PP with MLC and GBM, the range of
effective 7w values are wider (0.1 to 0.4 for MLC, and 0.1 to
0.3 for GBM). The reason is likely that the under-estimation
in initial flood map is not very significant, and thus we do
not necessary set a very small value of 7 to compensate it.
For U-Net model, we can find that the performance is not
very sensitivity to 7 (m = 0.4 showed the best performance).
The reason is that the initial classification in U-Net is mostly
confident and correct (F-score is 0.84), and errors are largely
on the flood extent boundary. From the analysis, values of 7
can be chosen based on an initial guess on whether flood is
under-estimated or not.

Visualized maps: The above analysis is further con-
firmed by the visualization of classified flood extent maps
from different approaches shown in Figure 14 and Figure 15
respectively. The left column of sub-figures show the flood
maps from base classifiers of DT, MLC, RF, GBM, and U-
Net respectively, where brown color represents flood and
green color represents dry. From the results, we can see
that all methods except U-Net shows a significant under-
estimation of flood extent due to the tree canopies in the
area. This confirms the low recalls in Table 2 and Table 3. The
post-processed flood maps by HMCT-PP filled a significant
portion of the gap. We can also find that the classified flood
maps from U-Net successfully identified the flood areas, but
the flood extent boundaries were too coarse. The reason is
that U-Net classified the image patch-wise, and very often
an entire patch was predicted as flood. The results of HMCT-
PP with U-Net showed better flood extent boundaries based
on topography.

5 CONCLUSIONS AND FUTURE WORKS

In this paper, we propose hidden Markov contour tree
(HMCT), a spatial structured model that can capture flow

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on July 04,2020 at 23:23:07 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3002887, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 8, AUGUST 2018

Sensitivity to Intial Parameter

Sensitivity to Initial Parameter p

Lol 1o
S \ 4
3 0.8 \ 508
w N\ o
- 06 : L 06
& -"'X--*-_X_ g
S04 A== KX | Dy,
g g%
c f=
8 0.2 S 0.2
0.0 T T T T 0.0
0.0 0.2 0.4 0.6 0.8 10-2 107 10~ 10" 107'°
Initial m Initial 1-p
(@) Fixp=1-10"° (b) Fix 7 = 0.1
Fig. 9: Sensitivity of HMCT-PP+DT to 7 and p
10 Sensitivity t Intial Parameter n Sensitivity to Initial Parameter p
" L o 10
gos8 AN S 0.8
g o
w \ »n
'Sy 0
- 06 MoHesemse | K06
2 1]
§ 04 o4
c >
§o2 §o2
0.0 T T T T 0.0
0.0 0.2 0.4 0.6 0.8 1072 10 10° 10® 107'°
Initial Initial 1-p
(@ Fixp=1-10"° (b) Fix 7 = 0.1
Fig. 10: Sensitivity of HMCT-PP+MLC to 7 and p
10 Sensitivity to Intial Parameter n Sensitivity to Initial Parameter p
v X 10
3 o
g 08 \ 508 .7
w \\‘ a5 x
u ;
%06 \ L o6
& X‘“X--)(._ g
Coa AN D04
> g
go2 §o2
0.0 0.0
0.0 0.2 0.4 0.6 0.3 1072 107 107 10® 1071°
Initial Initial 1-p
(@) Fixp=1-10"° (b) Fix 7 = 0.1
Fig. 11: Sensitivity of HMCT-PP+RF to 7 and p
10 Sensitivity to Intial Parameter i Sensitivity to Initial Parameter p
P o 10
B =
';_, 0.8 N S 0.8
| N 0
u ;
- 0.6 *-_X"x‘"x--_ %06
5 o g
E 04 | Soa
>
c c
8 0.2 3 0.2
0.0 X
0.0 0.2 0.4 0.6 0.8 0.0 102 10% 10° 10°% 10°%°
Initial Initial 1-p
(@ Fixp=1—-10"° (b) Fix 7 = 0.1
Fig. 12: Sensitivity of HMCT-PP+GBM to 7 and p
10 Sensitivity to Intial Parameter n Sensitivity to Initial Parameter p
P B e A A 10
508 g 0.8
w &
06 L 06
g @
S04 o
g g 5 04
>
= f=
S 0.2 S 0.2
0.0 0.0
0.0 0.2 0.4 0.6 0.8 10-2 107 10~ 10" 107'°
Initial Initial 1-p

(@ Fixp=1-10"° (b) Fixed 7 = 0.4

Fig. 13: Sensitivity of HMCT-PP+U-Net to 7 and p

12

(a) High-resolution satellite im-
agery in Greenville, NC

(b) Digital elevation

(d) HMCT-PP with decision
tree

(c) Decision tree result

(e) MLC result (f) HMCT-PP with MLC

(g) RF result (h) HMCT-PP with RF

(i) GBM result (j) HMCT-PP with GBM

(k) U-Net

(1) HMCT-PP with U-Net

Fig. 14: Results on Greenville flood mapping (flood in
brown, dry in green, best viewed in color)

dependency on a potential field surface. We propose ef-
ficient algorithms for model parameter learning and class
inference. We also extend the HMCT model into a post-
processor that can enhance the classified results from other
models based on the topography constraints. Evaluations
on real world data show that our HMCT algorithms are
scalable to large data sizes, and can achieve higher classifi-
cation performance over existing methods for hydrological
applications such as flood mapping.

In future work, we plan to explore integration of deep
learning framework with our HMCT. We also plan to ex-
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plore parallelization of the proposed HMCT learning and
inference algorithms based on OpenMP in multi-core plat-
forms. For example, we can potentially design a thread
pool to maintain (independent) tree node operations from
different sub-branches in the tree. Another potential future
work is to explore generalization of the proposed model
formulation to other applications scenarios such as ana-
lyzing potential energy landscapes in material science [37],
[38] and protein surface topology in biochemistry [6], [39].
Further studies are needed to explore how to incorporate
the domain knowledge into the customization of our model
structure (e.g., formulation of class transitional probability
in a contour tree).
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Fig. 15: Results on Grimesland flood mapping (flood in
brown, dry in green, best viewed in color)
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