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A Walsh diffusion on Euclidean space moves along each ray from the origin, as a solution to a stochastic

differential equation with certain drift and diffusion coefficients, as long as it stays away from the origin.

As it hits the origin, it instantaneously chooses a new direction according to a given probability law, called

the spinning measure. A special example is a real-valued diffusion with skew reflections at the origin. This

process continuously (in the weak sense) depends on the spinning measure. We determine a stationary

measure for such process, explore long-term convergence to this distribution and establish an explicit rate

of exponential convergence.
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1. Introduction

1.1. Informal description of Walsh Brownian motions and Walsh diffusions

Fix a positive integer d ≥ 1, a dimension of Rd with Euclidean norm

‖x‖ :=
(

x2
1 + · · · + x2

d

)1/2
.

Take a Borel probability measure μ on the unit sphere S := {z ∈ Rd | ‖z‖ = 1}. The origin in

Rd will be denoted by 0, to distinguish it from the zero on the real line. With rays Rθ := {sθ ∈
Rd | s ≥ 0}, θ ∈ S, we see Rd =

⋃

θ∈SRθ . Take a filtered probability space (�,F, (Ft )t≥0,P)

with the filtration satisfying the usual conditions. A Walsh Brownian motion in Rd with spinning

measure μ is an adapted, continuous stochastic process X = (X(t), t ≥ 0) which is informally

described as follows.

Let us take a one-dimensional reflected Brownian motion S = (S(t), t ≥ 0) with values in

R+ := [0,∞), starting from the origin and reflected at the origin. Its sample path can be split

into excursions in a measurable way. For every excursion, choose an S-valued random variable

θ distributed in μ, independent of these variables for other excursions and of the underlying

reflected Brownian motion S. Define the d-dimensional stochastic process X(t) = θS(t) for each

t in the open interval which the corresponding excursion straddles, and X(t) = 0 for all other t

(where S(t) = 0). We call X = (X(t), t ≥ 0) a Walsh Brownian motion in Rd with spinning

measure μ.
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A particular case is the skew Brownian motion, when the measure μ is supported on two op-

posite polar points (North Pole and South Pole) on S. In this case, the process is essentially

one-dimensional. In fact, the skew Brownian motion is usually defined as an R-valued process,

where, instead of North and South Pole, we choose the positive and negative half-line. For exam-

ple, if the probabilities attached to the North and South Poles are equal to 1/2, then we recreate

a standard Brownian motion. Usually, Walsh Brownian motions in R2 are considered in the lit-

erature, however, it was originally pointed out by Walsh in Walsh [34] that the construction and

the corresponding theory for the general d-dimensional case is basically the same as the case of

d = 2.

We can also construct Walsh diffusions, given the measure μ on S and some coefficients g :
Rd →R and σ :Rd →R+. Similarly to a Walsh Brownian motion, Walsh diffusions move along

the rays Rθ , θ ∈ S, that is, as long as this process is on the ray Rθ for a certain θ ∈ S, it behaves

as a solution of a stochastic differential equation (SDE) on (0,∞) with drift coefficient g(·, θ)

and diffusion coefficient σ 2(·, θ). If necessary, we stress their dependence on both θ and r = ‖x‖
by writing them as g(r, θ) and σ(r, θ). Note that the meaning of spinning measure μ for this

Walsh diffusion is slightly different from what we describe for the Walsh Brownian motion in

the above. More precisely, for every subset A ⊆ S, μ(A) is the share of local time accumulated

at the origin corresponding to the excursions of the Walsh diffusion on rays Rθ , θ ∈ A (see (2.5)

below).

Our primary purpose of study in this paper is the long-term convergence of the Walsh diffusion

to the stationary measure under appropriate conditions. Along the course, we examine in detail

the local behavior of the Walsh diffusions in the neighborhood of the origin, and examine the

Feller continuity and some other properties of Walsh diffusions.

1.2. Historical review

Walsh Brownian motion was introduced in Walsh [34] and further studied in Barlow, Pitman and

Yor [2], in the two-dimensional context (but the results are immediately transferred to Rd for

d > 2). In much of the existing literature, the support of the spinning measure μ is finite, that is,

suppμ = {θ1, . . . , θk} ⊂ S, where θ1, . . . , θk are k distinct points in S. In this case, Walsh Brow-

nian motion or Walsh diffusion has effective state space {rθi, i = 1, . . . , k, r ≥ 0}, and is some-

times called a spider. Filtrations generated by Walsh Brownian motion on a spider were studied

in Tsirelson [32], Watanabe [35]. A construction of Walsh Brownian motion and, more gener-

ally, a Walsh diffusion, on a spider via pinching points together was done in Evans and Sowers

[9]. Itô’s formula for Walsh Brownian motion with general spinning measure was proved in Hajri

and Touhami [15]. Stochastic calculus for general tree-valued diffusion processes is developed in

Freidlin and Sheu [12], Freidlin and Wentzell [13], Picard [23]. A Dirichlet form approach was

used in Chen and Fukushima [4] to construct Walsh Brownian motion with spinning measure

μ, and in Chen and Fukushima [3], Section 7.5, Section 7.6, for the spider. Here, we apply this

method of Dirichlet forms to find stationary measures of Walsh diffusions with general spinning

measure. We also use Dirichlet forms to construct reflected Walsh diffusions. Stochastic flows

and harmonic functions for Walsh Brownian motion were studied in Hajri [14] and Fitzsimmons

and Kuter [11], respectively. Walsh semimartingales and diffusions, with arbitrary spinning mea-

sure μ, were introduced in Ichiba et al. [16] and further studied in Karatzas and Yan [18] with
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control problems. Exponential ergodicity for a related class of Markov processes with random

switching was recently studied in Cloez and Hairer [5].

1.3. Overview of the paper

In Section 2, we introduce notation, define Walsh Brownian motions as well as Walsh diffusions,

and study some of their elementary properties. Section 2, for the most part, does not contain new

results; it is a review of Karatzas and Yan [18]. In Section 3, we construct Walsh diffusions using

a Dirichlet form and the method of one-point reflection from the paper Chen and Fukushima [4]

and the book Chen and Fukushima [3], Section 7.5, Section 7.6. This alternative construction

helps us to find a stationary measure for a Walsh diffusion (which is, however, not necessarily a

stationary distribution). In Section 4, we discuss continuous dependence of the law of a Walsh

diffusion X = (X(t), t ≥ 0) on the spinning measure μ and the initial condition X(0) = x ∈ Rd .

For the case of a Walsh Brownian motion, we quantify this continuity, effectively saying that

the law of a Walsh Brownian motion is a Hölder continuous function of μ with respect to a

Wasserstein distance on Rd .

In Section 5, we study additional properties of Walsh diffusions, which were not considered

in the previous paper Karatzas and Yan [18]: positivity of the transition kernel with respect to a

reference measure on Rd , and Feller continuity. In Section 6, we construct Lyapunov functions

for Walsh diffusions to show ergodicity: existence and uniqueness of a stationary distribution π ,

and convergence to π in the total variation norm (or even stronger norms) as t → ∞. Under some

more restrictive conditions, we also prove uniform ergodicity: exponentially fast convergence to

π as t → ∞.

Our main contribution is to find explicit estimates of the rate of exponential convergence for

Walsh diffusions, extending the ones in Lund, Meyn and Tweedie [19], Sarantsev [29] for re-

flected diffusions and jump-diffusions on a positive half-line. These results are then applied to a

non-reflected diffusion on the whole real line. We would like to stress that often, it is relatively

easy to prove that a diffusion process (or a discrete-time Markov chain) on Rd converges to its

stationary distribution exponentially fast, but difficult to find or estimate an explicit rate of expo-

nential convergence. Some partial results in this direction are provided in the papers Bakry, Cat-

tiaux and Guillin [1], Davies [6], Meyn and Tweedie [22], Roberts and Rosenthal [26], Roberts

and Tweedie [27,28].

2. Background and definitions

2.1. Notation

Recall that in Rd , the Euclidean norm is defined by ‖x‖ := (x2
1 + · · · + x2

d)1/2 for x =
(x1, . . . , xd). We shall denote the origin in Rd by 0 = (0, . . . ,0). Let S := {x ∈ Rd | ‖x‖ = 1}
and B := {x ∈ Rd | ‖x‖ ≤ 1} be the unit sphere and the unit ball in Rd . For every x ∈ Rd \ {0},
we write x = (r, θ) or simply x = rθ if r = ‖x‖ > 0 and θ = arg(x) := x/r ∈ S (polar coordi-

nates). We denote by (x)− the non-positive part of a real number x ∈R. We define the tree-metric
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as follows: for every x1, x2 ∈ Rd with ri := ‖xi‖, i = 1,2,

dist(x1, x2) :=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

r1, if r2 = 0;
r2, if r1 = 0;
|r1 − r2|, if r1r2 
= 0 and arg(x1) = arg(x2);
r1 + r2, if r1r2 
= 0 and arg(x1) 
= arg(x2).

(2.1)

This essentially means that we have the usual Euclidean distance on each ray Rθ but a con-

tinuous movement cannot jump between rays, except through the origin. One can think of it as

railroads converging to the central city; this is why it is sometimes also called the railway metric.

The corresponding topology is called the tree-topology. This topology is stronger than the usual

Euclidean topology. That is, convergence in the tree-topology means also convergence in the Eu-

clidean sense, but the converse is not true. Being an open, closed, or Borel set in the Euclidean

metric implies being, respectively, open, closed, or Borel in the tree metric, but not vice versa.

When we refer to Borel subsets of Rd below, we mean “Borel in the Euclidean topology”. The

property of boundedness is equivalent in these two metrics; but the property of compactness is

not, as described in the following remark.

Remark 2.1. In the Euclidean topology in Rd , a closed bounded set is compact. In the tree-

topology, this is no longer true in the general case. Here is a counterexample. {(1, θ) | θ ⊆ �} for

an infinite subset � ⊆ S is closed and bounded, but not compact in the tree topology. However,

if a set A ⊆ Rd is bounded and closed in the tree topology, and the set {θ ∈ S | ∃r > 0 : rθ ∈ A}
is finite, then it can be shown that the set A is compact in the tree topology.

We can define two concepts and spaces of continuity of function x : [0, T ] → Rd for every

T > 0.

(a) Continuity in the Euclidean norm ‖·‖; this space is denoted by C([0, T ],Rd), with the

norm

‖x‖T := max
t∈[0,T ]

∥

∥x(t)
∥

∥, x ∈ C
(

[0, T ],Rd
)

. (2.2)

For d = 1 we simply write C[0, T ], instead of C([0, T ],Rd).

(b) Continuity in the tree-metric (2.1); this space is denoted by Ct ([0, T ],Rd), with the metric

distT (x, y) := max
t∈[0,T ]

dist
(

x(t), y(t)
)

; x, y ∈ Ct

(

[0, T ],Rd
)

.

Fix a Borel subset B ⊆Rd ; then intB denotes the interior of B . For any Borel (signed) measure

ν on B and any function f : B → R, we denote by (ν, f ) the integral of f over B with respect

to ν. Given a Borel measurable function V : B → [1,∞), a finite, signed Borel measure ν on B

has the following V -norm:

‖ν‖V := sup
f :B→R

|f |≤V

∣

∣(ν, f )
∣

∣.

When V ≡ 1, this norm is called the total variation norm and is denoted by ‖·‖TV.
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For a continuous function f : [0, T ] →R, and δ > 0, we define the modulus of continuity:

ω
(

f, δ, [0, T ]
)

:= max
s,t∈[0,T ]
|s−t |≤δ

∣

∣f (t) − f (s)
∣

∣.

For every f : Rd → R, the radial derivative f ′(r, θ) at (r, θ) along the ray Rθ is defined by

f ′(r, θ) := lim
ε↓0

1

ε

[

f (r + ε, θ) − f (r, θ)
]

, r > 0, θ ∈ S.

For r = 0, we can also define such (one-sided) derivative in the direction of θ at the origin:

f ′(0, θ) ≡ f ′(0+, θ) := lim
ε→0

1

ε

[

f (ε, θ) − f (0, θ)
]

. (2.3)

Similarly, we can define f ′′, the second-order radial derivative. For every Borel subset A ⊆ S,

we define the function χA : Rd → R as follows:

χA(r, θ) :=
{

r, if r > 0, and θ ∈ A,

0, otherwise
= 1A(θ)r. (2.4)

Throughout this article, we operate on a filtered probability space (�,F , (Ft )t≥0,P), with the

filtration satisfying the usual conditions. The arrow ⇒ stands for weak convergence of proba-

bility measures or random variables. For example, we write Xn ⇒ X0 as n → ∞ for random

variables Xn, n = 0,1,2, . . . The symbol mes stands for the Lebesgue measure on the real line.

For an R+-valued continuous semimartingale Y = (Y (t), t ≥ 0) its local time at zero is

�Y :=
(

�Y (t), t ≥ 0
)

, �Y (t) := lim
ε↓0

1

2ε

∫ t

0

1[0,ε)

(

Y(s)
)

d〈Y 〉(s), t ≥ 0.

2.2. Definitions of Walsh semimartingales and Walsh diffusions

Now, let us take a real-valued continuous semimartingale U = (U(t), t ≥ 0) with mes{t ≥ 0 |
U(t) = 0} = 0 a.s.

Definition 2.1. An adapted, continuous (in the tree-topology), Rd -valued process X = (X(t),

t ≥ 0) is called a semimartingale on rays driven by U , if

mes
{

t ≥ 0 | X(t) = 0
}

= 0 a.s.,

and the norm ‖X(·)‖ of X(·) has the following Skorohod decomposition:

∥

∥X(t)
∥

∥ = U(t) + �‖X‖(t), where �‖X‖(t) = max
0≤s≤t

(

U(s)
)

−.

This process �‖X‖ = (�‖X‖(t), t ≥ 0), which is the semimartingale local time of ‖X‖ at zero,

will be also called the local time of X accumulated at the origin.
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Assume X is a semimartingale on rays driven by U . For every Borel subset A ⊆ S, we can

consider the following real-valued process: χA(X) = (χA(X(t)), t ≥ 0), where χA is defined

in (2.4). It follows from Karatzas and Yan [18], Theorem 2.12(ii), that χA(X) is a real-valued,

continuous semimartingale. In Karatzas and Yan [18], Definition 2.13, a Walsh semimartingale

is defined as follows.

Definition 2.2 (Walsh semimartingale). Take a semimartingale X on rays. Assume in the sense

of Definition 2.1, there exists a Borel probability measure μ on S such that, for every Borel

A ⊆ S, the local time of �χA(X) at the origin satisfies the “partition of local time” property a.s.

�χA(X)(t) ≡ μ(A)�‖X‖(t), t ≥ 0. (2.5)

Then the semimartingale on rays X is called a Walsh semimartingale with spinning measure μ.

See Ichiba et al. [16], Theorem 2.1, for a construction of such Walsh semimartingale with (2.5).

For example, as in the Introduction, if N and S are North and South Poles, respectively, then a

Walsh semimartingale with μ = pδN + (1 − p)δS corresponds to the skew Brownian motion on

the real line for p ∈ [0,1], where δ· is a Dirac measure; and the case p = 1/2 corresponds to the

usual Brownian motion; and the case p = 0 or 1 corresponds to a reflected Brownian motion.

Now, let us fix a measurable function 
 : S → (0,∞] with infS 
 > 0, and define the set

I :=
{

rθ | 0 < r < 
(θ), θ ∈ S
}

∪ {0}. (2.6)

This includes the case when some or all of the values of 
(θ) are infinite. For example, if 
(·) ≡
+∞, then I =Rd . The set I from (2.6) is open in the tree-topology, with the boundary

∂I :=
{


(θ)θ | θ ∈ S, 
(θ) < ∞
}

. (2.7)

Take Borel measurable functions g : I → R and σ : I → (0,∞), and a Borel probability measure

μ on S. Let W = (W(t), t ≥ 0) be an (Ft )t≥0-Brownian motion in one dimension.

Definition 2.3. An I-valued continuous adapted process X is called a Walsh diffusion associated

with the triple (g, σ,μ), if this is a Walsh semimartingale with spinning measure μ, driven by

U(t) :=
∥

∥X(0)
∥

∥ +
∫ t

0

[

g
(

X(s)
)

ds + σ
(

X(s)
)

dW(s)
]

, t ≥ 0. (2.8)

In this case, we say that g is the drift coefficient, σ 2 is the diffusion coefficient, and μ is the

spinning measure for X. For the case g ≡ 0 and σ ≡ 1, this is called Walsh Brownian motion,

associated with (0,1,μ), or simply Walsh Brownian motion with spinning measure μ.

Remark 2.2. The effective state space of a Walsh diffusion in I associated with (g, σ,μ), or

any Walsh semimartingale with spinning measure μ, is the following set:

Iμ :=
{

(r, θ) | 0 < r < 
(θ), θ ∈ suppμ
}

∪ {0}. (2.9)



Walsh diffusions 2445

In other words, we need to consider only rays Rθ which correspond to θ in the support of

measure μ. We always start this Walsh diffusion from X(0) = x ∈ Iμ, and define the function


 only on suppμ, and the coefficients g and σ only on the set (2.9). This distinction becomes

important in Section 5 of the current paper. In Sections 2–4, we just assume that I is the state

space.

2.3. Existence and uniqueness of Walsh diffusions

Definitions 2.2 and 2.3 are adapted from Karatzas and Yan [18], and extended to Rd . We shall

impose some assumptions.

Definition 2.4. A function ϕ : I → R is called locally bounded if supK |ϕ| < ∞ for every mea-

surable function R : S → (0,∞) such that

K :=
{

rθ | 0 < r ≤ R(θ)
}

∪ {0} ⊆ I,

or, equivalently, R(θ) < 
(θ) for θ ∈ S.

Assumption 2.1. The functions g,σ,σ−1 are locally bounded on I .

Under Assumption 2.1, it was proved in Karatzas and Yan [18], Section 3, that there exists a

weak version of the Walsh diffusion on I , associated with the triple (g, σ,μ), up to the explosion

time, that is, the first passage time of ∂I in (2.7). To simplify exposition, we make the following

assumption.

Assumption 2.2. For every initial condition X(0) = x ∈ I , there exists a weak version, unique

in law, of the Walsh diffusion X in I , associated with (g, σ,μ). That is, the moment τ of hitting

the boundary ∂I is a.s. infinite, that is, P(τ = ∞) = 1.

As mentioned earlier, a Walsh diffusion associated with (g, σ,μ) behaves on any ray Rθ as

a solution of a one-dimensional SDE with drift g(·, θ) and diffusion σ 2(·, θ), as long as it does

not hit the origin. When this process hits the origin, it instantaneously chooses the new ray

according to the spinning measure μ (or, more precisely, according to the formula (2.5), which

is apportioning the local time at the origin between the rays), independently of the past behavior.

It was shown in Karatzas and Yan [18], Proposition 4.2, that under Assumptions 2.1 and 2.2,

this Walsh diffusion X = (X(t), t ≥ 0) is, indeed, a Markov process. Denote its transition kernel

by P t (x, ·), t ≥ 0, x ∈ Rd . Define a family DI of measurable functions f : I → R which satisfy

the following (a)–(c):

(a) For every θ ∈ S, the function f (·, θ) is C2((0, 
(θ)), and continuous at r = 0;

(b) For every θ ∈ S, the derivative f ′(0+, θ) from (2.3) is well-defined. Moreover, the function

θ �→ f ′(0+, θ) is measurable and bounded on S;

(c) There exists an ε > 0 such that supθ∈Sr≤ε |f ′′(r, θ)| < ∞.

This is a more restrictive class of functions than the one described in Karatzas and Yan [18],

Definition 2.6; however, it will suffice for our purposes.
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From Karatzas and Yan [18], Theorem 2.12 (suitably adapted to the context of the sphere

S instead of a unit circle), and Definition 2.3, we get the following version of the Itô–Tanaka

formula

f
(

X(t)
)

= f
(

X(0)
)

+
∫ t

0

[

g
(

X(s)
)

f ′(X(s)
)

+
1

2
σ 2

(

X(s)
)

f ′′(X(s)
)

]

ds

+
∫ t

0

σ
(

X(s)
)

f ′(X(s)
)

dW(s)

+
[∫

S

f ′(0+, θ)μ(dθ)

]

�‖X‖(t), t ≥ 0

(2.10)

for every function f ∈ DI . Here, the one-dimensional Brownian motion W is taken from (2.8).

Using this version of the Itô–Tanaka formula, one can prove the following statement.

Proposition 2.1. Under Assumptions 2.1 and 2.2, the generator L of the Walsh diffusion associ-

ated with (g, σ,μ) is given by

Lf (r, θ) = g(r, θ)f ′(r, θ) +
1

2
σ 2(r, θ)f ′′(r, θ), x = (r, θ) ∈Rd (2.11)

for the following class of functions f in

DI,μ :=
{

f ∈DI

∣

∣

∣

∫

Sd

f ′(0+, θ)μ(dθ) = 0

}

. (2.12)

Remark 2.3. We can also consider the generator L in (2.11) with respect to Euclidean topology;

then we need to take functions f ∈DI,μ on Rd which are continuous in Euclidean topology.

2.4. Digression into one-dimensional theory

The content of this section is taken from Karatzas and Shreve [17], Section 5.5. Consider the

one-dimensional stochastic differential equation (SDE)

dZ(t) = g
(

Z(t)
)

dt + σ
(

Z(t)
)

dW(t), t ≥ 0, (2.13)

where the coefficients g : R → R and σ : R → (0,∞) are locally bounded. From Engelbert-

Schmidt theory, this type of SDE has a unique in law weak solution up to the explosion time,

for every initial condition Z(0) = z. One powerful tool to study this type of SDE is the scale

function

s(x) :=
∫ x

0

exp

(

−2

∫ u

0

g(z)

σ 2(z)
dz

)

du,

for x ∈ R. This scale function is strictly increasing on the whole real line, and so we can define

its inverse s−1 : (s(−∞), s(∞)) → R. If we apply the scale function to a solution Z of (2.13),
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we remove the drift coefficient from (2.13) and get a continuous local martingale Z̃ := s(Z) =
(s(Z(t)), t ≥ 0). More precisely, the process Z̃ = s(Z) is a solution of the following SDE

dZ̃(t) = v
(

Z̃(t)
)

dW(t), t ≥ 0, (2.14)

where we define the speed function v(x) := σ(s−1(x))s′(s−1(x)), x ∈R.

Next, recall the concept of a time-change to make a Brownian motion from this local mar-

tingale Z̃. For simplicity of notation, let us assume that g ≡ 0, and hence s(x) ≡ x, and

v(x) ≡ σ(x), x ∈ R. The time-change is defined as T (t) :=
∫ t

0 σ 2(Z(s))ds, t ≥ 0. By defini-

tion of σ this is a strictly increasing function, and one can find a one-dimensional Brownian

motion B = (B(t), t ≥ 0) such that Z(t) = B(T (t)). Thus, we make a linear Brownian motion

from a solution of the one-dimensional SDE (2.13) in two steps: (a) removal of drift coefficient

by applying the scale function; (b) standardization of diffusion coefficient by applying the time-

change.

2.5. Scale functions and time-change for Walsh diffusions

Same techniques as described in Section 2.4 can be used for Walsh diffusions, in principle.

However, we need to adjust for dependency of drift and diffusion coefficients on the angular

coordinate θ ∈ S.

First, let us recall the theory of scale functions for Walsh diffusions, developed in Karatzas

and Yan [18], Section 3.3. Take a Walsh diffusion on I associated with (g, σ,μ), which satisfies

Assumptions 2.1 and 2.2. For (r, θ) ∈ I , define the scale function:

s(r, θ) :=
∫ r

0

exp

(

−2

∫ u

0

g(z, θ)

σ 2(z, θ)
dz

)

du. (2.15)

Under Assumptions 2.1 and 2.2, the expression (2.15) is well defined. Moreover, s(·, θ) is strictly

increasing for every θ ∈ S. Thus for every θ ∈ S, there exists an inverse function s−1(·, θ) such

that

s
(

s−1(r, θ), θ
)

≡ r, r ≥ 0, θ ∈ S. (2.16)

Then the function

P : I � (r, θ) �→
(

s(r, θ), θ
)

∈ Ĩ :=
{

(r, θ) | 0 < r < s
(


(θ), θ
)

, θ ∈ S
}

∪ {0} (2.17)

is a one-to-one mapping. The function (2.17) maps the Walsh diffusion on I associated with

(g, σ,μ) into the Walsh diffusion associated with (0, σ̃ ,μ), where the new coefficient σ̃ is given

by

σ̃ (r, θ) = s′(s−1(r, θ), θ
)

σ
(

s−1(r, θ), θ
)

for (r, θ) ∈ Ĩ (2.18)

analogous to the speed function. In other words, just like for the one-dimensional SDE in (2.13),

applying the scale function (2.15) to the drifted Walsh diffusion would remove the drift coeffi-

cient.
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Next, let us make a time-change, as in Karatzas and Yan [18], Section 3.2. Assume for nota-

tional convenience that the Walsh diffusion already had zero drift coefficient, that is, it is asso-

ciated with the triple (0, σ,μ). Then s(r, θ) ≡ r , and σ̃ (r, θ) ≡ σ(r, θ) for (r, θ) ∈ I . Define the

time-change

T (t) =
∫ t

0

σ 2
(

X(s)
)

ds, t ≥ 0.

This is a strictly increasing function, and there exists a Walsh Brownian motion B = (B(t), t ≥ 0)

with spinning measure μ such that X(t) ≡ B(T (t)), t ≥ 0.

3. Dirichlet forms approach and stationary measures

Another way to define a Walsh diffusion is using Dirichlet forms, via one-point reflection. This

method was designed in Chen and Fukushima [4], Section 4, to construct Walsh Brownian mo-

tion in Chen and Fukushima [4], Section 5. It is also developed in Chen and Fukushima [3],

Section 7.5, and used in Chen and Fukushima [3], Section 7.6, Example 3, to construct general

Walsh diffusions with finitely supported spinning measure μ. With minor changes, it is applicable

to general Walsh diffusions. We shall merely outline the construction here, referring the reader to

Chen and Fukushima [3], Section 7.6, Example 3, for all details. A benefit of this method is that

it gives us a stationary distribution. Note that this method allows us to define Walsh diffusions

starting from mes⊗μ-a.e. point x ∈ I . Assume we have the same parameters (μ,g,σ ) and the

domain I , as before.

3.1. Construction of a Walsh diffusion using Dirichlet forms

For μ-a.a. θ ∈ S, define the process X̃θ on [0, 
(θ)) which behaves as a solution of an SDE with

drift coefficient g(·, θ) and diffusion coefficient σ 2(·, θ), absorbed at x = 0.

Assumption 3.1. For μ-a.a. θ ∈ S, the process X̃θ is conservative.

Under Assumption 2.1, this Assumption 3.1 is equivalent to the assumption that X̃θ does not

reach 
(θ) in a finite time a.s. Under Assumption 3.1 define a process X̃ on I , as follows: if

X̃(0) 
= 0, and if θ := arg(X̃(0)), then X̃(t) = X̃θ (t)θ for 0 ≤ t < inf{s : X̃θ (s) = 0}. In words:

the process X̃ stays on the same ray Rθ , and evolves there as a one-dimensional diffusion process

with drift coefficient g(·, θ) and diffusion coefficient σ 2(·, θ), killed at the origin. For notational

convenience, we identify the origin 0 with the cemetery state �, as long as we talk about X̃.

Fix a θ ∈ S. Let P̃θ = (P̃ t
θ )t≥0 be the transition semigroup of the process X̃θ . From the the-

ory of one-dimensional SDE, it is known that this semigroup is symmetric with respect to the

measure πθ on [0, 
(θ)), given by

πθ (dr) = σ−2(r, θ) exp

(

2

∫ r

0

g(ρ, θ)

σ 2(ρ, θ)
dρ

)

dr. (3.1)
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This means that the semigroup P̃θ satisfies

∫ 
(θ)

0

P̃ t
θf (r)g(r)πθ (dr) =

∫ 
(θ)

0

P̃ t
θg(r)f (r)πθ (dr) (3.2)

for all bounded measurable functions f,g : [0, 
(θ)) →R with compact support. This additional

condition on f and g is introduced to make the integrals in (3.2) finite. Indeed, the measure πθ

might be infinite, as for the case of Walsh Brownian motion, g ≡ 0 and σ ≡ 1.

Let P̃ = (P̃ t )t≥0 be the transition semigroup of the process X̃. Define fθ (r) := f (r, θ). Then

P̃ tf (r, θ) = P̃ t
θfθ (r). (3.3)

Indeed, as mentioned above, the process X̃ always stays on the same ray Rθ and behaves there

as the process X̃θ . Integrating (3.2) with respect to the measure μ and using (3.3), we get: for

any bounded measurable functions f,g : I →R with bounded support,

∫

I

P̃ tf (x)g(x)π(dx) =
∫

S

∫ 
(θ)

0

P̃ t
θfθ (r)g(r, θ)πθ (dr)μ(dθ)

=
∫

S

∫ 
(θ)

0

P̃ t
θgθ (r)f (r, θ)πθ (dr)μ(dθ) =

∫

I

P̃ tg(x)f (x)π(dx),

(3.4)

where the new measure π on I is defined as

π(dr,dθ) = πθ (dr)μ(dθ)

= σ−2(r, θ) exp

(

2

∫ r

0

g(ρ, θ)

σ 2(ρ, θ)
dρ

)

drμ(dθ), π
(

{0}
)

= 0.
(3.5)

Therefore, X̃ is symmetric w.r. to π . Let us translate the notation from Chen and Fukushima [4]

into our notation. The state space is E := I . The lifetime ζ of X̃ is the first hitting time of the

origin:

ζ := inf
{

t ≥ 0 | X̃(t) = 0
}

.

Indeed, the process X̃ can get killed only by reaching the origin. The reason for this is that for

every θ ∈ S, the process X̃θ is conservative, that is, it does not reach 
(θ) in finite time a.s. The

new point a is the origin: a = 0. We denote Markov transition probabilities for the process X̃ by

P̃x(A) = P(A | X̃(0) = x) for x ∈ I and Borel subsets A ⊆ I . Applying the one-point reflection

construction from Chen and Fukushima [3], Section 7.5, we get a Walsh diffusion associated with

the triple (g, σ,μ), as a Markov process with an infinitesimal generator (2.11). It is conservative

(i.e., non-exploding), and its transition semigroup (P t )t≥0 satisfies P t1 = 1, t ≥ 0.

Under Assumption 2.1, let us now present Assumption 2.2 in a slightly weakened form.

Assumption 3.2. For mes⊗μ-a.e. starting point x ∈ I , the Walsh diffusion on I associated with

(g, σ,μ) is conservative.
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Lemma 3.1. Under Assumption 2.1, Assumption 3.1 is equivalent to Assumption 3.2.

Proof. Under Assumptions 2.1 and 3.1, non-explosiveness of the Walsh diffusion follows from

the construction above. Conversely, suppose Assumption 3.1 were not satisfied for some θ ∈ A,

where A ⊆ S is a Borel subset with μ(A) > 0. Start the Walsh diffusion associated with (g, σ,μ)

from any point x = (r, θ) ∈ (0,∞) × A. Then with positive probability it does not exit the ray

Rθ , and hence with positive probability it would reach the point 
(θ)θ ∈ ∂I . Thus, this Walsh

diffusion would not be conservative for this starting point, although the set (0,∞) × A of such

points has positive mes⊗μ-measure, which contradicts Assumption 3.2. Thus, these assumptions

are equivalent. �

3.2. Stationary distributions and measures

Take an Rd -valued continuous-time Markov process X = (X(t), t ≥ 0), with transition kernel

P t (x, ·). We shall distinguish two measures below.

Definition 3.1 (Stationary distribution). We say that a Borel probability measure π on Rd is

a stationary distribution for X if the process X starting from the initial distribution π , forever

remains at the same distribution π (we write X(t) ∼ π ), that is, X(t) ∼ π for every t ≥ 0, if

X(0) ∼ π ; Or equivalently for every bounded measurable function f :Rd →R, and every t > 0

(

π,P tf
)

= (π,f ), (3.6)

where we use the notation (μ,f ) =
∫

Rd f (x)μ(dx) of f with respect to the measure μ.

Definition 3.2 (Stationary measure). A σ -finite Borel measure π on Rd with π(K) < ∞ for

bounded subset K is called a stationary measure for the Markov process X if the equality (3.6)

holds for every bounded measurable function f : Rd → R with bounded support.

Now take X = (X(t), t ≥ 0) to be the Walsh diffusion on I associated with (g, σ,μ). By

construction in Section 3, the new process X is symmetric with respect to the measure π from

(3.5). That is, if (P t )t≥0 is its transition semigroup, then for any bounded measurable function

f,g : I → R with bounded support, and any t > 0,

∫

I

(

P tf
)

(x)g(x)π(dx) =
∫

I

f (x)
(

P tg
)

(x)π(dx). (3.7)

Since X is conservative and it does not explode, that is, P t1 = 1, letting g ≡ 1 in (3.7), we obtain

the following theorem.

Theorem 3.1. The measure π from (3.5) is a stationary measure for the Walsh diffusion on I

associated with the triple (g, σ,μ).
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The following discussion clarifies a “physical sense” of stationary measure π with π(I) < ∞.

We may normalize π to be a stationary distribution. For μ-almost all θ ∈ S, πθ ([0, 
(θ))) < ∞.

Now, fix a θ ∈ S. Take a reflected one-dimensional diffusion on [0, 
(θ)) with drift coefficient

g(·, θ) and diffusion coefficient σ 2(·, θ), reflected at 0, which, by Assumption 3.1, never hits


(θ). Then this process has a unique stationary distribution

πθ (dr) = C−1(θ)σ−2(r, θ) exp

(

2

∫ r

0

g(ρ, θ)

σ 2(ρ, θ)
dρ

)

dr

=: C−1(θ)p(r, θ)dr, (r, θ) ∈ I,

(3.8)

with the normalizing constant C(θ) :=
∫ 
(θ)

0 p(r, θ)dr . The stationary distribution can then be

π(dr,dθ) = C(θ)πθ (dr)μ(dθ), (r, θ) ∈ I. (3.9)

Remark 3.1. An informal interpretation of (3.9) is as follows. The stationary distribution of the

given Walsh diffusion is a combination of all radial one-dimensional stationary distributions of

the radial processes, weighted by the spinning measure μ (governing how often at the origin the

process chooses a given direction), and by C(θ), the average excursion time for the ray Rθ .

To simplify, let us assume the support suppμ = {θ1, . . . , θp} is finite. Then (3.9) becomes

π
(

dr, {i}
)

= Ciμiπi(dr), i = 1, . . . , p, r ∈ [0, 
i]. (3.10)

Here, Ci := C(θi),πi := πθi
, 
i := 
(θi) and μi := μ(θi) for i = 1, . . . , p. Let us interpret the

stationary distribution as a long-term average occupation time. Then for A ⊆ [0,Ri]

π
(

A × {i}
)

= lim
T →∞

1

T

∫ T

0

1
(

argX(s) = θi,
∥

∥X(s)
∥

∥ ∈ A
)

ds, i = 1, . . . , p,

thanks to the average occupation times formula. In particular, letting A = [0, 
i], we get

Ciμi = π
(

[0, 
i] × {i}
)

= lim
T →∞

1

T
mes

{

s ∈ [0, T ] | argX(s) = θi

}

.

Here, μi is the long-term proportion of the times this Walsh diffusion chooses the ray 
i :=

θi

, and Ci is the factor corresponding to the average time spent on this ray 
i , for each such

excursion.

Example 3.1. Let I := Rd , g(r, θ) ≡ g(θ) < 0, σ(r, θ) ≡ σ(θ) > 0 for every r > 0, θ ∈ S.

Denote λ(θ) := −2g(θ)σ−2(θ) > 0 for θ ∈ S. Then direct calculation gives us the scale function

s(·) and the stationary measure π(·)

s(r, θ) =
1

λ(θ)

(

eλ(θ)r − 1
)

, π(dr,dθ) = σ−2(θ) exp
(

−λ(θ)r
)

drμ(dθ), r > 0, θ ∈ S.
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4. Continuous dependence on spinning measure and initial

condition

4.1. Main results

In this section, using Euclidean distance ‖·‖T from (2.2) for C([0, T ],Rd), we show that the law

of the Walsh diffusion on I associated with (g, σ,μ), starting from X(0) = x, continuously (in

the weak sense) depends on the measure μ, and on the initial condition x.

Assumption 4.1. The functions g,σ : I → R are continuous in the Euclidean topology. More-

over, the function 
 : S → (0,∞] is lower semicontinuous, that is, for every θ ∈ S,

lim
θ→θ0


(θ) ≥ 
(θ0).

Remark 4.1. The assumption on 
 can be equivalently stated as follows: the function 
 can be

pointwise approximated by an increasing sequence (Rn : S → (0,∞))n≥1 of continuous func-

tions

Rn(θ) ↑ 
(θ) as n → ∞ for every θ ∈ S.

In this case, define

Dm :=
{

(r, θ) | 0 < r ≤ Rm(θ), θ ∈ S
}

∪ {0}, m ≥ 1. (4.1)

Then (Dm)m≥1 is an increasing sequence of compact (in a Euclidean topology) subsets of I

with each interior intDm := {(r, θ) | 0 < r < Rm(θ), θ ∈ S} ∪ {0}. By construction, this sequence

satisfies the properties

intDm ⊆ intDm+1, and

∞
⋃

m=1

int(Dm) = I.

Assumption 4.1 holds, for example, when 
(·) ≡ ∞, or when 
 : S → (0,∞) is continuous.

Assumption 4.1 does not hold, for example, 
(θ) := 1 + 1{θ=θ0} for d ≥ 2 and a fixed point

θ0 ∈ S.

Remark 4.2. Assumption 2.1 actually follows from Assumption 4.1. Indeed, take a function R

as in Definition 2.4, and approximate the function 
 by Rn, n ≥ 1 as in Remark 4.1. Then we

have

R(θ) < 
(θ) = lim
n→∞

Rn(θ), ∀θ ∈ S.

Thus the open sets On := {θ ∈ S | R(θ) < Rn(θ)}, n ≥ 1 form an open cover of S. By

compactness, we can extract a finite subcover On1
, . . . ,Onj

of S. Then there exists an m =
max(n1, . . . , nj ) such that for all θ ∈ S we have R(θ) < Rm(θ). Therefore, K ⊆ Dm, where K is

defined in Definition 2.4, and Dm is taken from (4.1). Since g is continuous and Dm is compact
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in Euclidean topology, we conclude g is bounded on Dm, and so is on K . The same argument

applies to σ and σ−1.

Theorem 4.1. Let us consider the Walsh diffusion Xn on I associated with (g, σ,μn), starting

from Xn(0) = xn, n ≥ 0. For every n = 0,1,2, . . ., take a point xn ∈ I in (2.6) and a spinning

measure μn on S. Suppose that the functions g and σ , and the domain I , satisfy Assumption 4.1.

Suppose also that every Walsh diffusion Xn satisfies Assumption 2.2. If μn ⇒ μ0, and xn → x0,

then Xn ⇒ X0 in C([0, T ],Rd).

Let us state separately this convergence result for Walsh Brownian motions in Rd . For this

case, g ≡ 0, σ ≡ 1, and 
 ≡ ∞, and Theorem 4.1 takes the following form.

Corollary 4.1. For every n = 0,1,2, . . . , take a Walsh Brownian motion Wn with spinning mea-

sure μn, starting from Wn(0) = xn. If xn → x0, and μn ⇒ μ0, then Wn ⇒ W0 in C([0, T ],Rd).

Consider the case when all these Walsh Brownian motions in Rd start from the origin: xn = 0,

n = 0,1,2, . . . . Then we can actually quantify the rate of convergence in the following Theo-

rem 4.2. For two Borel probability measures ν1 and ν2 on a metric space (X ,d) with metric d,

the Wasserstein distance of order p ≥ 1 is defined as follows:

Wp(ν1, ν2) := inf
γ∈�

[∫

X×X

(

d(x1, x2)
)p

dγ (x1, x2)

]1/p

, (4.2)

where the infimum is taken over the family � of probability measures on X ×X with marginals

ν1 and ν2 for which the integral inside the bracket is finite. It is known from Rachev [24], Villani

[33] that convergence in the Wasserstein distance implies the weak convergence. Thus, we shall

estimate the Wasserstein distance between the distributions of Xn and X0, as random elements

of C([0, T ],Rd), using the Wasserstein distance between μn and μ0 on S.

Denote by QT (μ) the law of the Walsh Brownian motion starting from the origin with spin-

ning measure μ in the space C([0, T ],Rd). Theorem 4.2 provides the upper estimate of the

Wasserstein distance between QT (μ) and QT (μ), for two spinning measures μ and μ on S.

Theorem 4.2. Take two Borel probability measures μ and μ on S. For all positive constants

p,q,ρ,T with

1 ≤ q < p, ρ ∈
(

0,
p

p + 1

)

, (4.3)

there exists a positive constant C∗ dependent on T ,p,q,ρ, such that

Wq

(

QT (μ),QT (μ)
)

≤ C∗[Wp(μ,μ)
]ρ

. (4.4)

The rest of this section is organized as follows. We shall prove Theorem 4.2 in Section 4.2,

Corollary 4.1 in Section 4.3 and then complete the proof of Theorem 4.1 in Section 4.4.
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4.2. Proof of Theorem 4.2

Step 1: Efficient coupling. Let us consider the following Walsh Brownian motions X = (X(t), t ≥
0) and X = (X(t), t ≥ 0) with spinning measures μ and μ, respectively, coupled by the following

procedure.

On a filtered probability space, let us take a reflected Brownian motion S = (S(t), t ≥ 0) with

values in [0,∞), starting from zero, instantaneously reflected at zero. Let e = (e(t), t ≥ 0) be

the excursion process, so that e(t) is the excursion of the reflected Brownian motion S at time

t , and denote by J the (countable) set of its distinct elements. This set depends on ω ∈ �. The

notation is taken from Revuz and Yor [25], Chapter 12. Take a certain coupling � of marginal

probability measures μ and μ. Generate a sequence (θj , θ j ) of S × S-valued, independently,

identically distributed random variables jointly distributed in �, indexed by j ∈ J . Define the

Walsh Brownian motions X and X as follows: for each t ≥ 0, if S(t) = 0, then X(t) := 0 =: X(t),

and if S(t) > 0, then there exists a unique index j ∈ J , such that e(t) = j , and we let

X(t) := θjS(t), X(t) := θ jS(t) (4.5)

on an extended, filtered probability space. Such construction of Walsh Brownian motions (and

semimartingales) is recently examined and described in Ichiba et al. [16].

Note that we use the common reflected Brownian motion S in the construction, and so the

resulting Walsh Brownian motions X and X have the same time intervals for excursions, that is,

{t : X(t) = 0} = {t : X(t) = 0} a.s. This procedure creates two Walsh Brownian motions X and X

with spinning measures μ and μ, respectively. In other words, the probability measure induced

by this pair (X,X) is a coupling �(�) of marginal probability distributions QT (μ) and QT (μ)

in C([0, T ],Rd), where μ and μ are the marginal of the coupling �. To achieve an efficient

coupling �(�) of X and X, in the sense of smaller Wasserstein distance, we take an efficient

coupling � of μ and μ.

Let us denote by �0 all couplings of marginal probability measures μ and μ. Also, let us denote

by �1 the family of probability measures, each of which is induced by the coupling (X,X) of

distributions QT (μ) and QT (μ), constructed in the above procedure from a coupling � of μ

and μ in �0, that is, �1 := {�(�) : � ∈ �0}. Then by definition (4.2) for p,q ≥ 1 here we shall

evaluate the Wasserstein distances

Wp(μ,μ) :=
(

inf
�∈�0

E�
[

‖θ − θ‖p
]

)1/p

,

Wq

(

QT (μ),QT (μ)
)

≤
(

inf
P∈�1

EP
[

‖X − X‖q
T

]

)1/q

=
(

inf
�∈�0

E�(�)
[

‖X − X‖q
T

]

)1/q

,

(4.6)

where E� and EP = E�(�) are expectations under � ∈ �0, P = �(�) ∈ �1, respectively. To

this end, given the constants p,q,T in (4.3), we shall estimate the upper bound of

E
[

‖X − X‖q
T

]

= E�(�)
[

max
0≤t≤T

∥

∥X(t) − X(t)
∥

∥

q
]

, (4.7)

in terms of E�[‖θ − θ‖p], for the coupling �(�) of the pair X and X of Walsh Brownian

motions, and for the coupling � of the spinning measures μ and μ, described in (4.5).
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The idea of the proof is as follows. Take a constant δ(> 0). There are two kinds of excursions

of S: the first kind consists of excursions with height greater than δ, and the second kind consists

of excursions with height less than or equal to δ. There are at most finite number of excursions

of the first kind. For them, we have

∥

∥X(t) − X(t)
∥

∥ ≤ ‖θj − θ j‖S(t), t ≥ 0, (4.8)

where we can estimate the running maximum of S from above. Take a time moment t corre-

sponding to the second kind of excursions. By the triangle inequality and the construction in

(4.5), we have
∥

∥X(t) − X(t)
∥

∥ ≤
∥

∥X(t)
∥

∥ +
∥

∥X(t)
∥

∥ = S(t) + S(t) ≤ 2δ. (4.9)

With this idea of separating excursions in two kinds, we estimate the upper bound of (4.7), and

then minimize it by choosing δ.

Step 2: Excursions. Define the set of excursions of S

JT :=
{

j ∈ J | ∃t ∈ [0, T ] : e(t) = j
}

restricted to the time interval [0, T ], including the last excursion (which is sometimes called a

Brownian meander). This last excursion can start at a time moment t ′ ≤ T , but end at t ′′ > T ;

this excursion is included if maxt∈[t ′,T ] S(t) ≥ δ. Let us classify it into two kinds of excursions

JT ,δ :=
{

j ∈ JT | H(j) > δ
}

, J c
T ,δ := JT \JT ,δ, (4.10)

where H(j) is the height of the excursion j ∈ J . Since JT ,δ is a finite set, by (4.9)–(4.8),

max
0≤t≤T

∥

∥X(t) − X(t)
∥

∥

q ≤ max
{t :e(t)∈JT ,δ}

∥

∥X(t) − X(t)
∥

∥

q + max
{t :e(t)∈J c

T ,δ}

∥

∥X(t) − X(t)
∥

∥

q

≤
(

max
0≤t≤T

S(t)
)q

· max
j∈JT ,δ

‖θj − θ j‖q + (2δ)q .

If the set JT ,δ is empty, we let the maximum of zero numbers to be zero. Taking the expected

values and applying Hölder’s inequality to the product in the right-hand side with

r1 :=
p

p − q
, r2 :=

p

q
,

1

r1
+

1

r2
= 1,

we obtain the first upper bound of (4.7)

E�(�)
[

max
0≤t≤T

∥

∥X(t) − X(t)
∥

∥

q
]

≤ (2δ)q + C1 ·
[

E

[

max
j∈JT ,δ

‖θj − θ j‖p
]]q/p

, (4.11)

where with the Gamma function �(a) =
∫ ∞

0 xa−1e−x dx, a > 0,

C1 :=
[

E

[(

max
0≤t≤T

S(t)
)qr1

]]1/r1

=
(2T )q/2

π1/(2r1)
·
[

�

(

1 + qr1

2

)]1/r1

. (4.12)
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Here we used the density function of the running maximum of S to compute C1 (see Karatzas

and Shreve [17]).

For the second term in (4.11) it is not easy to estimate the number of elements in JT ,δ di-

rectly. Instead, we can estimate it indirectly by the number of elements in a set which is (usu-

ally) larger than JT ,δ . Take a number D(> 0) large enough, to be determined later. Define

L = (L(t), t ≥ 0) to be the local time process of the reflected Brownian motion S at zero, i.e.,

L(·) :=
∫ ·

0
1{S(t)=0} dS(t). Define also L−1(s) := inf{t ≥ 0 | L(t) = s} to be the inverse local time

of S. Then the probability P(L(T ) > D
√

T ) is very small. And if L(T ) ≤ D
√

T , then

JT ,δ ⊆ J
L−1(D

√
T ),δ

, (4.13)

From Revuz and Yor [25], Chapter 12, the number |J
L−1(D

√
T ),δ

| of elements in the set

J
L−1(D

√
T ),δ

has Poisson distribution with parameter λ := D
√

T /δ, that is,

E
[

|J
L−1(D

√
T ),δ

|
]

=
D

√
T

δ
. (4.14)

Consider two cases {L(T ) ≤ D
√

T } and {L(T ) > D
√

T }. By (4.13),

E

[

max
j∈JT ,δ

‖θj − θ j‖p
]

= E

[

max
j∈JT ,δ

‖θj − θ j‖p(1{L(T )≤D
√

T } + 1{L(T )>D
√

T })
]

≤ E

[

max
j∈J

L−1(D
√

T ),δ

‖θj − θ j‖p
]

+ (2π)p · P
(

L(T ) > D
√

T
)

.

(4.15)

Since by the construction of the pair (X,X) in (4.5) the random variables θj and θ j are indepen-

dent of S, it follows from Wald’s identity and (4.14) that

E

[

max
j∈J

L−1(D
√

T ),δ

‖θj − θ j‖p
]

≤ E

[

∑

j∈J
L−1(D

√
T ),δ

‖θj − θ j‖p

]

= E
[

|J
L−1(D

√
T ),δ

|
]

·E�
[

‖θ − θ‖p
]

.

(4.16)

The classical Lévy theorem states that L(T ) has the same distribution as S(T ). Then by the Mills

ratio of the Gaussian tail probability Feller [10], Chapter 7, for every r ≥ 1 there exists a constant

C2 (which does not depend on D), such that

P
(

L(T ) > D
√

T
)

= P
(

S(1) > D
)

≤
2

√
2πD

e−D2/2 ≤
C2

Dr
; D > 0. (4.17)

Combining (4.14)–(4.17) together, we have

E

[

max
j∈JT ,δ

‖θj − θ j‖p
]

≤
D

√
T

δ
·E�

[

‖θ − θ‖p
]

+
C3

Dr
(4.18)
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for every D > 0, δ > 0 where C3 = (2π)pC2. Thus the right-hand side of (4.11) is evaluated as

E�(�)
[

max
0≤t≤T

∥

∥X(t) − X(t)
∥

∥

q
]

≤ C4 ·
[

δq +
(

D

δ
·E�

[

‖θ − θ‖p
]

+
1

Dr

)q/p]

, (4.19)

where C4 does not depend on δ(> 0),D(> 0) but on r(≥ 1), T (> 0), 1 ≤ q < p.

Step 3: Minimization. Since the left-hand side of (4.19) does not depend on (D, δ), let us

minimize the right-hand side of (4.19) with respect to D and δ by applying twice an inequality

f0(x) := a1x
c1 + a2x

−c2

≥
[(

c2

c1

)

c1
c1+c2

+
(

c1

c2

)

c2
c1+c2

]

· a
c2

c1+c2

1 · a
c1

c1+c2

2

= f0

(

x∗)

(4.20)

for every x > 0, where ai, ci , i = 1,2 are fixed positive constants and x∗ := ( a2c2
a1c1

)1/(c1+c2) is a

unique minimizer of the function f0(·). Applying (4.20) with

(x, a1, a2, c1, c2) =
(

D,E�
[

‖θ − θ‖p
]

/δ,1,1, r
)

and D∗ := (δr/E�[‖θ − θ‖p])1/(1+r), we obtain

[

f0(D)
]q/p =

(

D

δ
·E�

[

‖θ − θ‖p
]

+
1

Dr

)q/p

≥ C5 ·
(

E�[‖θ − θ‖p]
δ

)qr/(p(1+r))

=
[

f0

(

D∗)]q/p
,

and then applying (4.20) with

(x, a1, a2, c1, c2) =
(

δ,1,C5

(

E�
[

‖θ − θ‖p
])qr/(p+pr)

, q, qr/
(

p(1 + r)
))

,

we obtain

C4 ·
(

δq + C5 ·
(

E�[‖θ − θ‖p]
δ

)qr/(p(1+r)))

≥ C6

(

E�
[

‖θ − θ‖p
])ρq/p

(4.21)

with some constants Ci , i = 5,6, where

ρ :=
pr

(1 + p)r + p
∈

[

p

2p + 1
,

p

1 + p

)

, with r =
pρ

p − (1 + p)ρ
. (4.22)

Now for every ρ ∈ [p/(2p+1),p/(1+p)) given, we may choose the corresponding constants

r(≥ 1) from (4.22), C2 in (4.17) and then the resulting constant C∗ := C6 in (4.21) to obtain

[

E�(�)
[

max
0≤t≤T

∥

∥X(t) − X(t)
∥

∥

q
]]1/q

≤ C∗(E�
[

‖θ − θ‖p
])ρ/p

. (4.23)
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Taking the infimum on both sides of (4.23) over the family �0 of measures for the coupling

� on S × S, we achieve the desired upper bound (4.4) for ρ ∈ [p/(2p + 1),p/(1 + p)). For

every ρ1 ∈ (0,p/(2p + 1)) and ρ2 ∈ [p/(2p + 1)),p/(1 + p)), because of boundedness of

0 ≤ Wp(μ,μ) ≤ supθ,θ∈S‖θ − θ‖ = 2, there exists a constant C7 such that [Wp(μ,μ)]ρ2 ≤
C7[Wp(μ,μ)]ρ1 . Using this equality and modifying the constant C∗ for ρ2, we obtain the desired

upper bound (4.4) also for ρ ∈ (0,p/(2p + 1)). Therefore, we conclude the proof of (4.4) for

every ρ ∈ (0,p/(1 + p)).

4.3. Proof of Corollary 4.1

For the case xn = 0 for all n, this follows immediately: Convergence in the Wasserstein distance

of order p is equivalent to weak convergence plus uniform boundedness of the pth moment, see

Villani [33]. For measures (μn)n≥0 on S, their pth moments are trivially uniformly bounded,

since S is a bounded set. Theorem 4.2 makes the rest of the proof trivial.

Consider the general case of Corollary 4.1, with arbitrary initial conditions. By the Skorohod

representation theorem, we can create a probability space with copies W̃n of Walsh Brownian

motions starting from the origin, such that W̃n → W̃0 a.s. uniformly on every [0, T ]. For n ≥ 0,

let θn := arg(xn). Then we can couple Wn for n = 0,1,2, . . . as follows.

Let us take a standard Brownian motion B = (B(t), t ≥ 0) on the real line with B(0) = 0.

Since xn → x0 as n → ∞ in Euclidean topology, for n large enough (and therefore without loss

of generality for all n) we have: xn 
= 0. Since xn → x0, we have ‖xn‖ → ‖x0‖, θn → θ0.

Now, define stopping times τn := inf{t ≥ 0 | B(t) = ‖xn‖}. We construct copies of Walsh

Brownian motions Wn starting from Wn(0) = xn, as follows:

Wn(t) =
{

xn − θnB(t) = θn

(

‖xn‖ − B(t)
)

, t ≤ τn;
W̃n(t − τn), t ≥ τn.

(4.24)

Consider the inverse m
−1 = (m−1(s), s ≥ 0) of running maximum of a Brownian motion B

starting from zero. This process is a.s. continuous at every fixed time (although it has a.s. dis-

continuous trajectories). We can express τn := m
−1(‖xn‖). Therefore, a.s. τn → τ0 as n → ∞.

Applying Lemma A.1 in the Appendix, we conclude Corollary 4.1.

4.4. Proof of Theorem 4.1 in the general case

We split the proof into four steps. In the first three steps, we consider the driftless case: g ≡ 0.

Step 1 is devoted to time-change and localization. That is, we consider an exhaustion of the state

space I by an increasing sequence of compact domains Dm, m ≥ 1. Then we fix one of these

domains and stop all Walsh diffusions Xn when they exit the interior of the domain. In Step 2,

we prove the convergence result for these stopped Walsh diffusions. In Step 3, we switch from

intDm to I and show that for the driftless case the convergence takes place not only for those

stopped, but also for the original Walsh diffusions. Finally, in Step 4, we use the scale mapping

(2.15) to extend this result to the general case with non zero drift function g.
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Step 1: Time-change and localization. Assume g ≡ 0. We apply the time-change in Section 2.5

to the Walsh diffusions Xn on I associated with (0, σ,μn):

Xn(t) = Wn

(

Tn(t)
)

, Tn(t) :=
∫ t

0

σ 2
(

Xn(s)
)

ds, t ≥ 0, (4.25)

where Wn = (Wn(t), t ≥ 0) is a Walsh Brownian motion with spinning measure μn, starting from

Wn(0) = xn, n ≥ 0. By Assumption 4.1 and Remark 4.1, we may take a sequence of continuous

functions Rn : S → (0,∞) such that Rn(θ) → 
(θ) pointwise on S. Recall the definition of Dm

in (4.1). For n ≥ 0 and m ≥ 1, define the stopping times

τ (m)
n := inf

{

t ≥ 0 | Xn(t) /∈ Dm

}

= inf
{

t ≥ 0 | Wn

(

Tn(t)
)

/∈ Dm

}

,

and the corresponding stopped processes X
(m)
n (t) := Xn(t ∧τ

(m)
n ), T

(m)
n (t) := Tn(t ∧τ

(m)
n ), t ≥ 0.

Then it follows from (4.25) that for n ≥ 0 and m ≥ 1,

X(m)
n (t) = Wn

(

T (m)
n (t)

)

, t ≥ 0. (4.26)

In particular, X
(m)
0 (t) = W0(T

(m)
0 (t)), t ≥ 0.

Step 2: Proof for the stopped processes. The rest of the proof for the driftless case is quite

similar to the proof of Sarantsev [30], Theorem 2.2. For the rest of Step 2, fix an m ≥ 1. We shall

show

Lemma 4.1. Every subsequence of (X
(m)
n )n≥1 in (4.26) has a weakly convergent subsequence,

and this weak limit behaves as the Walsh (driftless) diffusion X
(m)
0 , at least as long as it stays in

intDm.

The rest of Step 2 is devoted to proving Lemma 4.1. For every n ≥ 0 and t ≥ 0, we have

0 ≤ σ
(

X(m)
n (t)

)

≤ max
Dm

σ =: σm, (4.27)

and hence, by definition of Tn(t) in (4.25),

0 ≤ T (m)
n (t) ≤ σ 2

mt. (4.28)

By the Arzela–Ascoli criterion combined with (4.27), the sequence (T
(m)
n )n≥1 is tight for every

m ≥ 1. Then every subsequence (nk)k≥1 of N has its further subsequence (n′
k)k≥1 for which there

exists a random process T
(m) = (T

(m)
(t), t ≥ 0) such that

T
(m)

n′
k

→ T
(m)

in C[0, T ], as k → ∞. (4.29)

As we have already proved (in the proof of Corollary 4.1), we have Wn ⇒ W0 in C([0, σ 2
mT ],

Rd), as μn ⇒ μ0 and xn ⇒ x0. Changing the probability space, if necessary, by the virtue of

Skorohod representation theorem, we can make this convergence a.s.

Wn → W0 in C
([

0, σ 2
mT

]

,Rd
)

. (4.30)
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Combining (4.26), (4.28), (4.29) and (4.30), we have the limit

X
(m)

n′
k

(t) → X
(m)

(t) := W0

(

T
(m)

(t)
)

uniformly on [0, T ]. (4.31)

Since the function σ is continuous on Dm by Assumption 4.1, we also get

σ
(

X
(m)

n′
k

(t)
)

→ σ
(

X
(m)

(t)
)

, k → ∞, for every t ∈ [0, T ]. (4.32)

By (4.27), (4.32), and the Lebesgue dominated convergence theorem, for every t ∈ [0, T ], we

have
∫ t

0

σ 2
(

X
(m)

n′
k

(s)
)

ds →
∫ t

0

σ 2
(

X
(m)

(s)
)

ds. (4.33)

Denote τ
(m)
∞ := limn→∞ τ

(m)
n , and take a (random) time point t0 < τ

(m)
∞ ∧ T . For every suffi-

ciently large k, and all s ∈ [0, t0] ⊆ [0, τ
(m)
∞ ], we have X

(m)

n′
k

(s) = Xn′
k
(s) and t0 ∧τ

(m)

n′
k

< τ
(m)
∞ ∧T .

Thus, combining (4.25)–(4.26) with (4.33), for such t0 we have

T
(m)

n′
k

(t0) = Tn′
k

(

t0 ∧ τ
(m)

n′
k

)

=
∫ t0∧τ

(m)

n′
k

0

σ 2
(

Xn′
k
(s)

)

ds

=
∫ t0∧τ

(m)

n′
k

0

σ 2
(

X
(m)

n′
k

(s)
)

ds →
∫ t0

0

σ 2
(

X
(m)

(s)
)

ds

as k → ∞. Comparing this observation with (4.29), we get

T
(m)

(t) =
∫ t

0

σ 2
(

X
(m)

(s)
)

ds, and X
(m)

(t) = W0

(

T
(m)

(t)
)

for t < τ (m)
∞ . (4.34)

The system (4.34) of equations implies that every subsequence (nk)k≥1 has another subsequence

(n′
k)k≥1 such that X

(m)

n′
k

⇒ X in C([0, T ],Rd), where, at least until τ
(m)
∞ , the process X behaves

as a Walsh diffusion starting from X(0) = x0, associated with (0, σ,μ0). For m ≥ 1 define

τ (m) := inf
{

t ≥ 0 | X(m)
(t) /∈ intDm

}

= inf
{

t ≥ 0 | W0

(

T
(m)

(t)
)

/∈ intDm

}

.

Then we claim the following inequality τ (m) ≤ τ
(m)
∞ a.s. for every m ≥ 1. Indeed, assume the

converse, that is, τ (m) > τ
(m)
∞ with positive probability. Then there would be a positive random

variable t1 < τ (m) such that there exists a sequence (ñk)k≥1 with τ
(m)

ñk
≤ t1 for all k. Since X

(m)

ñk

is stopped at τ
(m)

ñk
, we have X

(m)

ñk
(τ

(m)

ñk
) = X

(m)

ñk
(t1) ∈ ∂Dm. Since ∂Dm is closed, letting k → ∞,

we would have X(t1) ∈ ∂Dm with positive probability. This, however, contradicts the property

t1 < τ (m), which completes the proof of τ (m) ≤ τ
(m)
∞ a.s.

This proves that X behaves as a Walsh diffusion starting from X(0) = x0, associated with

(0, σ,μ0), at least until it exits intDm. This completes the proof of Lemma 4.1.
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Step 3: Proof for the driftless case. This step is similar to Sarantsev [30], Lemma 3.8. For a

given η ∈ (0,1) we may take an m large enough, so that the set

A :=
{

x ∈ C
(

[0, T ],Rd
)

| x(t) ∈ intDm ∀t ∈ [0, T ]
}

has probability greater than 1 − η, i.e., P(X0 ∈ A) > 1 − η, since

P
(

X0(t) ∈ I ∀t ∈ [0, T ]
)

= 1,

and intDm ↑ I as m → ∞.

Now, by Lemma 4.1 every sequence (nk)k≥1 has a subsequence (n′
k)k≥1, such that X

(m)

n′
k

⇒ X

in C([0, T ],Rd). Then for every Borel subset B ⊆ C([0, T ],Rd), we have

P(X ∈ A∩B) = P(X0 ∈A∩B). (4.35)

In particular, letting B := C([0, T ],Rd), we have:

P(X ∈ A) = P(X0 ∈ A) > 1 − η. (4.36)

Moreover, for every Borel subset B ⊆ C([0, T ],Rd) and n ≥ 1, we have:

P
(

X(m)
n ∈A∩B

)

= P(Xn ∈A∩B). (4.37)

For an open subset G ⊆ C([0, T ],Rd), the subset A∩ G is also open, and hence,

P(X0 ∈ A∩ G) = P(X ∈A∩ G) ≤ lim
k→∞

P
(

X
(m)

n′
k

∈A∩ G
)

. (4.38)

On the other hand, it follows from (4.35) and (4.36) that

P(X ∈ A∩ G) = P(X0 ∈ A∩ G) ≥ P(X0 ∈ G) − P(X0 /∈ A) ≥ P(X0 ∈ G) − η. (4.39)

Combining (4.37), (4.38) with (4.39), we obtain

lim
k→∞

P(Xn′
k
∈ G) ≥ lim

k→∞
P
(

X
(m)

n′
k

∈ A∩ G
)

≥ P(X0 ∈ G) − η. (4.40)

Thus for every sequence (nk)k≥1 and every η > 0 there exists a subsequence (n′
k)k≥1 such that

(4.40) holds. Use the diagonal argument: let n
(0)
k := nk , and construct (n

(l)
k )k≥1 inductively:

(n
(l)
k )k≥1 plays the role of (n′

k)k≥1 for nk := n
(l−1)
k , η := l−1. Then for nk := n

(k)
k , we have

limk→∞ P(Xnk
∈ G) ≥ P(X0 ∈ G). Therefore, we claim that for every sequence (nk), there exists

a subsequence (nk) such that Xnk
⇒ X0 in C([0, T ],Rd). This completes the proof of Theo-

rem 4.1 for the case g ≡ 0.

Step 4: General case. The general case (with an arbitrary drift function g) can be reduced

to the driftless case by scale transformation (2.17). Recall that the process P(Xn(·)) is a Walsh

diffusion starting from P(xn), associated with (0, σ̃ ,μn), where Ĩ and σ̃ are given by (2.17) and
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(2.18). Lemma 4.2 below, together with continuity of σ , implies continuity of the function σ̃ ,

and of the mappings P and P−1. Since xn → x0, we have P(xn) → P(x0). Moreover, because

of μn ⇒ μ0, from results just proven, we have P(Xn(·)) ⇒ P(X0(·)) in C([0, T ],Rd). Finally,

because P−1 is continuous, we have Xn ⇒ X0 in C([0, T ],Rd). This completes the proof of

Theorem 4.1 for the general case, given Lemma 4.2 below.

Lemma 4.2. Under Assumption 4.1, the scale function s(r, θ) from (2.15), and the inverse scale

function s−1(r, θ) from (2.16), are continuous in the Euclidean topology.

Proof. Under Assumption 4.1, continuity of the scale function s(·) follows from continuity and

local boundedness of the function 2gσ−2, together with Lebesgue dominated convergence the-

orem. Let us take a sequence (rn, θn) that converges to (r0, θ0), that is, (rn, θn) → (r0, θ0). We

shall show that s−1(rn, θn) → s−1(r0, θ0), that is, for every ε > 0 and for all n, except finitely

many, we have

s−1(rn, θn) < s−1(r0, θ0) + ε. (4.41)

Since s(r, θ) is strictly increasing in r for every fixed θ , (4.41) would be equivalent to

rn < s
(

s−1(r0, θ0) + ε, θn

)

. (4.42)

Note that letting n → ∞ in (4.42) and using continuity of s, we see the left-hand side converges

to r0, and the right-hand side converges to s(s−1(r0, θ0) + ε, θ0). Here since

r0 = s
(

s−1(r0, θ0), θ0

)

< s
(

s−1(r0, θ0) + ε, θ0

)

,

we must get (4.42) for large enough n. This completes the proof of Lemma 4.2. �

5. Feller and positivity properties

In this section, we study several properties: Feller property; positivity of transition kernel (that

mes⊗μ-positive subsets of Rd have positive transition measure). They are necessary for the

next section, where we find Lyapunov functions for Walsh diffusions to prove existence and

uniqueness of a stationary distribution and convergence to this stationary distribution as t → ∞.

5.1. Positivity of transition kernel

Let us first mention intuition for general Markov processes. Very loosely speaking, a Markov

process is called irreducible, if the state space cannot be separated into two or more parts such

that the process cannot move between them; and it is called aperiodic if the state space cannot

be separated into two or more parts such that the process circulates between them. If the process

is tight, then irreducibility and aperiodicity guarantee existence and uniqueness of a probability

invariant measure. Since we do not use these particular (very important) concepts in this paper,
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we shall not rigorously define them here. But we, however, prove a stronger property: positivity.

Let us define the following reference measure:

μ̃ := μ ⊗ mes (5.1)

and consider a Walsh diffusion on I associated with (g, σ,μ) and the transition kernel P t (x, ·) =
P(X(t) ∈ · | X(0) = x) for x ∈ I , t > 0.

Theorem 5.1. Under Assumptions 2.1 and 2.2, the transition kernel is positive, that is, for every

t > 0, x ∈ I , and a Borel subset C ⊆ I with μ̃(C) > 0, we have P t (x,C) > 0.

Proof. We shall show this theorem in four steps.

Step 1. Let us argue first that it suffices to show the case x = 0. Indeed, if the initial value

X(0) = x = (r, θ) ∈ I is not the origin 0, then until the first hitting time τ0 := inf{t ≥ 0 | X(t) =
0}, X(·) can be represented as X(·) = θZ(·), where Z = (Z(t), t ≥ 0) is a diffusion on the half-

line with drift g(·, θ) and diffusion σ 2(·, θ), starting from Z(0) = r > 0 and killed at the origin.

Then τ0 = inf{t ≥ 0 | Z(t) = 0} and hence for such diffusion Z(·) we have P(τ0 < t) > 0, t > 0,

since the functions g,σ,σ−1 are locally bounded on R+. Thus if the statement of the theorem is

true in the case x = 0, then P u(0,C) > 0 for every u > 0, and hence,

P t (x,C) ≥
∫ t

0

P t−s(0,C)P
(

τ0 ∈ ds|X(0) = x
)

> 0; x ∈ I,

because the Lebesgue integral of a positive function over a set of positive measure is positive,

and hence the statement is true for every x ∈ I . Thus it suffices to show the case x = 0.

Step 2. Next, consider the case of Walsh Brownian motion X(·) := W(·) associated with g ≡ 0

and σ ≡ 1 starting at the origin, with the set C of the form C = A × B ⊆ S × (0,∞) with

μ̃(C) > 0. Then by the construction (e.g., Ichiba et al. [16], Theorem 2.1), arg(W(t)) is dis-

tributed as μ, independent of ‖W(t)‖, a reflected Brownian motion on the half-line, starting

from zero. Thus,

P t (0,C) = P
(

arg
(

W(t)
)

∈ A,
∥

∥W(t)
∥

∥ ∈ B
)

= μ(A) · P
(
∥

∥W(t)
∥

∥ ∈ B
)

> 0; t > 0.

Step 3. Now consider the case of driftless Walsh diffusions with g ≡ 0. From Karatzas and

Yan [18], Proposition 3.4, we have the Dambis-Dubins-Schwarz-type representation: X(t) =
W(T (t)), where W(·) is a Walsh Brownian motion in Step 2 starting from W(0) = 0, and

T (t) =
∫ t

0

σ 2
(

X(s)
)

ds, t ≥ 0. (5.2)

For the set C = A × B define R := supB < lmin := infθ∈A 
(θ), and for a fixed R′ ∈ (R, lmin)

τX
R,A := inf

{

t ≥ 0 |
∥

∥X(t)
∥

∥ = R, argX(t) ∈ A
}

, (5.3)

τW
R,A := inf

{

t ≥ 0 |
∥

∥W(t)
∥

∥ = R, argW(t) ∈ A
}

, (5.4)

τX
R′ := inf

{

t ≥ 0 |
∥

∥X(t)
∥

∥ = R′}, τW
R′ := inf

{

s ≥ 0 |
∥

∥W(s)
∥

∥ = R′}. (5.5)
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With Lemma A.2 in the Appendix we claim P(τX
R,A < t) > 0. Note that

P
(

X(t) ∈ C = A × B
)

≥
∫ t

0

∫

A

p(t − s, θ)P
(

τX
R,A ∈ ds, arg

(

X(s)
)

∈ dθ
)

, (5.6)

where p(u, θ) is the probability that a reflected diffusion on the half-line with zero drift and

diffusion σ 2(·, θ), starting from R, stays in (0,R′] on the time interval [0, u], and hits the set B

at time u. From boundedness of σ and σ−1 on [0,R′], which follows from Assumption 2.1, we

have: p(u, θ) > 0. Again using the observation that the Lebesgue integral of a positive function

over a set of positive measure is positive, we see that the right hand of (5.6) is positive, which

completes the proof of Theorem 5.1 for the case of driftless Walsh diffusions.

Step 4. Finally, let us prove Theorem 5.1 in the general case. It can be reduced via Karatzas and

Yan [18], Proposition 3.12, to the driftless case. Using the notation from there, we observe that

the one-to-one function P : I → Ĩ from (2.17) maps the Walsh diffusion with nonzero drift to

another Walsh diffusion with zero drift. The new Walsh diffusion also has a diffusion coefficient

σ̃ from (2.18) such that σ̃ and σ̃−1 are both locally bounded on Ĩ . Also, the map P , as well as

its inverse Q, maps μ̃-positive subsets into μ̃-positive subsets. This follows from the observation

that these maps preserve arguments of points: arg(P(x)) = arg(x) for x ∈ I \ {0}, and the radial

derivative of P is everywhere positive. Thus, Theorem 5.1 is a simple corollary for the driftless

case. �

5.2. Feller property for the tree topology

Next, we shall prove the Feller property of Walsh diffusions, that is, the semigroup maps bounded

continuous functions into bounded continuous functions. Fix a bounded continuous (in the tree

topology) function f : I →R.

Theorem 5.2. Under Assumptions 2.1 and 2.2, for t > 0, if x → x0 in I , then

Ex

[

f
(

X(t)
)]

→ Ex0

[

f
(

X(t)
)]

.

Proof. We shall first consider the harder case x0 
= 0, and then discuss the easier case.

Case 1. Assume x0 = θr0 
= 0 for some θ , that is, r0 > 0; and x = θr , with r ↑ r0. Take a copy

X(r0) = (X(r0)(t), t ≥ 0) of this Walsh diffusion starting from X(r0)(0) = x0. One can construct

(on the same probability space as X(r0)) a family (Z(r))r∈(0,r0] of reflected diffusions on the

half-line with drift g(·, θ) and diffusion σ 2(·, θ), starting from Z(r)(0) = r , such that Z(r)(t) ≤
Z(r ′)(t) a.s. for every t ≥ 0 and 0 < r < r ′ ≤ r0. Also, assume that this probability space contains

a Walsh diffusion X(0) = (X(0)(t), t ≥ 0) with the same drift and diffusion coefficients, starting

from the origin, independent of everything else. Let τr,a := inf{t ≥ 0 | Z(r)(t) = a} for r ∈ (0, r0]
and a ∈ R+. Then since τr,r0

↓ τr0,r0
= 0, τr,0 ↑ τr0,0 > 0 a.s., as r ↑ r0,

lim
r↑r0

1(τr,r0
< τr,0) = 1, lim

r↑r0

1(τr,r0
> τr,0) = 0,

lim
r↑r0

1(t ≤ τr,r0
< τr,0) = 0, lim

r↑r0

1(τr,r0
< τr,0 ∧ t) = 1 a.s.

(5.7)
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For every r ∈ (0, r0), let us construct a copy X(r) = (X(r)(t), t ≥ 0) of this Walsh diffusion

starting from X(r)(0) = θr . The construction of X(r) proceeds as follows.

(a) If τr,0 < τr,r0
, that is, the reflected diffusion Z(r) hits zero before r0, then we let X(r) evolve

like this reflected diffusion on the ray Rθ before hitting the origin, and then start the independent

copy X(0) of the Walsh diffusion from there. Formally, let us define

X(r)(t) :=
{

θZ(r)(t), t ≤ τr,0;
X(0)(t − τr,0), t ≥ τr,0.

(b) If τr,0 > τr,r0
, that is, Z(r) hits r0 before zero, then we let X(r) evolve like this reflected

diffusion on the ray Rθ , until it hits x0. Then we start the copy of X(r0). Let us define

X(r)(t) :=
{

θZ(r)(t), t ≤ τr,r0
;

X(r0)(t − τr,r0
), t ≥ τr,r0

.

Since r ↑ r0 case (a) is less likely and case (b) is more likely. Thus, we construct a Walsh diffusion

X(r) with initial value X(r)(0) = (r, θ). We shall evaluate E[f (X(r)(t))] =: E(r) + F(r), where

F(r) := E
[

f
(

X(r)(t)
)

1(τr,r0
< τr,0)

]

, E(r) := E
[

f
(

X(r)(t)
)

1(τr,r0
> τr,0)

]

. (5.8)

Thanks to (5.7) and boundedness of f , we immediately see

E(r) → 0 as r ↑ r0. (5.9)

Let us decompose the term F(r) into two terms:

F(r) = E
[

f
(

X(r)(t)
)

1(t ≤ τr,r0
< τr,0)

]

+E
[

f
(

X(r)(t)
)

1(τr,r0
< τr,0 ∧ t)

]

= E
[

f
(

θZ(r)(t)
)

1(t ≤ τr,r0
< τr,0)

]

+E
[

f
(

X(r0)(t − τr,r0
)
)

1(τr,r0
< τr,0 ∧ t)

]

=: F1(r) + F2(r).

(5.10)

Next, F1(r) → 0 as r ↑ r0, thanks to (5.7) and boundedness of f , and

F2(r) −E
[

f
(

X(r0)(t − τr,r0
)
)]

→ 0 as r ↑ r0. (5.11)

Combine (5.7) with a.s. continuity of trajectories of X(r0), continuity and boundedness of f , and

use the Lebesgue dominated convergence theorem. Then, as r ↑ r0, we get

E
[

f
(

X(r0)(t − τr,r0
)
)]

→ E
[

f
(

X(r0)(t)
)]

. (5.12)

Combining (5.8)–(5.12), we conclude limr↑r0
E[f (X(r)(t))] = E[f (X(r0)(t))].

Case 2. Assume x0 = θr0 
= 0, that is, r0 > 0; and x = θr , with r ↓ r0; or x0 = 0, that is,

r0 = 0; then also we have x = θr with r ↓ r0 = 0. Then the proof is simpler: there is no case (a).

Indeed, a reflected diffusion Z(r) on the half-line, starting from r > r0, must hit r0 before hitting

zero (or at least at the same time when r0 = 0). The details of the proof are left to the reader. �
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5.3. Feller property for Euclidean topology

The continuity of the transition kernel in Euclidean topology can be seen as a corollary of Theo-

rem 4.1, if we take μn ≡ μ for all n = 0,1,2, . . . .

Lemma 5.1. Under Assumptions 2.1, 2.2, 4.1, take a bounded continuous (in the Euclidean

topology) function f : I →R. Fix a t > 0, and let x → x0 in I in Euclidean topology. Then

Ex

[

f
(

X(t)
)]

→ Ex0

[

f
(

X(t)
)]

.

6. Lyapunov functions and convergence to the stationary

distribution

In this section, we shall find Lyapunov functions for Walsh diffusions to prove existence and

uniqueness of a stationary distribution, and convergence to this stationary distribution as t → ∞.

For general Markov processes, the application of Lyapunov functions has been widely studied

in the last few decades. Without attempting to provide an exhaustive list of references, let us

mention the following papers: Bakry, Cattiaux and Guillin [1], Douc, Fort and Guillin [7], Down,

Meyn and Tweedie [8], Lund, Meyn and Tweedie [19], Meyn and Tweedie [20,21], Roberts and

Tweedie [28]. We have three goals:

(a) Establish the very fact of long-term convergence of the transition kernel P t (x, ·) to the

stationary distribution π(·) using Lyapunov functions, in a suitable distance;

(b) Prove that the rate of this convergence is exponential; that is, the distance between P t (x, ·)
and π(·) is estimated from above as a constant (dependent on x) times e−κt , for some κ > 0;

(c) Estimate the rate κ of this exponential convergence.

6.1. Definitions and general results

Let us start with general definitions. Consider an Rd -valued continuous-time Markov process

X = (X(t), t ≥ 0) with transition kernel P t (x, ·).

Definition 6.1. We say that the process X is ergodic if there exists a unique stationary distribu-

tion π(·), and if the transition kernel converges in the total variation norm ‖·‖TV to π , i.e.,

lim
t→∞

∥

∥P t (x, ·) − π(·)
∥

∥

TV
= 0, for every x ∈Rd .

Definition 6.2. We say that X is V -uniformly ergodic for a function V : Rd → [1,∞), if X is

ergodic, and there exist constants K,κ > 0 such that for every t ≥ 0, x ∈Rd , we have:

∥

∥P t (x, ·) − π(·)
∥

∥

TV
≤ KV (x)e−κt . (6.1)

For V ≡ 1, we say that X is exponentially ergodic.
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Assumption 6.1. The spinning measure μ has finite support suppμ = {θ1, . . . , θp} in S; that

is, the effective state space Iμ in (2.9) for this Walsh diffusion is a finite union of rays from the

origin

Iμ :=
p

⋃

i=1

{rθi | 0 ≤ r < li}, li := 
(θi), i = 1, . . . , p.

Sometimes, the Walsh diffusion in the finite union Iμ of rays is called a spider.

Lemma 6.1. Under Assumptions 2.1, 2.2, and either 4.1 or 6.1, we have the following results.

(a) Assume there exist a function V : Iμ → R+ in the domain of the generator L and some

positive constants k, b, r0, such that

LV (x) ≤ −k + b1Bμ(r0)(x), x ∈ Iμ, (6.2)

where Bμ(r0) :=
{

(r, θ) ∈ Iμ | 0 < r ≤ r0

}

∪ {0}. (6.3)

Then the Walsh diffusion is ergodic. Moreover, for every bounded measurable function f : Iμ →
R,

lim
t→∞

1

t

∫ t

0

f
(

X(u)
)

du =
∫

Iμ

f (x)π(dx). (6.4)

(b) Assume there exist a function V : Iμ → [1,∞) in the domain of the generator L and some

positive constants k, b, r0, such that

LV (x) ≤ −kV (x) + b1Bμ(r0)(x), x ∈ Iμ. (6.5)

Then the Walsh diffusion is V -uniformly ergodic, and
∫

Iμ V (x)π(dx) < ∞.

Remark 6.1. A function V which satisfies (6.2) or (6.5) is called a Lyapunov function in the

literature cited in the beginning of this section.

Proof. Case 1. First, we work under Assumptions 2.1, 2.2, 4.1. Then we operate in Euclidean

topology. The set Bμ(r0) from (6.3) is compact. The Walsh diffusion is Feller continuous from

Lemma 5.1, and has the positivity property from Theorem 5.1.

Case 2. Next, we work under Assumptions 2.1, 2.2, 6.1. Then we operate in the tree-topology.

By Remark 2.1, the set Bμ(r0) from (6.3) is compact in the tree-topology. The Walsh diffusion

is Feller continuous from Theorem 5.2, and has the positivity property from Theorem 5.1.

Finally, for both cases, the rest of the proof of (b) follows from Sarantsev [31], Lemma 2.3,

Theorem 2.6, and the rest of the proof of (a) follows from Sarantsev [31], Proposition 2.2, and

Meyn and Tweedie [21], Theorem 5.1. �

6.2. An example of convergence

Let us provide an example with explicit conditions on the drift and diffusion coefficients g and σ .
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Lemma 6.2. Under Assumptions 2.1, 2.2, and either 4.1 or 6.1,

(a) the Walsh diffusion is ergodic, if

lim
r→∞

sup
θ∈S

g(r, θ) =: −g < 0. (6.6)

(b) If, in addition, the following condition

lim
r→∞

sup
θ∈S

σ(r, θ) =: σ < ∞, (6.7)

holds, then the Walsh diffusion is V -uniformly ergodic with V = Vλ(r, θ) := eλr for some λ > 0.

Proof. The proof is similar to that from Sarantsev [29], Theorem 3.2. Take a C∞ nondecreasing

function ϕ :R+ → R+ such that

ϕ(x) =
{

0, x ≤ 1;
x, x ≥ 2.

An example of such function can be found in Sarantsev [29], Section 3.2. For (a), try V (r, θ) =
ϕ(r). This function satisfies condition (2.12), because V ′

r (0+, θ) = ϕ′(0) = 0. It is also continu-

ous in the Euclidean topology, which is the additional condition in Remark 2.3. Plug into (2.11)

and get

for r ≥ 2, ϕ′(r) = 1, and ϕ′′(r) = 0, (6.8)

and hence, LV (r, θ) = g(r, θ). It follows from (6.6) that there exist r1, b > 0 such that g(r, θ) ≤
−b for r ≥ r1. Therefore, for r ≥ r0 := r1 ∨ 2, we get LV (r, θ) ≤ −b. In addition, the function

LV is continuous and therefore bounded on Bμ(r0). Thus, we have (6.2). Apply Lemma 6.1(a)

to complete the proof of Lemma 6.2(a). The proof of (6.4) follows from Meyn and Tweedie [20],

Theorem 8.1(a).

For (b), try V (r, θ) = exp(λϕ(r)). Similarly, this function satisfies V ′
r (0+, θ) = 0 and there-

fore (2.12); and on top of this, V is also continuous in the Euclidean topology. Using (6.8), for

r ≥ 2, we have: V ′(r, θ) = λV (r, θ), and V ′′(r, θ) = λ2V (r, θ). Thus,

LV (r, θ) =
[

g(r, θ)λ +
1

2
σ 2(r, θ)λ2

]

V (r, θ) for r ≥ 2. (6.9)

Now, from (6.6) and (6.7), there exist constants g,σ > 0 and an r1 > 0 such that g(r, θ) ≤ −g <

0, σ(r, θ) ≤ σ , r ≥ r1. Then, for r ≥ r1, λ = g · σ−2, we have

g(r, θ)λ +
1

2
σ 2(r, θ)λ2 ≤ −gλ +

σ 2

2
λ2 ≤ −

g2

2σ 2
=: −k < 0. (6.10)

Comparing (6.9) with (6.10), we get LV (r, θ) ≤ −kV (r, θ) for θ ∈ suppμ and r ≥ r1 ∨ 2 =: r0.

Similarly to (a), we get that LV is continuous and therefore bounded on Bμ(r0). Therefore, we

obtain (6.5). Apply Lemma 6.1(b) to complete the proof of Lemma 6.2(b). �
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6.3. Explicit rate of exponential convergence

In a fairly general setting, we can estimate the rate κ of exponential convergence from (6.1). It

is hard to estimate this rate for diffusions. Let us informally explain the difficulty: Let L be the

generator of a certain Markov process on Rd . Assume we have a Lyapunov function V in the

domain of this generator which satisfies

LV (x) ≤ −kV (x) + b1C(x) for all x. (6.11)

Here, k, b > 0 are some constants, and C is a “small” set. There is actually a precise meaning of

the term small set in this theory, which was developed in Down, Meyn and Tweedie [8], Meyn

and Tweedie [20,21]. For our purposes, it is sufficient to let C be a compact set, as follows

from Sarantsev [31], Lemma 2.3, Proposition 2.6. One would like to infer an explicit value of

the constant κ in (6.1) from the constants in (6.11). As mentioned in the Introduction, however,

it turns out to be very hard, in general, see, for example, Davies [6], Meyn and Tweedie [22],

Roberts and Rosenthal [26], Roberts and Tweedie [28], since κ depends in a complicated way

on k, b,C, and the transition kernel P t (x, ·).
However, such estimates are much easier if the Markov process is on the half-line R+, is

stochastically ordered, and the “exceptional set” C = {0} in the formula (6.11) for a Lyapunov

function. Alternatively, the stochastic process itself might not be stochastically ordered, but is

stochastically dominated by a stochastically ordered Markov process with a Lyapunov function

with C = {0}. This was done by the coupling method in Lund, Meyn and Tweedie [19] for some

processes, including reflected diffusions, and in Sarantsev [29] for reflected jump-diffusions.

Here, we are able to adjust the coupling techniques used in Lund, Meyn and Tweedie [19],

Sarantsev [29] for the case of Walsh diffusions, by dominating the radial component of the Walsh

diffusion by a stochastically ordered reflected diffusion on R+. The rest of this section closely

follows the ideas of Lund, Meyn and Tweedie [19], Sarantsev [29].

Recall f : R+ → R is called locally Lipschitz if for every R0 > 0 there exists a C(R0) > 0 such

that |f (r1) − f (r2)| ≤ C(R0)|r1 − r2|, r1, r2 ∈ [0,C(R0)]. Impose the following assumption.

Assumption 6.2. The drift coefficient g(r, θ) is dominated by g(r, θ) ≤ g(r), (r, θ) ∈ I \ {0},
where g(r) is independent of θ , and the diffusion coefficient σ is itself angular-independent:

σ(r, θ) = σ(r), (r, θ) ∈ I \ {0}.

Here, g,σ :R+ → R are assumed to be locally Lipschitz continuous, and so is g(·, θ) for each θ .

Theorem 6.1. (a) Under Assumption 6.2, suppose there exists a constant k > 0 and a nonde-

creasing C2 function V :R+ → [1,∞) such that

g(r)V ′(r) +
1

2
σ 2(r)V ′′(r) ≤ −kV (r), r > 0. (6.12)

Then for every two points x1, x2 ∈ I , and every t > 0, we have

∥

∥P t (x1, ·) − P t (x2, ·)
∥

∥

V
≤

(

V (x1) + V (x2)
)

e−kt . (6.13)
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(b) If, in addition to (a), this Walsh diffusion is ergodic, and π is its stationary distribution,

satisfying (π,V ) < ∞, then this Walsh diffusion is V -uniformly ergodic with κ := k in (6.1).

Remark 6.2. Somewhat abusing the notation, we will refer to V sometimes as a function V :
Rd →R, and sometimes as a function V : R+ →R.

Proof. Part (a) Step 1. Similarly to Lund, Meyn and Tweedie [19], Sarantsev [29], we couple four

processes: two copies X1 and X2 of the Walsh diffusion associated with (g, σ,μ), starting from

Xi(0) = xi, i = 1,2, and two copies S1 and S2 of a reflected diffusion on R+ with coefficients

g(·) and σ(·), starting from Si(0) = ‖xi‖, i = 1,2, so that the following pathwise comparison

holds:
∥

∥Xi(t)
∥

∥ ≤ Si(t), i = 1,2. (6.14)

Assume also S1 and S2 have the same driving Brownian motion. That is, there exists a standard

Brownian motion B = (B(t), t ≥ 0), such that

dSi(t) = g
(

Si(t)
)

dt + σ
(

Si(t)
)

dB(t) + dLi(t), i = 1,2. (6.15)

Here, Li = (Li(t), t ≥ 0), i = 1,2, are some continuous adapted nondecreasing real-valued pro-

cesses, with Li(0) = 0, such that Li can increase only when Si = 0, i = 1,2. We shall show at

the end of this proof how to construct such coupling.

Step 2. Assume we have already constructed the coupling with all aforementioned properties.

Then we can quickly prove the statement of Theorem 6.1(a). Assume without loss of generality

that ‖x1‖ ≤ ‖x2‖. Then using the standard comparison techniques for diffusions, we get

S1(t) ≤ S2(t), t ≥ 0. (6.16)

Define the stopping time τ := inf{t ≥ 0 | S2(t) = 0}. By (6.14) and (6.16), we have

∥

∥X1(τ )
∥

∥ =
∥

∥X2(τ )
∥

∥ = 0 ⇒ X1(τ ) = X2(τ ) = 0.

Therefore, τ is a coupling time for X1 and X2. Using the standard trick, we assume X1(t) =
X2(t) a.s. for t > τ . Then for a function f : I → R such that |f | ≤ V , we have

∣

∣E
[

f
(

X1(t)
)]

−E
[

f
(

X2(t)
)]

∣

∣

=
∣

∣E
[

f
(

X1(t)
)

1{τ>t}
]

−E
[

f
(

X2(t)
)

1{τ>t}
]∣

∣

≤ E
[∣

∣f
(

X1(t)
)∣

∣1{τ>t}
]

+E
[∣

∣f
(

X2(t)
)∣

∣1{τ>t}
]

≤ E
[

V
(

X1(t)
)

1{τ>t}
]

+E
[

V
(

X2(t)
)

1{τ>t}
]

≤ E
[

V
(

S1(t)
)

1{τ>t}
]

+E
[

V
(

S2(t)
)

1{τ>t}
]

.

(6.17)

Combining (6.17) with (6.12), we get as in Sarantsev [29]:

∣

∣E
[

f
(

X1(t)
)]

−E
[

f
(

X2(t)
)]

∣

∣ ≤
(

V (x1) + V (x2)
)

e−kt .

Taking supremum over all functions f : I → R such that |f | ≤ V , we complete the proof of (a).
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Step 3. It remains to show that a coupling of

X1,X2, S1, S2,

which satisfies (6.14), (6.15) exists. First, our goal is to construct two Walsh diffusions X1 and X2

associated with (g, σ,μ), starting from Xi(0) = xi , with the same driving Brownian motion B .

That is, X1 and X2 need to satisfy

d
∥

∥Xi(t)
∥

∥ = g
(

Xi(t)
)

dt + σ
(

Xi(t)
)

dB(t) + dL‖Xi‖(t), i = 1,2; t ≥ 0. (6.18)

To this end, take a probability space (�,F,P) with infinitely many i.i.d. copies

W (n) =
(

W (n)(t), t ≥ 0
)

, n = 0,1,2, . . .

of a Walsh diffusion associated with (g, σ,μ), starting from the origin: W (n)(0) = 0; as well as

yet another independent standard Brownian motion B = (B(t), t ≥ 0). For each Walsh diffusion

W (n), we can write a representation in terms of stochastic differential equation

d
∥

∥W (n)(t)
∥

∥ = g
(

W (n)(t)
)

dt + σ
(

W (n)(t)
)

dBn(t) + dL‖Wn‖(t),

where Bn = (Bn(t), t ≥ 0), n = 1,2, . . . are i.i.d. standard Brownian motions. Let xi = r iθ i, i =
1,2. If r1 = 0 or r2 = 0, then let τ0 := 0. Assume now r1 > 0 and r2 > 0. For i = 1,2, con-

sider strong solutions Si of a one-dimensional SDE with drift coefficient g(·, θ i) and diffusion

coefficient σ 2(·, θ i), starting from Si(0) = r i , driven by Brownian motion B:

dSi(t) = g(Si, θ i)dt + σ(Si)dB(t), t ≤ τ i := inf
{

t ≥ 0 | Si(t) = 0
}

.

Because the drift coefficient g(·, θ i) and the diffusion coefficient σ(·, θ i) are locally Lipschitz

continuous, this strong solution exists and is unique. By (6.12) and Assumption 6.2 it follows

that this process is non-explosive, at least not until it hits zero. Define

Xi(t) = θ iSi(t), i = 1,2; t < τ0;

where the first stopping time is defined as τ0 := inf{t ≥ 0 | X1(t) = 0 or X2(t) = 0} = τ 1 ∧ τ 2.

Thus, we defined X1(t) and X2(t) for t ≤ τ0 so that (6.18) is satisfied with B(t) := B(t) for

t ≤ τ0.

Step 4. Next, we construct a sequence (τn)n≥0 of stopping times such that τ0 ≤ τ1 ≤ τ2 ≤ · · · ,

and define X1 and X2 inductively on each [τ2k, τ2k+2] so that (6.18) holds with

X1(τ2k) = 0, X2(τ2k+1) = 0, k ≥ 0; τ∞ := lim
k→∞

τk. (6.19)

Therefore, we shall construct X1 and X2 on [0, τ∞] so that (6.18) and (6.19) hold. In Step 6, we

construct X1(t) and X2(t) for t > τ∞, if τ∞ < ∞.

Assume we have already defined X1 and X2 on [0, τ2n], so that (6.18) and (6.19) hold for

k = 0, . . . , n. In the case X1(τ2n) = X2(τ2n) = 0, we let τk := τ2n for k ≥ 2n. Next, assume

X1(τ2n) = 0, X2(τ2n) 
= 0.
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Let X2(τ2n) = ρ2nθ2n. Construct a strong solution S2n+1 = (S2n+1(t), t ≥ 0) of a one-

dimensional SDE with coefficients g(·, θ2n) and σ(·), starting from S2n+1(0) = ρ2n, until it

hits zero:

dS2n+1(t) = g
(

S2n+1(t), θ2n

)

dt + σ
(

S2n+1(t)
)

dB2n+1(t), t ≤ τ ′
2n+1

:= inf
{

t ≥ 0 | S2n+1(t) = 0
}

.

By local Lipschitz continuity of the coefficients g(θ2n, ·) and σ(·), this strong solution exists and

is unique. From (6.12) and Assumption 6.2, it follows that this process is non-explosive, at least

not until it hits zero. Define τ2n+1 := τ2n + τ ′
2n+1, and

X1(t + τ2n) := W (2n+1)(t), X2(t + τ2n) := S2n+1(t), t ≤ τ ′
2n+1.

This defines X1 and X2 on the next time interval [τ2n, τ2n+1] such that (6.18) is satisfied. The

common driving Brownian motion B is defined as

B(t) := B(τ2n) + B2n+1(t − τ2n), t ∈ [τ2n, τ2n+1].

If we have X1(τ2n+1) = X2(τ2n+1) = 0, we let τk := τ2n+1 for k ≥ 2n + 1. Otherwise, we repeat

the construction above with X1 and X2 swapped, with obvious changes. This allows us to con-

struct X1 and X2 on [τ2n+1, τ2n+2] so that (6.18) and (6.19) hold for k ≤ 2n + 2. The common

driving Brownian motion B is defined as

B(t) := B(τ2n+1) + B2n+2(t − τ2n+1), t ∈ [τ2n+1, τ2n+2].

By induction, we have defined X1(t) and X2(t) for t ≤ τ∞.

Step 5. It follows from (6.19) that X1(τ∞) = X2(τ∞) = 0. It suffices to define Xi , i = 1,2 on

[τ∞,∞) if τ∞ < ∞. Assume τ∞ < ∞ and define X1(t) and X2(t) for t ≥ τ∞ by X1(t + τ∞) =
X2(t + τ∞) = W (0)(t), t ≥ 0. The common driving Brownian motion B is defined on [τ∞,∞)

as

B(t) := B(τ∞) + B0(t − τ∞).

This completes the construction of two copies X1 and X2 of the Walsh diffusion, associated with

(g, σ,μ), starting from Xi(0) = xi , i = 1,2, such that (6.18) holds.

Step 6. Finally, we construct strong versions S1 and S2 of a reflected diffusion with drift coef-

ficient g and diffusion coefficient σ , starting from Si(0) = r i , with driving Brownian motion B ,

as in (6.15). This is possible by classic results, because g and σ are locally Lipschitz continuous.

By standard comparison techniques, we have (6.14).

Part (b) Take a function f : I → R with |f | ≤ V . Then X = (X(t), t ≥ 0) satisfies

∣

∣Ex1

[

f
(

X(t)
)]

−Ex2

[

f
(

X(t)
)]∣

∣ ≤
(

V (x1) + V (x2)
)

e−kt , x1, x2 ≥ 0.
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Integrate over I with respect to x2 ∼ π . Then we have:

∣

∣Ex1

[

f
(

X(t)
)]

− (π,f )
∣

∣ =
∣

∣

∣

∣

Ex1

[

f
(

X(t)
)]

−
∫

I

Ex2

[

f
(

X(t)
)]

π(dx2)

∣

∣

∣

∣

≤
∫

I

∣

∣Ex1

[

f
(

X(t)
)]

−Ex2

[

f
(

X(t)
)]∣

∣π(dx2)

≤ e−kt

(

V (x1) +
∫

I

V (x2)π(dx2)

)

≤ e−kt
(

V (x1) + (π,V )
)

≤ e−kt
(

1 + (π,V )
)

V (x1). �

Remark 6.3. In Assumption 6.2, we imposed Lipschitz continuity assumption only to guarantee

strong existence and pathwise uniqueness. It is well known, however, that these existence and

uniqueness results hold under weaker conditions. In this case, our result also holds.

Let us present some corollaries. Under assumptions of Theorem 6.1, define

K(x,λ) := g(x)λ + σ 2(x)
λ2

2
. (6.20)

The following result is proved similarly to Sarantsev [29], Theorem 4.3, Corollary 5.2.

Corollary 6.1. Under Assumption 6.2, suppose there exist k,λ > 0 such that

sup
x>0

K(x,λ) =: −k < 0. (6.21)

Then the Walsh diffusion X is V (r) := eλr -uniformly ergodic with κ := k, and the stationary

distribution π satisfies (π,V ) < ∞.

Remark 6.4. Under Assumption 6.2, suppose

sup
x∈I\{0}

g(x) =: −g̃ < 0, sup
x∈I\{0}

σ(x) =: σ̃ < ∞.

Similarly to Sarantsev [29], Corollary 4.4, we can show that (6.21) holds with λ := g̃/σ̃ . Then,

the Walsh diffusion X is V (r) := eλr -uniformly ergodic with rate κ := k of exponential conver-

gence from (6.21).

Example 6.1 (Continuing from Example 3.1). Consider a Walsh diffusion X associated with

(g, σ,μ), such that the drift and diffusion coefficients are constant:

g(r, θ) ≡ g < 0, σ (r, θ) = σ > 0.
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Then we can take g(r) := g, and σ(r) := σ in the Assumption 6.2. The expression K in (6.20)

is reduced to K(x,λ) = gλ + σ 2

2
λ2, and is minimized at λ = −g/σ 2, with minimum −k, where

k :=
g2

2σ 2
. (6.22)

This is an estimate of the exponential rate κ of convergence. Actually, this estimate is exact.

Indeed, the radial component ‖X(·)‖ of such Walsh diffusion is a reflected Brownian motion on

the half-line with drift g and diffusion σ 2, and such process is known from Lund, Meyn and

Tweedie [19] to have exact rate of exponential convergence as in (6.22).

We can apply this result to (non-reflected) diffusions on the real line.

Corollary 6.2. Take a solution X = (X(t), t ≥ 0) of an SDE on the real line R with drift co-

efficient g and diffusion coefficient σ 2. Suppose it is ergodic. Assume that g and σ are locally

Lipschitz, and σ(x) = σ(−x) for all x ∈ R. Suppose there exists a C2 nondecreasing function

V : R+ → [1,∞) and a constant k > 0 such that

g(r)V ′(r) +
1

2
σ 2(r)V ′′(r) ≤ −kV (r), where g(r) := g(r) ∨

(

−g(−r)
)

, r > 0;

Finally, assume that the stationary distribution π satisfies (π,V ) < ∞. Then X is V -uniformly

ergodic with rate of convergence κ = k.

Proof. Follows from Theorem 6.1 and the observation that the real line can be thought of as

a “spider” with two rays, corresponding to North and South Pole, that is, θ1 and θ2. Then the

process X becomes a spider associated with (g̃, σ,μ), where μ is a uniform measure on {θ1, θ2},
and g̃(r, θi) := g(r) · 1{i=1} − g(−r) · 1{i=2}, r ≥ 0. �

Example 6.2 (Bang-bang drifts Karatzas and Shreve [17]). Consider a diffusion on R with

drift and diffusion coefficients g(x) = −g1 · 1{x>0} + g2 · 1{x≤0}, with constants g1, g2 > 0, and

σ(x) ≡ 1, x ∈ R. Then we can take g(r) = g1 ∧ g2, and by Corollary 6.2 it is V -uniformly

ergodic with λ = g1 ∧ g2 and rate κ = k = (g1 ∧ g2)
2/2 of exponential convergence.

Appendix

Lemma A.1. Take two sequences (fn)n≥0 and (gn)n≥0 of continuous functions [0, T ] → Rd .

Assume tn ∈ [0, T ] are such that fn(tn) = gn(0) = 0 for n = 0,1,2, . . . and tn → t0. Assume

fn → f0 and gn → g0 uniformly on [0, T ]. Define the new sequence of functions hn : [0, T ] →
Rd :

hn(t) :=
{

fn(t), t ∈ [0, tn];
gn(t − tn), t ∈ [tn, T ].

Then hn → h0 uniformly on [0, T ].
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Proof. Without loss of generality, assume tn ↑ t0, as n → ∞. Otherwise, we can switch from tn
to T − tn and from hn(t) to hn(T − t). Then we can estimate the maximum difference

max
t∈[0,T ]

∥

∥hn(t) − h0(t)
∥

∥

≤ max
t∈[0,tn]

∥

∥hn(t) − h0(t)
∥

∥ + max
t∈[tn,t0]

∥

∥hn(t) − h0(t)
∥

∥ + max
t∈[t0,T ]

∥

∥hn(t) − h0(t)
∥

∥

= max
t∈[0,tn]

∥

∥fn(t) − f0(t)
∥

∥ + max
t∈[tn,t0]

∥

∥gn(t − tn) − f0(t)
∥

∥ + max
t∈[t0,T ]

∥

∥gn(t − tn) − g0(t − t0)
∥

∥.

By uniform convergence fn → f0, the first term can be estimated as

max
t∈[0,tn]

∥

∥fn(t) − f0(t)
∥

∥ ≤ max
t∈[0,t0]

∥

∥fn(t) − f0(t)
∥

∥ → 0. (A.1)

The second term can be estimated as

max
t∈[tn,t0]

∥

∥gn(t − tn) − f0(t)
∥

∥ ≤ max
s∈[0,t0−tn]

∥

∥gn(s)
∥

∥ + max
t∈[tn,t0]

∥

∥f0(t)
∥

∥. (A.2)

Note that ‖gn‖ → ‖g0‖ uniformly on [0, T ], and t0 − tn → 0 as n → ∞. Thus,

max
s∈[0,t0−tn]

∥

∥gn(s)
∥

∥ →
∥

∥g0(0)
∥

∥ = 0. (A.3)

Since f0(t0) = 0, tn → t0, and ‖f0‖ is continuous, the second term in the right-hand side of (A.2)

converges to zero, as n → ∞. Combining this with (A.3), we get

max
t∈[tn,t0]

∥

∥gn(t − tn) − f0(t)
∥

∥ → 0. (A.4)

Thirdly, the third term can be estimated by

max
t∈[t0,T ]

∥

∥gn(t − tn) − g0(t − t0)
∥

∥ ≤ max
t∈[t0,T ]

∥

∥gn(t − tn) − g0(t − tn)
∥

∥

+ max
t∈[t0,T ]

∥

∥g0(t − tn) − g0(t − t0)
∥

∥.
(A.5)

The first term in the right-hand side of (A.5) can be estimated as

max
t∈[t0,T ]

∥

∥gn(t − tn) − g0(t − tn)
∥

∥ ≤ max
s∈[0,T ]

∥

∥gn(s) − g0(s)
∥

∥ → 0. (A.6)

The second term in the right-hand side of (A.5) also tends to zero as n → ∞, because g0 is

continuous, and therefore uniformly continuous on [0, T ], while tn → t0. Combining this obser-

vation with (A.6), we get that

max
t∈[t0,T ]

∥

∥gn(t − tn) − g0(t − t0)
∥

∥ → 0. (A.7)

Finally, combining (A.1), (A.4), (A.7), we complete the proof of Lemma A.1. �
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Lemma A.2. For a Walsh diffusion X without drift from Case 3 of the proof of Theorem 5.1, we

have P(τX
R,A < t) > 0, where τX

R,A is defined in (5.3).

Proof of Lemma A.2. By Assumption 2.1, the functions σ and σ−1 are bounded on the (open)

ball D with radius R, which, together with its closure D, lies inside I . This implies

0 < c1 ≤ σ 2(x) ≤ c2 < ∞ for all x ∈ D. (A.8)

Next, we can estimate the probability from Lemma A.2 as follows:

P
(

τX
R,A < t

)

≥ P
(

τX
R,A < t, τX

R′ > t
)

. (A.9)

It follows from (A.8) and (5.2) that

c1t ≤ T (t) ≤ c2t, for t ∈
[

0, τX
R′

]

. (A.10)

Also, from definitions of hitting times (5.3)–(5.5), it immediately follows that

T
(

τX
R′

)

= τW
R′ , T

(

τX
R,A

)

= τW
R,A. (A.11)

The estimate (A.10) and the relations (A.11), in turn, imply that the inverted time-change

T −1(s) := inf{t ≥ 0 | T (t) ≥ s} satisfies

c−1
2 s ≤ T −1(s) ≤ c−1

1 s, for s ∈
[

0, τW
R′

]

. (A.12)

Let us show that
{

τW
R,A < c1t < c2t < τW

R′
}

⊆
{

τX
R,A < t < τX

R′
}

. (A.13)

Indeed, assume the event in the left-hand side of (A.13) has happened. Then from (A.11), apply-

ing the inverted time-change T −1, we get

τX
R,A < T −1(c1t) < T −1(c2t) < τX

R′ . (A.14)

Applying (A.12) to (A.14), we have T −1(c1t) ≤ t , T −1(c2t) ≥ t . Comparing this with (A.14),

we get τX
R,A < t < τX

R′ . This completes the proof of (A.13).

To complete the proof of Lemma A.2, we need only to show that

P
(

τW
R,A < c1t < c2t < τW

R′
)

> 0. (A.15)

Indeed, W is Walsh Brownian motion, starting from the origin. As noted earlier before, ‖W(t)‖ =
Z(t) is a reflected Brownian motion on the half-line, starting from zero. Define τZ

a := inf{t ≥ 0 |
Z(t) = a} for a > 0. Then argW(τZ

a ) ∼ μ is independent of Z. Therefore, the probability in the

left-hand side of (A.15) is equal to

μ(A) · P
(

τZ
R < c1t < c2t < τZ

R′
)

> 0. (A.16)

That the left-hand side of (A.16) is indeed positive follows from μ(A) > 0 and the properties of

a reflected Brownian motion on the half-line. This proves (A.15), and with it Lemma A.2. �
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