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A Walsh diffusion on Euclidean space moves along each ray from the origin, as a solution to a stochastic
differential equation with certain drift and diffusion coefficients, as long as it stays away from the origin.
As it hits the origin, it instantaneously chooses a new direction according to a given probability law, called
the spinning measure. A special example is a real-valued diffusion with skew reflections at the origin. This
process continuously (in the weak sense) depends on the spinning measure. We determine a stationary
measure for such process, explore long-term convergence to this distribution and establish an explicit rate
of exponential convergence.
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1. Introduction

1.1. Informal description of Walsh Brownian motions and Walsh diffusions

Fix a positive integer d > 1, a dimension of R¢ with Euclidean norm

Ixll = (x3 + - 4+ x3) "2,

Take a Borel probability measure 1 on the unit sphere S := {z € R? | ||z|| = 1}. The origin in
R? will be denoted by 0, to distinguish it from the zero on the real line. With rays Ry := {s0 €
R?|s>0},60¢€S, wesee R = (Upes Ro. Take a filtered probability space (2, F, (F;);=0, P)
with the filtration satisfying the usual conditions. A Walsh Brownian motion in R? with spinning
measure | is an adapted, continuous stochastic process X = (X (¢), ¢ > 0) which is informally
described as follows.

Let us take a one-dimensional reflected Brownian motion S = (S(¢), ¢ > 0) with values in
R4 := [0, 00), starting from the origin and reflected at the origin. Its sample path can be split
into excursions in a measurable way. For every excursion, choose an S-valued random variable
0 distributed in u, independent of these variables for other excursions and of the underlying
reflected Brownian motion S. Define the d-dimensional stochastic process X (t) = 0 S(¢) for each
t in the open interval which the corresponding excursion straddles, and X () = 0 for all other ¢
(where S(t) = 0). We call X = (X(r),¢ > 0) a Walsh Brownian motion in R? with spinning
measure L.
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A particular case is the skew Brownian motion, when the measure w is supported on two op-
posite polar points (North Pole and South Pole) on S. In this case, the process is essentially
one-dimensional. In fact, the skew Brownian motion is usually defined as an R-valued process,
where, instead of North and South Pole, we choose the positive and negative half-line. For exam-
ple, if the probabilities attached to the North and South Poles are equal to 1/2, then we recreate
a standard Brownian motion. Usually, Walsh Brownian motions in R? are considered in the lit-
erature, however, it was originally pointed out by Walsh in Walsh [34] that the construction and
the corresponding theory for the general d-dimensional case is basically the same as the case of
d=2.

We can also construct Walsh diffusions, given the measure w on S and some coefficients g :
R? - Rand o : RY — R, Similarly to a Walsh Brownian motion, Walsh diffusions move along
the rays Ry, 6 € S, that is, as long as this process is on the ray Ry for a certain 6 € S, it behaves
as a solution of a stochastic differential equation (SDE) on (0, co) with drift coefficient g(-, 8)
and diffusion coefficient o2 (-, 8). If necessary, we stress their dependence on both # and r = | x||
by writing them as g(r, #) and o (r, 0). Note that the meaning of spinning measure p for this
Walsh diffusion is slightly different from what we describe for the Walsh Brownian motion in
the above. More precisely, for every subset A C S, 1(A) is the share of local time accumulated
at the origin corresponding to the excursions of the Walsh diffusion on rays Rg, 0 € A (see (2.5)
below).

Our primary purpose of study in this paper is the long-term convergence of the Walsh diffusion
to the stationary measure under appropriate conditions. Along the course, we examine in detail
the local behavior of the Walsh diffusions in the neighborhood of the origin, and examine the
Feller continuity and some other properties of Walsh diffusions.

1.2. Historical review

Walsh Brownian motion was introduced in Walsh [34] and further studied in Barlow, Pitman and
Yor [2], in the two-dimensional context (but the results are immediately transferred to R4 for
d > 2). In much of the existing literature, the support of the spinning measure y is finite, that is,
suppu = {61, ...,6k} C S, where 61, ..., 6; are k distinct points in S. In this case, Walsh Brow-
nian motion or Walsh diffusion has effective state space {r6;,i =1,...,k,r > 0}, and is some-
times called a spider. Filtrations generated by Walsh Brownian motion on a spider were studied
in Tsirelson [32], Watanabe [35]. A construction of Walsh Brownian motion and, more gener-
ally, a Walsh diffusion, on a spider via pinching points together was done in Evans and Sowers
[9]. Ito’s formula for Walsh Brownian motion with general spinning measure was proved in Hajri
and Touhami [15]. Stochastic calculus for general tree-valued diffusion processes is developed in
Freidlin and Sheu [12], Freidlin and Wentzell [13], Picard [23]. A Dirichlet form approach was
used in Chen and Fukushima [4] to construct Walsh Brownian motion with spinning measure
W, and in Chen and Fukushima [3], Section 7.5, Section 7.6, for the spider. Here, we apply this
method of Dirichlet forms to find stationary measures of Walsh diffusions with general spinning
measure. We also use Dirichlet forms to construct reflected Walsh diffusions. Stochastic flows
and harmonic functions for Walsh Brownian motion were studied in Hajri [14] and Fitzsimmons
and Kuter [11], respectively. Walsh semimartingales and diffusions, with arbitrary spinning mea-
sure p, were introduced in Ichiba et al. [16] and further studied in Karatzas and Yan [18] with
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control problems. Exponential ergodicity for a related class of Markov processes with random
switching was recently studied in Cloez and Hairer [5].

1.3. Overview of the paper

In Section 2, we introduce notation, define Walsh Brownian motions as well as Walsh diffusions,
and study some of their elementary properties. Section 2, for the most part, does not contain new
results; it is a review of Karatzas and Yan [18]. In Section 3, we construct Walsh diffusions using
a Dirichlet form and the method of one-point reflection from the paper Chen and Fukushima [4]
and the book Chen and Fukushima [3], Section 7.5, Section 7.6. This alternative construction
helps us to find a stationary measure for a Walsh diffusion (which is, however, not necessarily a
stationary distribution). In Section 4, we discuss continuous dependence of the law of a Walsh
diffusion X = (X (¢),t > 0) on the spinning measure p and the initial condition X (0) = x € R4,
For the case of a Walsh Brownian motion, we quantify this continuity, effectively saying that
the law of a Walsh Brownian motion is a Holder continuous function of p with respect to a
Wasserstein distance on R?.

In Section 5, we study additional properties of Walsh diffusions, which were not considered
in the previous paper Karatzas and Yan [18]: positivity of the transition kernel with respect to a
reference measure on R?, and Feller continuity. In Section 6, we construct Lyapunov functions
for Walsh diffusions to show ergodicity: existence and uniqueness of a stationary distribution r,
and convergence to 7 in the total variation norm (or even stronger norms) as f — 0o. Under some
more restrictive conditions, we also prove uniform ergodicity: exponentially fast convergence to
T ast— 00.

Our main contribution is to find explicit estimates of the rate of exponential convergence for
Walsh diffusions, extending the ones in Lund, Meyn and Tweedie [19], Sarantsev [29] for re-
flected diffusions and jump-diffusions on a positive half-line. These results are then applied to a
non-reflected diffusion on the whole real line. We would like to stress that often, it is relatively
easy to prove that a diffusion process (or a discrete-time Markov chain) on R converges to its
stationary distribution exponentially fast, but difficult to find or estimate an explicit rate of expo-
nential convergence. Some partial results in this direction are provided in the papers Bakry, Cat-
tiaux and Guillin [1], Davies [6], Meyn and Tweedie [22], Roberts and Rosenthal [26], Roberts
and Tweedie [27,28].

2. Background and definitions

2.1. Notation

Recall that in R, the Euclidean norm is defined by x| := (xl2 4+ -+ xﬁ)l/2 for x =
(X1, ...,Xq). We shall denote the origin in R? by 0 = (0,...,0). Let S:={x e R? | ||x| = 1}
and B := {x e R? | ||x|| < 1} be the unit sphere and the unit ball in R?. For every x € R \ {0},
we write x = (r,0) or simply x =r0 if r = ||x|| > 0 and 6 = arg(x) := x/r € S (polar coordi-
nates). We denote by (x)_ the non-positive part of a real number x € R. We define the tree-metric
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as follows: for every x1, xp € R4 with ri = |lxill,i=1,2,
r, if rp = O;
, if 1 =0;
dist(xp, x2) = {2 nn @2.1)
|ri — ral, if rirp % 0 and arg(x;) = arg(xy);
ry+ra, if rirp # 0 and arg(xp) # arg(xy).

This essentially means that we have the usual Euclidean distance on each ray Ry but a con-
tinuous movement cannot jump between rays, except through the origin. One can think of it as
railroads converging to the central city; this is why it is sometimes also called the railway metric.
The corresponding topology is called the free-fopology. This topology is stronger than the usual
Euclidean topology. That is, convergence in the tree-topology means also convergence in the Eu-
clidean sense, but the converse is not true. Being an open, closed, or Borel set in the Euclidean
metric implies being, respectively, open, closed, or Borel in the tree metric, but not vice versa.
When we refer to Borel subsets of R? below, we mean “Borel in the Euclidean topology”. The
property of boundedness is equivalent in these two metrics; but the property of compactness is
not, as described in the following remark.

Remark 2.1. In the Euclidean topology in R, a closed bounded set is compact. In the tree-
topology, this is no longer true in the general case. Here is a counterexample. {(1, 9) | 8 € ®} for
an infinite subset ® C S is closed and bounded, but not compact in the tree topology. However,
if a set A € R? is bounded and closed in the tree topology, and the set {6 € S | Ir > 0: r6 € A}
is finite, then it can be shown that the set A is compact in the tree topology.

We can define two concepts and spaces of continuity of function x : [0, 7] — R? for every
T >0.

(a) Continuity in the Euclidean norm |-||; this space is denoted by C([0, T], R?), with the
norm

Ixll7 := max [x(@)], xeC([0,T1,RY). (2.2)
te[0,T]

For d = 1 we simply write C[0, T'], instead of C ([0, T], ]Rd).
(b) Continuity in the tree-metric (2.1); this space is denoted by C; ([0, T'], Rd), with the metric

distr (x, y) := I’I[lgl);] dist(x(t), y(t)); X,y € C,([O, T], Rd).
telo,

Fix a Borel subset B C Rd; then int B denotes the interior of B. For any Borel (signed) measure
v on B and any function f : B — R, we denote by (v, f) the integral of f over B with respect
to v. Given a Borel measurable function V : B — [1, c0), a finite, signed Borel measure v on B
has the following V -norm:
iy := sup |, f)].
f:B—R
[flsV

When V = 1, this norm is called the fotal variation norm and is denoted by ||-|ITv.
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For a continuous function f : [0, T] — R, and § > 0, we define the modulus of continuity:

o(f.8.10,T]) := s,}é‘[%’fn|f(’) — f)].

|s—t]<6

For every f : R? — R, the radial derivative f'(r, 0) at (r,0) along the ray Ry is defined by
1
f(r6):= 11% —[fr+e0)— fr.0)]. r>0,60¢€S.
& &
For r = 0, we can also define such (one-sided) derivative in the direction of 6 at the origin:

1
£10,0)= f'(0+,6) := lim ~[ f(s,6) = £(0,6)]. (2.3)
E—>
Similarly, we can define f”, the second-order radial derivative. For every Borel subset A C S,

we define the function x4 : R? — R as follows:

7, ifr >0, andf € A,

=1200)r. 2.4
0, otherwise A©) 24)

xa(r,0):= [

Throughout this article, we operate on a filtered probability space (2, F, (F;)r>0, P), with the
filtration satisfying the usual conditions. The arrow = stands for weak convergence of proba-
bility measures or random variables. For example, we write X,, = X¢ as n — oo for random
variables X,,n =0, 1,2, ... The symbol mes stands for the Lebesgue measure on the real line.

For an R -valued continuous semimartingale ¥ = (Y (¢), t > 0) its local time at zero is

t
AV = (AT @), 120), AY (1) :=1imi/ Lio,e) (Y () d(Y ) (s), t>0.
el0 2¢ Jy

2.2. Definitions of Walsh semimartingales and Walsh diffusions

Now, let us take a real-valued continuous semimartingale U = (U (¢), ¢t > 0) with mes{r > 0 |
U(t)=0}=0a.s.

Definition 2.1. An adapted, continuous (in the tree-topology), R¢-valued process X = (X (1),
t > 0) is called a semimartingale on rays driven by U, if

mes{r >0 X(#)=0}=0 as.,
and the norm || X (-)|| of X (-) has the following Skorohod decomposition:

[x) ] =v@+ Ao, where Al¥I@) = max (U(s)

This process AIXI = (AIXI(z), ¢ > 0), which is the semimartingale local time of || X|| at zero,
will be also called the local time of X accumulated at the origin.
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Assume X is a semimartingale on rays driven by U. For every Borel subset A C S, we can
consider the following real-valued process: x4(X) = (xa(X(#)),t > 0), where x4 is defined
in (2.4). It follows from Karatzas and Yan [18], Theorem 2.12(ii), that x4 (X) is a real-valued,
continuous semimartingale. In Karatzas and Yan [18], Definition 2.13, a Walsh semimartingale
is defined as follows.

Definition 2.2 (Walsh semimartingale). Take a semimartingale X on rays. Assume in the sense
of Definition 2.1, there exists a Borel probability measure x on S such that, for every Borel
A CS, the local time of AX4(XX) at the origin satisfies the “partition of local time” property a.s.

AXAX) (1) = (A AX (), t>0. (2.5)

Then the semimartingale on rays X is called a Walsh semimartingale with spinning measure [i.
See Ichiba et al. [16], Theorem 2.1, for a construction of such Walsh semimartingale with (2.5).

For example, as in the Introduction, if N and S are North and South Poles, respectively, then a
Walsh semimartingale with u = pdn + (1 — p)ds corresponds to the skew Brownian motion on
the real line for p € [0, 1], where §. is a Dirac measure; and the case p = 1/2 corresponds to the
usual Brownian motion; and the case p =0 or 1 corresponds to a reflected Brownian motion.

Now, let us fix a measurable function £ : S — (0, oo] with infg £ > 0, and define the set

Z:={r0|0<r<€@®),0eS}U{0}. (2.6)

This includes the case when some or all of the values of £(9) are infinite. For example, if £(-) =
400, then 7 =R%. The set Z from (2.6) is open in the tree-topology, with the boundary

0T :={£6)6 |6 €S, £(0) < o0}. 2.7)

Take Borel measurable functions g : Z — Rand o : Z — (0, 00), and a Borel probability measure
ponS. Let W= (W(),t>0) be an (F;);>0-Brownian motion in one dimension.

Definition 2.3. An Z-valued continuous adapted process X is called a Walsh diffusion associated
with the triple (g, o, t), if this is a Walsh semimartingale with spinning measure p, driven by

'
Ut):=|X(©O)]| +/ [g(X(5))ds + o (X(s))dW(s)], t>0. (2.8)
0
In this case, we say that g is the drift coefficient, o'* is the diffusion coefficient, and w is the
spinning measure for X. For the case g =0 and o = 1, this is called Walsh Brownian motion,
associated with (0, 1, n), or simply Walsh Brownian motion with spinning measure L.

Remark 2.2. The effective state space of a Walsh diffusion in Z associated with (g, o, ), or
any Walsh semimartingale with spinning measure pu, is the following set:

I :={(r,0) |0 <r < £(9),0 €suppp} U{0}. (2.9)
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In other words, we need to consider only rays Rg which correspond to 6 in the support of
measure . We always start this Walsh diffusion from X (0) = x € Z#, and define the function
£ only on supp u, and the coefficients g and o only on the set (2.9). This distinction becomes
important in Section 5 of the current paper. In Sections 2—4, we just assume that Z is the state
space.

2.3. Existence and uniqueness of Walsh diffusions

Definitions 2.2 and 2.3 are adapted from Karatzas and Yan [18], and extended to R4, We shall
impose some assumptions.

Definition 2.4. A function ¢ : Z — R is called locally bounded if supg |¢| < oo for every mea-
surable function R : S — (0, o0) such that

K:={ro|0<r<RO}U{0} T,
or, equivalently, R(0) < £(0) for 0 € S.
Assumption 2.1. The functions g, o, o~ !are locally bounded on 7.

Under Assumption 2.1, it was proved in Karatzas and Yan [18], Section 3, that there exists a
weak version of the Walsh diffusion on Z, associated with the triple (g, o, t), up to the explosion
time, that is, the first passage time of 0Z in (2.7). To simplify exposition, we make the following
assumption.

Assumption 2.2. For every initial condition X (0) = x € Z, there exists a weak version, unique
in law, of the Walsh diffusion X in Z, associated with (g, o, ). That is, the moment t of hitting
the boundary 97 is a.s. infinite, that is, P(t = c0) = 1.

As mentioned earlier, a Walsh diffusion associated with (g, o, 1) behaves on any ray Ry as
a solution of a one-dimensional SDE with drift g(-, 8) and diffusion o2(-, 6), as long as it does
not hit the origin. When this process hits the origin, it instantaneously chooses the new ray
according to the spinning measure u (or, more precisely, according to the formula (2.5), which
is apportioning the local time at the origin between the rays), independently of the past behavior.

It was shown in Karatzas and Yan [18], Proposition 4.2, that under Assumptions 2.1 and 2.2,
this Walsh diffusion X = (X (¢), r > 0) is, indeed, a Markov process. Denote its transition kernel
by P'(x,),t>0,x € R4, Define a family D7 of measurable functions f : Z — R which satisfy
the following (a)—(c):

(a) For every 6 € S, the function f (-, 6) is C2((0, £(0)), and continuous at r = 0;

(b) For every 0 € S, the derivative f'(0+, 8) from (2.3) is well-defined. Moreover, the function
0 — f’(0+, 0) is measurable and bounded on S;

(c) There exists an & > 0 such that supycg, <, | f” (r, 0)| < 0.

This is a more restrictive class of functions than the one described in Karatzas and Yan [18],
Definition 2.6; however, it will suffice for our purposes.
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From Karatzas and Yan [18], Theorem 2.12 (suitably adapted to the context of the sphere

S instead of a unit circle), and Definition 2.3, we get the following version of the It6—Tanaka
formula

t
£(x@) =1 (xo) + [ () s (x) + Jo* ) (x| as
+/ o (X)) f'(X(s))dW(s) (2.10)
0

+ U f’(0+,6)u(d9)]A|X”(t), t>0
S

for every function f € Dz. Here, the one-dimensional Brownian motion W is taken from (2.8).
Using this version of the It6—Tanaka formula, one can prove the following statement.

Proposition 2.1. Under Assumptions 2.1 and 2.2, the generator L of the Walsh diffusion associ-
ated with (g, o, W) is given by

Ef(r,@)=g(r,9)f’(r,9)+%az(r,e)f”(r,é), x=(r,0) eR? (2.11)

for the following class of functions f in
Dz, = {feDI‘/d £(0+, 6)11(d6) =0}. 2.12)
S

Remark 2.3. We can also consider the generator £ in (2.11) with respect to Euclidean topology;
then we need to take functions f € Dz , on R? which are continuous in Euclidean topology.

2.4. Digression into one-dimensional theory

The content of this section is taken from Karatzas and Shreve [17], Section 5.5. Consider the
one-dimensional stochastic differential equation (SDE)

dZ(t) =g(Z()dt + 0 (Z@)) AW (1), >0, (2.13)

where the coefficients g : R — R and o : R — (0, 0c0) are locally bounded. From Engelbert-
Schmidt theory, this type of SDE has a unique in law weak solution up to the explosion time,
for every initial condition Z(0) = z. One powerful tool to study this type of SDE is the scale

function
* “ 5@
s(x) :=/0 exp(—ZfO 02—(z)dz> du,

for x € R. This scale function is strictly increasing on the whole real line, and so we can define
its inverse s~ : (s(—00), s(00)) — R. If we apply the scale function to a solution Z of (2.13),
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we remove the drift coefficient from (2.13) and get a continuous local martingale Z:=s(Z) =
(s(Z(t)),t = 0). More precisely, the process Z = s(Z) is a solution of the following SDE

dZ(t) =v(Z (1)) dW (1), t>0, (2.14)

where we define the speed function v(x) := o(s71)s' (s~ x)), x e R.

Next, recall the concept of a time-change to make a Brownian motion from this local mar-
tingale Z. For simplicity of notation, let us assume that ¢ = 0, and hence s(x) = x, and
v(x) =0 (x), x € R. The time-change is defined as T (¢) := fot c2(Z(s))ds, t > 0. By defini-
tion of o this is a strictly increasing function, and one can find a one-dimensional Brownian
motion B = (B(t),t > 0) such that Z(t) = B(7 (¢)). Thus, we make a linear Brownian motion
from a solution of the one-dimensional SDE (2.13) in two steps: (a) removal of drift coefficient
by applying the scale function; (b) standardization of diffusion coefficient by applying the time-

change.

2.5. Scale functions and time-change for Walsh diffusions

Same techniques as described in Section 2.4 can be used for Walsh diffusions, in principle.
However, we need to adjust for dependency of drift and diffusion coefficients on the angular
coordinate 6 € S.

First, let us recall the theory of scale functions for Walsh diffusions, developed in Karatzas
and Yan [18], Section 3.3. Take a Walsh diffusion on Z associated with (g, o, i), which satisfies
Assumptions 2.1 and 2.2. For (r, 0) € Z, define the scale function:

[ [ 8k 0)
s(r,0) .—/O exp( 2/0 22.0) dz)du. (2.15)

Under Assumptions 2.1 and 2.2, the expression (2.15) is well defined. Moreover, s(-, 0) is strictly
increasing for every @ € S. Thus for every 6 € S, there exists an inverse function s ! (-, 6) such
that

s(sT'(r6),0)=r, r=>0,0€S. (2.16)

Then the function
P:IT>(r0)— (s(r,@),@) el := {(r,@) [0<r< s(ﬁ(@),@),@ € S} U {0} 2.17)

is a one-to-one mapping. The function (2.17) maps the Walsh diffusion on Z associated with
(g, 0, n) into the Walsh diffusion associated with (0, &, i), where the new coefficient ¢ is given
by

5(r0)=s"(s""0r0),0)0(s"'(r,0),0) for(r6) el (2.18)

analogous to the speed function. In other words, just like for the one-dimensional SDE in (2.13),
applying the scale function (2.15) to the drifted Walsh diffusion would remove the drift coeffi-
cient.
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Next, let us make a time-change, as in Karatzas and Yan [18], Section 3.2. Assume for nota-
tional convenience that the Walsh diffusion already had zero drift coefficient, that is, it is asso-
ciated with the triple (0, o, ). Then s(r,8) =r, and 6 (1, 0) = o (r, 6) for (r,0) € Z. Define the
time-change

t
T(t):/ o?(X(s))ds, t>0.
0

This is a strictly increasing function, and there exists a Walsh Brownian motion B = (B(¢),t > 0)
with spinning measure u such that X (¢) = B(7 (t)), ¢t > 0.

3. Dirichlet forms approach and stationary measures

Another way to define a Walsh diffusion is using Dirichlet forms, via one-point reflection. This
method was designed in Chen and Fukushima [4], Section 4, to construct Walsh Brownian mo-
tion in Chen and Fukushima [4], Section 5. It is also developed in Chen and Fukushima [3],
Section 7.5, and used in Chen and Fukushima [3], Section 7.6, Example 3, to construct general
Walsh diffusions with finitely supported spinning measure . With minor changes, it is applicable
to general Walsh diffusions. We shall merely outline the construction here, referring the reader to
Chen and Fukushima [3], Section 7.6, Example 3, for all details. A benefit of this method is that
it gives us a stationary distribution. Note that this method allows us to define Walsh diffusions
starting from mes ®u-a.e. point x € Z. Assume we have the same parameters (i, g, o) and the
domain Z, as before.

3.1. Construction of a Walsh diffusion using Dirichlet forms

For p-a.a. 0 € S, define the process Xy on [0, £(8)) which behaves as a solution of an SDE with
drift coefficient g (-, #) and diffusion coefficient o-2(-, 8), absorbed at x = 0.

Assumption 3.1. For p-a.a. 0 €S, the process 5(9 is conservative.

Under Assumption 2.1, this Assumption 3.1 is equivalent to the assumption that X, does not
reach £(f) in a finite time a.s. Under Assumption 3.1 define a process X on Z, as follows: if
X(0) # 0, and if 6 := arg(X (0)), then X (r) = X¢(1)6 for 0 < ¢ < inf{s : X4(s) = 0}. In words:
the process X stays on the same ray Ry, and evolves there as a one-dimensional diffusion process
with drift coefficient g(-, #) and diffusion coefficient o2(-,0), killed at the origin. For notational
convenience, we identify the origin 0 with the cemetery state A, as long as we talk about X .

Fix a 0 € S. Let f’g = (155 )r>0 be the transition semigroup of the process 5(,9. From the the-
ory of one-dimensional SDE, it is known that this semigroup is symmetric with respect to the
measure 7y on [0, £(0)), given by

7 (dr) = g—Z(r, 0) exp <2 /Or % dp) dr. @3.1)
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This means that the semigroup Py satisfies

o) o)
/O Py f(r)g(r)mg(dr) :/0 Pyg(r) f(r)me (dr) (3.2)

for all bounded measurable functions f, g : [0, £(8)) — R with compact support. This additional
condition on f and g is introduced to make the integrals in (3.2) finite. Indeed, the measure g
might be infinite, as for the case of Walsh Brownian motion, g=0and o = 1.

Let P = (P! )r>0 be the transition semigroup of the process X. Define fo(r) := f(r,0). Then

P f(r,6) = B fo(r). (3.3)
Indeed, as mentioned above, the process X always stays on the same ray Rg and behaves there

as the process Xg. Integrating (3.2) with respect to the measure 1 and using (3.3), we get: for
any bounded measurable functions f, g : Z — R with bounded support,

- Lo .
/IP’f(x)g(X)JT(dX)=fS[O Py fo(r)g(r,0)mo (dr)n(d)

34
€O _ )
= /S /0 Pigo(r) f (. 0)mp (dr)p(d6) = /I P o) £ (o) (dx),
where the new measure 7w on Z is defined as
7 (dr,dO) = me(dr)u(do)
- " g(p,0) (3.5)

Therefore, X is symmetric w.r. to 7. Let us translate the notation from Chen and Fukushima [4]
into our notation. The state space is E := Z. The lifetime ¢ of X is the first hitting time of the
origin:

¢:=inf{t > 0| X(1) =0}.

Indeed, the process X can get killed only by reaching the origin. The reason for this is that for
every 6 € S, the process f(g is conservative, that is, it does not reach £(6) in finite time a.s. The
new point a is the origin: a = 0. We denote Markov transition probabilities for the process X by
P.(A) =P(A | X(0) = x) for x € Z and Borel subsets A C 7. Applying the one-point reflection
construction from Chen and Fukushima [3], Section 7.5, we get a Walsh diffusion associated with
the triple (g, o, 1), as a Markov process with an infinitesimal generator (2.11). It is conservative
(i.e., non-exploding), and its transition semigroup (P"),>¢ satisfies P'1=1,¢ > 0.
Under Assumption 2.1, let us now present Assumption 2.2 in a slightly weakened form.

Assumption 3.2. For mes ®@u-a.e. starting point x € Z, the Walsh diffusion on Z associated with
(g, 0, 1) is conservative.
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Lemma 3.1. Under Assumption 2.1, Assumption 3.1 is equivalent to Assumption 3.2.

Proof. Under Assumptions 2.1 and 3.1, non-explosiveness of the Walsh diffusion follows from
the construction above. Conversely, suppose Assumption 3.1 were not satisfied for some 6 € A,
where A C S is a Borel subset with @ (A) > 0. Start the Walsh diffusion associated with (g, o, u)
from any point x = (r,0) € (0, 00) x A. Then with positive probability it does not exit the ray
R, and hence with positive probability it would reach the point £(6)6 € dZ. Thus, this Walsh
diffusion would not be conservative for this starting point, although the set (0, co0) x A of such
points has positive mes ® .-measure, which contradicts Assumption 3.2. Thus, these assumptions
are equivalent. g

3.2. Stationary distributions and measures

Take an R?-valued continuous-time Markov process X = (X (¢),t > 0), with transition kernel
P'(x, -). We shall distinguish two measures below.

Definition 3.1 (Stationary distribution). We say that a Borel probability measure 7 on R is
a stationary distribution for X if the process X starting from the initial distribution , forever
remains at the same distribution 7 (we write X (t) ~ ), that is, X (r) ~ = for every ¢ > 0, if
X (0) ~ 1; Or equivalently for every bounded measurable function f : R¢ — R, and every t > 0

(z, P' f) = (m, f), (3.6)

where we use the notation (u, f) = fRd f(x)u(dx) of f with respect to the measure j.

Definition 3.2 (Stationary measure). A o -finite Borel measure 7 on R4 with 7(K) < oo for
bounded subset K is called a stationary measure for the Markov process X if the equality (3.6)
holds for every bounded measurable function f : R¢ — R with bounded support.

Now take X = (X(¢),t > 0) to be the Walsh diffusion on Z associated with (g, o, ). By
construction in Section 3, the new process X is symmetric with respect to the measure 7 from
(3.5). That is, if (P"),>¢ is its transition semigroup, then for any bounded measurable function
f, 8 : Z — R with bounded support, and any ¢ > 0,

/I(P'f)(x)g(X)ﬂ(dx)=/If(x)(P’g)(x)7T(dx)- (3.7)

Since X is conservative and it does not explode, thatis, P'1 =1, letting g = 1 in (3.7), we obtain
the following theorem.

Theorem 3.1. The measure w from (3.5) is a stationary measure for the Walsh diffusion on T
associated with the triple (g, o, |b).
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The following discussion clarifies a “physical sense” of stationary measure 7w with 7 (Z) < co.
We may normalize 7 to be a stationary distribution. For p-almost all 6 € S, 7y ([0, £(0))) < oo.
Now, fix a 0 € S. Take a reflected one-dimensional diffusion on [0, £(6)) with drift coefficient
g(-,0) and diffusion coefficient o>(-, 0), reflected at 0, which, by Assumption 3.1, never hits
£(0). Then this process has a unique stationary distribution

79(dr) = C1©)0 2, 9)exp<2 / 8.0 dp)dr
0o o°(p,0)

= C7 ') p(r,0)dr, (r,0)eZ,

3.8)

10
0

with the normalizing constant C (0) := p(r,0)dr. The stationary distribution can then be

m(dr, d) = C(0)mg(dr)(dd), (r,0) el (3.9)

Remark 3.1. An informal interpretation of (3.9) is as follows. The stationary distribution of the
given Walsh diffusion is a combination of all radial one-dimensional stationary distributions of
the radial processes, weighted by the spinning measure  (governing how often at the origin the
process chooses a given direction), and by C(6), the average excursion time for the ray Ry.

To simplify, let us assume the support supp it = {61, . .., 8} is finite. Then (3.9) becomes

7 (dr, {i}) = Cipimmi(dr), i=1,...,p,rel0 4] (3.10)

Here, C; := C(6;), ; :=mg;, £; :=£(0;) and u; := p(6;) fori =1, ..., p. Let us interpret the
stationary distribution as a long-term average occupation time. Then for A C [0, R;]

. LT .
n(AX{z}):TIme?/O l(arg X (s) =6;, | X ()| € A)ds, i=1,....p,

thanks to the average occupation times formula. In particular, letting A = [0, £;], we get
. .1
Cini =7 ([0, €] x {i}) = Tl;mm - mes{s € [0, T]|arg X (s) =6, }.

Here, p; is the long-term proportion of the times this Walsh diffusion chooses the ray ¢; :=
Lg,, and C; is the factor corresponding to the average time spent on this ray ¢;, for each such
excursion.

Example 3.1. Let 7 :=R%, g(r,0) =g(0) <0, o(r,0) = o (#) > 0 for every r >0, 0 € S.
Denote A(0) := —2g(0)o ~2(9) > 0 for @ € S. Then direct calculation gives us the scale function
s(-) and the stationary measure 7 (-)

s(r,0) = ﬁ(e*@’ - 1), 7(dr, d9) = o %(0) exp(—r(0)r) dru(dh), r>0,0€S.
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4. Continuous dependence on spinning measure and initial
condition

4.1. Main results

In this section, using Euclidean distance ||-||7 from (2.2) for C ([0, T'], R4 ), we show that the law
of the Walsh diffusion on Z associated with (g, o, ), starting from X (0) = x, continuously (in
the weak sense) depends on the measure 1, and on the initial condition x.

Assumption 4.1. The functions g, o : Z — R are continuous in the Euclidean topology. More-
over, the function £ : S — (0, oo] is lower semicontinuous, that is, for every 6 € S,

lim £(0) > £(6o).
9*)90

Remark 4.1. The assumption on ¢ can be equivalently stated as follows: the function £ can be
pointwise approximated by an increasing sequence (R, : S — (0, 00)),>1 of continuous func-
tions

R, (0) 1 £(0) as n — oo forevery 6 € S.

In this case, define
D,, :={(r,9)|0<r§Rm(9),GeS}U{0}, m>1. 4.1

Then (D,,)n>1 is an increasing sequence of compact (in a Euclidean topology) subsets of 7
with each interior int D, := {(r,0) | 0 < r < R, (0), 0 € S} U{0}. By construction, this sequence
satisfies the properties

o0
int Dy, CintDy,4+1, and U int(D,,) =Z1.

m=1

Assumption 4.1 holds, for example, when £(-) = 0o, or when ¢ : S — (0, c0) is continuous.
Assumption 4.1 does not hold, for example, £(0) := 1 + 1{9—g,)} for d > 2 and a fixed point
6y € S.

Remark 4.2. Assumption 2.1 actually follows from Assumption 4.1. Indeed, take a function R
as in Definition 2.4, and approximate the function £ by R,, n > 1 as in Remark 4.1. Then we
have

R(O) <¢(®) = lim R,(0), VOeS.
n—oo

Thus the open sets O, := {0 € S| R(6) < R,(#)}, n > 1 form an open cover of S. By
compactness, we can extract a finite subcover Oy, ..., 0,1_/ of S. Then there exists an m =
max(ny, ..., n;) such that for all & € S we have R(9) < R,,(0). Therefore, K C D,,, where K is
defined in Definition 2.4, and D,, is taken from (4.1). Since g is continuous and D,, is compact
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in Euclidean topology, we conclude g is bounded on D,,, and so is on K. The same argument
applies to o and 1.

Theorem 4.1. Let us consider the Walsh diffusion X,, on T associated with (g, o, L), starting
from X,(0) =x,,n>0. Foreveryn =0, 1,2, ..., take a point x,, € T in (2.6) and a spinning
measure |, on S. Suppose that the functions g and o, and the domain L, satisfy Assumption 4.1.
Suppose also that every Walsh diffusion X, satisfies Assumption 2.2. If i, = 1o, and x, — X,
then X, = Xo in C([0, T, RY).

Let us state separately this convergence result for Walsh Brownian motions in R?. For this
case, g =0, 0 =1, and £ = 0o, and Theorem 4.1 takes the following form.

Corollary 4.1. Foreveryn=0,1,2, ..., take a Walsh Brownian motion W,, with spinning mea-
sure [y, starting from Wy (0) = x,. If x, — xo, and p, = 1o, then W, = Wy in C([0, T],R?).

Consider the case when all these Walsh Brownian motions in R¢ start from the origin: x,, = 0,
n=0,1,2,.... Then we can actually quantify the rate of convergence in the following Theo-
rem 4.2. For two Borel probability measures v; and v, on a metric space (&X', d) with metric d,
the Wasserstein distance of order p > 1 is defined as follows:

1/p
Wp(vlv V2) = inf |:/;( X(d(-xlv Xz))p dJ/ (-xla xZ):| s (42)

i
yel
where the infimum is taken over the family I" of probability measures on X x X with marginals
v1 and v, for which the integral inside the bracket is finite. It is known from Rachev [24], Villani
[33] that convergence in the Wasserstein distance implies the weak convergence. Thus, we shall
estimate the Wasserstein distance between the distributions of X,, and X, as random elements
of C([0, T],R%), using the Wasserstein distance between w, and o on S.

Denote by Q7 (1) the law of the Walsh Brownian motion starting from the origin with spin-
ning measure 4 in the space C ([0, T], R?). Theorem 4.2 provides the upper estimate of the
Wasserstein distance between Qr (1) and Q7 (), for two spinning measures u and @ on S.

Theorem 4.2. Take two Borel probability measures u and w on S. For all positive constants
p.q,p, T with

p
1<qg<p, elo,—— ), 4.3
<g<p Y < p+1> 4.3)

there exists a positive constant C* dependent on T, p, q, p, such that
Wq (Qr (0, Q7 (@) = C* Wy (. m]". (4.4)

The rest of this section is organized as follows. We shall prove Theorem 4.2 in Section 4.2,
Corollary 4.1 in Section 4.3 and then complete the proof of Theorem 4.1 in Section 4.4.
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4.2. Proof of Theorem 4.2

Step 1: Efficient coupling. Let us consider the following Walsh Brownian motions X = (X (¢), >
0) and X = (X (), t > 0) with spinning measures x and 1z, respectively, coupled by the following
procedure.

On a filtered probability space, let us take a reflected Brownian motion S = (S(¢), t > 0) with
values in [0, 00), starting from zero, instantaneously reflected at zero. Let e = (e(?),t > 0) be
the excursion process, so that e(t) is the excursion of the reflected Brownian motion § at time
t, and denote by 7 the (countable) set of its distinct elements. This set depends on w € Q2. The
notation is taken from Revuz and Yor [25], Chapter 12. Take a certain coupling ® of marginal
probability measures v and . Generate a sequence (6;, 0 j) of S x S-valued, independently,
identically distributed random variables jointly distributed in ®, indexed by j € J. Define the
Walsh Brownian motions X and X as follows: for each ¢ > 0, if S(r) = 0, then X (r) := 0 =: X (¢),
and if S(¢) > 0, then there exists a unique index j € 7, such that e(¢) = j, and we let

X(1):=6;50),  X(1):=8;50) (4.5)

on an extended, filtered probability space. Such construction of Walsh Brownian motions (and
semimartingales) is recently examined and described in Ichiba ez al. [16].

Note that we use the common reflected Brownian motion S in the construction, and so the
resulting Walsh Brownian motions X and X have the same time intervals for excursions, that is,
{t:X(t) =0} = {t: X(¢) = 0} a.s. This procedure creates two Walsh Brownian motions X and X
with spinning measures p and i, respectively. In other words, the probability measure induced
by this pair (X, X) is a coupling IT1(®) of marginal probability distributions Q7 (x) and Q7 ()
in C([0, T], Rd), where © and @ are the marginal of the coupling ®. To achieve an efficient
coupling IT(®) of X and X, in the sense of smaller Wasserstein distance, we take an efficient
coupling ® of p and .

Let us denote by I'g all couplings of marginal probability measures u and 1. Also, let us denote
by I'; the family of probability measures, each of which is induced by the coupling (X, X) of
distributions Q7 (1) and Q7 (), constructed in the above procedure from a coupling ® of u
and @ in g, that is, I'1 := {I1(®) : ® € I'p}. Then by definition (4.2) for p, g > 1 here we shall
evaluate the Wasserstein distances

.
W) = ( inf BO[j0 —717]) ",
0 (4.6)

- . — 1/q . o — 1/q
Wy (Qr (0. Qram) < (jint EP[IX = X17]) " = (inf E"O[1x ~X4])

where E® and EP = EM(®) are expectations under ® € 'y, P = 1(®) € I'y, respectively. To
this end, given the constants p, g, T in (4.3), we shall estimate the upper bound of

E[IX - X|4] =E1® [OgltanT | X (1) - X() Hq], 4.7)

in terms of E®[||6 — 6]/7], for the coupling T1(®) of the pair X and X of Walsh Brownian
motions, and for the coupling ® of the spinning measures p and &, described in (4.5).
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The idea of the proof is as follows. Take a constant § (> 0). There are two kinds of excursions
of §: the first kind consists of excursions with height greater than 4, and the second kind consists
of excursions with height less than or equal to é. There are at most finite number of excursions
of the first kind. For them, we have

|X@®) =X <116; = 6,1, 1=0, (4.8)

where we can estimate the running maximum of § from above. Take a time moment ¢ corre-
sponding to the second kind of excursions. By the triangle inequality and the construction in
(4.5), we have

[X) =X®)| < [xO| + XD = S@) + S2) < 26. 4.9)

With this idea of separating excursions in two kinds, we estimate the upper bound of (4.7), and
then minimize it by choosing 8.
Step 2: Excursions. Define the set of excursions of §

Jr={jeT|3el0,T]:et)=j}

restricted to the time interval [0, T'], including the last excursion (which is sometimes called a
Brownian meander). This last excursion can start at a time moment ¢’ < T, butend att” > T
this excursion is included if max; ¢, 71 S(¢) > 8. Let us classify it into two kinds of excursions

Jrs={j€Ir | H(j) > 6}, Jr.s:=Jr \JIrs, (4.10)
where H (j) is the height of the excursion j € J. Since Jr s is a finite set, by (4.9)—(4.8),

max [X() - X" < max [ XO-XO|"+ max |X@®-X®|?
O0<t<T {t:e(t)e T, 5} {te()eJy s}

q _
< S@®) - 9 —0;:]|7+(28)1.
_(max ()) jrenﬁzgll =07+ (28)

0<t<T

If the set J7 s is empty, we let the maximum of zero numbers to be zero. Taking the expected
values and applying Holder’s inequality to the product in the right-hand side with

1 1
p _P +

ry i = —,
P—9q q rr.n

we obtain the first upper bound of (4.7)

B[ max [ X0) = X0)]'] < @87 + €1 [E[ max 16 -8, | AT

max
0<t<T

where with the Gamma function I'(a) = fooo xle=*dx,a >0,

Ci:= [EKOI;&SXT S(t))qu]]l/rl = 5125();:? . |:l"<1 +2qu>i|1/’1. (4.12)
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Here we used the density function of the running maximum of S to compute C; (see Karatzas
and Shreve [17]).

For the second term in (4.11) it is not easy to estimate the number of elements in Jr 5 di-
rectly. Instead, we can estimate it indirectly by the number of elements in a set which is (usu-
ally) larger than Jr 5. Take a number D(> 0) large enough, to be determined later. Define
L = (L(t),t > 0) to be the local time process of the reflected Brownian motion § at zero, i.e.,
L():= fo 1(5()=0y dS(¢). Define also L~ (s) :=inf{r > 0 | L(¢) = s} to be the inverse local time
of S. Then the probability P(L(T) > D+/T) is very small. And if L(T) < D+/T, then

jT,S gijl(D«/T),S’ (413)

From Revuz and Yor [25], Chapter 12, the number |jL,1 (DVT) 3| of elements in the set
J L-1(DVT).8 has Poisson distribution with parameter A := DT /8, that is,

DT
E[|‘7L*1(D\/T),6|]: ;/__- (4.14)

Consider two cases {L(T) < D+/T} and {L(T) > D~/T}. By (4.13),

[ max 16; 817 = E[ max 16, 8,171, 1,2y, +1 )]
jegrs jers ! {L(N)=DVT} ™ HL(T)>DVT)
_ 4.15)
<E[ _max 16, —8,17]+ @0)? -B(L(T) = DVT).
JEJL*I(Dﬁ),g

Since by the construction of the pair (X, X) in (4.5) the random variables 6 ; and 2 j are indepen-
dent of S, it follows from Wald’s identity and (4.14) that

E[ max 10; —gjup] < IE|: Z 16 —§j||p:|
€I -1(pyT)s JeT 1oy s (4.16)

Z]E[|~7L—'(Dﬁ),a|] 'E@[”@ —-017].

The classical Lévy theorem states that L(7') has the same distribution as S(7"). Then by the Mills
ratio of the Gaussian tail probability Feller [10], Chapter 7, for every r > 1 there exists a constant
C> (which does not depend on D), such that

2 2 Cy
P(L(T) > DVT) =P(S(1) > D) < e P2 < == D > 0. 4.17)
( )=B(s()>D) == b
Combining (4.14)—(4.17) together, we have
_ DT — C3
]E[ 0, —0; 1’]< EO[16 — )P + =2 4.18
Jmax 19 — 611" | < = [lo —o17]+ (4.18)
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for every D > 0, 6 > 0 where C3 = (21)? C5. Thus the right-hand side of (4.11) is evaluated as

. D _ 1 \4/P
EH(@)[ HX(t)—X(t)”q]§C4~[8q+<§'E®[I|0—6’IIP]+E) } (4.19)

max
0<t<T

where C4 does not depend on §(> 0), D(> 0) butonr(>1), T(>0), 1 <g < p.
Step 3: Minimization. Since the left-hand side of (4.19) does not depend on (D, §), let us
minimize the right-hand side of (4.19) with respect to D and § by applying twice an inequality

fo(x) :=a1x +ax™

4 _92 ¢ ¢
(2)77 4 (2) e @20
C1l c2
= fo(x")

for every x > 0, where a;, ¢;, i = 1,2 are fixed positive constants and x* := (%)1/(”“2) isa
unique minimizer of the function fy(-). Applying (4.20) with

(x,a1,az, c1,¢2) = (D, E®[116 = 91P]/8,1,1,r)

and D* := (8r/E®[||0 — 0]|P])"/1+7) | we obtain

q/p _ 2 e} 7 L ar
[fo(D)] —<5 -E°[ll6 9||P]+D,)

EG)[”@ _ §||P] qr/(p(1+r))
e (1)

5 _ [fO(D*)]q/p’

and then applying (4.20) with

(x.ar,az cr,c2) = (8,1, Cs(BC[10 — 817" g, qr/(p(1 + 1)),

we obtain

EOri10 — a1\ 4"/ (p+r) _
C- (84 e (%) )zcﬁ(E@[ue —ar) @

with some constants C;, i = 5, 6, where

__ppr
p— 0+ p)p

Now forevery p € [p/(2p+1), p/(1+ p)) given, we may choose the corresponding constants
r(>1) from (4.22), C; in (4.17) and then the resulting constant C* := Cg in (4.21) to obtain

o0 P [ P P (4.22)

= € , >, with r =
A+pr+p 2p+1 14+p

Q) Evd 1/ o ra)
[Em® [Or;e;xT [xo-Xo]*]] " = c*®°[10 -a1))"". (4.23)
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Taking the infimum on both sides of (4.23) over the family 'y of measures for the coupling
® on S x S, we achieve the desired upper bound (4.4) for p € [p/2p + 1), p/(1 + p)). For
every p1 € (0,p/2p + 1)) and p» € [p/(2p + 1)), p/(1 + p)), because of boundedness of
0< Wy, ) < supy gesllf — 0| = 2, there exists a constant C7 such that (W, (e, )72 <
C7IW,(w, @)1°". Using this equality and modifying the constant C* for p2, we obtain the desired
upper bound (4.4) also for p € (0, p/(2p + 1)). Therefore, we conclude the proof of (4.4) for

every p € (0, p/(1+ p)).

4.3. Proof of Corollary 4.1

For the case x, = 0 for all n, this follows immediately: Convergence in the Wasserstein distance
of order p is equivalent to weak convergence plus uniform boundedness of the pth moment, see
Villani [33]. For measures (u,),>0 on S, their pth moments are trivially uniformly bounded,
since S is a bounded set. Theorem 4.2 makes the rest of the proof trivial.

Consider the general case of Corollary 4.1, with arbitrary initial conditions. By the Skorohod
representation theorem, we can create a probablllty space with copies W, of Walsh Brownian
motions starting from the origin, such that W,, — W a.s. uniformly on every [0, T']. For n > 0,
let 6, := arg(x,,). Then we can couple W,, forn =0, 1,2, ... as follows.

Let us take a standard Brownian motion B = (B(t),t > 0) on the real line with B(0) = 0.
Since x,, — x¢ as n — oo in Euclidean topology, for n large enough (and therefore without loss
of generality for all n) we have: x,, # 0. Since x;,, — xo, we have ||x, || — ||xoll, 6, — 6p.

Now, define stopping times t, := inf{r > 0 | B(¢) = ||x,||}. We construct copies of Walsh
Brownian motions W, starting from W, (0) = x,,, as follows:

xn_GnB(t)zen(”xn”_B(t))’ I =Ty

W, () =1"
0 W (t — 1), 1>1,.

(4.24)

Consider the inverse m~! = (m~!(s), s > 0) of running maximum of a Brownian motion B
starting from zero. This process is a.s. continuous at every fixed time (although it has a.s. dis-
continuous trajectories). We can express 7, := m L (||lx,|)). Therefore, a.s. T, — 7o as n — oo.
Applying Lemma A.1 in the Appendix, we conclude Corollary 4.1.

4.4. Proof of Theorem 4.1 in the general case

We split the proof into four steps. In the first three steps, we consider the driftless case: g = 0.
Step 1 is devoted to time-change and localization. That is, we consider an exhaustion of the state
space Z by an increasing sequence of compact domains D,,, m > 1. Then we fix one of these
domains and stop all Walsh diffusions X, when they exit the interior of the domain. In Step 2,
we prove the convergence result for these stopped Walsh diffusions. In Step 3, we switch from
int D,, to Z and show that for the driftless case the convergence takes place not only for those
stopped, but also for the original Walsh diffusions. Finally, in Step 4, we use the scale mapping
(2.15) to extend this result to the general case with non zero drift function g.
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Step 1: Time-change and localization. Assume g = 0. We apply the time-change in Section 2.5
to the Walsh diffusions X, on Z associated with (0, o, u,):

t
Xu () = Wy (T, (1)), T, (1) :=/ o?(Xn(s))ds, t>0, (4.25)
0

where W,, = (W, (¢), t > 0) is a Walsh Brownian motion with spinning measure x,, starting from
W,(0) = x,, n > 0. By Assumption 4.1 and Remark 4.1, we may take a sequence of continuous
functions R, : S — (0, oo) such that R,(0) — £(8) pointwise on S. Recall the definition of D,,
in (4.1). For n > 0 and m > 1, define the stopping times

" :=inf{t > 0| X, (t) ¢ Dy} =inf{t > 0| W, (T,(1)) & Du .

and the corresponding stopped processes X\™ (£) := X, (t AT"™), T (1) 1= T, t ATI™), t > 0.
Then it follows from (4.25) that forn > 0 and m > 1,

XM () = W, (T™ (1)),  t>0. (4.26)

In particular, X\ (1) = Wo(T,™ (1)), 1 > 0.

Step 2: Proof for the stopped processes. The rest of the proof for the driftless case is quite
similar to the proof of Sarantsev [30], Theorem 2.2. For the rest of Step 2, fix an m > 1. We shall
show

Lemma 4.1. Every subsequence of (X ,(,m)),,zl in (4.26) has a weakly convergent subsequence,

and this weak limit behaves as the Walsh (driftless) diffusion X (()m), at least as long as it stays in
int D,,.

The rest of Step 2 is devoted to proving Lemma 4.1. For every n > 0 and ¢ > 0, we have

0<o(X"™@) < max o =: T, 4.27)

and hence, by definition of T,,(¢) in (4.25),
0<T™(1)<G%t. (4.28)

By the Arzela—Ascoli criterion combined with (4.27), the sequence (Tn(m))nzl is tight for every
m > 1. Then every subsequence (n)r>1 of N has its further subsequence (n}c) k>1 for which there

exists a random process T (T(m)(t), t > 0) such that
)

T > T™  inC[o,T],as k — co. (4.29)
k

As we have already proved (in the proof of Corollary 4.1), we have W,, = Wy in C([O, 531 T1,
RY), as pu, = wo and x, = xo. Changing the probability space, if necessary, by the virtue of
Skorohod representation theorem, we can make this convergence a.s.

W, — Wo  inC([0,55,T],RY). (4.30)
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Combining (4.26), (4.28), (4.29) and (4.30), we have the limit

(m)

X6y - X" (#):=Wo(T"(#))  uniformly on [0, . 4.31)
k

Since the function o is continuous on D, by Assumption 4.1, we also get
o (XM @0) - o (X™ @), k- oo, forevery €0, T], (4.32)
k

By (4.27), (4.32), and the Lebesgue dominated convergence theorem, for every ¢ € [0, T], we
have

/O (X)) ds — / (X" (5)) ds. (4.33)

(m) . (

=1lim,_ r( , and take a (random) time point #y < o ) AT. For every suffi-

ciently large k, and all s € [0, 7] < [O, 1:(m)] we have Xr(:,")(s) = Xn/k (s) and to/\rlif") < ro(g") AT.
k k
Thus, combining (4.25)—(4.26) with (4.33), for such #y we have

Denote 74,

(m) (m) o0
1) = Ty (10 7 7”) = /0 E (X, (5)) ds
(m)

toATn}( ) (m) 1) ) —(m)
:/ o (Xn;( (s)) ds—>/ o (X (s))ds
0 0

as k — oo. Comparing this observation with (4.29), we get
t
7T (1) = / 2X™(s))ds, and XM =Wo(T™ () fort <™.  (4.34)
0

The system (4.34) of equations implies that every subsequence (n)r>1 has another subsequence
(n))k=1 such that Xr(l’,") = X in C([0, T1, R?), where, at least until 7", the process X behaves
k

as a Walsh diffusion starting from X (0) = x, associated with (0, o, ig). For m > 1 define

T = inf{r = 0| X" (1) ¢ int D,y } = inf{r = 0| Wo(T" (1)) ¢ int D }.
Then we claim the following inequality 7™ < rég’ )
converse, that is, T/ > r&" ) with positive probability. Then there would be a positive random
variable 71 < 7™ such that there exists a sequence (g )k>1 With rr.EZ") <t for all k. Since Xé':)

a.s. for every m > 1. Indeed, assume the

is stopped at I;E;"), we have X;Z’)(rékm)) = Xé’:)(tl) € dD,,. Since D, is closed, letting k — oo,
we would have X (t) € D, with positive probability This, however, contradicts the property
11 <7, which completes the proof of 7" < ‘L'( ™ a

This proves that X behaves as a Walsh dlffllSlOIl starting from X (0) = xo, associated with

(0, 0, o), at least until it exits int D,,. This completes the proof of Lemma 4.1.
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Step 3: Proof for the driftless case. This step is similar to Sarantsev [30], Lemma 3.8. For a
given n € (0, 1) we may take an m large enough, so that the set

A= {x eC([0,T1, Rd) | x(¢) €int D,, Vt € [0, T]}
has probability greater than 1 — n, i.e., P(Xg € A) > 1 — 7, since
P(Xo(t) eIVt €[0,T]) =1,

and int D,, 1 Z as m — oo.
Now, by Lemma 4.1 every sequence (n)r>1 has a subsequence (”l;()kzl, such that Xr(,',") =X
k

in C([0, T], Rd). Then for every Borel subset B < C([0, T], R"), we have
P(X e ANB)=P(Xo € ANB). (4.35)
In particular, letting B := C([0, T], R?), we have:
PXecA)=PXgeA)>1-n. (4.36)
Moreover, for every Borel subset B C C([0, T1], R4 ) and n > 1, we have:
P(x™ e ANB) =P(X, € AN B). 4.37)
For an open subset G € C ([0, T], Rd), the subset .4 N G is also open, and hence,

P(Xoe ANG) =P(X e ANG) < lim P(X"" € ANG). (4.38)
k

k— 00

On the other hand, it follows from (4.35) and (4.36) that
P(X e ANG) =P(Xge ANG) =P(Xg€G) —P(Xo ¢ A) >P(Xg€G) —1. (4.39)
Combining (4.37), (4.38) with (4.39), we obtain

lim P(X,, €G) > lim P(X'" e ANG) > P(Xo € G) — 1. (4.40)
k

k— o0 k—o00

Thus for every sequence (nx)r>1 and every 1 > 0O there exists a subsequence (n}()kzl such that

(4.40) holds. Use the diagonal argument: let n,(co) := ng, and construct (n,(([))kzl inductively:
(n,(cl))kzl plays the role of (nﬁ{)kzl for ny := n,(f_l), n:= [~L. Then for 7y := n,(ck), we have
lim,_, P(X7 €G) >P(X € G). Therefore, we claim that for every sequence (ny), there exists
a subsequence (71x) such that Xz, = X¢ in C([0, T'], Rd). This completes the proof of Theo-
rem 4.1 for the case g =0.

Step 4: General case. The general case (with an arbitrary drift function g) can be reduced
to the driftless case by scale transformation (2.17). Recall that the process P(X,(-)) is a Walsh

diffusion starting from P(x,), associated with (0, &, ,,), where Z and & are given by (2.17) and
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(2.18). Lemma 4.2 below, together with continuity of o, implies continuity of the function &,
and of the mappings P and P~!. Since x, — xo, we have P (x,) — P(xo). Moreover, because
of 1, = 1o, from results just proven, we have P(X,(-)) = P(Xo(-)) in C([0, T], RY). Finally,
because P! is continuous, we have X, = X in C([0, T, Rd). This completes the proof of
Theorem 4.1 for the general case, given Lemma 4.2 below.

Lemma 4.2. Under Assumption 4.1, the scale function s(r, 0) from (2.15), and the inverse scale
function s~ (r, 0) from (2.16), are continuous in the Euclidean topology.

Proof. Under Assumption 4.1, continuity of the scale function s(-) follows from continuity and
local boundedness of the function 2go 2, together with Lebesgue dominated convergence the-
orem. Let us take a sequence (r,,, 8,) that converges to (rg, 6p), that is, (r,, 6,) — (ro, 6p). We
shall show that s~ (rn, 6p) — 5! (r0, 6p), that is, for every ¢ > 0 and for all n, except finitely
many, we have

s Y, 0,) < s~ (ro, 60) + &. (4.41)

Since s(r, ) is strictly increasing in r for every fixed 6, (4.41) would be equivalent to
1 < (s (ro, 00) + ¢, 6,). (4.42)

Note that letting n — oo in (4.42) and using continuity of s, we see the left-hand side converges
to ro, and the right-hand side converges to s(s ! (ro, 6o) + €, 6p). Here since

ro=s(s " (r0,60), 60) < (s (ro, 6o) + &, 6),

we must get (4.42) for large enough n. This completes the proof of Lemma 4.2. ]

S. Feller and positivity properties

In this section, we study several properties: Feller property; positivity of transition kernel (that
mes ®u-positive subsets of RY have positive transition measure). They are necessary for the
next section, where we find Lyapunov functions for Walsh diffusions to prove existence and
uniqueness of a stationary distribution and convergence to this stationary distribution as t — oo.

5.1. Positivity of transition kernel

Let us first mention intuition for general Markov processes. Very loosely speaking, a Markov
process is called irreducible, if the state space cannot be separated into two or more parts such
that the process cannot move between them; and it is called aperiodic if the state space cannot
be separated into two or more parts such that the process circulates between them. If the process
is tight, then irreducibility and aperiodicity guarantee existence and uniqueness of a probability
invariant measure. Since we do not use these particular (very important) concepts in this paper,
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we shall not rigorously define them here. But we, however, prove a stronger property: positivity.
Let us define the following reference measure:

= ® mes 6.1

and consider a Walsh diffusion on Z associated with (g, o, ) and the transition kernel P’ (x, -) =
PX(t)e- | XO0)=x)forxeZ,t>0.

Theorem 5.1. Under Assumptions 2.1 and 2.2, the transition kernel is positive, that is, for every
t >0, x €Z, and a Borel subset C C T with 1(C) > 0, we have P'(x,C) > 0.

Proof. We shall show this theorem in four steps.

Step 1. Let us argue first that it suffices to show the case x = 0. Indeed, if the initial value
X (0)=x = (r,0) € Z is not the origin 0, then until the first hitting time 79 := inf{t > 0| X (¢) =
0}, X (-) can be represented as X () =0Z(-), where Z = (Z(t), t > 0) is a diffusion on the half-
line with drift g(-, ) and diffusion 02(~, 0), starting from Z(0) =r > 0 and killed at the origin.
Then 9 = inf{r > 0| Z(¢) = 0} and hence for such diffusion Z(-) we have P(t9 <) >0, > 0,
since the functions g, o, o~ ! are locally bounded on R . Thus if the statement of the theorem is
true in the case x =0, then P*(0, C) > 0 for every u > 0, and hence,

1
Pt(x,C)Z/ P'™°(0, C)P(19 € ds| X (0) = x) > 0; xel,
0

because the Lebesgue integral of a positive function over a set of positive measure is positive,
and hence the statement is true for every x € I. Thus it suffices to show the case x = 0.

Step 2. Next, consider the case of Walsh Brownian motion X (-) := W (-) associated with g =0
and o = 1 starting at the origin, with the set C of the foorm C = A x B € S x (0, c0) with
@ (C) > 0. Then by the construction (e.g., Ichiba et al. [16], Theorem 2.1), arg(W (¢)) is dis-
tributed as w, independent of |W(¢)||, a reflected Brownian motion on the half-line, starting
from zero. Thus,

P'(0,C) =P(arg(W(1)) € A,

W) e B)=un@)-P(|Wr)| eB)>0; >0

Step 3. Now consider the case of driftless Walsh diffusions with g = 0. From Karatzas and
Yan [18], Proposition 3.4, we have the Dambis-Dubins-Schwarz-type representation: X () =
W(T(t)), where W (-) is a Walsh Brownian motion in Step 2 starting from W (0) =0, and

t
T(t) =f o?(X(s))ds, t>0. (5.2)
0
For the set C = A x B define R :=sup B < Iy, := infyc4 £(0), and for a fixed R’ € (R, Inin)
w4 =inf{t >0 | X ()| =R, arg X (t) € A}, (5.3)
r,EYA =inf{r >0 |[W@)| =R, arigW () € A}, (5.4)

iy =inf{t >0 | X®)||=R"}, 1y :=infls>0]|W()| =R} (5.5)
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With Lemma A.2 in the Appendix we claim P(t }{’ 4 <1)> 0. Note that

t
P(X(1)eC=Ax B) > f / pt —s,0)P(tf 4 €ds, arg(X (s)) € db), (5.6)
0 JA '

where p(u, 0) is the probability that a reflected diffusion on the half-line with zero drift and
diffusion 62(~, 0), starting from R, stays in (0, R'] on the time interval [0, u], and hits the set B
at time u. From boundedness of o and o ~! on [0, R'], which follows from Assumption 2.1, we
have: p(u, 0) > 0. Again using the observation that the Lebesgue integral of a positive function
over a set of positive measure is positive, we see that the right hand of (5.6) is positive, which
completes the proof of Theorem 5.1 for the case of driftless Walsh diffusions.

Step 4. Finally, let us prove Theorem 5.1 in the general case. It can be reduced via Karatzas and
Yan [18], Proposition 3.12, to the driftless case. Using the notation from there, we observe that
the one-to-one function P : Z — 7 from (2.17) maps the Walsh diffusion with nonzero drift to
another Walsh diffusion with zero drift. The new Walsh diffusion also has a diffusion coefficient
o from (2.18) such that 6 and 6! are both locally bounded on 7. Also, the map P, as well as
its inverse Q, maps ji-positive subsets into f-positive subsets. This follows from the observation
that these maps preserve arguments of points: arg(P(x)) = arg(x) for x € Z \ {0}, and the radial
derivative of P is everywhere positive. Thus, Theorem 5.1 is a simple corollary for the driftless
case. (|

5.2. Feller property for the tree topology

Next, we shall prove the Feller property of Walsh diffusions, that is, the semigroup maps bounded
continuous functions into bounded continuous functions. Fix a bounded continuous (in the tree
topology) function f : 7 — R.

Theorem 5.2. Under Assumptions 2.1 and 2.2, for t > 0, if x — xo in Z, then
Ec[f(X0))] = Ex,[f (X 0)]-

Proof. We shall first consider the harder case xo # 0, and then discuss the easier case.

Case 1. Assume xo = 0ry # 0 for some 6, that is, o > 0; and x = 0r, with r 1 ry. Take a copy
X0 = (X00)(t), t > 0) of this Walsh diffusion starting from X “0)(0) = xo. One can construct
(on the same probability space as X)) a family (Z (’))re(o,ro] of reflected diffusions on the
half-line with drift g(-,0) and diffusion o2(-, #), starting from Z)(0) = r, such that Z)(r) <
Z(t) ass. for every t > 0and 0 < r <r’ <ry. Also, assume that this probability space contains
a Walsh diffusion X© = (X © (t),t = 0) with the same drift and diffusion coefficients, starting
from the origin, independent of everything else. Let 7, , :=inf{t > 0| Z ") (1) = a} for r € (0, ro]
and a € Ry. Then since 7, | Try,p =0, Tr,0 1 Trp,0 > 0 as., as r 1 1o,

lim I(7. , < 70) =1, lim I(7, ,, > 7,,0) =0,
rtro rtro '
5.7
lim 1(t < 7.4y < 71,0) =0, lim I(7 ) <7 0AE) =1 a.s.

rtro rtro
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For every r € (0, rg), let us construct a copy X = (X" (), r > 0) of this Walsh diffusion
starting from X (0) = Or. The construction of X proceeds as follows.

(a) If 7,0 < 74,5, that is, the reflected diffusion Z (") hits zero before rg, then we let X evolve
like this reflected diffusion on the ray Ry before hitting the origin, and then start the independent
copy X @ of the Walsh diffusion from there. Formally, let us define

CYA) 1 < 10
XO0:=1 0 :
X — Tr,O)v > 170-

(b) If 7,0 > /.1, that is, Z (") hits ry before zero, then we let X evolve like this reflected
diffusion on the ray Ry, until it hits xo. Then we start the copy of X0 Let us define

FARO) 1< Ty
X(rO)(t - 7:r,r())s = Trrg-

X0 () := {

Since r 1 rp case (a) is less likely and case (b) is more likely. Thus, we construct a Walsh diffusion
X with initial value X ) (0) = (r, #). We shall evaluate E[ f (X" (t))] =: E(r) + F(r), where

Fr):=E[f(XO )1, <7.0],  E@)=E[f(XV0)1(try > 0)].  (5:8)
Thanks to (5.7) and boundedness of f, we immediately see
Er)y—0 asr 1 rp. 5.9
Let us decompose the term F () into two terms:
F)=E[f(XD )1t <10y < 50| +E[F(XDO) (110 < Tro AD)]
=E[f(0Z27 )1 < trry < 0] +E[f (X0 = 11:)) 1 (Trry < Tro AD]  (5:10)
=: Fi(r) + F2(r).
Next, F1(r) — 0 as r 1 ro, thanks to (5.7) and boundedness of f, and
F(r) —E[f (X" —1.,))] >0  asrtr. (5.11)

Combine (5.7) with a.s. continuity of trajectories of X0 continuity and boundedness of f, and
use the Lebesgue dominated convergence theorem. Then, as r 1 rg, we get

E[£(X"¢ - 1.,0))] = E[£ (X )]. (5.12)

Combining (5.8)—(5.12), we conclude lim, 1, E[ £ (X" (#))] = E[ £ (X" (£))].

Case 2. Assume xg = 0rg # 0, that is, ro > 0; and x = 6r, with r | rg; or xo = 0, that is,
ro = 0; then also we have x = 0r with r | ro = 0. Then the proof is simpler: there is no case (a).
Indeed, a reflected diffusion Z™ on the half-line, starting from r > rg, must hit ro before hitting
zero (or at least at the same time when ry = 0). The details of the proof are left to the reader. [J
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5.3. Feller property for Euclidean topology

The continuity of the transition kernel in Euclidean topology can be seen as a corollary of Theo-
rem 4.1, if we take u, = foralln =0,1,2,....

Lemma 5.1. Under Assumptions 2.1, 2.2, 4.1, take a bounded continuous (in the Euclidean
topology) function f : T — R. Fixat > 0, and let x — xo in I in Euclidean topology. Then

E[f(X0)] = Bx [£ (X ®)]-

6. Lyapunov functions and convergence to the stationary
distribution

In this section, we shall find Lyapunov functions for Walsh diffusions to prove existence and
uniqueness of a stationary distribution, and convergence to this stationary distribution as t — oo.
For general Markov processes, the application of Lyapunov functions has been widely studied
in the last few decades. Without attempting to provide an exhaustive list of references, let us
mention the following papers: Bakry, Cattiaux and Guillin [1], Douc, Fort and Guillin [7], Down,
Meyn and Tweedie [8], Lund, Meyn and Tweedie [19], Meyn and Tweedie [20,21], Roberts and
Tweedie [28]. We have three goals:

(a) Establish the very fact of long-term convergence of the transition kernel P’(x,-) to the
stationary distribution 7 (-) using Lyapunov functions, in a suitable distance;

(b) Prove that the rate of this convergence is exponential; that is, the distance between P! (x, -)
and 7 (-) is estimated from above as a constant (dependent on x) times e~ *, for some s > 0;

(c) Estimate the rate s of this exponential convergence.

6.1. Definitions and general results

Let us start with general definitions. Consider an R?-valued continuous-time Markov process
X = (X (¢),t > 0) with transition kernel P (x, -).

Definition 6.1. We say that the process X is ergodic if there exists a unique stationary distribu-
tion 7 (-), and if the transition kernel converges in the total variation norm ||-||tv to =, i.e.,

tlgglo“ P'(x,)—m(") ||TV =0, for every x € R,

Definition 6.2. We say that X is V-uniformly ergodic for a function V : R? — [1, 00), if X is
ergodic, and there exist constants K, ¢ > 0 such that for every t > 0, x € R4, we have:

[P (x,) =7 () | py < KV (x)e ™. (6.1)

For V =1, we say that X is exponentially ergodic.
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Assumption 6.1. The spinning measure u has finite support suppu = {61, ...,0,} in S; that
is, the effective state space Z* in (2.9) for this Walsh diffusion is a finite union of rays from the
origin

14
= Jiroi 10<r <li},  Li=e@).i=1.....p.
i=1

Sometimes, the Walsh diffusion in the finite union Z* of rays is called a spider.

Lemma 6.1. Under Assumptions 2.1, 2.2, and either 4.1 or 6.1, we have the following results.
(a) Assume there exist a function V : T — R in the domain of the generator L and some
positive constants k, b, ry, such that

LV (x) < —k +blgugy)(x), x eTH, (6.2)
where B* (ry) := {(r, eIl |0<r=< ro} U {0}. (6.3)

Then the Walsh diffusion is ergodic. Moreover, for every bounded measurable function f : ITH —
R’

t
lim l f(X(u)) du =/ f(x)m(dx). (6.4)
Iw

t—oot Jo

(b) Assume there exist a function V : ITH — [1, 00) in the domain of the generator L and some
positive constants k, b, ry, such that

LV (x) < =kV(x) 4+ blguy) (x), x eIt (6.5)
Then the Walsh diffusion is V -uniformly ergodic, and qu V(x)r(dx) < oo.

Remark 6.1. A function V which satisfies (6.2) or (6.5) is called a Lyapunov function in the
literature cited in the beginning of this section.

Proof. Case 1. First, we work under Assumptions 2.1, 2.2, 4.1. Then we operate in Euclidean
topology. The set B (rg) from (6.3) is compact. The Walsh diffusion is Feller continuous from
Lemma 5.1, and has the positivity property from Theorem 5.1.

Case 2. Next, we work under Assumptions 2.1, 2.2, 6.1. Then we operate in the tree-topology.
By Remark 2.1, the set B*(rg) from (6.3) is compact in the tree-topology. The Walsh diffusion
is Feller continuous from Theorem 5.2, and has the positivity property from Theorem 5.1.

Finally, for both cases, the rest of the proof of (b) follows from Sarantsev [31], Lemma 2.3,
Theorem 2.6, and the rest of the proof of (a) follows from Sarantsev [31], Proposition 2.2, and
Meyn and Tweedie [21], Theorem 5.1. O

6.2. An example of convergence

Let us provide an example with explicit conditions on the drift and diffusion coefficients g and o'.
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Lemma 6.2. Under Assumptions 2.1, 2.2, and either 4.1 or 6.1,
(a) the Walsh diffusion is ergodic, if

lim supg(r,6) =: —g <O. (6.6)

r—00 eSS
(b) I, in addition, the following condition

lim supo (r,0) =:0 < 00, (6.7)
r—>0o0 GES

holds, then the Walsh diffusion is V -uniformly ergodic with V = V; (r,0) := e*" for some 1 > 0.

Proof. The proof is similar to that from Sarantsev [29], Theorem 3.2. Take a C* nondecreasing
function ¢ : Ry — R such that

x <1;

05
o) = X, x>2.

An example of such function can be found in Sarantsev [29], Section 3.2. For (a), try V(r,0) =
@(r). This function satisfies condition (2.12), because V/(0+, 8) = ¢'(0) = 0. It is also continu-
ous in the Euclidean topology, which is the additional condition in Remark 2.3. Plug into (2.11)
and get

forr > 2, ¢r)=1, and ¢"(r)=0, (6.8)

and hence, LV (r,0) = g(r, 0). It follows from (6.6) that there exist r{, b > 0 such that g(r, 6) <
—b for r > ry. Therefore, for r > rg :=r; v 2, we get LV (r,0) < —b. In addition, the function
LV is continuous and therefore bounded on B* (r¢). Thus, we have (6.2). Apply Lemma 6.1(a)
to complete the proof of Lemma 6.2(a). The proof of (6.4) follows from Meyn and Tweedie [20],
Theorem 8.1(a).

For (b), try V(r, 6) = exp(Ap(r)). Similarly, this function satisfies V,/(0+, 8) = 0 and there-
fore (2.12); and on top of this, V is also continuous in the Euclidean topology. Using (6.8), for
r>2,wehave: V/(r,0) = AV (r,0), and V" (r,0) = A2V (r,0). Thus,

1
LV(r,0)= |:g(r, ) + 5az(r, 9),\2} V(r,0)  forr>2. 6.9)
Now, from (6.6) and (6.7), there exist constants g, @ > 0 and an r; > 0 such that g(r,0) < —g <
0,0(r,0) <&, r>ri. Then, forr >r;, A= -5 2, we have
1, 2, T, g
gr, A+ —o°(r,0)A" < —gr+ —A" < ——— =1 —k <0. (6.10)
2 2 252

Comparing (6.9) with (6.10), we get LV (r,0) < —kV (r,0) for 0 e suppp and r > ry V2 =:rg.
Similarly to (a), we get that LV is continuous and therefore bounded on 5 (rg). Therefore, we
obtain (6.5). Apply Lemma 6.1(b) to complete the proof of Lemma 6.2(b). ]
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6.3. Explicit rate of exponential convergence

In a fairly general setting, we can estimate the rate s of exponential convergence from (6.1). It
is hard to estimate this rate for diffusions. Let us informally explain the difficulty: Let £ be the
generator of a certain Markov process on R?. Assume we have a Lyapunov function V in the
domain of this generator which satisfies

LV (x) <—kV(x)+blc(x) for all x. (6.11)

Here, k, b > 0 are some constants, and C is a “small” set. There is actually a precise meaning of
the term small set in this theory, which was developed in Down, Meyn and Tweedie [8], Meyn
and Tweedie [20,21]. For our purposes, it is sufficient to let C be a compact set, as follows
from Sarantsev [31], Lemma 2.3, Proposition 2.6. One would like to infer an explicit value of
the constant sz in (6.1) from the constants in (6.11). As mentioned in the Introduction, however,
it turns out to be very hard, in general, see, for example, Davies [6], Meyn and Tweedie [22],
Roberts and Rosenthal [26], Roberts and Tweedie [28], since s depends in a complicated way
on k, b, C, and the transition kernel P’ (x, -).

However, such estimates are much easier if the Markov process is on the half-line R, is
stochastically ordered, and the “exceptional set” C = {0} in the formula (6.11) for a Lyapunov
function. Alternatively, the stochastic process itself might not be stochastically ordered, but is
stochastically dominated by a stochastically ordered Markov process with a Lyapunov function
with C = {0}. This was done by the coupling method in Lund, Meyn and Tweedie [19] for some
processes, including reflected diffusions, and in Sarantsev [29] for reflected jump-diffusions.

Here, we are able to adjust the coupling techniques used in Lund, Meyn and Tweedie [19],
Sarantsev [29] for the case of Walsh diffusions, by dominating the radial component of the Walsh
diffusion by a stochastically ordered reflected diffusion on R.. The rest of this section closely
follows the ideas of Lund, Meyn and Tweedie [19], Sarantsev [29].

Recall f : Ry — Ris called locally Lipschitz if for every Ry > 0 there exists a C(Rp) > 0 such
that | f(r1) — f(r2)| < C(Roy)|r1 — ra|, r1,r2 € [0, C(Rp)]. Impose the following assumption.

Assumption 6.2. The drift coefficient g(r, 6) is dominated by g(r,0) < g(r), (r,0) € Z \ {0},
where g(r) is independent of 8, and the diffusion coefficient o is itself angular-independent:

o(r,0)=0o(r), (r,0) € T\ {0}.
Here, g, o : Ry — R are assumed to be locally Lipschitz continuous, and so is g(-, 6) for each 6.

Theorem 6.1. (a) Under Assumption 6.2, suppose there exists a constant k > 0 and a nonde-
creasing C? function V : Ry — [1, 00) such that

gV () + %Ez(r)V”(r) < —kV(r), r>0. (6.12)

Then for every two points x1, x> € Z, and every t > 0, we have

|P'(x1,) = P'(x2, )|, < (VD) + V(x2))e ™. (6.13)
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(b) If; in addition to (a), this Walsh diffusion is ergodic, and m is its stationary distribution,
satisfying (7w, V) < 00, then this Walsh diffusion is V -uniformly ergodic with s :=k in (6.1).

Remark 6.2. Somewhat abusing the notation, we will refer to V' sometimes as a function V :
RY — R, and sometimes as a function V : Ry — R.

Proof. Part (a) Step 1. Similarly to Lund, Meyn and Tweedie [19], Sarantsev [29], we couple four
processes: two copies X and X; of the Walsh diffusion associated with (g, o, i), starting from
Xi(0) =x;,i =1, 2, and two copies S| and S, of a reflected diffusion on R with coefficients
g(-) and o (+), starting from S;(0) = ||x;||, i = 1, 2, so that the following pathwise comparison
holds:

Ix:o)| <si0), i=1,2. (6.14)

Assume also S1 and S, have the same driving Brownian motion. That is, there exists a standard
Brownian motion B = (B(t), t > 0), such that

dSi(1) =g(Si(0)) dt +7(Si (1)) dB() +dL; (1),  i=1,2. (6.15)

Here, L; = (L;(¢),t > 0),i =1, 2, are some continuous adapted nondecreasing real-valued pro-
cesses, with L; (0) = 0, such that L; can increase only when S; =0, i = 1, 2. We shall show at
the end of this proof how to construct such coupling.

Step 2. Assume we have already constructed the coupling with all aforementioned properties.
Then we can quickly prove the statement of Theorem 6.1(a). Assume without loss of generality
that ||x1|| < ||x2]]. Then using the standard comparison techniques for diffusions, we get

S1(1) <81, t>0. (6.16)
Define the stopping time 7 :=inf{r > 0| S2(¢) = 0}. By (6.14) and (6.16), we have
X1 =X =0 = Xi(r)=Xz2(x)=0.

Therefore, 7 is a coupling time for X; and X»,. Using the standard trick, we assume X;(¢) =
X»(t) a.s. for t > 7. Then for a function f : Z — R such that | f| < V, we have

[ELf (X1(0)] = E[f (X20)]]
= [E[f (X1))1r=n] = E[f (X2(0)) Liz=n]|
<E[|f(X10)[1e=n] +E[| £ (X20))[Liz=n] (6.17)
<E[V(X1()) =] + E[V (X2(0) 1z=]
<E[V(S1()) Liz=] + E[V($200)) Lz=)]-
Combining (6.17) with (6.12), we get as in Sarantsev [29]:
[E[f(X1(0))] = E[f (X20)]] = (V&) + V(x2))e ™.

Taking supremum over all functions f : Z — R such that | f| < V, we complete the proof of (a).
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Step 3. It remains to show that a coupling of
X1, X2, 81, 82,

which satisfies (6.14), (6.15) exists. First, our goal is to construct two Walsh diffusions X and X»
associated with (g, o, ), starting from X, (0) = x;, with the same driving Brownian motion B.
That is, X; and X; need to satisfy

d|X; )| = g(Xi () dt + o (Xi (1)) dB(t) +dLIXil 1), i=1,2;t>0. (6.18)
To this end, take a probability space (€2, F, P) with infinitely many i.i.d. copies
w® = (W"@),t>0), n=0,1,2,...

of a Walsh diffusion associated with (g, o, 1), startlng from the origin: W™ (0) = 0; as well as
yet another independent standard Brownian motion B = (B(t), t > 0). For each Walsh diffusion
W we can write a representation in terms of stochastic differential equation

d[w® @) | = g(W™ @) dt + o (W™ () dB, (1) +dLI™ I (1),

where B, = (B, (t),t >0),n=1,2, ... are i.i.d. standard Brownian motions. Let x; = 7;0;,i =
1,2. If r{ =0 or r, =0, then let 9 := 0. Assume now 71 > 0 and 7, > 0. For i =1, 2, con-
sider strong solutlons S; of a one-dimensional SDE with drift coefficient 8(, 6;) and diffusion
coefficient o2(-, 6;), starting from S; (0) = 7;, driven by Brownian motion B:

dSi(t) =g(S;i,0,)dr +5(S))dB(t),  t=<7T;:=inf{t>0]S;(r)=0}.

Because the drift coefficient g(-,6;) and the diffusion coefficient o (-, ;) are locally Lipschitz
continuous, this strong solution exists and is unique. By (6.12) and Assumption 6.2 it follows
that this process is non-explosive, at least not until it hits zero. Define

Xi(t)=0;5:(1), i=1,2;t < 10;

where the first stopping time is defined as g :=inf{t > 0| X1(t) =0o0r X2(t) =0} =71 A T>.
Thus, we defined X;(r) and X, (¢) for t < 7y so that (6.18) is satisfied with B(¢) := B(t) for
t<1.

Step 4. Next, we construct a sequence (7,),>0 of stopping times such that to <71 <1 <-- -,
and define X and X5 inductively on each [t2, T2k42] so that (6.18) holds with

X1(t) =0, X2 (t2k4+1) =0, k> 0; Too i= lim 7. (6.19)
k—00

Therefore, we shall construct X and X7 on [0, Tso] so that (6.18) and (6.19) hold. In Step 6, we
construct X1 (¢) and X;(¢) for t > T4, if Too < 00.

Assume we have already defined X| and X» on [0, 12,], so that (6.18) and (6.19) hold for
k=0,...,n. Inthe case X(12,) = X2(12,) =0, we let 7, := 1, for k > 2n. Next, assume

X1(t2n) =0, Xa(ton) # 0.
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Let X»(t2,) = p2,02,. Construct a strong solution S2,4+1 = (S2,41(¢),# > 0) of a one-
dimensional SDE with coefficients g(-,02,) and o (-), starting from S>,4+1(0) = p2,, until it
hits zero:

A8 1) = g(Sont1(1), 020) At + T (Sop1 (1)) dBopy1 (1), 1 <75,
:=inf{r > 0| Sau41(1) =0}

By local Lipschitz continuity of the coefficients g(6>,, -) and o (+), this strong solution exists and
is unique. From (6.12) and Assumption 6.2, it follows that this process is non-explosive, at least
not until it hits zero. Define 73,11 := 12, + 75, 41> and

X1t + 1) = W@, Xo(t+ 1) = Soug1 (), 1=,

This defines X; and X, on the next time interval [72,, T2,+1] such that (6.18) is satisfied. The
common driving Brownian motion B is defined as

B(t) .= B(t2n) + Bop11(t — 20), t € 10, T2n41]

If we have X (t2,+1) = X2(t2n+1) =0, we let 7y := 12,41 for k > 2n + 1. Otherwise, we repeat
the construction above with X1 and X, swapped, with obvious changes. This allows us to con-
struct X1 and X3 on [t2,41, T2n4+2] so that (6.18) and (6.19) hold for k < 2n + 2. The common
driving Brownian motion B is defined as

B(t) :== B(t2n+1) + Bon2(t — T20+1), t € [ton+1, T2nt2]

By induction, we have defined X (¢) and X»(#) for f < 7.

Step 5. 1t follows from (6.19) that X | (1) = X2(7x0) = 0. It suffices to define X;,i = 1,2 on
[Too, 20) if Too < 00. Assume T, < 00 and define X (¢) and X, (¢) for 1 > 75 by X1 (f + Too) =
Xo(t + 100) = WO(r), t > 0. The common driving Brownian motion B is defined on [t4, 00)
as

B(t) := B(too) + Bo(t — Too)-

This completes the construction of two copies X and X» of the Walsh diffusion, associated with
(g, 0, 1), starting from X; (0) = x;, i = 1, 2, such that (6.18) holds.

Step 6. Finally, we construct strong versions S1 and S, of a reflected diffusion with drift coef-
ficient g and diffusion coefficient &, starting from S;(0) = 7;, with driving Brownian motion B,
as in (6.15). This is possible by classic results, because g and & are locally Lipschitz continuous.
By standard comparison techniques, we have (6.14).

Part (b) Take a function f :Z — R with | f| < V. Then X = (X (¢), t > 0) satisfies

B [£(X®)] —Exn[f(X®)]| < (VD +V)e ™, x1,x2>0.
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Integrate over Z with respect to x» ~ 7. Then we have:

|Ex, [f(X®)] = @z, /)] = |Ex, [f(X(t))]—/IEm[f(X(t))]ﬂ(dm)

< [JEn L (X @)] = EalF (X))

<e M (V(X1) +/ V(Xz)ﬂ(dX2)>
A
<e MV + @, V) <e ™ (1 + (m, V)V (xp). O

Remark 6.3. In Assumption 6.2, we imposed Lipschitz continuity assumption only to guarantee
strong existence and pathwise uniqueness. It is well known, however, that these existence and
uniqueness results hold under weaker conditions. In this case, our result also holds.

Let us present some corollaries. Under assumptions of Theorem 6.1, define

2
K(x,A):=g()r +52(x)%. (6.20)

The following result is proved similarly to Sarantsev [29], Theorem 4.3, Corollary 5.2.

Corollary 6.1. Under Assumption 6.2, suppose there exist k, A > 0 such that

supK(x,A) =: —k <O. (6.21)

x>0

Then the Walsh diffusion X is V(r) := e* -uniformly ergodic with s =k, and the stationary
distribution 7w satisfies (7, V) < 00.

Remark 6.4. Under Assumption 6.2, suppose

sup g(x)=:—g <0, sup o(x)=:6 < oo0.
xeZ\{0} xeZ\{0}

Similarly to Sarantsev [29], Corollary 4.4, we can show that (6.21) holds with A := g/&. Then,
the Walsh diffusion X is V (r) := e* -uniformly ergodic with rate » := k of exponential conver-
gence from (6.21).

Example 6.1 (Continuing from Example 3.1). Consider a Walsh diffusion X associated with
(g, 0, ), such that the drift and diffusion coefficients are constant:

g(rn0)=g<0, o(r0)=0>0.
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Then we can take g(r) := g, and o (r) := o in the Assumption 6.2. The expression K in (6.20)

is reduced to K (x,A) = gA + %kz, and is minimized at A = —g/ o2, with minimum —k, where
2
8
= 6.22
252 (6.22)

This is an estimate of the exponential rate s of convergence. Actually, this estimate is exact.
Indeed, the radial component || X (-)|| of such Walsh diffusion is a reflected Brownian motion on
the half-line with drift g and diffusion o2, and such process is known from Lund, Meyn and
Tweedie [19] to have exact rate of exponential convergence as in (6.22).

We can apply this result to (non-reflected) diffusions on the real line.

Corollary 6.2. Take a solution X = (X (t),t > 0) of an SDE on the real line R with drift co-
efficient g and diffusion coefficient o>. Suppose it is ergodic. Assume that g and o are locally
Lipschitz, and o (x) = o (—x) for all x € R. Suppose there exists a C*> nondecreasing function
V:Ry — [1, 00) and a constant k > 0 such that

gV'(r) + %Uz(r)V”(r) = —kV(r), where g(r) == g(r) v (=g(=r)),r > 0;

Finally, assume that the stationary distribution w satisfies (7w, V) < 0o. Then X is V -uniformly
ergodic with rate of convergence » = k.

Proof. Follows from Theorem 6.1 and the observation that the real line can be thought of as
a “spider” with two rays, corresponding to North and South Pole, that is, 8; and 6,. Then the
process X becomes a spider associated with (g, o, u), where u is a uniform measure on {61, 6>},
and g(r,0;) := g(r) - lji=1) — g(=r) - l{i=2}, r = 0. O

Example 6.2 (Bang-bang drifts Karatzas and Shreve [17]). Consider a diffusion on R with
drift and diffusion coefficients g(x) = —g1 - 1{x>0} + &2 - 1{x<0}, With constants g1, g» > 0, and
o(x) =1, x € R. Then we can take g(r) = g1 A g2, and by Corollary 6.2 it is V-uniformly
ergodic with A = g; A g» and rate > =k = (g1 A g2)?/2 of exponential convergence.

Appendix

Lemma A.1. Take two sequences (f,)n>0 and (gn)n=0 of continuous functions [0, T] — R4,
Assume t, € [0, T] are such that f,(t;,) = gn(0) =0 for n=0,1,2,... and t, — ty. Assume
fn — fo and g, — go uniformly on [0, T]. Define the new sequence of functions hy : [0, T] —
R4:

Jn (), 1 €[0,1,];

1) = gn(t — 1), teft,, T].

Then hy,, — ho uniformly on [0, T].
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Proof. Without loss of generality, assume ¢, 1 #y, as n — o0o. Otherwise, we can switch from ¢,
to T — t, and from h,(¢) to h,,(T — t). Then we can estimate the maximum difference

max |7, (t) —ho(t)|
1€[0,T]
< max |y (t) — ho()|| + max [y(e) — ho(0)| + max [h(e) — ho(0)]
tel0,1,] telty,to] telty,T]

= té‘ﬂ&i,i]” fa®) = fo] + max. |gn(t = 12) = fo)| + max. ]ngn(t —1a) — go(t —10) .

By uniform convergence f, — fo, the first term can be estimated as
max [ () = fo)| < max [fu() = fo)] = 0. (A.1)
The second term can be estimated as

max ||gn(t—tn)—fo(t)|| peax |gn() | +  nax | fo@)]- (A2)

telt,

Note that ||g, || = ||gol| uniformly on [0, T'], and #ty — ¢, — 0 as n — oo. Thus,

somax @] = [so@] =o0. (A3)

Since fo(t9) =0, t,, — to, and || fo|| is continuous, the second term in the right-hand side of (A.2)
converges to zero, as n — oco. Combining this with (A.3), we get

max || g (t —t,) — fo(t)| — 0. (A4)

t€ltn, 1]

Thirdly, the third term can be estimated by

max | ga(t — ty) — go(t —to) || < max | gn(t —ta) — go(t — 1) ||

1€lty, T1
(A.5)
+ max_|go(t — ) — go(t — 10)|.
telty,T]
The first term in the right-hand side of (A.5) can be estimated as
max. ||gn (t —1n) — go(t — )| < max ||gn (s) — go(s)| = 0. (A.6)

t€l1g

The second term in the right-hand side of (A.5) also tends to zero as n — oo, because go is
continuous, and therefore uniformly continuous on [0, T'], while #, — fo. Combining this obser-
vation with (A.6), we get that

max | gn(t — 1) — go(t — 10) | — 0. (A7)
telt,T]

Finally, combining (A.1), (A.4), (A.7), we complete the proof of Lemma A.1. [l



2476 T. Ichiba and A. Sarantsev

Lemma A.2. For a Walsh diffusion X without drift from Case 3 of the proof of Theorem 5.1, we
have ]P)(l'};’A <t) >0, where t}{A is defined in (5.3).

Proof of Lemma A.2. By Assumption 2.1, the functions o and o~ ! are bounded on the (open)
ball D with radius R, which, together with its closure D, lies inside /. This implies

O<ci<o’(x)<cy<oo forallxeD. (A.8)
Next, we can estimate the probability from Lemma A.2 as follows:
IP’(II%(’A < t) > P(‘C}éA <t, r;e(, > t). (A.9)
It follows from (A.8) and (5.2) that
cit < T (1) < cot, fort € [0, 73 ] (A.10)
Also, from definitions of hitting times (5.3)—(5.5), it immediately follows that
T(tp)=1p. T(aA) =184 (A.11)

The estimate (A.10) and the relations (A.11), in turn, imply that the inverted time-change
T—1(s):=inf{r > 0| T(r) > s} satisfies

e ls<T7's)<cls, fors € [0, 7y ]. (A.12)
Let us show that
{IKA<clt<czt<r]‘£]}§{r}e{A<t<rI§}. (A.13)

Indeed, assume the event in the left-hand side of (A.13) has happened. Then from (A.11), apply-
ing the inverted time-change 7!, we get

4 <T ety <T N eat) <. (A.14)
Applying (A.12) to (A.14), we have T Ye1t) <t, T Yept) > 1. Comparing this with (A.14),
we get T}{A <t< 11)5,. This completes the proof of (A.13).

To complete the proof of Lemma A.2, we need only to show that

P(‘L’I‘Q}[TA<61I<CQZ‘<‘E1?//)>O. (A.15)

Indeed, W is Walsh Brownian motion, starting from the origin. As noted earlier before, | W (¢)|| =
Z(t) is areflected Brownian motion on the half-line, starting from zero. Define raz =inf{r >0 |

Z(t) =a} for a > 0. Then arg W(ruz ) ~ w is independent of Z. Therefore, the probability in the
left-hand side of (A.15) is equal to

n(A) oIP’(t,% <cit <ot < t,%/) > 0. (A.16)

That the left-hand side of (A.16) is indeed positive follows from @ (A) > 0 and the properties of
a reflected Brownian motion on the half-line. This proves (A.15), and with it Lemma A.2. O
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