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Yet another condition for absence of collisions
for competing Brownian particles
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Abstract

Consider a finite system of rank-based competing Brownian particles, where the
drift and diffusion of each particle depend only on its current rank relative to other
particles. We present a simple sufficient condition for absence of multiple collisions
of a given order, continuing the earlier work by Bruggeman and Sarantsev (2015).
Unlike in that paper, this new condition works even for infinite systems.
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1 Introduction and the main result

Consider a system of N Brownian particles X;(¢),..., Xn(t), t > 0 on the real line.
Each particle X;(t) of name i evolves as a Brownian motion with rank-dependent drift
coefficient g; and diffusion coefficient ai, where k is the current relative rank of X; at
time ¢. Namely, at each moment we rank particles from bottom to top:

}/1(25) = X(l)(t) S S X(N)(t) =: YN(t),

so that the particle occupying the lowest position has rank 1, the next particle has rank
2, etc. If two or more particles are tied, that is, they occupy the same position at the
same time, then we resolve ties in lexicographic order : particles X; with lower names
are assigned lower ranks.

We can make this description more formal, giving an SDE which governs this system
X(t) = (X1(t),...,Xn(t)). For any vector x = (z1,...,zy) € RY, there exists a unique
ranking permutation: a one-to-one mapping p. : {1,...,N} — {1,..., N}, with the
following properties:

(a) Tp, (i) < Tp,(4) for1<i<j<N;

(b) if zp, ;) = 7p, ;) for 1 <i < j < N, then Pz (i) < pz(4).

Definition 1.1. On a filtered probability space (0, F,(F;)¢>0,P), with the filtration
satisfying the usual conditions, we consider a continuous, adapted R" -valued process
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Absence of collisions for competing Brownian particles

= (X(t),t > 0), X(t) = (X1(¢),...,Xn(t)), which satisfies the following SDE: for
i=1,...,N,

N
dX;(t) = Z 1(pt(k) = 1) (grdt + o, dW;(2)), (1.1)

k=1
where W = (Wy,...,Wy) is an N-dimensional Brownian motion, 1(-) is the indicator
function, and p; := px(). Then the process X is called a system of N competing
Brownian particles with drift coefficients ¢1,...,9n € R, and diffusion coefficients

of,...,08 >0,and Y (t) := (Yi(t),...,Yn(t)) with Yy (t) := X,y (t), k=1,...,N, t >0
is called a system of N ranked particles.

For any values gi,...,9y € R, 0%,...,0% > 0, there exists a (unique in law) weak
solution to this SDE (1.1); this result follows from [3].

These systems were introduced in [1, 7] and further studied in [2, 10, 13, 19, 21, 24].
In particular, they are used as a model for financial markets with N stocks, where
Y;(t) = exp (X;(t)) is the capitalization of the ith stock. One observed real-world market
feature is that stocks with smaller capitalizations have larger volatilities; we can model
this by taking o1 > 02 > ... > on. Another feature is as follows: consider the market
weights pr(t) = Yi(t)/(Y1(t) + ... + Yn(¢)) and rank them from top to bottom; then
plot these ranked market weights versus their ranks on the log-log plot. The resulting
graph will be close to a straight line. This can also be described by the market model
of competing Brownian particles, see [5]. Other applications of competing Brownian
particles for market models include [16, 18]. Let us also mention another application of
competing Brownian particles: this is a discrete analogue of the McKean-Vlasov equation,
which governs a nonlinear diffusion process, and it can approximate this process, see
[6, 14, 27].

Of particular interest in such system of competing Brownian particles are triple
and multiple collisions. A triple collision occurs when three particles occupy the same
position at the same moment. A simultaneous collision occurs when two particles collide
and at the same moment other two particles collide. A triple collision is a particular case
of a simultaneous collision.

It was shown in [12] that a strong solution to the SDE governing the system of
competing Brownian particles exists up to the first moment of a triple collision. Whether
there is a strong solution after this triple collision is still, to our best knowledge, an open
question.

The question whether triple collisions occur in this system of competing Brownian
particles has attracted considerable attention in recent years. Progressively better
results were established in the papers [11, 12] until, in the paper [22], a necessary
and sufficient condition for a.s. absence of triple collisions was found: the sequence
(02,...,0%) must be concave, that is,

1
0225(0,%714—0,% ). k=2,...,N-1.

In addition, if there are a.s. no triple collisions, then there are a.s. no simultaneous
collisions.

It is much harder, however, to study multiple collisions, when four, five or more
particles collide. Let us state a formal definition.

Definition 1.2. We say there are no collisions of particles with ranks k_,... k. €
{1,...,N}, if

P(Ht >0: Yk,(t) =...= Yk+<t)) =0.
There are no n-tuple collisions if there are no collisions of particles with ranks k_ <
... <ky forevery pairofk_,k; =1,..., N such that k; — k_ = n — 1; or, equivalently, if
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for every subset I = {i1,...,i,} C {1,..., N} of n elements we have:
PEt>0: X;,(t)=...=X, (t))=0.

If there are no n-tuple collisions with n = N, we say that there are no total collisions.

These topics were studied in [4]. It was shown there that these properties are
independent of the initial condition, as well as of the drift coefficients g1, ..., gn. However,
only sufficient conditions are known for lack of quadruple, quintuple and other collisions.
They are rather complicated: for example, lack of quadruple collisions for a system of
N =5 particles involves 17 inequalities on the diffusion coefficients o7, ...,0%. In this
short paper, we attempt to provide some easy-to-verify sufficient conditions. One of
them is stated in Theorem 1.3, and proved in Section 2. This paper extends from [4] and
complements its results. In Remark 2.3 later, we compare our new results with those in
[4] for the simplest case: total collisions for N > 4 competing Brownian particles, and
we see that the new results do not follow from the previous ones. The paper [4] also
contains sufficient conditions for absence of more complicated collisions, such as

P (Yi(t) = Ya(t) and Yi(t) = Ys(t) = Ys(t)) = 0. (1.2)

We touch this subject in this paper in Section 3. In Section 4, we study multiple collisions
for infinite systems of competing Brownian particles. We are able to do this in this paper
(as opposed to the previous paper [4]), because the coefficient (n—1)/2 in condition ((1.3)
defined below) does not depend on the total number N of particles.

The main result of the paper is as follows.

Theorem 1.3. Forn > 4, there are no n-tuple collisions in Definition 1.2, if 03,...,02
satisfy
n—
max 0,2C < —— min O’]%. (1.3)
1<k<N 2  1<k<N

Remark 1.4. Note that this is not a necessary condition. For example, considern = N =
4 and 0? =2, 03 = 02 = 07 = 1. Then condition (1.3) does not hold, but conditions of [4,
Theorem 1.1] hold, and therefore, there are no 4-tuple (in this case, total) collisions.

2 Proof of Theorem 1.3

We present the proof of Theorem 1.3 as a sequence of lemmata, which are of their
own interest. Define

Oy :={z=(z1,...,2n) €ERY |21+ ... +ax =0, 27 +... +2% =1}.
Lemma 2.1. There are no total collisions in Definition 1.2, if 03,...,03% satisfy
N LN
max oix? < 72013.
=1

N —
zE€ll N P 2N P

The proof of Lemma 2.1 was already given as part of the main result in [12, pp.238-
240]. The following is an immediate corollary.

Corollary 2.2. There are no total collisions in Definition 1.2, if 0%,..., 0% satisfy
N
N -1
2 2
max o; < —— or. 2.1
1<k<N F = 2Nz:]c (2.1)
k=1
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In particular, for a system of N = 4 competing Brownian particles, this condition (2.1)

takes the form 5
max (Uf,ag,og,ai) < 3 (crf + 02+ Ug + O'z) . (2.2)
Remark 2.3. This new sufficient condition does not follow from the results of [4, Theo-

rem 1.1, Theorem 1.3]. Take the following example:

1
O’%:(fz:l, 03:05:5.
This example satisfies (2.2), but not the assumptions of the previous results in [4,
Theorem 1.1, Theorem 1.3]. More generally, the set of o2, ... ,012\, with
o=k =1 o} ==k = o
B N -2
satisfies (2.1) and hence by Corollary 2.2 there are no total collisions. This result is not
covered by the previous results in [4]. O
The next corollary trivially follows from Corollary 2.2.
Corollary 2.4. There are no total collisions in Definition 1.2, if 0},...,0% satisfy
max o; < N-1 min o2
X .
1<k<N k= 2 1<k<N k

The next lemma establishes a link between total collisions and multiple collisions.
Lemma 2.5. There are no collisions between particles with ranks k_ < --- < k_, if for
every pairl_,l, € {1,..., N} such that

1<l <k_<ky<Ily <N, (2.3)

the system of (I — l_ + 1) competing Brownian particles with diffusion coefficients

o} ,...,of, does not have total collisions.

Proof. Our arguments are similar to the ones in the proof of [4, Theorem 3.8]. Assume
there is, in fact, a collision between particles with ranks k_ < -+ < ky:

Yi—(t) =+ =Y (t) for some ¢ > 0. (2.4)
Then there exist

I_e{l,...,k_} and i € {k4+,..., N} such that (2.5)
Yi_a(t) <Y _(t)=---=Y,(t) <Y 41(t) for some ¢ > 0. (2.6)
(For consistency of notation, we let Yy(t) := —oo and Yn41(t) := +00.) From (2.6), by

continuity of ranked processes Y'(-), there exists a rational number ¢(> 0) such that
Yi_—1(s) <Yi_(s) =+ =Y, (s) <Yi,41(s), forevery s € [q 1] (2.7)
Let J be the set of the names of particles with ranks [_,...,l; at the time s € [q,1].

Obviously, there are [, — [_ + 1 elements in this set. Because of (2.7), this set is
independent of choice of s € [g,t], that is, these particles do not collide with other
particles on this time interval [g, ], and only then they can exchange ranks. Thus, the
particles (X;(q+-), i € J) itself form a system of [, —I_ + 1 competing Brownian particles
with diffusion coefficients o7 ..., crlQ+, and it experienced a total collision at the moment
t — q. This event, however, has probability zero, because of the assumption. Taking the
countable union over all rational ¢ > 0 and over all [_,[; from (2.5), we conclude the
event in (2.4) has probability zero. This completes the proof. O

Combining Lemma 2.5 with Corollary 2.4, we complete the proof of Theorem 1.3.
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3 Other types of collisions

In the paper [4], we also consider more complicated collisions, such as the collision
event in (1.2). The results of Theorem 1.3 and Section 2 can be useful here, because we
solve this problem in part by reducing it to a study of total collisions. Here, we do not
study general complicated collisions. Rather, let us state briefly the results for the case
N =4 (four particles), where they are the simplest but still interesting.

For a system of NV = 4 competing Brownian particles, we have the following types of
collisions:

Yi(t) = Ya(t) = Y3(t) = Yy(¢) (the total collision); (3.1)

Y1(t) = Ya(t) = Y3(t) (a triple collision); (3.2)

Yo(t) = Y3(t) = Yu(t) (a triple collision); (3.3)

Yi(t) = Yo(t) and Y3(t) = Yy(¢) (the simultaneous collision). (3.4)

For the total collision of type (3.1), a sufficient condition to avoid them is given in
Theorem 1.3, and in the intermediate results of Section 2; for example (2.2). For triple
collisions as in (3.2), (3.3), as well as the simultaneous collision in (3.4), we can find
sufficient condition to avoid them, using the same techniques as in [4]. Here is a result.
Lemma 3.1. (a) Assume that, in addition to (2.2), we have:

Ug >

1
3 (0% +o§) .

Then there are no triple collisions of the type (3.2).
(b) Assume that, in addition to (2.2), we have:

0§2§(U§+Ji).

Then there are no triple collisions of the type (3.3).

(c) Under condition (2.2), there are no simultaneous collisions of the type (3.4).

The proof is similar to that of [4, Theorem 3.8] and is omitted.

4 Infinite systems of competing Brownian particles

Consider an infinite sequence (X;);>1 of continuous, adapted, real-valued processes
X; = (Xi(¢t),t > 0), i > 1. Assume that for every ¢ > 0, we can rank X;(t),: =1,2,...
from the bottom upward:
X)) = X(t) <+

As in the finite case, we resolve ties in lexicographic order. Let us fix parameters g, € R
and o, > 0, forn =1,2,... and take countably many i.i.d. Brownian motions Wy, W5, ...
Assume the infinite sequence X, X5, ... of processes satisfy

dX;(t) = > 1(X; has rank k at time ) (gpdt + oxdW;(t)), i=1,2,...
k=1

infinite system of competing Brownian particles with drift coefficients g1, gs,... and
diffusion coefficients o}, 03, ... Similarly to the finite system, each X; = (X;(¢),t > 0)
is called the ith named particle, and each Y = (Yi(t) := X)(t),t > 0) is called the
kth ranked particle. These systems were studied in [12, 23, 26]. Multiple collisions
are defined similarly to finite systems. Triple collisions were studied in [23, Section 5],

Then the R>°-valued process X = (X(¢),t > 0), with X(¢) = (X;(t))i>1, is called an
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however, quadruple and higher-order collisions have not been yet studied for this type of
infinite systems.
The following existence and uniqueness results were proved in [12, 23].

Proposition 4.1. Assume the initial condition z = (z;);>1 = X (0) satisfies

o0

Ze—w? < oo forall a> 0. (4.1)
=1

(a) There exists a weak version of the infinite system if

sup |gn| < 0o and supo? < oo. (4.2)
n>1 n>1

(b) Under the following stronger condition, this weak version is unique in law:
Ino = Gno+1 = ... and on, = Opy41 = ... forsome ng > 1.

Now, a remarkable fact is that the condition (1.3) in Theorem 1.3 is determined
independently of the number N of particles. This observation allows us to prove the
absence of n-tuple collision in Definition 1.2 under the condition (4.3) below even for
infinite systems.

Theorem 4.2. Take any version of an infinite system of competing Brownian parti-

cles with drift and diffusion coefficients satisfying (4.2), with the initial configuration
satisfying (4.1). Take an n > 4 and assume

5 N
sup o <
k>1

-1
inf 7. (4.3)
k>1

Then there are no n-tuple collisions.

Proof. 1t is known from [23, Lemma 3.4] that for every T' > 0 and u € R, there are a.s.
only finitely many particles X; such that maxo<;<7 X;(t) < u. Assume there is an n-tuple
collision at time ¢ > 0. Then there exist finite [_, [ such that (2.6) holds. The rest of the
proof follows the proof of Lemma 2.5. O
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