29

30

31

32

33

34

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS

Towards Efficient Medium Access for
Millimeter-Wave Networks

Jie Zhao"', Student Member, IEEE, Dongliang Xie, Member, IEEE, Xin Wang

, Member, IEEE,

and Arjuna Madanayake™, Member, IEEE

Abstract—The need of highly directional communications at
mmWave frequencies introduces high overhead for beam training
and alignment, which makes the medium access control (MAC)
a grand challenge. To harvest the gain for high performance
transmissions in mmWave networks, we propose an efficient
and integrated MAC design with the concurrent support of
three closely interactive components: 1) an accurate and low-
cost beam training methodology with a) multiuser, multi-level,
bi-directional coarse training for fast user association and beam
alignment and b) adaptive fine beam training with compressed
channel measurement and multi-resolution block-sparse channel
estimation in response to the channel condition and the learning
from past measurements; 2) an elastic virtual resource scheduling
scheme that jointly considers beam training, beam tracking and
data transmissions while enabling burst data transmissions with
the concurrent allocation of transmission rate and duration;
and 3) a flexible and efficient beam tracking strategy to enable
stable beam alignment with beamwidth adaptation and mobility
estimation. Compared with literature studies, our performance
results demonstrate that our design can effectively reduce the
training overhead and thus significantly improve the throughput.
Compared to 802.11ad, the training overhead can be reduced
more than 60%, and the throughput can be more than 75%
higher. In low SNR case, the throughput gain can be more
than 90%. Our scheme can also achieve about 50% higher
throughput in the presence of user mobility.

Index Terms— Millimeter wave, directional MAC, directional
antenna, resource allocation, channel estimation.

I. INTRODUCTION

ILLIMETER-WAVE (mmW or mmWave) communi-
cation is receiving tremendous interest from acad-
emia, industry and federal agencies as a promising technique
to provide Gigabit data rate demanded by the exponential
growth of wireless applications. A key challenge of mmWave
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communications is the low signal range as a result of the
large isotropic path loss. Fortunately, the small wavelength of
mmWave signals also enables a large number of antennas to
be placed in small dimensions (e.g. at the base station, in the
skin of a cellphone, or even within a chip), which provides a
high beamforming gain to compensate for the big path loss.

The nature of highly directional transmissions in mmWave
bands, however, makes the design of medium access control
schemes a grand challenge [1]. New users have difficulty of
associating with a small cell base station or access point (AP).
If both AP and user devices are configured directionally,
it could take an extremely long time to connect them and align
their beams. In the measurements of basic IEEE 802.11ad [2]
transmission [3], the latency for AP discovery is Sms to 1.8s
for a static client and up to 12.9s for a mobile client. On the
other hand, omni-directionally transmitting/receiving training
signals for beam alignment may lead to range much lower than
that of data transmissions. The problem is made even harder
when there are a large number of beam directions and users,
and the channel reciprocity principle breaks in the presence of
human blockage and environment dynamics [3].

To alleviate the training overhead, codebook-based adaptive-
beam training [4]-[6] divide directions into different granular-
ity levels. At each level, training signals are sent to all direc-
tions within a selected angular range, and a feedback message
is needed to select the best beam. The feedback overhead and
delay would be very high with the use of multiple rounds
of feedbacks (with each round corresponding to a granularity
level) and the competitions in multi-user feedbacks along each
trained direction. Codebook-based scheme has been taken by
802.11ad. Alternatively, compressed sensing (CS) is exploited
to estimate the sparse mmWave channels with training sig-
nals sent along random directions within the whole angular
range [7]-[9]. Although the number of training directions
is reduced, the channel reconstruction complexity increases
exponentially with the number of measurement samples.

The big training overhead will translate into significant
throughput reduction. More frequent signaling would be
needed to track the directional transmissions when there exist
higher channel dynamics and user mobility [10]. Despite the
large amount of effort made to more efficiently find the
best beam directions or allocate radio resources [11]-[13],
the two are normally decoupled. Different from conventional
wireless communications where only data transmissions are
considered in radio resource allocations, it is necessary to
concurrently schedule radio resources for channel training,
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data transmissions and beam tracking, in the face of dynamics
of channel conditions, user population, locations, and traffic.

In light of the challenges (training overhead, frequent sig-
naling, resource allocation, network dynamics) above, our aim
is to design an efficient and integrated MAC scheme for
high performance mmWave network transmissions with the
concurrent support of three closely interactive components:

a) Accurate and light-weight beam training with 1) multi-
user, multi-level, bi-directional coarse training for fast user
association and beam alignment, and 2) fine beam training
with multi-resolution block-sparse channel estimation and
compressed beam measurement, with adaptation to channel
conditions and past measurement results.

b) Self-adaptive virtual resource scheduling to determine
both user transmission opportunities and durations for facili-
tation of various traffic types, while trading off between beam
training and data transmissions for an overall high network
performance.

c) Effective beam tracking for more stable beam alignment
with flexible beamwidth adaptation and mobility estimation
to cope with link failures due to user motions or channel
dynamics.

The rest of this paper is organized as follows. After
briefly reviewing background and related work in Section II,
we present our fast association and multi-level beam train-
ing approach in Section III. We further propose our multi-
resolution block-sparse channel estimation technique and fine
beam training design in Section IV, followed by Section V,
where we develop our flexible resource scheduling and beam
tracking schemes. Finally, we analyze the simulation results
in Section VI, and conclude the paper in Section VIL.

II. BACKGROUND, RELATED WORK,
AND BASIC FRAMEWORK

A. Background

The standards IEEE 802.11ad [2] and IEEE 802.15.3c [14]
are proposed at physical layer (PHY) and medium access
control layer (MAC) to enable operation in frequencies around
60 GHz mmWave band. Figure 1 shows the MAC layer
superframe of IEEE 802.11ad protocol, referred as Beacon
Interval (BI)). AP provides the basic timing for DEVs through
beacon and announce frames, such as Beacon transmission
interval (BTI) to transmit one or more beacons in different
directions, Association beamforming training (A-BFT) for
devices to communicate with AP and train their antenna beams
and Announcement transmission interval (ATI) for AP to
exchange management information with associated devices.
A data transmission interval (DTI) contains service peri-
ods (SPs) to transmit data using time division multiple access
(TDMA) and contention-based access periods (CBAPs) for
devices to compete in transmissions using Carrier sense mul-
tiple access with collision avoidance (CSMA/CA).

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS

Although 802.11ad provides a basic MAC framework and
signaling sequences, there is no specific consideration for
more efficient directional finding and transmissions. With the
concurrent consideration of beam training and resource allo-
cation, we propose a detailed design of the MAC scheme with
three major components: quick and low-cost AP association
and beam training, adaptive and joint scheduling of radio
resources for training and transmission under channel and
demand changes, and efficient beam tracking during mobility.
To facilitate practical application of our work, we can fit our
schemes into the 802.11ad framework, although our schemes
are general and do not depend on any protocols.

B. Related Work

To compensate for the high path loss, codebook-based
beamforming schemes have been proposed [4]-[6] and taken
by 802.11ad. However, the signaling overhead and delay
would be very high to train a large number of beams and
in the presence of many users.

As an alternative, compressed sensing (CS) techniques have
been proposed to estimate mmWave channels to facilitate
beam alignment [7]-[9], [15]-[18], taking advantage of the
sparse feature of channels at mmWave frequencies. These
studies, however, did not fully consider the clustering of
transmission paths [19] in channel reconstruction. Instead,
taking into account the path clustering effect, we model
our channel as block-sparse and propose a multi-resolution
block-sparse method to more accurately estimate the channel.
As an additional benefit, our proposed method allows for
concurrent use of compressed measurements from different
levels to improve the accuracy of reconstructing CS channel
and reduce the total number of samples, which further reduces
the computational complexity.

Various efforts are made to only allocate radio resources in
mmWave networks [11]-[13], [20], and existing work mostly
focus on scheduling concurrent device-to-device communica-
tions in Wireless Personal Area Networks. Instead, we inves-
tigate uplink/downlink transmission scheduling between base
station/access point and devices. We concurrently and adap-
tively schedule radio resources for channel training, data
transmissions and beam tracking. Rather than coordinating
users to transmit in each slot [21], our virtual scheduling
enables the burst transmissions of packets, a major format
to transmit high volume data in mmWave communications.
The joint determination of transmission resources and duration
makes the scheduling problem much harder, and is often
bypassed by literature work.

User mobility and environmental dynamics makes it more
difficult to achieve beam alignment in mmWave networks, and
beam tracking is often needed to avoid transmission interrup-
tion. Based on the observation that 60 GHz channel profiles
at nearby locations are highly-correlated, Zhou et al. [10]
propose a beam-forecast scheme to reconstruct the channel
profile and predict new optimal beams. Highly relying on
a specific geometry model, the prediction accuracy may be
compromised in practical networks. Authors in [22] design,
implement and evaluate MOCA, a protocol for Mobility
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Multi-level Beam Alignment with Adaptive Beam Training
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Fig. 2. Framework overview.

resilience and Overhead Constrained Adaptation for direc-
tional 60 GHz links, where mobility-induced link breakage is
quickly identified and recovered with the change of beamwidth
and data rate. The new beamwidth is selected from a pre-
determined fixed set, and the throughput will reduce when
using a larger beamwidth for transmissions to alleviate the
impacts of mobility. Rather than using a larger beamwidth
for compromised transmission quality, to effectively handle
channel dynamics and user mobility at low cost, we flexibly
adapt the beamwidth for rapid reconnection in case of link
failures and search for the new fine beam direction based on
the estimation of user mobility levels.

C. Basic MAC Framework

To address the challenge of mmWave transmissions, we pro-
pose a MAC framework with integrated beam alignment and
transmission scheduling in Fig. 2. To reduce the big overhead
for beam alignment, we divide the training process into coarse
level and fine level. Beams are first generated following
two-level codebooks to find the possible signal directions at
coarse angular ranges, with different strategies to reduce the
signaling overhead. Then the finer beam training is pursued
with a selected number of additional training signals randomly
transmitted within the angular ranges detected with good
signal quality. The mmWave channel is estimated following
compressed sensing at multiple resolution levels, and the
channel condition at coarser level is applied to determine the
weights for the finer level to improve the channel estimation
accuracy and speed. Based on the channel conditions, AP and
devices are scheduled for higher transmission performance and
efficient beam tracking to cope with network dynamics.

The contributions of this work are many folds and can be
summarized as follows:

o First, to enable fast AP association and beam alignment
in both uplink and downlink directions, we propose
multi-user multi-resolution beam training with various
innovative components over existing standards, including
(1) feedback aggregation to reduce signaling overhead,
(2) traffic-aware adaptation of the number of contention
slots, (3) compressive measurement with novel block-
sparse estimation of the mmW channel at hierarchical
beam resolution and (4) elastic fine beam training that
jointly works with transmission scheduling in response
to channel condition and learning from past training
results.

¢ Second, to efficiently manage radio resources, we propose
a virtual transmission scheduling scheme with (1) con-
current determination of transmission opportunities and
duration while trading off among beam training, data
transmissions and beam tracking, (2) virtual slot aggrega-
tion adaptive to heterogeneous traffic types, user demands
and resource availability.

o Third, to ensure low-overhead beam alignment and allevi-
ate link failures under user mobility and channel dynam-
ics, we propose an efficient beam tracking scheme that
achieves quick user rediscovery and disconnection rem-
edy by (1) dynamic beamwidth adjustment and (2) flex-
ible user movement prediction.

III. AP ASSOCIATION AND MULTI-LEVEL
BEAM ALIGNMENT

To harvest the gain of mmWave communications, it calls
for highly efficient training schemes to enable lower-overhead
thus faster AP association and beam alignment.

The AP association and multi-resolution beam alignment
component in our basic MAC framework is shown in Figure 2.
To avoid high feedback overhead as in conventional codebook-
based schemes, we consider two levels of coarse training to
quickly associate users with APs. Rather than only concen-
trating on beamforming uplink or downlink, or assuming the
existence of channel reciprocity, we consider bi-directional
training between AP and devices. Finally, to align beams at
the finest resolution desired, we will further exploit multi-
resolution and block-sparse channel estimation, which will be
introduced in details in Section IV.

In this section, we first present the two-level coarse training
and then provide the analysis on the impacts of beam resolu-
tion on transmission range.

We use some terms and major signaling flows from
802.11ad to facilitate better understanding, and also provide
the possibility of incorporating our design into the 802.11ad
framework. Our scheme, however, is general and not con-
strained to run within 802.11 networks. The differences of our
design from 802.11ad are: (a) we emphasize the coordination
of training between uplink and downlink and the overhead
reduction exploiting the information from the previous round
of signaling, (b) we allow AP to transmit feedbacks in a batch
for devices within one sector to reduce the header overhead,
and (c) we determine the number of contention slots in each
AP sector according to the number of associated users known
from the previous signaling procedures, which alleviates the
collision while avoiding the waste of radio resources.

A. Multi-Level Beam Training

We apply three levels of beamwidth following the terms
of 802.11ad: quasi-omni-directional level (QOL), sector beam
sweep (SBS), and fine beam steering (FBS). An example of
the hierarchical beam levels is given in Figure 3. At the quasi-
omni-directional level, the beamwidth will be configured to the
widest possible allowed by the system to alleviate the deafness
problem in receiving.
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The fine beam is the desired beamwidth to use for a
mmWave system to achieve high data rates.

We use antenna directions and antenna weight vectors
(AWVs) interchangeably, although an AWV not only deter-
mines the main-lobe direction of the beam but also the
beamwidth. We also use device and user interchangeably for
ease of presentation. We consider the association and beam
alignment between devices and the AP in a cell. Due to the
space limitation, we won’t discuss device-to-device commu-
nications. Our beam alignment procedures can be completed
with the following steps:

Step 1 (Bi-Directional Training for Quick Association
Between AP and Devices): An AP will send beacon messages
periodically for new and existing devices to associate with
and align their beams. To facilitate quick AP association
while not compromising the link budget significantly, we will
configure AP at SBS level and devices in QOL. Rather than
performing the training for each device at a time, the training
will be performed for all devices simultaneously. AP will send
beacons in each SBS direction. Within a direction, a (new)
device can listen from each of its QOL directions to find
the best sending SBS sector and receiving QOL direction.
Then AP configures itself to listen from each SBS direction.
Devices successfully receiving beacons from AP will contend
for response within S slots. To facilitate reverse channel
training, in each SBS direction that AP listens to, a device will
send along all its QOL directions the following information: its
association request, the best SBS sector for AP to transmit, and
its best receiving QOL direction. A device will then prepare
itself at the best receive QOL direction. To reduce the feedback
overhead, rather than sending a feedback to every device right
away as in 802.11ad, we allow AP to send an aggregated
feedback to the group of devices in each of the selected
SBS directions after receiving device messages from all its
sectors.

AP and devices now obtain a preliminary association with
the information: downlink, the best transmission sector of AP
and the best QOL receive direction of a device; and uplink,
the best QOL sending direction from a device and the best
receive sector at AP.

Step 2 (Bi-Directional Training to Find the Best Sector
Pair Between AP and Each Device): To further search for
the best receiving sector direction for each device, AP sends
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training signals again in best sectors selected from the previous
step, while each associated device only sweeps along the
set of SBS directions within the angular range of its best
QOL receive direction. To determine the best transmission
sector from a device, AP only listens to responses in the
best receive sectors selected by devices earlier. In each AP
receiving sector, multiple associated devices will contend to
get a response slot among .S, slots. Instead of using an equal
number of contention slots for each AP receiving sector as
in 802.11ad, we set Sy for each sector proportional to the
number of associated users that is learned from Step 1. This
will reduce the collisions in the sectors with more users while
avoiding wasting time slots unnecessarily in sectors with very
few users. The value of Sy can be sent to devices along
with AP feedbacks in the Step 1. If successfully obtaining
a slot, a device will send a response on the link quality and
the best receive sector from AP along the set of sector-level
directions within the range of its best QOL direction. AP
will immediately feedback to the device its best transmission
sector.

Step 3 (Determining the Best Fine-Level Transmission and
Receiving Directions): Finally, AP and devices need further
training to find the best beam alignment at the fine beam
level. Similar back-and-forth measures can be taken; however,
due to the potentially large number of fine beam patterns,
the overhead can be unbearable. We will further reduce the
overhead by exploiting the compressive measurement and
block-sparse estimation of the mmWave channel, which will
be introduced later in Section IV.

B. Analysis of Beamwidth and Transmission Range

To analyze the directive gains of the antennas, we exploit
a sectored antenna model which considers the front-to-back
ratio, and the half-power beamwidth. The gains remain the
same for all angles in the main lobe and are smaller in the
side lobe in the ideal sector antenna pattern. Let 0" and 6V be
the angles that are deviated from the boresight of the steering
angles of TX and RX, By and B} be beamwidths of the TX
and RX antenna patterns, we have the directive gain of TX

. 277—(27T11—Ba):<:7 if|9“|§&
G" (0%, By) = By 2 M
z, otherwise,

where 0 < z < 1 is the gain in the side lobe, with z < 1
for narrow beams. Likewise, the directive gain of RX can be
expressed as

o 27r—(27rv—Ba)z’ if|9"|§B—‘9
GY (0V,By) = By 2 2)
z, otherwise.

The number of antennas impacts the finest beamwidth to
achieve thus the maximum gain of the beam. The channel gain
GH(d) is affected by the TX-RX distance d. For a beam with
the TX beamwidth B} and RX beamwidth By, let G*(B}')
and GV (By) be the TX and RX antenna gains, then we have
the Signal to Noise Ratio (SNR) as

T yu u H v v
svR(By. By d) = PPN EIDE B g,
0
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where p” indicates the transmitter power and Ny the noise
power. Obviously, beamwidth impacts the effectiveness of the
beamforming and consequently the transmission range.

Compared to data transmissions at the fine beam level,
the coarse-level signal transmission has a lower range. How-
ever, earlier measurement studies [19] indicate that directional
beamforming gain at either one side of TX or RX may be
enough to combat the additional channel fading in mmWave
band. We also exploit the gain at both sender and receiver
to reduce the link budget loss. Additionally, the signaling
message has the rate much lower than the data, and lower-
bit coding would allow the coding gain to further increase the
range.

IV. MULTI-RESOLUTION BLOCK-SPARSE
mmWAVE CHANNEL ESTIMATION

Upon the completion of coarse-level training in Section III,
the next measure to be taken is discovering the best fine-level
beam directions, which may need a large number of training
messages. The coarse-level training can constrain the messages
to be sent within the best transmission and receiving sectors.
However, if the number of fine beams to transmit remains
large, rather than measuring a large volume of fine beam pairs
as in 802.11ad or introducing more levels of training at high
feedback cost, we will explore the use of compressive channel
estimation to facilitate low-cost beam training.

Figure 2 shows the interactions among our multi-resolution
block-sparse channel estimation module and beam training
component at different levels. Different from conventional
CS-based channel estimation schemes [7]-[9], [15]-[18] that
only consider the channel sparsity, our contributions lie in
the following aspects: (a) we further explore the block-sparse
feature in mmWave channels as a result of transmission path
clustering for better channel estimation in Section IV-A and
(b) we iteratively exploit our block-sparse channel estimation
at hierarchical beam resolution for higher accuracy and lower
computational complexity in Section I'V-B.

A. Block-Sparse Channel Estimation

We will now describe how we exploit the path clustering
feature of mmWave channels and develop the solution to
channel estimation as block-sparse channel reconstruction.

For ease of presentation, we consider only the azimuth
and neglect the elevation in this paper. Implementations that
facilitate both horizontal and vertical beamforming can be built
on top of our design. While our proposed design can be used
for any kind of antenna arrays, without loss of generality,
we adopt uniform linear arrays (ULAs) in this work.

In [19], the mmWave channel is found to be not only sparse
but also path clustering according to the real-world measure-
ments in New York City (NYC), from which a statistical
mmWave model is derived. We adopt this channel model,
where the channel is composed of K clusters within each
there are L subpaths, then with the number of transmitting and
receiving antennas to be N;, and N,,, the channel matrix can

be written as
K L
H= Z Z(lké ‘Do (037) - Dg(@ﬁ),

k=1 /¢=1

“)

where aye is the complex path gain for a path ¢ (¢ =
1,2,...,L) in the cluster k (k = 1,2,..., K), with k¢ jointly
corresponding to the ¢-th sub-path in the k-th cluster. For
the sake of consistency, in this work, we use the terms path
and sub-path interchangeably. 0% and 67 denote the angle
of departure (AoD) and the angle of arrival (AoA) for the
corresponding path.

D, (0%%), the TX antenna’s directional response column
vector (N, x 1 dimension) for the sub-path at the angle of
departure 6}%, is expressed as:

D.. (67)
= [DW(65), DA ©0fF), ..., DN6E). ..., DY) (03)]

= [1, e il ki, ea‘-wmn-wwf )
where D(™) (0!%) is from antenna basics, the spatial frequency
w!® can be written in terms of AoDs, as w}s = Q’E\df sin 017,
d; is the distances between two adjacent antenna elements in
the ULAs in the TX. A = < is wavelength in meters. f is the
carrier frequency of the signal in Hz, c is the speed of light
(3 x 10® meters/sec).

D, (6}7), the RX antenna’s directional response column
vector (V. x 1 dimension) for the path at an angle of arrival

%> can be similarly expressed.
We now use a concatenated column vector a (1 x K L) to

denote the complex path gains. Then

a = [an,alg,...,alL,agl,agg,...,agL,...,
cluster 1 cluster 2
aK1,aK2;- - axr] . (6)
cluster K

Note a is concatenated in a manner that the first L elements are
for the first cluster, and the next L elements are for the second
cluster and so on. As a result of path clustering, the mmWave
channel in (6) is seen to have the block properties. That is, a
is not only sparse, but also block-sparse.

The major task of mmW channel estimation in our work is
to estimate a efficiently. To achieve this, we first rewrite (4)
in matrix format as

H = D diag(a)D¥, @)

where the matrices D7 and Dy contain the TX and RX array
response vectors as follows:

Dr = [wa(elﬁ%"’Dtx(eizL)a"7Dtﬂc(6§g1)a"7Dtﬂc(0§gL)]’
(8)

Dr = [DT’I( Tf)w-aDrz( {i)w-aDrz( ;gl)w-aDrz( }?L)]
)

For channel estimation, assume we transmit the training
signals along P directions, i.e., with P TX beamforming (BF)
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vectors (u,, p = 1,2,...,P), and a receiver estimates the
signals from @) directions with Q RX BF vectors (vq, ¢ =
1,2,...,Q). Taking advantage of coarse-level training, these
are randomly chosen from the fine beam directions within the
TX’s best sectors and the RX’s best sectors, respectively. Then
the measurements can be expressed in the matrix format as:

Y*P = VEFHUOoS + E, (10)

where S and E are respectively the training signals and noise,
and

VVaX@ = vy vy, oo vg), UNeXP = [uy, ., .., up).
(11)

With the training signals transmitted at the power A,
YOXP — JAVHEHU + E, which can be vectorized as

y = vec(R) = VAvec(VTHU) + vec(E)
e LB /A(UT © VI )vec(H) + vec(E)

Proposition 1 [24] \/Z(UT ® VH)\Ila + VCC(E)

= ®Wa + vec(E) = Aa + vec(E), (12)

where ¥ = D% * Dp(Khatri-Rao product) is the basis
matrix, ® = \/Z(UT ® VH ) (Kronecker product) is the
measurement matrix (determined by TX and RX beam training
directions). In the derivation, we have used Theorem 1 [23]
and Proposition 1 [24] as follows:

Theorem 1: vec(AXB) = (BT @ A)vec(X).

Proposition 1: vec(H) = Wa, where ¥ =
D+ (Khatri-Rao product).

In order to differentiate between the estimated channel and
the actual channel a, we now refer the estimated a as x.
Replacing the vector a in the Eq. (12) with x, we have
the compressed sensing form y = Ax + e, where y is the
measurement results, A is the sensing matrix, and e is the
noise. Different from conventional CS-based channel estima-
tion algorithms, to enable more accurate beam alignment,
we take into account the block-sparse feature of the vector
x when reconstructing the virtual mmWave channel. We form
our problems as follows:

"
D7

n
min Y [ Xifl2, st Ax=y, x=[X1,X,...,X,], (13)
i=1
where |[-||, denotes the fy-norm, ¢ is the block index, n
is the number of blocks, X; = %(;_1)q11.i¢» and d is the
block size. Figure 4 depicts the block-sparse model of (13).
A typical solution algorithm for (13) is presented in Sec. IV
of [25] as the “Recovery of block-sparse signals” Algorithm.
After recovering x, the virtual channel H can be estimated as
in Eq. (7).

B. Multi-Resolution Channel Estimation

We have multiple levels of beamwidth: QOL, SBS and FBS.
In our channel estimation, we propose to not only use FBS
training measurements to estimate the mmWave channel but
also exploit those in QOL and SBS to further improve the
estimation accuracy.
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X1
X;
:2 X
Xd
Y |= A ... A .. A, .
.
Xid—d-+1
Xid—d+2
: X;
Xid
Ay — columns 1,2,....d
! ) ) [ Xnd—d+1
A; — colummns id —d+1,id—d+2,..., id Xnd—d+2 X
A, — columns nd —d+1,nd —d+2,...,nd 5 "
Xnd

y = Ax =" AX,

Fig. 4. Block-sparse model.

To facilitate the channel estimation, we can discretize angu-
lar domain with N7, x N2, grids, so the channel can be
estimated as a vector of the dimension N7, N9, x 1 (vec(H)).
As the mmWave channel is sparse, so the channel response
signals only appear in a small number of grids. Rather than
uniformly discretizing the angles, we uniformly divide the
spatial frequencies w!% and w}7 into N, and N2, grid points,
respectively. Thus, the response column vectors of the TX and
RX antennas at the angular grid n and m are respectively

i (0k2)
27 - 27

jlon-22 j.2.n. 22
= |:1,e thx e th

) R )

T
G (Npg—1)n- 22
( tx ) Niqx

D" (0i7)
Qg 2

. . . T
-1-m- 2em- =% (Nyy—1)-m 22—
~ |:17ej N;‘w,ej Nﬁm,...vej( e ) Nga‘:| .

If NJ. = N;, and N2, = N,,, we have

W = [DFTy, +IDFTy (14)

ra)

where I DF'T denotes an N-dimensional IDFT matrix.

Different beamwidth adopted by AP and devices affects
the values of N/ and NZ.. Denote BW,, and BW,, as
the beamwidth of AP and a device, one option is to let
both BWy, * N, and BW,., x N2, cover the whole angular
space, and another is to reconstruct Hrppg only within the
sector space detected to have stronger signals in the coarse-
level training. With the first method, a larger beamwidth will
correspond to a discretized channel with a smaller dimension,
so we have

dim(HQOL) < dim(HSBs) < dim(HFBs). (15)

As samples are not uniformly taken from all angular directions,
straight-forward channel reconstruction may not be accurate.
Instead, we propose to reconstruct the channel recursively at
different levels of resolution with weighting factors to take
advantage of the multi-level training samples we have obtained
in Section IIl. To be more specific, we transform (13) into
the following weighted recovery problem under the same
constraints:

min > wil| X, (16)
=1
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where w; is the weighting factor for block X;, and is set to
be the inverse of the number of non-zero elements (supports)
contained in the signal block X;. By assigning smaller weights
to the blocks that consist of more non-zero elements and
vice versa, the optimization will penalize more heavily those
blocks with larger weights and fewer supports, thus leaving
more residual signals to be reconstructed for those blocks
that contain more information (i.e., with small weights and
more supports). In this way, our block weighting approach
improves the CS reconstruction performance and is exploited
in the multi-resolution (i.e. different block sizes) channel esti-
mation process to be presented later in this section. Although
block weights are introduced, (16) can still be solved by the
algorithm from [25], which is mentioned earlier as a solution
to (13), by substituting X; in (13) with w;X;.

The major difference between (13) and the proposed (16)
is that we set w; to the inverse of the magnitude of the coarse
direction reconstructed from the previous step, where channel
is estimated in a more coarse resolution (i.e., the block in
the current step corresponds to the resolution used in the
previous step). By assigning smaller weights to the blocks
that have higher recovered magnitude in the previous step,
the optimization will penalize more heavily those blocks with
less information, thus leaving more residual signals to be
reconstructed for the blocks that contain more information.
With the channel estimation at multiple resolution in different
block sizes, our block weighting approach can improve both
the CS reconstruction accuracy and speed.

Rather than directly estimating channels with the CS-based
scheme, the use of multi-level of training largely reduces
the number of samples needed thus the overhead for CS
recovery for channel estimation. Further, compared to the
direct finding of all beams with the traditional ¢;-norm
optimization, the leverage of results from block-sparse CS
reconstruction (16) helps to significantly reduce number of
iterations needed for the channel estimation process to con-
verge. Therefore, our algorithm can more efficiently run over
the practical platforms and devices.

Following the training process, the recursive steps for our
multi-resolution channel estimation approach are:

Step (a) QOL channel reconstruction: After QOL beam
training, reconstruct vec(Hoor ).

Step (b) SBS channel reconstruction: After SBS beam
training, according to QOL results in Step (a), adjust the
weights at the SBS level: the SBS elements contained in
QOL blocks with larger magnitude (recovered in the previous
step) are assigned with smaller weights, and then reconstruct
vec(Hspg).

Step (¢) FBS channel reconstruction: After FBS beam
training, according to SBS results in Step (b), adjust the
weights at the FBS level: the FBS elements contained in
SBS blocks with larger magnitude (recovered in the previous
step) are assigned with smaller weights, and then reconstruct
vec(Hppg). We can then obtain the mmWave channel matrix
Hprpg for further beam alignment.

Compared with conventional CS-based channel estimation,
our multi-resolution block-sparse mmWave channel estimation
methodology not only jointly exploits the sparsity and block

properties in mmWave channels, but also takes advantage of
the multi-level beam training results to significantly reduce
the number of measurements. This will further reduce the
complexity in recovering the mmWave channel, and speed up
the training.

C. Procedures for Fine Beam Training

With the coarse beam training in Section III, AP and devices
have known the best transmission and receiving sectors for
both downlink and uplink transmissions. We will add the
following procedures for compressive fine beam training to
Step (3) in Section III:

Step 3.1 (Downlink Fine Beam Training): To facilitate syn-
chronization, each device initially listens at its best receiving
sectors to intercept system parameters. For the fine beam train-
ing, within each best transmitting sector selected in the SBS
phase, AP first sends beacons along P” randomly selected fine
beam directions. During the transmission of each fine beam,
the set of devices which select the corresponding transmission
sector will each listen from Q% randomly selected fine beam
directions in their respective best DEV receiving sectors.
After collecting samples from PTQ® directions, a DEV can
estimate the channel and the best fine beam directions for AP
transmission and DEV receiving.

Step 3.2 (Uplink Feedback Training): AP first config-
ures itself to receive from the selected best receiving sectors,
for each associated devices will send uplink feedbacks with
the best measured AP TX fine beam, SNR, suggested beam
directions, etc. Each device will transmit from QT fine beam
directions within its best transmitting sector. As the set of
devices to associate with AP is known, the beacons in Step
(3.1) will contain the order of uplink transmissions from
devices to avoid their uplink competition.

Sampling from the learning of past measurements: Although
we cannot completely follow the channel reciprocity rule, there
may be correlation in uplink and downlink channels. To further
improve the channel estimation quality while reducing the
number of samples, a device can select Q7 fine beam direc-
tions close to its best downlink receiving direction. Similarly,
for each uplink fine beam transmission, the PZE directions AP
listens to can be close to the best downlink transmission beam
direction. In addition, with the downlink channel estimated,
a device can suggest a few directions for uplink training based
on the sequence of eigenvalues of the channel in its feedback.
With all samples, AP then estimates the uplink channel to find
the best theoretical fine beam pairs.

D. Analysis of Beam Training Overhead

Our beam training involves three levels of beamwidth: QOL,
SBS and FBS. We use Bg, Bg and Bg to represent the
AP beamwidth at each level, and use BY, Bg and B% to
represent the device beamwidth. We let B%V and B};, denote
the overall angular search space for the AP and the device.
We first quantify the training overhead of the beam training
scheme discussed in Sections III and IV-C. Let T}, denote the
time to transmit a pilot training signal, T = 3,7}, denote the
time duration of a contention slot (s > 1). A training signal
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consists of a sequence of training symbols. As the number of
symbols impacts the training time, it can be adapted to trade
off between the training time and the gain in finding higher
gain channels for higher transmission rates. The overhead in
each step of beam training is analyzed as follows:

U \%4 \%4 U
Step 1: Tv)T, = [%VSH : [%;H + BsS [%;H [%VSH +
o [%‘[’;&—‘ ; 51, the number of device response slots, is an

integer (S; > 1) and can be adapted according to the
traffic pattern over the previous Npq superframes, and set
according to the moving average of the associated number
of devices. ay (ay < 1) is the fraction of AP transmitting
sectors that are identified by devices to be their best SBS
sectors, along which AP can send them the messages. The
overhead of Step (1) consists of the following items: The first
one is the result of the training time taken for AP to send
beacons in each sector and devices to receive in each quasi-
omni-directional beam; The second item denotes the time for
uplink training, where in each of AP’s receiving sector, every
device in quasi-omni-directional mode needs to compete for
sending uplink training signals; The third item is the time
taken by AP to send aggregated feedbacks in part of the sectors
selected by devices. Similar illustrations can be made for other
steps too.

Step 2: To/T, = o | 2] - |22 Sy, |22
tep 2: To/T, = athﬂ' BY| T 252 |BY |
U
1=12 ... a [f;—",}’—l ; ap (o < 1) is the fraction of AP
S
receiving sectors that are identified by devices to be their
best SBS sectors, along which AP can receive from them
the feedbacks. j is a set index indicator (not actual sector ID
number) that denotes the index of AP sector in the set of best
AP receiving sectors. So ; denotes the number of Sy response
slots for the j-th sector in the set of AP reception sectors
identified to be the best. S5 ; can be set to be proportional to
the number of devices in that sector.
U
Step 3: T/ Ty = ar | o | PTQR + NuwwQT PP + NAT,
S

where Ny, is the number of devices, and N, ,;‘}1; is the number
of the AP’s best fine beams for the transmission of the
feedbacks.

The total training overhead, Tgr = T +71%+1T3, is obtained
from Step (1) to (3), where [-] factors (system paramters) can
usually be pre-determined by the system.

V. JOINT BEAM TRAINING AND
TRANSMISSION SCHEDULING

An important MAC function is to efficiently coordinate
radio resource usage among multiple users. The transmission
scheduling for mmWave communications is made difficult
with its need of a large amount of training to find the trans-
mission opportunities, which we target to study in this section.
Following the basic structure of 802.11ad, each superframe
(Beacon Interval) consists of durations for beam training as
well as frames for data transmissions. There is a tradeoff in
determining the durations of the two, and we will concurrently
consider both in our scheduling to achieve a high transmission
performance.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS

The basic structure of our joint beam training and schedul-
ing scheme is depicted in Figure 2. In this section, we intro-
duce our design for these important components, the merits
of which include (1) adaptive beam training in response to
channel quality, (2) resource scheduling with joint allocation
of transmission opportunities and durations that can support
heterogeneous traffic conditions, user types and demands, and
(3) beam tracking with beamwidth adaptation and mobility
estimation. The major differences of our design from the
literature are: (a) our transmission scheduling concurrently
considers multiple factors to achieve overall network per-
formance improvement, reduces the control overhead, and
enables burst transmissions with virtual scheduling and aggre-
gation of transmission slots, and (b) with various adaptations,
our adaptive beam training and tracking schemes are resilient
to network dynamics.

A. Adaptive Beam Training

A training signal consists of a sequence of training symbols,
and training signals can be sent along many directions. The
channel is dynamic and the number of training samples needed
is uncertain. The training can be increased at both tempo-
ral and spatial directions to achieve more accurate channel
estimation and find the best direction for higher transmission
rates, while higher training time will compromise the overall
transmission throughput. To reduce the training time while
ensuring the desired transmission quality, we propose to adapt
the training period based on the channel measurement quality.

After receiving the beacon signals from AP in step (3.1),
a device will determine if it will require AP to send additional
training signals based on the average SNR of the received
signals. If it is lower than a pre-determine threshold, the device
will request additional training in its feedback in step (3.2).
The P,4q and Q.44 additional fine beams for AP to send and
the device to receive from can be determined based on SNR
as follows:

b [ SNRry—SNR
add = |Th SNRTH
[, SNRry-—SNR
Qadd = ’7@ SNRrm w :

where 71, (1 control the adaptation speed, SN Rypp is the
threshold. If multiple requesting devices share the same trans-
mission sector, AP will set P,4q to the highest number
required, and send along randomly selected directions within
the sector. Similarly, AP can also request a device to send
additional uplink training signals.

If a device or AP has collected training signals from two
rounds, it can compare the difference between the channel
estimation based on the total training signals obtained in both
rounds to determine if more training is needed. In this case,
Puaq and Qgq4q for the next round are determined by

HH_HpTevH HH_H ||

1 _ pPrevill
2 AH ) Qadd <2 AH )
where 7, and (2 are the adaptation factors, H and H,., are
the estimated channels in the current round and the previous
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round, Ag is the threshold for channel estimation difference,
and the triggering condition is ||H — Hp.co ||, > Ag.

B. Virtual Transmission Scheduling

The data transmission interval is composed of three compo-
nents: Tpry = Tran+Tsp+Typ. Ty, denotes the durations for
scheduled periods, where the scheduling of data transmissions
for different users in the network significantly impacts the net-
work throughput. The contention-based random access period
Tan can be used to send unscheduled uplink data and some
short messages. The traffic can be bursty and the mmWave
channel is subject to low coherent time and channel blocking.
We also introduce a dynamic period Ty, to accommodate the
immediate needs of user data transmissions or beam tracking,
which is developed in Section V-C.

As random access will introduce high overhead, IEEE
802.11ad allows the use of TDMA kind of service period, but
without giving a detailed scheme how the radio resources can
be scheduled for use. Coordinating transmissions among users
with heterogeneous quality requirements in the presence of
different types of traffic and blocking-prone wireless channels
is a grand challenge. The simple slot allocation for continuous
voice transmissions used in conventional cellular networks
cannot be applied to the dynamic packet transmissions.

There are two major issues to address for the data trans-
mission scheduling in T,: 1) How to select the users to
transmit, and 2) How to determine the transmission durations
to allocate to the selected users. To accommodate user requests
while also meeting the resource constraint, there are a large
number of options. It is difficult to select the users and
also determine the transmission duration for each user at the
same time in practical scheduling. We propose a self-adaptive
virtual resource scheduling scheme based on user requests,
application types, and practical resource availability.

To accommodate different types of applications, we divide
the scheduled transmission period T, into two logic parts:
reserved period and allocated period, in other words, T, =
Tres 4 Talo. A reserved period T7¢* is used to support
users which require long-term and periodic transmissions in
every superframe, such as real-time multi-media streaming and
updates of monitoring data. Admission control is needed and
can be performed based on any rule of the service providers.
In this paper, we consider a scheme with the limit of Nj¢*
streams to admit in the reserved period, with each data stream
occupying at most N/ transmission slots. For a required
transmission rate, the number of time slots needed to support
an application will adapt as the channel condition changes with
two options: 1) adapting the number of time slots allocated to
the admitted users in each superframe based on the estimated
channel condition, and 2) keeping the number of time slots
unchanged, but letting the guaranteed applications to compete
in getting the remaining resources needed. We can ensure
enough time slots to support the minimum rate required by
each application through the option 1 and allocate additional
resources based on the option 2.

Users with elastic traffic will compete for resources in
the allocated period Tsalflo. The sector set selected for

transmissions after training is denoted as Z and the user
set in the i-th sector is J;, then x; j(;) denotes the j(i)-th
user to transmit in the ¢-th sector. We use ij(i) and xfj(i)
to differentiate between the uplink transmission to AP and
downlink transmission from the AP. The rate r(z) of a data
stream x can be estimated from the channel measurement.
If the minimum data rates needed for uplink and downlink
transmissions cannot be accommodated due to poor channel
condition, we consider the user experiences a outage and set
the effective user data rate to zero. Transmission Slot (TS)
is the basic unit in our temporal resource scheduling, and a
data link can take multiples of TS. To maximize the network
performance, we need to schedule the data streams (27 (i, j (7))
and z'%(i, j(7))) and their allocated TSs.

It is difficult to simultaneously determine which users to
transmit and the transmission duration as there is a coupling
between the transmission priority and the resources already
allocated. We propose a novel virtual scheduling scheme with
two steps: (a) efficient resource allocation to determine which
user to transmit in each time slot, and (b) slot shuffling to
allocate each user with continuous time slots by aggregating
all its slots assigned virfually in the scheduled period. This
allows each user to transmit data as a burst to reduce the
control overhead without incurring synchronization and adding
a transmission header in each slot.

In each slot, if we straight-forwardly select the user with the
highest channel rate and priority to transmit, all resources may
be allocated to one user, at the cost of resource starvation for
others. The greedy focus on one metric neglects the trade-offs
among different performance factors for different users and
the network. Instead, we aim to maximize the overall network
performance by considering the fairness jointly determined by
multiple factors: priority, delay, and data rate. We assign each
slot virtually to the user with the largest weighted data rate
according to the following schedule:

r = arg;naxa(x)W(m)r(x)/ﬁ(x), (17)

where

ze{z]u 20} €L, j(i) €T

(18)
(17) can be solved with a heuristic algorithm that searches
through the candidate streams to look for {$Zj( i),xfj( ot to
maximize the objective function. Since the range of candidate
beams has been narrowed down with our multi-level beam
training, the search space of the candidate beams is small.
As the beams are chosen from a discrete space, the complexity
of our algorithm is low. a(z) is the priority parameter for a data
stream x (determined by the service type, QoS requirements
etc.) and W(x) is the queuing delay. For delay-constrained
traffic, we have

Prob[W (z) > T'(z)] < e(z), (19)

where ¢(x) is a specified probability that the delay exceeds
the threshold T'(x). Then the priority parameter a(x) can be
defined as a(x) = —loge(x)/T(x). A smaller £(x) suggests a
larger a(z) that implies higher priority. () can be set to 1 for
delay tolerant applications. The parameters a(x), W (z), and
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R(7) (the average transmission rate of user x) will be updated
after assigning each slot to ensure that other users have the
chance of transmissions. As the slots are only assigned and
users have not transmitted yet, so our parameter update is
virtual. The transmission rate r can be estimated as

r = By logy(1 + SNR(By, By ,d)), (20)
where B,, is the bandwidth. As presented in Section III-B,
the signal-to-noise ratio SNR is affected by the antenna
numbers, the channel conditions, the TX-RX distance, and
the transmission and reception beamwidths. The slots assigned
to the same user can be used together to perform burst
transmission. Rather than determining the user to transmit
and the transmission duration together, our scheduling scheme
significantly reduces the complexity with the virtual schedul-
ing of transmission in each slot and the aggregation of slots
into a duration. Our scheduling scheme can support users with
different number of antennas.

C. Beam Tracking With Beamwidth Adaptation
and Mobility Estimation

Featured by highly directional transmissions, two major
challenges faced by mmWave communications are channel
dynamics and user mobility, which can cause frequent discon-
nections thus degraded network performance. To cope with
these problems, we introduce two important components to
facilitate beam tracking, beamwidth adaptation and mobility
estimation. Upon disconnection, additional low-cost training
of new beam directions may help the user to recover from
disconnection, unfulfilled transmissions may be rescheduled to
transmit in the remaining time of the duration assigned to the
device and the dynamic resource block (17, in Section V-B).

Beam quality can be tracked with testing signals piggy-
backed at the end of data packets. Upon detecting a significant
reduction of the beam quality or disconnection, our proposed
Beamwidth Adaptation will be triggered:

(1) A sender will quickly switch to train two beams
adjacent to the original beam direction using the time slot
scheduled for the corresponding device if its remaining time
is enough or using the time in the dynamic period.

(2) If a user moves too fast and gets out of the coverage of
its backup beams, especially when the beamwidths of TX and
RX beams are very narrow, we propose to train one further left
beam and one further right beam with the beamwidth doubled
to speed up the searching.

(3) If a user is found in one of the two double-width beams,
we continue to train and find the best fine beam.

This searching process can continue, and the number of
additional beams to search depends on the system configura-
tion. If a user constantly moves, when reaching its scheduled
time slot, its direction may largely deviate from the optimal
direction found through beam training at the beginning of the
superframe. The frequent and large-range beam search after
the disconnection will incur a high training overhead. To better
handle user mobility, we propose another Mobility Estimation
scheme to predict the user direction based on the beam search
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range over the past IV,, superframes:

NP NP
Odev = Tlatz |9Zlev|/z Tia
i=1 i=1
where the angular deviation 6, of a mobile user in the
i-th past superframe can be known from the beam tracking
process, Tfat is the time taken to search for the new beam
direction in the i-th past superframe and 7j,; is the time
duration from the end of training in the current sZL\lperframe to
the slot time assigned to the user. Y37 |65, /S N7, T¢, is an
estimation of the averaged angular moving speed of the user.
The sign (+/—) of 0 indicates whether the angular deviation
is left or right, and we let the sign of 4., be the same as that
in the previous superframe. With this estimation, in the time
slot scheduled for the user, BS will first deviates its steering
direction by 64, so that the signal can have a better chance to
reach the mobile user. In case there is an estimation inaccuracy
and thus the link breakage, the range of the beam searching
will be much smaller.

21

VI. SIMULATIONS AND RESULTS

In this section, we evaluate the performance of our pro-
posed schemes. As comparison, we will demonstrate the
performances of the following schemes: (1) Proposed-adaptive
(proposed scheme with adaptive training), (2) Proposed-
nonadaptive (proposed scheme without adaptive training),
(3) CS-nonadaptive (nonadaptive beamforming with baseline
CS [18]), (4) HOL (since we can’t find related uplink/downlink
scheduling work to compare in mmWave realm, we adapt
Head-of-Line delay based slot-by-slot scheduling in [21]
for mmWave networks), (5) 802.11ad (codebook-based train-
ing, IEEE standard in [2]), (6) Proposed-nonCS (proposed
multi-level beam training without CS-based channel estima-
tion assistance), (7) Proposed-BT-BA (proposed-adaptive with
Beam Tracking and Beamwidth Adaptation), (8) Proposed-
BT-BA-ME (Proposed-BT-BA with Mobility Estimation)
and (9) Proposed-w/o-BT-BA (proposed-adaptive with no
BT or BA).

A. Settings

In our performance studies, we consider the scenario with
one AP and multiple devices. The mmWave channel is simu-
lated from the model derived from NYC measurements in [19].
The user traffic (both downlink and uplink) is generated as
follows: user arrivals conform to Poisson distribution; traffic
load paramters for different users are uniformly distributed
between 400 and 500 packets per second; packet size ranges
from 5 to 10 K B. More default parameters are presented
in Table I. We studied the following performance metrics:
(1)Training overhead (averaged temporal cost in a superframe
to complete the beam training) and (2) Network throughput
(total throughput among all users). The results are averaged
among a long period (200 seconds).

B. Effect of SNR

Noise conditions in wireless mmWave networks greatly
impact the data transmission quality thus network perfor-
mances. At lower SNR, more training samples are needed to
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TABLE I
DEFAULT PARAMETERS

Parameter Description
length of a BI or superframe default 200ms
# AP/DEV antenna 128/64

Bandwidth/Carrier frequency 1 GHz/60 GHz

# QO level 4
# sector beams per QO level 4
# fine beams per setor, AP/DEV 8/4
# fine beams per setor, AP/DEV 8/4
# of users 20

Effects of SNR on training overhead Effects of SNR on throughput
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Fig. 5. Effects of SNR.

ensure a given quality of channel estimation. Figure 5(a) shows
that when the channel condition is better, the beam training
overhead is reduced. The gain of our scheme improves when
the training overhead is larger at lower SNR. When SNR
is 4dB, from 802.11ad to Proposed-nonCS, we observe an
improvement of 7.29% in terms of training overhead. This
shows the benefits of our design efforts on top of 802.11ad in
Section III-A, including adapting the number of response slots
to reduce collision, allowing AP to feedback in groups instead
of device by device etc. Proposed-adaptive performs 62.41%
better than 802.11ad and Proposed-nonadaptive 41.89%. The
results demonstrate the benefits of our proposed beam train-
ing and adaptive schemes in reducing the training overhead
and improving the training quality. Compared with 802.11ad,
Propose-nonCS works differently in the coarse-level beam
training but works in the same way for finding the optimal
fine beams. It can be seen that our CS-based schemes perform
much better than Proposed-nonCS, which confirms that the
training overhead is majorly affected by fine beam training
and our CS-based schemes significantly reduce the fine beam
training overhead by exploiting our CS-based multi-resolution
channel estimation scheme. Compared with CS-nonadaptive,
our proposed schemes perform better with much lower training
overhead. Proposed-adaptive and Proposed-nonadaptive out-
perform CS-nonadaptive by 41.99% and 10.31%, respectively.
Different from conventional CS-nonadaptive schemes, besides
adaptive beamforming, we also exploit the block features of
mmWave channels and take advantage of coarse training to
largely reduce unnecessary measurements, and exploit multi-
resolution channel estimation which take advantage of samples
from different levels of measurements and block sparsity of
mmWave channel for higher quality channel reconstruction.
As expected, in Figure 5(b), the throughput increases
with the SNR, thanks to higher achievable data rates and

reduced training overhead. At SNR of 4dB, compared
with 802.11ad, we observe a throughput improvement
of 90.96% for Proposed-adaptive, 66.18% for Proposed-
nonadaptive and 9.31% for Propose-nonCS. We again see
that the Proposed-nonCS outperforms 802.11ad by reducing
the training overhead involved in coarse-level beams and our
CS-based schemes significantly outperform Propose-nonCS
and 802.11ad by further reducing the fine beam training
overhead thus improving the throughput. The comparison also
confirms that the advantages of our proposed schemes and
the adaptive beam training in enabling more efficient radio
resource allocation. Proposed-adaptive outperforms Proposed-
nonadaptive in throughput because (1) it can reduce training
overhead and (2) nonadaptive scheme may not train sufficient
number of beams or find the best quality beam to accurately
estimate channel, especially under low SNR. Compared with
HOL, Proposed-adaptive and Proposed-nonadaptive improve
the throughput by 31.67% and 14.58%, respectively. Our
joint training and transmission scheduling scheme performs
better by concurrently scheduling radio resources for beam
training, data transmissions and beam tracking. Also, our
virtual scheduling allows for burst transmissions in multiple
slots, reducing the overhead for synchronization and attached
packet header in each slot.

From Figures 5a and 5b, we can clearly see the tradeoffs
between beam training duration and network throughput.
As beam training overhead increases, there is likely a shorter
period for data transmissions, which affects the throughput.
Since our scheme jointly schedules beam training and data
transmissions based on network conditions, we are able to
better trade off between training and transmissions to achieve
higher performance than the other schemes compared.

C. Effect of Antenna Number

The number of antennas greatly affects the number of
possible beams to be measured thus the training overhead.
The network throughput is significantly impacted by the beam
training overhead. The larger the training overhead, the less the
time available for data transmission thus reducing the through-
put. On the other hand, more antennas will also introduce
higher beamforming gain in transmissions.

In Figure 6a, the training overhead grows exponentially
with the number of antennas. With a larger antenna number,
there will be many more possible beams to be trained. When
the number of AP antennas is 256, compared with 802.11ad,
we observe an overhead reduction of 61.25% when Proposed-
adaptive is used and 40% overhead reduction when using
Proposed-nonadaptive. This demonstrates the effectiveness of
our proposed schemes in reducing the training overhead and
the adaptive beam training further reduces the overhead.

In Figure 6b, the throughput increases when the number
of antennas increases, but the gain doesn’t seem to fully
reflect the gain from antenna number. Obviously, the higher
training overhead compromises the beamforming gain, which
further confirms that it is important to control the training
overhead. We also see that when AP has 256 antennas,
Proposed-adaptive performs 74.41% better than 802.11ad and
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Effects of user mobility on training overhead Effects of user mobility on throughput
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Fig. 7. Effects of user number.

Proposed-nonadaptive 59.56%, which indicates the benefits of
our proposed beam training and adaptive schemes in reducing
the training overhead for higher throughput.

D. Effect of User Number

The number of users in the network has a significant impact
on the network performances as it affects the efficiency of
beam training and AP association thus achievable data trans-
mission rate and the allocation of different data transmission
periods. While keeping each user’s traffic load the same,
we vary the number of users.

Figure 7a shows that the overall training overhead increases
with the number of users, as longer time is needed to complete
the channel training for more users. The performance of
both of our proposed schemes outperform 802.11ad, and
the improvement increases at higher number of users. At a
user number of 10, compared to 802.11ad, our Proposed-
adaptive and Proposed-nonadaptive have an overhead reduc-
tion of 53.53% and 40.03%, respectively. In Figure 7b, the
network throughput increases with the number of users, which
is not difficult to understand since more users are joining the
network for data transmission. Both of our proposed schemes
significantly increase the network throughput under different
number of users. At the user number of 10, Proposed-adaptive
and Proposed-nonadaptive outperform 802.11ad by 94.17%
and 66.11%, respectively. This demonstrates the effectiveness
of our MAC schemes in accommodating more network traffic.

E. Effect of User Mobility

The highly directional transmissions of mmWave networks
make the network performances sensitive to the movement

0.1 1.4
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Fig. 8. Effects of user mobility.

of users. We vary the mobility levels of users and study
the benefits and tradeoffs of our proposed beam tracking,
beamwidth adaptation and mobility estimation schemes.

In Figure 8a, our proposed schemes significantly outper-
form 802.11ad, and the improvement increases as the users
move faster. Our Proposed-BT-BA-ME further improves from
Proposed-BT-BA and Proposed-w/o-BT-BA with the use of
mobility estimation. At the average moving speed of 25 mi/h,
the Proposed-w/o-BT-BA, Proposed-BT-BA, Proposed-BT-
BA-ME outperform 802.11ad by 18.59%, 26.71% and 34.86%,
respectively. While user mobility causess link disconnections,
our flexible beam training and beamwidth adaptation with
mobility prediction reduce the training overhead and delay to
realign the beam. The beamwidth-adaption is very effective
in tracking the beams under mobility while the mobility
estimation helps to further improve the performance.

In Figure 8(b), the network throughput degrades as the
users’ mobility level increases, which shows the sensitivity
of mmWave networks to user movement. At the user average
moving speed of 25 mi/h, the Proposed-w/o-BT-BA, Proposed-
BT-BA and Proposed-BT-BA-ME outperform 802.11ad by
20.31%, 33.90% and 46.85%, respectively. The results validate
the benefits of our proposed beam tracking components and
their effectiveness in reducing the training overhead to main-
tain connectivity for mobile users. The reduction of tracking
and training overhead further allows more resources for data
transmissions to improve the throughput.

VII. CONCLUSION

With its potential of supporting multi-Gbps data transmis-
sions, millimeter-wave technique is a promising candidate for
next-generation wireless communications. However, the need
of highly directional transmission brings great challenges
in the design of medium access control in mmWave net-
works. This paper addresses the need of a low-cost multi-
user beam training scheme with the concurrent use of multi-
level coarse training and multi-resolution block-sparse channel
estimation for fine beam alignment. We also jointly allocate
radio resources for beam training and data transmissions,
design an efficient virtual scheduling scheme based on user
application types and demands, and incorporate flexible beam
tracking scheme for low-overhead beam re-alignment in the
presence of user mobility and channel dynamics. Simulation
results show the significant benefits of our proposed design

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

"4

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157



1158

1159

1160

1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
171
172
1173
1174
1175
1176
177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231

ZHAO et al.: TOWARDS EFFICIENT MEDIUM ACCESS FOR MILLIMETER-WAVE NETWORKS 13

compared with 802.11ad and also the tradeoffs in various
design considerations in the proposed framework.
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