

Towards Efficient Medium Access for Millimeter-Wave Networks

Jie Zhao¹, *Student Member, IEEE*, Dongliang Xie, *Member, IEEE*, Xin Wang¹, *Member, IEEE*, and Arjuna Madanayake¹, *Member, IEEE*

Abstract—The need of highly directional communications at mmWave frequencies introduces high overhead for beam training and alignment, which makes the medium access control (MAC) a grand challenge. To harvest the gain for high performance transmissions in mmWave networks, we propose an efficient and integrated MAC design with the concurrent support of three closely interactive components: 1) an accurate and low-cost beam training methodology with a) multiuser, multi-level, bi-directional coarse training for fast user association and beam alignment and b) adaptive fine beam training with compressed channel measurement and multi-resolution block-sparse channel estimation in response to the channel condition and the learning from past measurements; 2) an elastic virtual resource scheduling scheme that jointly considers beam training, beam tracking and data transmissions while enabling burst data transmissions with the concurrent allocation of transmission rate and duration; and 3) a flexible and efficient beam tracking strategy to enable stable beam alignment with beamwidth adaptation and mobility estimation. Compared with literature studies, our performance results demonstrate that our design can effectively reduce the training overhead and thus significantly improve the throughput. Compared to 802.11ad, the training overhead can be reduced more than 60%, and the throughput can be more than 75% higher. In low SNR case, the throughput gain can be more than 90%. Our scheme can also achieve about 50% higher throughput in the presence of user mobility.

Index Terms—Millimeter wave, directional MAC, directional antenna, resource allocation, channel estimation.

I. INTRODUCTION

MILLIMETER-WAVE (mmW or mmWave) communication is receiving tremendous interest from academia, industry and federal agencies as a promising technique to provide Gigabit data rate demanded by the exponential growth of wireless applications. A key challenge of mmWave

Manuscript received April 30, 2019; revised September 9, 2019; accepted October 10, 2019. The work of X. Wang was supported by NSF under Grant ECCS 1731238. The work of A. Madanayake was supported by NSF under Grant ECCS 1854798. (Corresponding author: Dongliang Xie.)

J. Zhao and X. Wang are with the Department of Electrical and Computer Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794 USA (e-mail: jie.zhao@alumni.stonybrook.edu; x.wang@stonybrook.edu).

D. Xie is with the State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China (e-mail: xiedl@bupt.edu.cn).

A. Madanayake is with the Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174 USA (e-mail: amadanay@fiu.edu).

Color versions of one or more of the figures in this article are available online at <http://ieeexplore.ieee.org>.

Digital Object Identifier 10.1109/JSAC.2019.2947924

communications is the low signal range as a result of the large isotropic path loss. Fortunately, the small wavelength of mmWave signals also enables a large number of antennas to be placed in small dimensions (e.g. at the base station, in the skin of a cellphone, or even within a chip), which provides a high beamforming gain to compensate for the big path loss.

The nature of highly directional transmissions in mmWave bands, however, makes the design of medium access control schemes a grand challenge [1]. New users have difficulty of associating with a small cell base station or access point (AP). If both AP and user devices are configured directionally, it could take an extremely long time to connect them and align their beams. In the measurements of basic IEEE 802.11ad [2] transmission [3], the latency for AP discovery is 5ms to 1.8s for a static client and up to 12.9s for a mobile client. On the other hand, omni-directionally transmitting/receiving training signals for beam alignment may lead to range much lower than that of data transmissions. The problem is made even harder when there are a large number of beam directions and users, and the channel reciprocity principle breaks in the presence of human blockage and environment dynamics [3].

To alleviate the training overhead, codebook-based adaptive-beam training [4]–[6] divide directions into different granularity levels. At each level, training signals are sent to all directions within a selected angular range, and a feedback message is needed to select the best beam. The feedback overhead and delay would be very high with the use of multiple rounds of feedbacks (with each round corresponding to a granularity level) and the competitions in multi-user feedbacks along each trained direction. Codebook-based scheme has been taken by 802.11ad. Alternatively, compressed sensing (CS) is exploited to estimate the sparse mmWave channels with training signals sent along random directions within the whole angular range [7]–[9]. Although the number of training directions is reduced, the channel reconstruction complexity increases exponentially with the number of measurement samples.

The big training overhead will translate into significant throughput reduction. More frequent signaling would be needed to track the directional transmissions when there exist higher channel dynamics and user mobility [10]. Despite the large amount of effort made to more efficiently find the best beam directions or allocate radio resources [11]–[13], the two are normally decoupled. Different from conventional wireless communications where only data transmissions are considered in radio resource allocations, it is necessary to concurrently schedule radio resources for channel training,

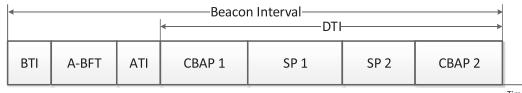


Fig. 1. BI structure in IEEE 802.11ad.

81 data transmissions and beam tracking, in the face of dynamics
 82 of channel conditions, user population, locations, and traffic.

83 In light of the challenges (training overhead, frequent signaling,
 84 resource allocation, network dynamics) above, our aim
 85 is to design an efficient and integrated MAC scheme for
 86 high performance mmWave network transmissions with the
 87 concurrent support of three closely interactive components:

88 a) Accurate and light-weight beam training with 1) *multi-*
 89 *user, multi-level, bi-directional* coarse training for fast user
 90 association and beam alignment, and 2) fine beam training
 91 with *multi-resolution block-sparse* channel estimation and
 92 compressed beam measurement, with adaptation to channel
 93 conditions and past measurement results.

94 b) Self-adaptive *virtual resource scheduling* to determine
 95 both user transmission opportunities and durations for facilita-
 96 tion of various traffic types, while trading off between beam
 97 training and data transmissions for an overall high network
 98 performance.

99 c) Effective beam tracking for more stable beam alignment
 100 with flexible *beamwidth adaptation* and *mobility estimation*
 101 to cope with link failures due to user motions or channel
 102 dynamics.

103 The rest of this paper is organized as follows. After
 104 briefly reviewing background and related work in Section II,
 105 we present our fast association and multi-level beam train-
 106 ing approach in Section III. We further propose our multi-
 107 resolution block-sparse channel estimation technique and fine
 108 beam training design in Section IV, followed by Section V,
 109 where we develop our flexible resource scheduling and beam
 110 tracking schemes. Finally, we analyze the simulation results
 111 in Section VI, and conclude the paper in Section VII.

II. BACKGROUND, RELATED WORK, AND BASIC FRAMEWORK

A. Background

112 The standards IEEE 802.11ad [2] and IEEE 802.15.3c [14]
 113 are proposed at physical layer (PHY) and medium access
 114 control layer (MAC) to enable operation in frequencies around
 115 60 GHz mmWave band. Figure 1 shows the MAC layer
 116 superframe of IEEE 802.11ad protocol, referred as Beacon
 117 Interval (BI)). AP provides the basic timing for DEVs through
 118 beacon and announce frames, such as Beacon transmission
 119 interval (BTI) to transmit one or more beacons in different
 120 directions, Association beamforming training (A-BFT) for
 121 devices to communicate with AP and train their antenna beams
 122 and Announcement transmission interval (ATI) for AP to
 123 exchange management information with associated devices.
 124 A data transmission interval (DTI) contains service peri-
 125 ods (SPs) to transmit data using time division multiple access
 126 (TDMA) and contention-based access periods (CBAPs) for
 127 devices to compete in transmissions using Carrier sense mul-
 128 tiple access with collision avoidance (CSMA/CA).

129 Although 802.11ad provides a basic MAC framework and
 130 signaling sequences, there is no specific consideration for
 131 more efficient directional finding and transmissions. With the
 132 concurrent consideration of *beam training* and *resource allo-
 133 cation*, we propose a detailed design of the MAC scheme with
 134 three major components: quick and low-cost AP association
 135 and beam training, adaptive and joint scheduling of radio
 136 resources for training and transmission under channel and
 137 demand changes, and efficient beam tracking during mobility.
 138 To facilitate practical application of our work, we can fit our
 139 schemes into the 802.11ad framework, although our schemes
 140 are general and do not depend on any protocols.

B. Related Work

141 To compensate for the high path loss, codebook-based
 142 beamforming schemes have been proposed [4]–[6] and taken
 143 by 802.11ad. However, the signaling overhead and delay
 144 would be very high to train a large number of beams and
 145 in the presence of many users.

146 As an alternative, compressed sensing (CS) techniques have
 147 been proposed to estimate mmWave channels to facilitate
 148 beam alignment [7]–[9], [15]–[18], taking advantage of the
 149 sparse feature of channels at mmWave frequencies. These
 150 studies, however, did not fully consider the clustering of
 151 transmission paths [19] in channel reconstruction. Instead,
 152 taking into account the path clustering effect, we model
 153 our channel as block-sparse and propose a *multi-resolution*
 154 *block-sparse* method to more accurately estimate the channel.
 155 As an additional benefit, our proposed method allows for
 156 concurrent use of compressed measurements from different
 157 levels to improve the accuracy of reconstructing CS channel
 158 and reduce the total number of samples, which further reduces
 159 the computational complexity.

160 Various efforts are made to only allocate radio resources in
 161 mmWave networks [11]–[13], [20], and existing work mostly
 162 focus on scheduling concurrent device-to-device communica-
 163 tions in Wireless Personal Area Networks. Instead, we investi-
 164 giate uplink/downlink transmission scheduling between base
 165 station/access point and devices. We concurrently and adap-
 166 tively schedule radio resources for channel training, data
 167 transmissions and beam tracking. Rather than coordinating
 168 users to transmit in each slot [21], our virtual scheduling
 169 enables the burst transmissions of packets, a major format
 170 to transmit high volume data in mmWave communications.
 171 The joint determination of transmission resources and duration
 172 makes the scheduling problem much harder, and is often
 173 bypassed by literature work.

174 User mobility and environmental dynamics makes it more
 175 difficult to achieve beam alignment in mmWave networks, and
 176 beam tracking is often needed to avoid transmission interruption.
 177 Based on the observation that 60 GHz channel profiles
 178 at nearby locations are highly-correlated, Zhou *et al.* [10]
 179 propose a beam-forecast scheme to reconstruct the channel
 180 profile and predict new optimal beams. Highly relying on
 181 a specific geometry model, the prediction accuracy may be
 182 compromised in practical networks. Authors in [22] design,
 183 implement and evaluate MOCA, a protocol for Mobility
 184

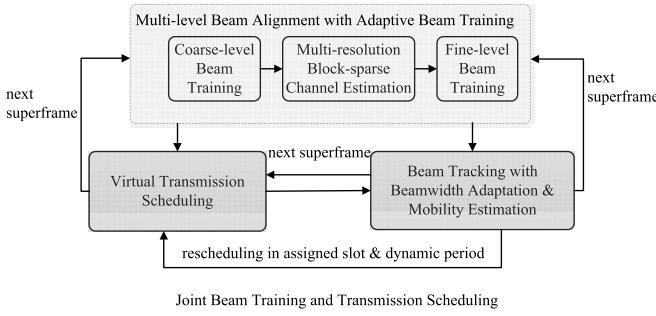


Fig. 2. Framework overview.

resilience and Overhead Constrained Adaptation for directional 60 GHz links, where mobility-induced link breakage is quickly identified and recovered with the change of beamwidth and data rate. The new beamwidth is selected from a predetermined fixed set, and the throughput will reduce when using a larger beamwidth for transmissions to alleviate the impacts of mobility. Rather than using a larger beamwidth for compromised transmission quality, to effectively handle channel dynamics and user mobility at low cost, we flexibly adapt the beamwidth for rapid reconnection in case of link failures and search for the new fine beam direction based on the estimation of user mobility levels.

C. Basic MAC Framework

To address the challenge of mmWave transmissions, we propose a MAC framework with integrated beam alignment and transmission scheduling in Fig. 2. To reduce the big overhead for beam alignment, we divide the training process into coarse level and fine level. Beams are first generated following two-level codebooks to find the possible signal directions at coarse angular ranges, with different strategies to reduce the signaling overhead. Then the finer beam training is pursued with a selected number of additional training signals randomly transmitted within the angular ranges detected with good signal quality. The mmWave channel is estimated following compressed sensing at multiple resolution levels, and the channel condition at coarser level is applied to determine the weights for the finer level to improve the channel estimation accuracy and speed. Based on the channel conditions, AP and devices are scheduled for higher transmission performance and efficient beam tracking to cope with network dynamics.

The contributions of this work are many folds and can be summarized as follows:

- First, to enable fast AP association and beam alignment in both uplink and downlink directions, we propose multi-user multi-resolution beam training with various innovative components over existing standards, including (1) feedback aggregation to reduce signaling overhead, (2) traffic-aware adaptation of the number of contention slots, (3) compressive measurement with novel block-sparse estimation of the mmW channel at hierarchical beam resolution and (4) elastic fine beam training that jointly works with transmission scheduling in response to channel condition and learning from past training results.

- Second, to efficiently manage radio resources, we propose a virtual transmission scheduling scheme with (1) concurrent determination of transmission opportunities and duration while trading off among beam training, data transmissions and beam tracking, (2) virtual slot aggregation adaptive to heterogeneous traffic types, user demands and resource availability.
- Third, to ensure low-overhead beam alignment and alleviate link failures under user mobility and channel dynamics, we propose an efficient beam tracking scheme that achieves quick user rediscovery and disconnection remedy by (1) dynamic beamwidth adjustment and (2) flexible user movement prediction.

III. AP ASSOCIATION AND MULTI-LEVEL BEAM ALIGNMENT

To harvest the gain of mmWave communications, it calls for highly efficient training schemes to enable lower-overhead thus faster AP association and beam alignment.

The AP association and multi-resolution beam alignment component in our basic MAC framework is shown in Figure 2. To avoid high feedback overhead as in conventional codebook-based schemes, we consider two levels of *coarse training* to quickly associate users with APs. Rather than only concentrating on beamforming uplink or downlink, or assuming the existence of channel reciprocity, we consider *bi-directional* training between AP and devices. Finally, to align beams at the finest resolution desired, we will further exploit *multi-resolution* and *block-sparse* channel estimation, which will be introduced in details in Section IV.

In this section, we first present the two-level coarse training and then provide the analysis on the impacts of beam resolution on transmission range.

We use some terms and major signaling flows from 802.11ad to facilitate better understanding, and also provide the possibility of incorporating our design into the 802.11ad framework. Our scheme, however, is general and not constrained to run within 802.11 networks. The differences of our design from 802.11ad are: (a) we emphasize the coordination of training between uplink and downlink and the overhead reduction exploiting the information from the previous round of signaling, (b) we allow AP to transmit feedbacks in a batch for devices within one sector to reduce the header overhead, and (c) we determine the number of contention slots in each AP sector according to the number of associated users known from the previous signaling procedures, which alleviates the collision while avoiding the waste of radio resources.

A. Multi-Level Beam Training

We apply three levels of beamwidth following the terms of 802.11ad: quasi-omni-directional level (QOL), sector beam sweep (SBS), and fine beam steering (FBS). An example of the hierarchical beam levels is given in Figure 3. At the quasi-omni-directional level, the beamwidth will be configured to the widest possible allowed by the system to alleviate the deafness problem in receiving.

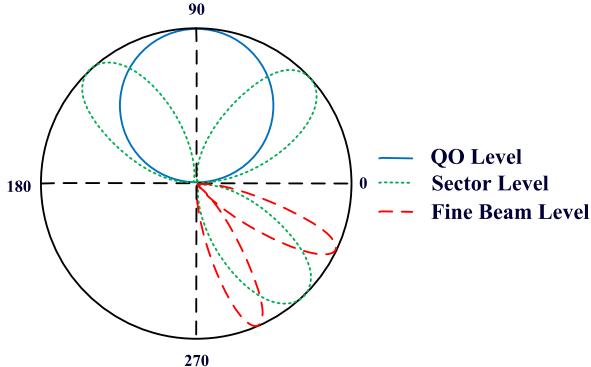


Fig. 3. Hierarchical beam levels example.

286 The fine beam is the desired beamwidth to use for a
 287 mmWave system to achieve high data rates.

288 We use antenna directions and antenna weight vectors
 289 (AWVs) interchangeably, although an AWV not only deter-
 290 mines the main-lobe direction of the beam but also the
 291 beamwidth. We also use device and user interchangeably for
 292 ease of presentation. We consider the association and beam
 293 alignment between devices and the AP in a cell. Due to the
 294 space limitation, we won't discuss device-to-device commu-
 295 nications. Our beam alignment procedures can be completed
 296 with the following steps:

297 *Step 1 (Bi-Directional Training for Quick Association
 298 Between AP and Devices):* An AP will send beacon messages
 299 periodically for new and existing devices to associate with
 300 and align their beams. To facilitate quick AP association
 301 while not compromising the link budget significantly, we will
 302 configure AP at SBS level and devices in QOL. Rather than
 303 performing the training for each device at a time, the training
 304 will be performed for all devices simultaneously. AP will send
 305 beacons in each SBS direction. Within a direction, a (new)
 306 device can listen from each of its QOL directions to find
 307 the best sending SBS sector and receiving QOL direction.
 308 Then AP configures itself to listen from each SBS direction.
 309 Devices successfully receiving beacons from AP will contend
 310 for response within S_1 slots. To facilitate reverse channel
 311 training, in each SBS direction that AP listens to, a device will
 312 send along all its QOL directions the following information: its
 313 association request, the best SBS sector for AP to transmit, and
 314 its best receiving QOL direction. A device will then prepare
 315 itself at the best receive QOL direction. To reduce the feedback
 316 overhead, rather than sending a feedback to every device right
 317 away as in 802.11ad, we allow AP to send an aggregated
 318 feedback to the group of devices in each of the selected
 319 SBS directions after receiving device messages from all its
 320 sectors.

321 AP and devices now obtain a preliminary association with
 322 the information: downlink, the best transmission sector of AP
 323 and the best QOL receive direction of a device; and uplink,
 324 the best QOL sending direction from a device and the best
 325 receive sector at AP.

326 *Step 2 (Bi-Directional Training to Find the Best Sector
 327 Pair Between AP and Each Device):* To further search for
 328 the best receiving sector direction for each device, AP sends

329 training signals again in best sectors selected from the previous
 330 step, while each associated device only sweeps along the
 331 set of SBS directions within the angular range of its best
 332 QOL receive direction. To determine the best transmission
 333 sector from a device, AP only listens to responses in the
 334 best receive sectors selected by devices earlier. In each AP
 335 receiving sector, multiple associated devices will contend to
 336 get a response slot among S_2 slots. Instead of using an equal
 337 number of contention slots for each AP receiving sector as
 338 in 802.11ad, we set S_2 for each sector proportional to the
 339 number of associated users that is learned from Step 1. This
 340 will reduce the collisions in the sectors with more users while
 341 avoiding wasting time slots unnecessarily in sectors with very
 342 few users. The value of S_2 can be sent to devices along
 343 with AP feedbacks in the Step 1. If successfully obtaining
 344 a slot, a device will send a response on the link quality and
 345 the best receive sector from AP along the set of sector-level
 346 directions within the range of its best QOL direction. AP
 347 will immediately feedback to the device its best transmission
 348 sector.

349 *Step 3 (Determining the Best Fine-Level Transmission and
 350 Receiving Directions):* Finally, AP and devices need further
 351 training to find the best beam alignment at the fine beam
 352 level. Similar back-and-forth measures can be taken; however,
 353 due to the potentially large number of fine beam patterns,
 354 the overhead can be unbearable. We will further reduce the
 355 overhead by exploiting the compressive measurement and
 356 block-sparse estimation of the mmWave channel, which will
 357 be introduced later in Section IV.

B. Analysis of Beamwidth and Transmission Range

358 To analyze the directive gains of the antennas, we exploit
 359 a sectored antenna model which considers the front-to-back
 360 ratio, and the half-power beamwidth. The gains remain the
 361 same for all angles in the main lobe and are smaller in the
 362 side lobe in the ideal sector antenna pattern. Let θ^u and θ^v be
 363 the angles that are deviated from the boresight of the steering
 364 angles of TX and RX, B_θ^u and B_θ^v be beamwidths of the TX
 365 and RX antenna patterns, we have the directive gain of TX
 366

$$G^u(\theta^u, B_\theta^u) = \begin{cases} \frac{2\pi - (2\pi - B_\theta^u)z}{B_\theta^u}, & \text{if } |\theta^u| \leq \frac{B_\theta^u}{2} \\ z, & \text{otherwise,} \end{cases} \quad (1)$$

367 where $0 \leq z < 1$ is the gain in the side lobe, with $z \ll 1$
 368 for narrow beams. Likewise, the directive gain of RX can be
 369 expressed as
 370

$$G^v(\theta^v, B_\theta^v) = \begin{cases} \frac{2\pi - (2\pi - B_\theta^v)z}{B_\theta^v}, & \text{if } |\theta^v| \leq \frac{B_\theta^v}{2} \\ z, & \text{otherwise.} \end{cases} \quad (2)$$

371 The number of antennas impacts the finest beamwidth to
 372 achieve thus the maximum gain of the beam. The channel gain
 373 $G^H(d)$ is affected by the TX-RX distance d . For a beam with
 374 the TX beamwidth B_θ^u and RX beamwidth B_θ^v , let $G^u(B_\theta^u)$
 375 and $G^v(B_\theta^v)$ be the TX and RX antenna gains, then we have
 376 the Signal to Noise Ratio (SNR) as
 377

$$SNR(B_\theta^u, B_\theta^v, d) = \frac{p^T G^u(B_\theta^u) G^H(d) G^v(B_\theta^v)}{N_0}, \quad (3)$$

379 where p^T indicates the transmitter power and N_0 the noise
 380 power. Obviously, beamwidth impacts the effectiveness of the
 381 beamforming and consequently the transmission range.

382 Compared to data transmissions at the fine beam level,
 383 the coarse-level signal transmission has a lower range. However,
 384 earlier measurement studies [19] indicate that directional
 385 beamforming gain at either one side of TX or RX may be
 386 enough to combat the additional channel fading in mmWave
 387 band. We also exploit the gain at both sender and receiver
 388 to reduce the link budget loss. Additionally, the signaling
 389 message has the rate much lower than the data, and lower-
 390 bit coding would allow the coding gain to further increase the
 391 range.

392 IV. MULTI-RESOLUTION BLOCK-SPARSE 393 mmWAVE CHANNEL ESTIMATION

394 Upon the completion of coarse-level training in Section III,
 395 the next measure to be taken is discovering the best fine-level
 396 beam directions, which may need a large number of training
 397 messages. The coarse-level training can constrain the messages
 398 to be sent within the best transmission and receiving sectors.
 399 However, if the number of fine beams to transmit remains
 400 large, rather than measuring a large volume of fine beam pairs
 401 as in 802.11ad or introducing more levels of training at high
 402 feedback cost, we will explore the use of compressive channel
 403 estimation to facilitate low-cost beam training.

404 Figure 2 shows the interactions among our multi-resolution
 405 block-sparse channel estimation module and beam training
 406 component at different levels. Different from conventional
 407 CS-based channel estimation schemes [7]–[9], [15]–[18] that
 408 only consider the channel sparsity, our contributions lie in
 409 the following aspects: (a) we further explore the block-sparse
 410 feature in mmWave channels as a result of transmission path
 411 clustering for better channel estimation in Section IV-A and
 412 (b) we iteratively exploit our block-sparse channel estimation
 413 at hierarchical beam resolution for higher accuracy and lower
 414 computational complexity in Section IV-B.

415 A. Block-Sparse Channel Estimation

416 We will now describe how we exploit the path clustering
 417 feature of mmWave channels and develop the solution to
 418 channel estimation as block-sparse channel reconstruction.

419 For ease of presentation, we consider only the azimuth
 420 and neglect the elevation in this paper. Implementations that
 421 facilitate both horizontal and vertical beamforming can be built
 422 on top of our design. While our proposed design can be used
 423 for any kind of antenna arrays, without loss of generality,
 424 we adopt uniform linear arrays (ULAs) in this work.

425 In [19], the mmWave channel is found to be not only sparse
 426 but also path clustering according to the real-world measure-
 427 ments in New York City (NYC), from which a statistical
 428 mmWave model is derived. We adopt this channel model,
 429 where the channel is composed of K clusters within each
 430 there are L subpaths, then with the number of transmitting and
 431 receiving antennas to be N_{tx} and N_{rx} , the channel matrix can

be written as

$$432 \mathbf{H} = \sum_{k=1}^K \sum_{\ell=1}^L a_{k\ell} \cdot \mathbf{D}_{rx}(\theta_{k\ell}^{rx}) \cdot \mathbf{D}_{tx}^H(\theta_{k\ell}^{tx}), \quad 433$$

434 where $a_{k\ell}$ is the complex path gain for a path ℓ ($\ell =$
 435 $1, 2, \dots, L$) in the cluster k ($k = 1, 2, \dots, K$), with $k\ell$ jointly
 436 corresponding to the ℓ -th sub-path in the k -th cluster. For
 437 the sake of consistency, in this work, we use the terms path
 438 and sub-path interchangeably. $\theta_{k\ell}^{tx}$ and $\theta_{k\ell}^{rx}$ denote the angle
 439 of departure (AoD) and the angle of arrival (AoA) for the
 440 corresponding path.

441 $\mathbf{D}_{tx}(\theta_{k\ell}^{tx})$, the TX antenna's directional response column
 442 vector ($N_{tx} \times 1$ dimension) for the sub-path at the angle of
 443 departure $\theta_{k\ell}^{tx}$, is expressed as:

$$444 \mathbf{D}_{tx}(\theta_{k\ell}^{tx}) \\ 445 = \left[D^{(1)}(\theta_{k\ell}^{tx}), D^{(2)}(\theta_{k\ell}^{tx}), \dots, D^{(m)}(\theta_{k\ell}^{tx}), \dots, D^{(N_{tx})}(\theta_{k\ell}^{tx}) \right] \\ 446 = \left[1, e^{j \cdot 1 \cdot w_{k\ell}^{tx}}, e^{j \cdot 2 \cdot w_{k\ell}^{tx}}, \dots, e^{j \cdot (N_{tx}-1) \cdot w_{k\ell}^{tx}} \right]^T, \quad 446$$

447 where $D^{(m)}(\theta_{k\ell}^{tx})$ is from antenna basics, the spatial frequency
 448 $w_{k\ell}^{tx}$ can be written in terms of AoDs, as $w_{k\ell}^{tx} = \frac{2\pi d_t}{\lambda} \sin \theta_{k\ell}^{tx}$.
 449 d_t is the distances between two adjacent antenna elements in
 450 the ULAs in the TX. $\lambda = \frac{c}{f}$ is wavelength in meters. f is the
 451 carrier frequency of the signal in Hz, c is the speed of light
 452 (3×10^8 meters/sec).

453 $\mathbf{D}_{rx}(\theta_{k\ell}^{rx})$, the RX antenna's directional response column
 454 vector ($N_{rx} \times 1$ dimension) for the path at an angle of arrival
 455 $\theta_{k\ell}^{rx}$, can be similarly expressed.

456 We now use a concatenated column vector \mathbf{a} ($1 \times KL$) to
 457 denote the complex path gains. Then

$$458 \mathbf{a} = \underbrace{[a_{11}, a_{12}, \dots, a_{1L}]}_{\text{cluster 1}}, \underbrace{[a_{21}, a_{22}, \dots, a_{2L}, \dots,}_{\text{cluster 2}} \\ 459 \underbrace{a_{K1}, a_{K2}, \dots, a_{KL}]}_{{\text{cluster } K}}^T, \quad 459$$

460 Note \mathbf{a} is concatenated in a manner that the first L elements are
 461 for the first cluster, and the next L elements are for the second
 462 cluster and so on. As a result of path clustering, the mmWave
 463 channel in (6) is seen to have the block properties. That is, \mathbf{a}
 464 is not only sparse, but also block-sparse.

465 The major task of mmW channel estimation in our work is
 466 to estimate \mathbf{a} efficiently. To achieve this, we first rewrite (4)
 467 in matrix format as

$$468 \mathbf{H} = \mathbf{D}_R \text{diag}(\mathbf{a}) \mathbf{D}_T^H, \quad 468$$

469 where the matrices \mathbf{D}_T and \mathbf{D}_R contain the TX and RX array
 470 response vectors as follows:

$$471 \mathbf{D}_T = [\mathbf{D}_{tx}(\theta_{11}^{tx}), \dots, \mathbf{D}_{tx}(\theta_{1L}^{tx}), \dots, \mathbf{D}_{tx}(\theta_{K1}^{tx}), \dots, \mathbf{D}_{tx}(\theta_{KL}^{tx})], \quad 471$$

$$472 \quad (8) \quad 472$$

$$473 \mathbf{D}_R = [\mathbf{D}_{rx}(\theta_{11}^{rx}), \dots, \mathbf{D}_{rx}(\theta_{1L}^{rx}), \dots, \mathbf{D}_{rx}(\theta_{K1}^{rx}), \dots, \mathbf{D}_{rx}(\theta_{KL}^{rx})]. \quad 473$$

$$474 \quad (9) \quad 474$$

475 For channel estimation, assume we transmit the training
 476 signals along P directions, i.e., with P TX beamforming (BF)

477 vectors $(\mathbf{u}_p, p = 1, 2, \dots, P)$, and a receiver estimates the
 478 signals from Q directions with Q RX BF vectors $(\mathbf{v}_q, q =$
 479 $1, 2, \dots, Q)$. Taking advantage of coarse-level training, these
 480 are randomly chosen from the fine beam directions within the
 481 TX's best sectors and the RX's best sectors, respectively. Then
 482 the measurements can be expressed in the matrix format as:

$$\mathbf{Y}^{Q \times P} = \mathbf{V}^H \mathbf{H} \mathbf{U} \circ \mathbf{S} + \mathbf{E}, \quad (10)$$

484 where \mathbf{S} and \mathbf{E} are respectively the training signals and noise,
 485 and

$$\mathbf{V}^{N_{rx} \times Q} = [\mathbf{v}_1, \dots, \mathbf{v}_q, \dots, \mathbf{v}_Q], \quad \mathbf{U}^{N_{tx} \times P} = [\mathbf{u}_1, \dots, \mathbf{u}_p, \dots, \mathbf{u}_P]. \quad (11)$$

488 With the training signals transmitted at the power A ,
 489 $\mathbf{Y}^{Q \times P} = \sqrt{A} \mathbf{V}^H \mathbf{H} \mathbf{U} + \mathbf{E}$, which can be vectorized as

$$\begin{aligned} \mathbf{y} &= \text{vec}(\mathbf{R}) = \sqrt{A} \text{vec}(\mathbf{V}^H \mathbf{H} \mathbf{U}) + \text{vec}(\mathbf{E}) \\ &\stackrel{\text{Theorem 1 [23]}}{=} \sqrt{A} (\mathbf{U}^T \otimes \mathbf{V}^H) \text{vec}(\mathbf{H}) + \text{vec}(\mathbf{E}) \\ &\stackrel{\text{Proposition 1 [24]}}{=} \sqrt{A} (\mathbf{U}^T \otimes \mathbf{V}^H) \Psi \mathbf{a} + \text{vec}(\mathbf{E}) \\ &= \Phi \Psi \mathbf{a} + \text{vec}(\mathbf{E}) = \mathbf{A} \mathbf{a} + \text{vec}(\mathbf{E}), \end{aligned} \quad (12)$$

494 where $\Psi = \mathbf{D}_R^* * \mathbf{D}_T$ (Khatri-Rao product) is the basis
 495 matrix, $\Phi = \sqrt{A} (\mathbf{U}^T \otimes \mathbf{V}^H)$ (Kronecker product) is the
 496 measurement matrix (determined by TX and RX beam training
 497 directions). In the derivation, we have used Theorem 1 [23]
 498 and Proposition 1 [24] as follows:

499 *Theorem 1:* $\text{vec}(\mathbf{A} \mathbf{X} \mathbf{B}) = (\mathbf{B}^T \otimes \mathbf{A}) \text{vec}(\mathbf{X})$.

500 *Proposition 1:* $\text{vec}(\mathbf{H}) = \Psi \mathbf{a}$, where $\Psi = \mathbf{D}_R^* * \mathbf{D}_T$ (Khatri-Rao product).

502 In order to differentiate between the estimated channel and
 503 the actual channel \mathbf{a} , we now refer the estimated \mathbf{a} as \mathbf{x} .
 504 Replacing the vector \mathbf{a} in the Eq. (12) with \mathbf{x} , we have
 505 the compressed sensing form $\mathbf{y} = \mathbf{A} \mathbf{x} + \mathbf{e}$, where \mathbf{y} is the
 506 measurement results, \mathbf{A} is the sensing matrix, and \mathbf{e} is the
 507 noise. Different from conventional CS-based channel estimation
 508 algorithms, to enable more accurate beam alignment,
 509 we take into account the block-sparse feature of the vector
 510 \mathbf{x} when reconstructing the virtual mmWave channel. We form
 511 our problems as follows:

$$\min_{\mathbf{x}} \sum_{i=1}^n \|\mathbf{X}_i\|_2, \quad \text{s.t. } \mathbf{A} \mathbf{x} = \mathbf{y}, \quad \mathbf{x} = [\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n], \quad (13)$$

513 where $\|\cdot\|_2$ denotes the ℓ_2 -norm, i is the block index, n
 514 is the number of blocks, $\mathbf{X}_i = \mathbf{x}_{(i-1)d+1:id}$, and d is the
 515 block size. Figure 4 depicts the block-sparse model of (13).
 516 A typical solution algorithm for (13) is presented in Sec. IV
 517 of [25] as the “Recovery of block-sparse signals” Algorithm.
 518 After recovering \mathbf{x} , the virtual channel \mathbf{H} can be estimated as
 519 in Eq. (7).

520 B. Multi-Resolution Channel Estimation

521 We have multiple levels of beamwidth: QOL, SBS and FBS.
 522 In our channel estimation, we propose to not only use FBS
 523 training measurements to estimate the mmWave channel but
 524 also exploit those in QOL and SBS to further improve the
 525 estimation accuracy.

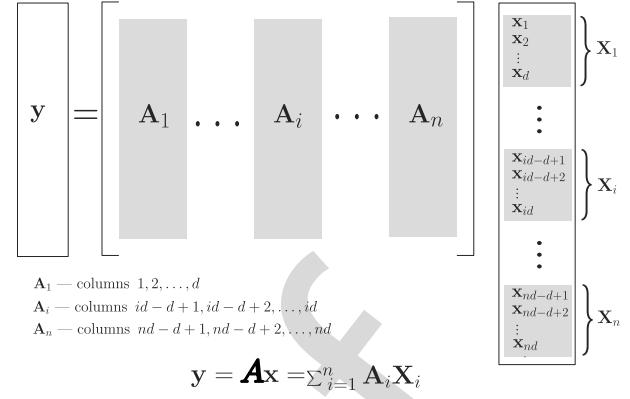


Fig. 4. Block-sparse model.

526 To facilitate the channel estimation, we can discretize angular
 527 domain with $N_{tx}^g \times N_{rx}^g$ grids, so the channel can be
 528 estimated as a vector of the dimension $N_{tx}^g N_{rx}^g \times 1$ ($\text{vec}(\mathbf{H})$).
 529 As the mmWave channel is sparse, so the channel response
 530 signals only appear in a small number of grids. Rather than
 531 uniformly discretizing the angles, we uniformly divide the
 532 spatial frequencies $w_{k\ell}^{tx}$ and $w_{k\ell}^{rx}$ into N_{tx}^g and N_{rx}^g grid points,
 533 respectively. Thus, the response column vectors of the TX and
 534 RX antennas at the angular grid n and m are respectively

$$\begin{aligned} \mathbf{D}_{tx}^n(\theta_{k\ell}^{tx}) &= \left[1, e^{j \cdot 1 \cdot n \cdot \frac{2\pi}{N_{tx}^g}}, e^{j \cdot 2 \cdot n \cdot \frac{2\pi}{N_{tx}^g}}, \dots, e^{j \cdot (N_{tx}-1) \cdot n \cdot \frac{2\pi}{N_{tx}^g}} \right]^T, \\ \mathbf{D}_{rx}^m(\theta_{k\ell}^{rx}) &= \left[1, e^{j \cdot 1 \cdot m \cdot \frac{2\pi}{N_{rx}^g}}, e^{j \cdot 2 \cdot m \cdot \frac{2\pi}{N_{rx}^g}}, \dots, e^{j \cdot (N_{rx}-1) \cdot m \cdot \frac{2\pi}{N_{rx}^g}} \right]^T. \end{aligned}$$

535 If $N_{tx}^g = N_{tx}$ and $N_{rx}^g = N_{rx}$, we have

$$\Psi = IDFT_{N_{tx}}^* * IDFT_{N_{rx}}, \quad (14)$$

536 where $IDFT_N$ denotes an N -dimensional IDFT matrix.

537 Different beamwidth adopted by AP and devices affects
 538 the values of N_{tx}^g and N_{rx}^g . Denote BW_{tx} and BW_{rx} as
 539 the beamwidth of AP and a device, one option is to let
 540 both $BW_{tx} * N_{tx}^g$ and $BW_{rx} * N_{rx}^g$ cover the whole angular
 541 space, and another is to reconstruct \mathbf{H}_{FBS} only within the
 542 sector space detected to have stronger signals in the coarse-
 543 level training. With the first method, a larger beamwidth will
 544 correspond to a discretized channel with a smaller dimension,
 545 so we have

$$\dim(\mathbf{H}_{QOL}) < \dim(\mathbf{H}_{SBS}) < \dim(\mathbf{H}_{FBS}). \quad (15)$$

546 As samples are not uniformly taken from all angular directions,
 547 straight-forward channel reconstruction may not be accurate.
 548 Instead, we propose to reconstruct the channel recursively *at*
 549 *different levels of resolution with weighting factors* to take
 550 advantage of the multi-level training samples we have obtained
 551 in Section III. To be more specific, we transform (13) into
 552 the following weighted recovery problem under the same
 553 constraints:

$$\min_{\mathbf{x}} \sum_{i=1}^n w_i \|\mathbf{X}_i\|_2, \quad (16)$$

561 where w_i is the weighting factor for block \mathbf{X}_i , and is set to
 562 be the inverse of the number of non-zero elements (supports)
 563 contained in the signal block \mathbf{X}_i . By assigning smaller weights
 564 to the blocks that consist of more non-zero elements and
 565 vice versa, the optimization will penalize more heavily those
 566 blocks with larger weights and fewer supports, thus leaving
 567 more residual signals to be reconstructed for those blocks
 568 that contain more information (i.e., with small weights and
 569 more supports). In this way, our block weighting approach
 570 improves the CS reconstruction performance and is exploited
 571 in the multi-resolution (i.e. different block sizes) channel esti-
 572 mation process to be presented later in this section. Although
 573 block weights are introduced, (16) can still be solved by the
 574 algorithm from [25], which is mentioned earlier as a solution
 575 to (13), by substituting \mathbf{X}_i in (13) with $w_i \mathbf{X}_i$.

576 The major difference between (13) and the proposed (16)
 577 is that we set w_i to the inverse of the magnitude of the coarse
 578 direction reconstructed from the previous step, where channel
 579 is estimated in a more coarse resolution (i.e., the block in
 580 the current step corresponds to the resolution used in the
 581 previous step). By assigning smaller weights to the blocks
 582 that have higher recovered magnitude in the previous step,
 583 the optimization will penalize more heavily those blocks with
 584 less information, thus leaving more residual signals to be
 585 reconstructed for the blocks that contain more information.
 586 With the channel estimation at multiple resolution in different
 587 block sizes, our block weighting approach can improve both
 588 the CS reconstruction accuracy and speed.

589 Rather than directly estimating channels with the CS-based
 590 scheme, the use of multi-level of training largely reduces
 591 the number of samples needed thus the overhead for CS
 592 recovery for channel estimation. Further, compared to the
 593 direct finding of all beams with the traditional ℓ_1 -norm
 594 optimization, the leverage of results from block-sparse CS
 595 reconstruction (16) helps to significantly reduce number of
 596 iterations needed for the channel estimation process to con-
 597 verge. Therefore, our algorithm can more efficiently run over
 598 the practical platforms and devices.

599 Following the training process, the recursive steps for our
 600 multi-resolution channel estimation approach are:

601 Step (a) *QOL channel reconstruction*: After QOL beam
 602 training, reconstruct $\text{vec}(\mathbf{H}_{QOL})$.

603 Step (b) *SBS channel reconstruction*: After SBS beam
 604 training, according to QOL results in Step (a), adjust the
 605 weights at the SBS level: the SBS elements contained in
 606 QOL blocks with larger magnitude (recovered in the previous
 607 step) are assigned with smaller weights, and then reconstruct
 608 $\text{vec}(\mathbf{H}_{SBS})$.

609 Step (c) *FBS channel reconstruction*: After FBS beam
 610 training, according to SBS results in Step (b), adjust the
 611 weights at the FBS level: the FBS elements contained in
 612 SBS blocks with larger magnitude (recovered in the previous
 613 step) are assigned with smaller weights, and then reconstruct
 614 $\text{vec}(\mathbf{H}_{FBS})$. We can then obtain the mmWave channel matrix
 615 \mathbf{H}_{FBS} for further beam alignment.

616 Compared with conventional CS-based channel estimation,
 617 our multi-resolution block-sparse mmWave channel estimation
 618 methodology not only jointly exploits the sparsity and block

619 properties in mmWave channels, but also takes advantage of
 620 the multi-level beam training results to significantly reduce
 621 the number of measurements. This will further reduce the
 622 complexity in recovering the mmWave channel, and speed up
 623 the training.

624 *C. Procedures for Fine Beam Training*

625 With the coarse beam training in Section III, AP and devices
 626 have known the best transmission and receiving sectors for
 627 both downlink and uplink transmissions. We will add the
 628 following procedures for compressive fine beam training to
 629 Step (3) in Section III:

630 *Step 3.1 (Downlink Fine Beam Training)*: To facilitate syn-
 631 chronization, each device initially listens at its best receiving
 632 sectors to intercept system parameters. For the fine beam train-
 633 ing, within each best transmitting sector selected in the SBS
 634 phase, AP first sends beacons along P^T randomly selected fine
 635 beam directions. During the transmission of each fine beam,
 636 the set of devices which select the corresponding transmission
 637 sector will each listen from Q^R randomly selected fine beam
 638 directions in their respective best DEV receiving sectors.
 639 After collecting samples from $P^T Q^R$ directions, a DEV can
 640 estimate the channel and the best fine beam directions for AP
 641 transmission and DEV receiving.

642 *Step 3.2 (Uplink Feedback Training)*: AP first config-
 643 ures itself to receive from the selected best receiving sectors,
 644 for each associated devices will send uplink feedbacks with
 645 the best measured AP TX fine beam, SNR, suggested beam
 646 directions, etc. Each device will transmit from Q^T fine beam
 647 directions within its best transmitting sector. As the set of
 648 devices to associate with AP is known, the beacons in Step
 649 (3.1) will contain the order of uplink transmissions from
 650 devices to avoid their uplink competition.

651 *Sampling from the learning of past measurements*: Although
 652 we cannot completely follow the channel reciprocity rule, there
 653 may be correlation in uplink and downlink channels. To further
 654 improve the channel estimation quality while reducing the
 655 number of samples, a device can select Q^T fine beam direc-
 656 tions close to its best downlink receiving direction. Similarly,
 657 for each uplink fine beam transmission, the P^R directions AP
 658 listens to can be close to the best downlink transmission beam
 659 direction. In addition, with the downlink channel estimated,
 660 a device can suggest a few directions for uplink training based
 661 on the sequence of eigenvalues of the channel in its feedback.
 662 With all samples, AP then estimates the uplink channel to find
 663 the best theoretical fine beam pairs.

664 *D. Analysis of Beam Training Overhead*

665 Our beam training involves three levels of beamwidth: QOL,
 666 SBS and FBS. We use B_Q^U , B_S^U and B_F^U to represent the
 667 AP beamwidth at each level, and use B_Q^V , B_S^V and B_F^V to
 668 represent the device beamwidth. We let B_W^U and B_W^V denote
 669 the overall angular search space for the AP and the device.
 670 We first quantify the training overhead of the beam training
 671 scheme discussed in Sections III and IV-C. Let T_p denote the
 672 time to transmit a pilot training signal, $T_s = \beta_s T_p$ denote the
 673 time duration of a contention slot ($\beta_s \geq 1$). A training signal

674 consists of a sequence of training symbols. As the number of
 675 symbols impacts the training time, it can be adapted to trade
 676 off between the training time and the gain in finding higher
 677 gain channels for higher transmission rates. The overhead in
 678 each step of beam training is analyzed as follows:

679 *Step 1:* $T_1/T_p = \left\lceil \frac{B_w^U}{B_s^U} \right\rceil \cdot \left\lceil \frac{B_w^V}{B_q^V} \right\rceil + \beta_s S_1 \left\lceil \frac{B_w^V}{B_q^V} \right\rceil \left\lceil \frac{B_w^U}{B_s^U} \right\rceil +$
 680 $\alpha_t \left\lceil \frac{B_w^U}{B_s^U} \right\rceil$; S_1 , the number of device response slots, is an
 681 integer ($S_1 \geq 1$) and can be adapted according to the
 682 traffic pattern over the previous N_{past} superframes, and set
 683 according to the moving average of the associated number
 684 of devices. α_t ($\alpha_t \leq 1$) is the fraction of AP transmitting
 685 sectors that are identified by devices to be their best SBS
 686 sectors, along which AP can send them the messages. The
 687 overhead of Step (1) consists of the following items: The first
 688 one is the result of the training time taken for AP to send
 689 beacons in each sector and devices to receive in each quasi-
 690 omni-directional beam; The second item denotes the time for
 691 uplink training, where in each of AP's receiving sector, every
 692 device in quasi-omni-directional mode needs to compete for
 693 sending uplink training signals; The third item is the time
 694 taken by AP to send aggregated feedbacks in part of the sectors
 695 selected by devices. Similar illustrations can be made for other
 696 steps too.

697 *Step 2:* $T_2/T_p = \alpha_r \left\lceil \frac{B_w^U}{B_s^U} \right\rceil \cdot \left\lceil \frac{B_q^V}{B_s^V} \right\rceil + \sum_j S_{2,j} \left\lceil \frac{B_q^V}{B_s^V} \right\rceil$,
 698 $j = 1, 2, \dots, \alpha_r \left\lceil \frac{B_w^U}{B_s^U} \right\rceil$; α_r ($\alpha_r \leq 1$) is the fraction of AP
 699 receiving sectors that are identified by devices to be their
 700 best SBS sectors, along which AP can receive from them
 701 the feedbacks. j is a set index indicator (not actual sector ID
 702 number) that denotes the index of AP sector in the set of best
 703 AP receiving sectors. $S_{2,j}$ denotes the number of S_2 response
 704 slots for the j -th sector in the set of AP reception sectors
 705 identified to be the best. $S_{2,j}$ can be set to be proportional to
 706 the number of devices in that sector.

707 *Step 3:* $T_3/T_p = \alpha_t \left\lceil \frac{B_w^U}{B_s^U} \right\rceil P^T Q^R + N_{dev} Q^T P^R + N_{bfb}^{AP}$,
 708 where N_{dev} is the number of devices, and N_{bfb}^{AP} is the number
 709 of the AP's best fine beams for the transmission of the
 710 feedbacks.

711 The total training overhead, $T_{BT} = T_1 + T_2 + T_3$, is obtained
 712 from Step (1) to (3), where $\lceil \cdot \rceil$ factors (system parameters) can
 713 usually be pre-determined by the system.

714 V. JOINT BEAM TRAINING AND 715 TRANSMISSION SCHEDULING

716 An important MAC function is to efficiently coordinate
 717 radio resource usage among multiple users. The transmission
 718 scheduling for mmWave communications is made difficult
 719 with its need of a large amount of training to find the trans-
 720 mission opportunities, which we target to study in this section.
 721 Following the basic structure of 802.11ad, each superframe
 722 (Beacon Interval) consists of durations for beam training as
 723 well as frames for data transmissions. There is a tradeoff in
 724 determining the durations of the two, and we will concurrently
 725 consider both in our scheduling to achieve a high transmission
 726 performance.

727 The basic structure of our joint beam training and schedul-
 728 ing scheme is depicted in Figure 2. In this section, we intro-
 729 duce our design for these important components, the merits
 730 of which include (1) adaptive beam training in response to
 731 channel quality, (2) resource scheduling with joint allocation
 732 of transmission opportunities and durations that can support
 733 heterogeneous traffic conditions, user types and demands, and
 734 (3) beam tracking with beamwidth adaptation and mobility
 735 estimation. The major differences of our design from the
 736 literature are: (a) our transmission scheduling concurrently
 737 considers multiple factors to achieve overall network per-
 738 formance improvement, reduces the control overhead, and
 739 enables burst transmissions with virtual scheduling and aggre-
 740 gation of transmission slots, and (b) with various adaptations,
 741 our adaptive beam training and tracking schemes are resilient
 742 to network dynamics.

743 A. Adaptive Beam Training

744 A training signal consists of a sequence of training symbols,
 745 and training signals can be sent along many directions. The
 746 channel is dynamic and the number of training samples needed
 747 is uncertain. The training can be increased at both tempo-
 748 ral and spatial directions to achieve more accurate channel
 749 estimation and find the best direction for higher transmission
 750 rates, while higher training time will compromise the overall
 751 transmission throughput. To reduce the training time while
 752 ensuring the desired transmission quality, we propose to adapt
 753 the training period based on the channel measurement quality.

754 After receiving the beacon signals from AP in step (3.1),
 755 a device will determine if it will require AP to send additional
 756 training signals based on the average SNR of the received
 757 signals. If it is lower than a pre-determine threshold, the device
 758 will request additional training in its feedback in step (3.2).
 759 The P_{add} and Q_{add} additional fine beams for AP to send and
 760 the device to receive from can be determined based on SNR
 761 as follows:

$$762 P_{add} = \left\lceil \eta_1 \cdot \frac{SNR_{TH} - SNR}{SNR_{TH}} \right\rceil, \\ 763 Q_{add} = \left\lceil \zeta_1 \cdot \frac{SNR_{TH} - SNR}{SNR_{TH}} \right\rceil, \\ 764$$

765 where η_1 , ζ_1 control the adaptation speed, SNR_{TH} is the
 766 threshold. If multiple requesting devices share the same trans-
 767 mission sector, AP will set P_{add} to the highest number
 768 required, and send along randomly selected directions within
 769 the sector. Similarly, AP can also request a device to send
 770 additional uplink training signals.

771 If a device or AP has collected training signals from two
 772 rounds, it can compare the difference between the channel
 773 estimation based on the total training signals obtained in both
 774 rounds to determine if more training is needed. In this case,
 775 P_{add} and Q_{add} for the next round are determined by

$$776 P_{add} = \left\lceil \eta_2 \frac{\|\mathbf{H} - \mathbf{H}_{prev}\|_1}{\Delta \mathbf{H}} \right\rceil, \quad Q_{add} = \left\lceil \zeta_2 \frac{\|\mathbf{H} - \mathbf{H}_{prev}\|_1}{\Delta \mathbf{H}} \right\rceil, \\ 777$$

778 where η_2 and ζ_2 are the adaptation factors, \mathbf{H} and \mathbf{H}_{prev} are
 779 the estimated channels in the current round and the previous

779 round, $\Delta_{\mathbf{H}}$ is the threshold for channel estimation difference,
 780 and the triggering condition is $\|\mathbf{H} - \mathbf{H}_{prev}\|_1 > \Delta_{\mathbf{H}}$.

781 *B. Virtual Transmission Scheduling*

782 The data transmission interval is composed of three components:
 783 $T_{DTI} = T_{tran} + T_{sp} + T_{dp}$. T_{sp} denotes the durations for
 784 scheduled periods, where the scheduling of data transmissions
 785 for different users in the network significantly impacts the net-
 786 work throughput. The contention-based *random access period*
 787 T_{tran} can be used to send unscheduled uplink data and some
 788 short messages. The traffic can be bursty and the mmWave
 789 channel is subject to low coherent time and channel blocking.
 790 We also introduce a *dynamic period* T_{dp} to accommodate the
 791 immediate needs of user data transmissions or beam tracking,
 792 which is developed in Section V-C.

793 As random access will introduce high overhead, IEEE
 794 802.11ad allows the use of TDMA kind of service period, but
 795 without giving a detailed scheme how the radio resources can
 796 be scheduled for use. Coordinating transmissions among users
 797 with heterogeneous quality requirements in the presence of
 798 different types of traffic and blocking-prone wireless channels
 799 is a grand challenge. The simple slot allocation for continuous
 800 voice transmissions used in conventional cellular networks
 801 cannot be applied to the dynamic packet transmissions.

802 There are two major issues to address for the data trans-
 803 mission scheduling in T_{sp} : 1) How to select the users to
 804 transmit, and 2) How to determine the transmission durations
 805 to allocate to the selected users. To accommodate user requests
 806 while also meeting the resource constraint, there are a large
 807 number of options. It is difficult to select the users and
 808 also determine the transmission duration for each user at the
 809 same time in practical scheduling. We propose a *self-adaptive*
 810 *virtual resource scheduling* scheme based on user requests,
 811 application types, and practical resource availability.

812 To accommodate different types of applications, we divide
 813 the scheduled transmission period T_{sp} into two logic parts:
 814 *reserved period* and *allocated period*, in other words, $T_{sp} =$
 815 $T_{sp}^{res} + T_{sp}^{allo}$. A reserved period T_{sp}^{res} is used to support
 816 users which require long-term and periodic transmissions in
 817 every superframe, such as real-time multi-media streaming and
 818 updates of monitoring data. Admission control is needed and
 819 can be performed based on any rule of the service providers.
 820 In this paper, we consider a scheme with the limit of N_{ds}^{res}
 821 streams to admit in the reserved period, with each data stream
 822 occupying at most N_{ts}^{res} transmission slots. For a required
 823 transmission rate, the number of time slots needed to support
 824 an application will adapt as the channel condition changes with
 825 two options: 1) adapting the number of time slots allocated to
 826 the admitted users in each superframe based on the estimated
 827 channel condition, and 2) keeping the number of time slots
 828 unchanged, but letting the guaranteed applications to compete
 829 in getting the remaining resources needed. We can ensure
 830 enough time slots to support the minimum rate required by
 831 each application through the option 1 and allocate additional
 832 resources based on the option 2.

833 Users with elastic traffic will compete for resources in
 834 the allocated period T_{sp}^{allo} . The sector set selected for

835 transmissions after training is denoted as \mathcal{I} and the user
 836 set in the i -th sector is \mathcal{J}_i , then $x_{i,j(i)}$ denotes the $j(i)$ -th
 837 user to transmit in the i -th sector. We use $x_{i,j(i)}^T$ and $x_{i,j(i)}^R$
 838 to differentiate between the uplink transmission to AP and
 839 downlink transmission from the AP. The rate $r(x)$ of a data
 840 stream x can be estimated from the channel measurement.
 841 If the minimum data rates needed for uplink and downlink
 842 transmissions cannot be accommodated due to poor channel
 843 condition, we consider the user experiences a outage and set
 844 the effective user data rate to zero. Transmission Slot (TS)
 845 is the basic unit in our temporal resource scheduling, and a
 846 data link can take multiples of TS. To maximize the network
 847 performance, we need to schedule the data streams $(x^T(i, j(i))$
 848 and $x^R(i, j(i))$) and their allocated TSs.

849 It is difficult to simultaneously determine which users to
 850 transmit and the transmission duration as there is a coupling
 851 between the transmission priority and the resources already
 852 allocated. We propose a novel virtual scheduling scheme with
 853 two steps: (a) efficient resource allocation to determine which
 854 user to transmit in each time slot, and (b) slot shuffling to
 855 allocate each user with continuous time slots by aggregating
 856 all its slots assigned *virtually* in the scheduled period. This
 857 allows each user to transmit data as a burst to reduce the
 858 control overhead without incurring synchronization and adding
 859 a transmission header in each slot.

860 In each slot, if we straight-forwardly select the user with the
 861 highest channel rate and priority to transmit, all resources may
 862 be allocated to one user, at the cost of resource starvation for
 863 others. The greedy focus on one metric neglects the trade-offs
 864 among different performance factors for different users and
 865 the network. Instead, we aim to maximize the overall network
 866 performance by considering the fairness jointly determined by
 867 multiple factors: priority, delay, and data rate. We assign each
 868 slot virtually to the user with the largest weighted data rate
 869 according to the following schedule:

$$x = \arg \max_x a(x)W(x)r(x)/\bar{R}(x), \quad (17)$$

870 where

$$x \in \{x_{i,j(i)}^T, x_{i,j(i)}^R\}, \quad i \in \mathcal{I}, \quad j(i) \in \mathcal{J}_i. \quad (18)$$

871 (17) can be solved with a heuristic algorithm that searches
 872 through the candidate streams to look for $\{x_{i,j(i)}^T, x_{i,j(i)}^R\}$ to
 873 maximize the objective function. Since the range of candidate
 874 beams has been narrowed down with our multi-level beam
 875 training, the search space of the candidate beams is small.
 876 As the beams are chosen from a discrete space, the complexity
 877 of our algorithm is low. $a(x)$ is the priority parameter for a data
 878 stream x (determined by the service type, QoS requirements
 879 etc.) and $W(x)$ is the queuing delay. For delay-constrained
 880 traffic, we have

$$\text{Prob}[W(x) > T(x)] \leq \varepsilon(x), \quad (19)$$

881 where $\varepsilon(x)$ is a specified probability that the delay exceeds
 882 the threshold $T(x)$. Then the priority parameter $a(x)$ can be
 883 defined as $a(x) = -\log \varepsilon(x)/T(x)$. A smaller $\varepsilon(x)$ suggests a
 884 larger $a(x)$ that implies higher priority. $\varepsilon(x)$ can be set to 1 for
 885 delay tolerant applications. The parameters $a(x)$, $W(x)$, and
 886

889 $\bar{R}(x)$ (the average transmission rate of user x) will be updated
 890 after assigning each slot to ensure that other users have the
 891 chance of transmissions. As the slots are only assigned and
 892 users have not transmitted yet, so our parameter update is
 893 *virtual*. The transmission rate r can be estimated as

$$894 \quad r = B_w \log_2(1 + SNR(B_\theta^u, B_\theta^v, d)), \quad (20)$$

895 where B_w is the bandwidth. As presented in Section III-B,
 896 the signal-to-noise ratio SNR is affected by the antenna
 897 numbers, the channel conditions, the TX-RX distance, and
 898 the transmission and reception beamwidths. The slots assigned
 899 to the same user can be used together to perform burst
 900 transmission. Rather than determining the user to transmit
 901 and the transmission duration together, our scheduling scheme
 902 significantly reduces the complexity with the virtual scheduling
 903 of transmission in each slot and the aggregation of slots
 904 into a duration. Our scheduling scheme can support users with
 905 different number of antennas.

906 C. Beam Tracking With Beamwidth Adaptation 907 and Mobility Estimation

908 Featured by highly directional transmissions, two major
 909 challenges faced by mmWave communications are channel
 910 dynamics and user mobility, which can cause frequent discon-
 911 nections thus degraded network performance. To cope with
 912 these problems, we introduce two important components to
 913 facilitate beam tracking, *beamwidth adaptation* and *mobility*
 914 *estimation*. Upon disconnection, additional low-cost training
 915 of new beam directions may help the user to recover from
 916 disconnection, unfulfilled transmissions may be rescheduled to
 917 transmit in the remaining time of the duration assigned to the
 918 device and the dynamic resource block (T_{dp} in Section V-B).

919 Beam quality can be tracked with testing signals piggy-
 920 backed at the end of data packets. Upon detecting a significant
 921 reduction of the beam quality or disconnection, our proposed
 922 *Beamwidth Adaptation* will be triggered:

923 (1) A sender will quickly switch to train two beams
 924 adjacent to the original beam direction using the time slot
 925 scheduled for the corresponding device if its remaining time
 926 is enough or using the time in the dynamic period.

927 (2) If a user moves too fast and gets out of the coverage of
 928 its backup beams, especially when the beamwidths of TX and
 929 RX beams are very narrow, we propose to train one further left
 930 beam and one further right beam with the beamwidth doubled
 931 to speed up the searching.

932 (3) If a user is found in one of the two double-width beams,
 933 we continue to train and find the best fine beam.

934 This searching process can continue, and the number of
 935 additional beams to search depends on the system configura-
 936 tion. If a user constantly moves, when reaching its scheduled
 937 time slot, its direction may largely deviate from the optimal
 938 direction found through beam training at the beginning of the
 939 superframe. The frequent and large-range beam search after
 940 the disconnection will incur a high training overhead. To better
 941 handle user mobility, we propose another *Mobility Estimation*
 942 scheme to predict the user direction based on the beam search

range over the past N_p superframes:

$$943 \quad \theta_{dev} = T_{lat} \sum_{i=1}^{N_p} |\theta_{dev}^i| / \sum_{i=1}^{N_p} T_{lat}^i, \quad (21)$$

945 where the angular deviation θ_{dev}^i of a mobile user in the
 946 i -th past superframe can be known from the beam tracking
 947 process, T_{lat}^i is the time taken to search for the new beam
 948 direction in the i -th past superframe and T_{lat} is the time
 949 duration from the end of training in the current superframe to
 950 the slot time assigned to the user. $\sum_{i=1}^{N_p} |\theta_{dev}^i| / \sum_{i=1}^{N_p} T_{lat}^i$ is an
 951 estimation of the averaged angular moving speed of the user.
 952 The sign $(+/-)$ of θ indicates whether the angular deviation
 953 is left or right, and we let the sign of θ_{dev} be the same as that
 954 in the previous superframe. With this estimation, in the time
 955 slot scheduled for the user, BS will first deviates its steering
 956 direction by θ_{dev} so that the signal can have a better chance to
 957 reach the mobile user. In case there is an estimation inaccuracy
 958 and thus the link breakage, the range of the beam searching
 959 will be much smaller.

VI. SIMULATIONS AND RESULTS

960 In this section, we evaluate the performance of our pro-
 961 posed schemes. As comparison, we will demonstrate the
 962 performances of the following schemes: (1) Proposed-adaptive
 963 (proposed scheme with adaptive training), (2) Proposed-
 964 nonadaptive (proposed scheme without adaptive training),
 965 (3) CS-nonadaptive (nonadaptive beamforming with baseline
 966 CS [18]), (4) HOL (since we can't find related uplink/downlink
 967 scheduling work to compare in mmWave realm, we adapt
 968 Head-of-Line delay based slot-by-slot scheduling in [21]
 969 for mmWave networks), (5) 802.11ad (codebook-based train-
 970 ing, IEEE standard in [2]), (6) Proposed-nonCS (proposed
 971 multi-level beam training without CS-based channel estima-
 972 tion assistance), (7) Proposed-BT-BA (proposed-adaptive with
 973 Beam Tracking and Beamwidth Adaptation), (8) Proposed-
 974 BT-BA-ME (Proposed-BT-BA with Mobility Estimation)
 975 and (9) Proposed-w/o-BT-BA (proposed-adaptive with no
 976 BT or BA).

A. Settings

977 In our performance studies, we consider the scenario with
 978 one AP and multiple devices. The mmWave channel is simu-
 979 lated from the model derived from NYC measurements in [19].
 980 The user traffic (both downlink and uplink) is generated as
 981 follows: user arrivals conform to Poisson distribution; traffic
 982 load parameters for different users are uniformly distributed
 983 between 400 and 500 packets per second; packet size ranges
 984 from 5 to 10 KB. More default parameters are presented
 985 in Table I. We studied the following performance metrics:
 986 (1) Training overhead (averaged temporal cost in a superframe
 987 to complete the beam training) and (2) Network throughput
 988 (total throughput among all users). The results are averaged
 989 among a long period (200 seconds).

B. Effect of SNR

990 Noise conditions in wireless mmWave networks greatly
 991 impact the data transmission quality thus network perfor-
 992 mances. At lower SNR, more training samples are needed to
 993

TABLE I
DEFAULT PARAMETERS

Parameter	Description
length of a BI or superframe	default 200ms
# AP/DEV antenna	128/64
Bandwidth/Carrier frequency	1 GHz/60 GHz
# QO level	4
# sector beams per QO level	4
# fine beams per setor, AP/DEV	8/4
# fine beams per setor, AP/DEV	8/4
# of users	20

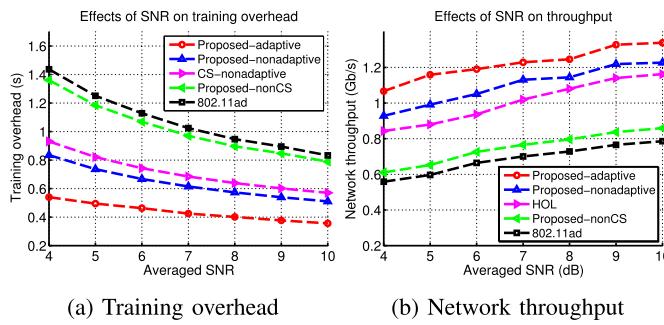


Fig. 5. Effects of SNR.

ensure a given quality of channel estimation. Figure 5(a) shows that when the channel condition is better, the beam training overhead is reduced. The gain of our scheme improves when the training overhead is larger at lower SNR. When SNR is 4dB, from 802.11ad to Proposed-nonCS, we observe an improvement of 7.29% in terms of training overhead. This shows the benefits of our design efforts on top of 802.11ad in Section III-A, including adapting the number of response slots to reduce collision, allowing AP to feedback in groups instead of device by device etc. Proposed-adaptive performs 62.41% better than 802.11ad and Proposed-nonadaptive 41.89%. The results demonstrate the benefits of our proposed beam training and adaptive schemes in reducing the training overhead and improving the training quality. Compared with 802.11ad, Propose-nonCS works differently in the coarse-level beam training but works in the same way for finding the optimal fine beams. It can be seen that our CS-based schemes perform much better than Proposed-nonCS, which confirms that the training overhead is majorly affected by fine beam training and our CS-based schemes significantly reduce the fine beam training overhead by exploiting our CS-based multi-resolution channel estimation scheme. Compared with CS-nonadaptive, our proposed schemes perform better with much lower training overhead. Proposed-adaptive and Proposed-nonadaptive outperform CS-nonadaptive by 41.99% and 10.31%, respectively. Different from conventional CS-nonadaptive schemes, besides adaptive beamforming, we also exploit the block features of mmWave channels and take advantage of coarse training to largely reduce unnecessary measurements, and exploit multi-resolution channel estimation which take advantage of samples from different levels of measurements and block sparsity of mmWave channel for higher quality channel reconstruction.

As expected, in Figure 5(b), the throughput increases with the SNR, thanks to higher achievable data rates and

reduced training overhead. At SNR of 4dB, compared with 802.11ad, we observe a throughput improvement of 90.96% for Proposed-adaptive, 66.18% for Proposed-nonadaptive and 9.31% for Propose-nonCS. We again see that the Proposed-nonCS outperforms 802.11ad by reducing the training overhead involved in coarse-level beams and our CS-based schemes significantly outperform Propose-nonCS and 802.11ad by further reducing the fine beam training overhead thus improving the throughput. The comparison also confirms that the advantages of our proposed schemes and the adaptive beam training in enabling more efficient radio resource allocation. Proposed-adaptive outperforms Proposed-nonadaptive in throughput because (1) it can reduce training overhead and (2) nonadaptive scheme may not train sufficient number of beams or find the best quality beam to accurately estimate channel, especially under low SNR. Compared with HOL, Proposed-adaptive and Proposed-nonadaptive improve the throughput by 31.67% and 14.58%, respectively. Our joint training and transmission scheduling scheme performs better by concurrently scheduling radio resources for beam training, data transmissions and beam tracking. Also, our virtual scheduling allows for burst transmissions in multiple slots, reducing the overhead for synchronization and attached packet header in each slot.

From Figures 5a and 5b, we can clearly see the tradeoffs between beam training duration and network throughput. As beam training overhead increases, there is likely a shorter period for data transmissions, which affects the throughput. Since our scheme jointly schedules beam training and data transmissions based on network conditions, we are able to better trade off between training and transmissions to achieve higher performance than the other schemes compared.

C. Effect of Antenna Number

The number of antennas greatly affects the number of possible beams to be measured thus the training overhead. The network throughput is significantly impacted by the beam training overhead. The larger the training overhead, the less the time available for data transmission thus reducing the throughput. On the other hand, more antennas will also introduce higher beamforming gain in transmissions.

In Figure 6a, the training overhead grows exponentially with the number of antennas. With a larger antenna number, there will be many more possible beams to be trained. When the number of AP antennas is 256, compared with 802.11ad, we observe an overhead reduction of 61.25% when Proposed-adaptive is used and 40% overhead reduction when using Proposed-nonadaptive. This demonstrates the effectiveness of our proposed schemes in reducing the training overhead and the adaptive beam training further reduces the overhead.

In Figure 6b, the throughput increases when the number of antennas increases, but the gain doesn't seem to fully reflect the gain from antenna number. Obviously, the higher training overhead compromises the beamforming gain, which further confirms that it is important to control the training overhead. We also see that when AP has 256 antennas, Proposed-adaptive performs 74.41% better than 802.11ad and

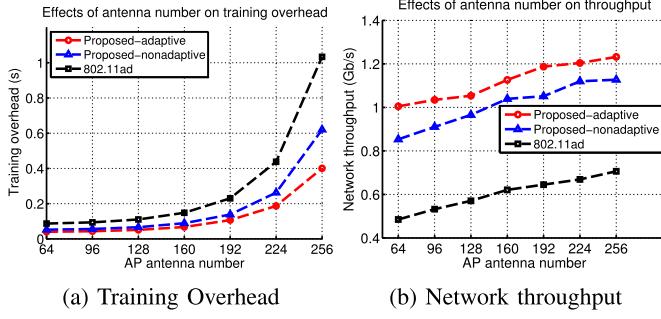


Fig. 6. Effects of antenna number.

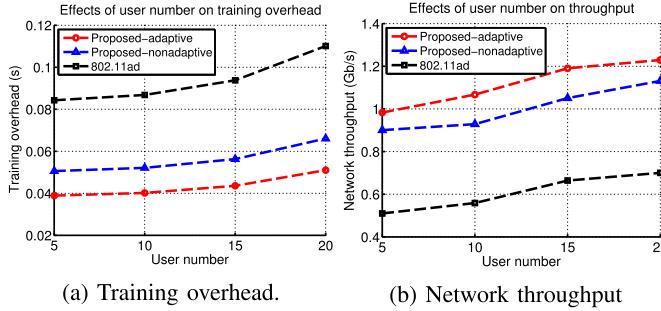


Fig. 7. Effects of user number.

Proposed-nonadaptive 59.56%, which indicates the benefits of our proposed beam training and adaptive schemes in reducing the training overhead for higher throughput.

D. Effect of User Number

The number of users in the network has a significant impact on the network performances as it affects the efficiency of beam training and AP association thus achievable data transmission rate and the allocation of different data transmission periods. While keeping each user's traffic load the same, we vary the number of users.

Figure 7a shows that the overall training overhead increases with the number of users, as longer time is needed to complete the channel training for more users. The performance of both of our proposed schemes outperform 802.11ad, and the improvement increases at higher number of users. At a user number of 10, compared to 802.11ad, our Proposed-adaptive and Proposed-nonadaptive have an overhead reduction of 53.53% and 40.03%, respectively. In Figure 7b, the network throughput increases with the number of users, which is not difficult to understand since more users are joining the network for data transmission. Both of our proposed schemes significantly increase the network throughput under different number of users. At the user number of 10, Proposed-adaptive and Proposed-nonadaptive outperform 802.11ad by 94.17% and 66.11%, respectively. This demonstrates the effectiveness of our MAC schemes in accommodating more network traffic.

E. Effect of User Mobility

The highly directional transmissions of mmWave networks make the network performances sensitive to the movement

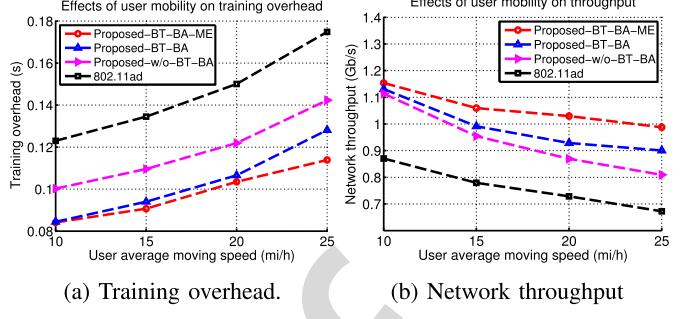


Fig. 8. Effects of user mobility.

of users. We vary the mobility levels of users and study the benefits and tradeoffs of our proposed beam tracking, beamwidth adaptation and mobility estimation schemes.

In Figure 8a, our proposed schemes significantly outperform 802.11ad, and the improvement increases as the users move faster. Our Proposed-BT-BA-ME further improves from Proposed-BT-BA and Proposed-w/o-BT-BA with the use of mobility estimation. At the average moving speed of 25 mi/h, the Proposed-w/o-BT-BA, Proposed-BT-BA, Proposed-BT-BA-ME outperform 802.11ad by 18.59%, 26.71% and 34.86%, respectively. While user mobility causes link disconnections, our flexible beam training and beamwidth adaptation with mobility prediction reduce the training overhead and delay to realign the beam. The beamwidth-adaption is very effective in tracking the beams under mobility while the mobility estimation helps to further improve the performance.

In Figure 8(b), the network throughput degrades as the users' mobility level increases, which shows the sensitivity of mmWave networks to user movement. At the user average moving speed of 25 mi/h, the Proposed-w/o-BT-BA, Proposed-BT-BA and Proposed-BT-BA-ME outperform 802.11ad by 20.31%, 33.90% and 46.85%, respectively. The results validate the benefits of our proposed beam tracking components and their effectiveness in reducing the training overhead to maintain connectivity for mobile users. The reduction of tracking and training overhead further allows more resources for data transmissions to improve the throughput.

VII. CONCLUSION

With its potential of supporting multi-Gbps data transmissions, millimeter-wave technique is a promising candidate for next-generation wireless communications. However, the need of highly directional transmission brings great challenges in the design of medium access control in mmWave networks. This paper addresses the need of a low-cost multi-user beam training scheme with the concurrent use of multi-level coarse training and multi-resolution block-sparse channel estimation for fine beam alignment. We also jointly allocate radio resources for beam training and data transmissions, design an efficient virtual scheduling scheme based on user application types and demands, and incorporate flexible beam tracking scheme for low-overhead beam re-alignment in the presence of user mobility and channel dynamics. Simulation results show the significant benefits of our proposed design

1158 compared with 802.11ad and also the tradeoffs in various
 1159 design considerations in the proposed framework.

1160

REFERENCES

- 1161 [1] H. Shokri-Ghadikolaei, C. Fischione, G. Fodor, P. Popovski, and
 1162 M. Zorzi, "Millimeter wave cellular networks: A MAC layer perspective," *IEEE Trans. Commun.*, vol. 63, no. 10, pp. 3437–3458, Oct. 2015.
 1163 [2] *IEEE Standard for Information Technology—Local and Metropolitan
 1164 Area Networks—Specific Requirements—Part 11: WLAN MAC and PHY
 1165 Specifications Amendment 3: Enhancements for Very High Throughput
 1166 in the 60 GHz Band*, IEEE Standard 802.11ad-2012, 2012.
 1167 [3] S. Sur, V. Venkateswaran, X. Zhang, and P. Ramanathan, "60 GHz indoor
 1168 networking through flexible beams: A link-level profiling," in *Proc. ACM
 1169 SIGMETRICS Int. Conf. Meas. Modeling Comput. Syst.*, New York, NY,
 1170 USA, Jun. 2015, pp. 71–84.
 1171 [4] T. Baykas *et al.*, "IEEE 802.15.3c: The first IEEE wireless standard
 1172 for data rates over 1 Gb/s," *IEEE Commun. Mag.*, vol. 49, no. 7,
 1173 pp. 114–121, Jul. 2011.
 1174 [5] J. Wang *et al.*, "Beam codebook based beamforming protocol for
 1175 multi-Gbps millimeter-wave WPAN systems," in *Proc. IEEE Global
 1176 Telecommun. Conf.*, Nov./Dec. 2009, pp. 1–6.
 1177 [6] Z. Yang, P. H. Pathak, Y. Zeng, and P. Mohapatra, "Sensor-assisted
 1178 codebook-based beamforming for mobility management in 60 GHz
 1179 WLANs," in *Proc. IEEE 12th Int. Conf. Mobile Ad Hoc Sensor Syst.*,
 1180 Oct. 2015, pp. 333–341.
 1181 [7] P. Schniter and A. Sayee, "Channel estimation and precoder design for
 1182 millimeter-wave communications: The sparse way," in *Proc. 48th Asilomar
 1183 Conf. Signals, Syst. Comput.*, Pacific Grove, CA, USA, Nov. 2014,
 1184 pp. 273–277.
 1185 [8] A. Alkhateeb, G. Leus, and R. W. Heath, Jr., "Compressed sensing
 1186 based multi-user millimeter wave systems: How many measurements
 1187 are needed?" in *Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
 1188 (ICASSP)*, Apr. 2015, pp. 2909–2913.
 1189 [9] D. Ramasamy, S. Venkateswaran, and U. Madhow, "Compressive
 1190 adaptation of large steerable arrays," in *Proc. IEEE ITA*, Feb. 2012,
 1191 pp. 234–239.
 1192 [10] A. Zhou, X. Zhang, and H. Ma, "Beam-forecast: Facilitating mobile
 1193 60 GHz networks via model-driven beam steering," in *Proc. IEEE
 1194 INFOCOM*, May 2017, pp. 1–9.
 1195 [11] X. An, S. Zhang, and R. Hekmat, "Enhanced MAC layer protocol for
 1196 millimeter wave based WPAN," in *Proc. IEEE 19th Int. Symp. Personal,
 1197 Indoor Mobile Radio Commun.*, Sep. 2008, pp. 1–5.
 1198 [12] M. X. Gong, R. Stacey, D. Akhmetov, and S. Mao, "A directional
 1199 CSMA/CA protocol for mmWave wireless pans," in *Proc. IEEE Wireless
 1200 Commun. Netw. Conf. (WCNC)*, Apr. 2010, pp. 1–6.
 1201 [13] H. Shokri-Ghadikolaei, L. Gkatzikis, and C. Fischione, "Beam-searching
 1202 and transmission scheduling in millimeter wave communications," in
 1203 *Proc. IEEE Int. Conf. Commun. (ICC)*, Jun. 2015, pp. 1292–1297.
 1204 [14] *IEEE Standard for Information Technology—Local and Metropolitan
 1205 Area Networks—Specific Requirements—Part 15.3: Amendment 2:
 1206 Millimeter-Wave-Based Alternative Physical Layer Extension*, IEEE
 1207 Standard 802.15.3c-2009, amendment to IEEE std 802.15.3-2003,
 1208 Oct. 2009.
 1209 [15] C. R. Berger, Z. Wang, J. Huang, and S. Zhou, "Application of com-
 1210 pressive sensing to sparse channel estimation," *IEEE Commun. Mag.*,
 1211 vol. 48, no. 11, pp. 164–174, Nov. 2010.
 1212 [16] J. Mo, P. Schniter, N. G. Prelicic, and R. W. Heath, Jr., "Channel
 1213 estimation in millimeter wave MIMO systems with one-bit quantiza-
 1214 tion," in *Proc. 48th Asilomar Conf. Signals, Syst. Comput.*, Nov. 2014,
 1215 pp. 957–961.
 1216 [17] R. Méndez-Rial, C. Rusu, A. Alkhateeb, N. González-Prelicic, and
 1217 R. W. Heath, Jr., "Channel estimation and hybrid combining for
 1218 mmWave: Phase shifters or switches?" in *Proc. Inf. Theory Appl.
 1219 Workshop (ITA)*, Feb. 2015, pp. 90–97.
 1220 [18] A. Alkhateeb, O. El Ayach, G. Leus, and R. W. Heath, Jr., "Channel
 1221 estimation and hybrid precoding for millimeter wave cellular systems,"
 1222 *IEEE J. Sel. Topics Signal Process.*, vol. 8, no. 5, pp. 831–846,
 1223 Oct. 2014.
 1224 [19] M. R. Akdeniz *et al.*, "Millimeter wave channel modeling and cellular
 1225 capacity evaluation," *IEEE J. Sel. Areas Commun.*, vol. 32, no. 6,
 1226 pp. 1164–1179, Jun. 2014.
 1227 [20] L. X. Cai, L. Cai, X. Shen, and J. W. Mark, "REX: A randomized
 1228 exclusive region based scheduling scheme for mmWave WPANs with
 1229 directional antenna," *IEEE Trans. Wireless Commun.*, vol. 9, no. 1,
 1230 pp. 113–121, Jan. 2010.
 1231
- 1232 [21] Y. Chen, X. Wang, and L. Cai, "HOL delay based scheduling in wireless
 1233 networks with flow-level dynamics," in *Proc. IEEE Global Commun.
 1234 Conf.*, Dec. 2014, pp. 4898–4903.
 1235 [22] M. K. Haider and E. W. Knightly, "Mobility resilience and overhead
 1236 constrained adaptation in directional 60 ghz wlans: Protocol design
 1237 and system implementation," in *Proc. 17th ACM Int. Symp. Mobile
 1238 Ad Hoc Netw. Comput.*, New York, NY, USA, Jul. 2016, pp. 61–70.
 1239 doi: [10.1145/2942358.2942380](https://doi.org/10.1145/2942358.2942380).
 1240 [23] R. A. Horn and C. R. Johnson, *Topics in Matrix Analysis*. Cambridge,
 1241 U.K.: Cambridge Univ. Press, 1991.
 1242 [24] C. G. Khatri and C. R. Rao, "Solutions to some functional equations
 1243 and their applications to characterization of probability distributions,"
 1244 *Sankhyā, Indian J. Statist. A*, vol. 30, no. 2, pp. 167–180, Jun. 1968.
 1245 [25] M. Stojnic, F. Parvaresh, and B. Hassibi, "On the reconstruction of
 1246 block-sparse signals with an optimal number of measurements," *IEEE
 1247 Trans. Signal Process.*, vol. 57, no. 8, pp. 3075–3085, Aug. 2009.

Jie Zhao received the B.S. degree in telecommunications engineering from the Huazhong University of Science and Technology, Wuhan, China, and the Ph.D. degree in electrical engineering from the State University of New York at Stony Brook, New York, USA. His research interests include millimeter-wave communications, cognitive radio networks, and networked sensing and detection.

Dongliang Xie received the Ph.D. degree from the Beijing Institute of Technology, China, in 2002. He is currently a Professor with the State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications (BUPT), China. His research interests include resource-constrained wireless communication and information-centric network, including architecture of ubiquitous and heterogeneous network, complex network analysis, content retrieval, and service management.

Xin Wang received the B.S. and M.S. degrees in telecommunications engineering and wireless communications engineering from the Beijing University of Posts and Telecommunications, Beijing, China, and the Ph.D. degree in electrical and computer engineering from Columbia University, New York, NY, USA. She was a Member of Technical Staff in the area of mobile and wireless networking at Bell Labs Research, Lucent Technologies, NJ, USA, and an Assistant Professor with the Department of Computer Science and Engineering, State University of New York at Buffalo, Buffalo, NY, USA. She is currently an Associate Professor with the Department of Electrical and Computer Engineering, State University of New York at Stony Brook, Stony Brook, NY, USA. Her research interests include algorithm and protocol design in wireless networks and communications, mobile and distributed computing, networked sensing and detection, and machine learning. She has served in executive committee and technical committee for numerous conferences and funding review panels. She achieved the NSF Career Award in 2005 and the ONR Challenge Award in 2010. She serves as an Associate Editor for the *IEEE TRANSACTIONS ON MOBILE COMPUTING*.

Arjuna Madanayake received the B.Sc. degree in electronic and telecommunication engineering from the University of Moratuwa, Sri Lanka, in 2002, and the M.Sc. and Ph.D. degrees in electrical engineering from the University of Calgary, Alberta, Canada. From 2010 to 2018, he was a tenured Faculty Member with the University of Akron, Akron, OH, USA. In 2018, he joined the Faculty of FIU in August 2018. He is currently an Associate Professor with Florida International University (FIU), Miami, FL, USA. His research interests are in array signal processing, circuits, systems, electronics, fast algorithms, and computer architecture.