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Abstract We present the Refinement Calculus of Re-
active Systems Toolset, an environment for composi-

tional formal modeling and reasoning about reactive
systems, built around Isabelle, Simulink, and Python.
The toolset implements the Refinement Calculus of Re-

active Systems (RCRS), a contract-based refinement
framework inspired by the classic Refinement Calcu-
lus and interface theories. The toolset formalizes the
entire RCRS theory in about 30000 lines of Isabelle

code. The toolset also contains a translator of Simulink
diagrams, and a formal analyzer implemented on top
of Isabelle. We present the main functionalities of the

RCRS Toolset via a series of pedagogical examples, and
also describe a larger case study from the automotive
domain.

Keywords Block diagrams · Compositionality ·
Refinement · Contract synthesis · Formal verification ·
Theorem proving · Isabelle · Simulink

1 Introduction

The Refinement Calculus of Reactive Systems (RCRS)

is a compositional framework for modeling and rea-
soning about reactive systems. One of the motivations
behind RCRS has been to model and formally reason
about industrial-strength systems, for instance, those
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modeled in the widespread Simulink environment by
the Mathworks. RCRS has been inspired by component-

based frameworks such as interface automata [9] and
has its origins in the theory of relational interfaces [41],
but also borrows from the classic refinement calculus [4].

RCRS allows compositional modeling of input-

output systems which are both non-deterministic
(meaning that for a given input, there could be many
possible outputs) and non-input-receptive (meaning

that some inputs are illegal). Being able to model sys-
tems that have both these characteristics in turn en-
ables static analysis similar to type checking [41,43].

The ability to model systems which are both non-

deterministic and non-input-receptive is also present in
the theory of relational interfaces. But relational inter-
faces are limited to safety properties. The main motiva-
tion behind RCRS has been to lift this limitation, and
to be able to describe both safety and liveness prop-
erties. This has been achieved by abandoning the re-
lational semantics of relational interfaces and adopting

the much more powerful semantics of the refinement
calculus (RC) [4]. RC is a compositional modeling and
verification framework for sequential programs. RCRS
extends RC to reactive systems. One of the main ideas
is to adapt the semantics of RC, which is based on pred-
icate transformers [11], to property transformers which

are suitable for expressing dynamic behaviors. The the-
ory of RCRS has been introduced in [33] and is thor-
oughly described in [30].

This paper does not focus on the theory, but rather

on the implementation of RCRS, called the RCRS
Toolset. The RCRS Toolset, illustrated in Fig. 1, con-
sists of the following:

– A full formalization of the RCRS theory in the Is-
abelle proof assistant [28].
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Fig. 1: The RCRS Toolset.

– A set of analysis procedures for RCRS models, im-
plemented on top of Isabelle and collectively called
the Analyzer.

– A Translator of Simulink diagrams into RCRS code.
– A library of basic RCRS components, including a

set of basic Simulink blocks modeled in RCRS.

This paper revises and extends a shorter version
presented previously in [14]. An archived and open-
source, but out of date version of the RCRS Toolset

is available in a figshare repository [15]. The latest ver-
sion of the RCRS Toolset is distributed under the MIT
license and can be downloaded from the RCRS web

page: http://rcrs.gitlab.io/. The distribution pro-
vides all data (code and models) required to reproduce
all the results of this paper.

To use the RCRS Toolset one needs the Isabelle 2018
proof assistant, available from https://isabelle.in.

tum.de/. If one wishes to use the Simulink Transla-

tor, then one also needs Python 2.7. Python is also
needed to execute any simulation code generated auto-
matically by the Analyzer. Note that Simulink from the

Mathworks is not required, unless one wants to build
Simulink models. However, RCRS can be used inde-
pendently from Simulink, since models can be written

directly in RCRS as illustrated in the following sections.

2 Modeling Systems in RCRS

RCRS provides a language of components to model sys-
tems in a modular fashion. Components can be either
atomic or composite.

2.1 Atomic Components

Atomic components can be described as input-output
functions, input-output relations, symbolic transition
systems with inputs and outputs, or property specifi-
cations (e.g., in linear temporal logic) with inputs and
outputs. We give examples of all these types of atomic

components in what follows. The semantics of atomic
components are defined in terms of monotonic predi-
cate transformers [11] or monotonic property transform-
ers [33,30]. We do not define these semantic objects in
this paper, and refer the reader to [30] instead.

Let us begin with some simple examples of compo-
nents. These are written in the RCRS Isabelle syntax,
so this is legal RCRS code (in what follows, blue text

denotes RCRS/Isabelle keywords)1:

definition "Id = [: x ; y . y = x :]"

definition "Add = [: (x, y) ; z . z = x + y :]"

definition "Constant c = [: x::unit ; y . y = c :]"

Id models the identity function: it takes input x
and returns y such that y = x. Add takes a pair of
inputs x and y and returns as output z the sum of x

and y. Constant is parameterized by c, takes no input
(equivalent to specifying its input variable to be of type
unit, meaning the type that contains a single element),

and returns an output which is always equal to c. The
constraints between input and output variables, such as
y = x, z = x+y, etc., are also referred to as the contract
of the component, for reasons that will become clear in
what follows.

All three components, Id, Add, and Constant, are
deterministic (meaning that their output is unique,
given the input) and input-receptive (meaning that all
inputs are legal – modulo typing restrictions). Because
these components are deterministic, we can also use a
specialized functional syntax that RCRS provides to
describe them, as follows:

definition "Id′ = [- x ; x -]"

definition "Add′ = [- (x, y) ; x + y -]"

definition "Constant′ c = [- x::unit ; c -]"

Each of the primed components above are semanti-
cally equivalent to their unprimed versions. More gen-

1 In order to write special characters in Isabelle such as
;, one has to type the TeX corresponding command (e.g.,
\leadsto) and press the Tab key. Then the special character
will be typed in the Isabelle jEdit interface as shown in Fig. 5.

http://rcrs.gitlab.io/
https://isabelle.in.tum.de/
https://isabelle.in.tum.de/
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erally, the component [- x ; f(x) -], where f is a
function, is equivalent to [: x ; y . y = f(x) :].
The reason for having the syntax [: :] is that it can
be used also for relations (i.e., non-deterministic sys-
tems), as explained below. Using [- -] instead of [:
:] to describe deterministic systems aids the Analyzer

to perform simplifications – see Section 5.

All components presented so far are stateless, i.e.,
“memory-less”. RCRS can also describe stateful com-
ponents, i.e., components with state. The way stateful
components are modeled in RCRS is by specifying con-
straints on the input variables, output variables, cur-
rent state and next state variables. An example is the
UnitDelay component:

definition "UnitDelay =

[: (x,s) ; (y,s′) . y = s ∧ s′ = x :]"

In the above description, s is the current-state variable
and s′ is the next-state variable. What the specifica-

tion of UnitDelay says is that the output y is always
equal to the current state, and that the input x is equal
to the next state. This effectively defines that the out-

put at discrete time step t + 1 is equal to the input
at time t. Note that this specification only defines the
transition function and output function of UnitDelay.
It does not define its initial state, neither the set of

reachable states (which needs to somehow be computed
iteratively, might be infinite, etc.). UnitDelay is deter-
ministic, so it could more appropriately be described

as:

definition "UnitDelay′ = [- (x,s) ; (s,x) -]"

We note that parentheses are not needed in the listing
of input and output variables, so that the above could
be also written as:

definition "UnitDelay′ = [- x, s ; s, x -]"

RCRS is a discrete-time framework. Continuous-
time systems can be modeled by discretizing time. We
do this in particular for all continuous-time Simulink

blocks. We handle continuous-time blocks with a fixed-
step forward Euler integration scheme. For example,
Simulink’s integrator block (which is deterministic) can
be defined in two equivalent ways as follows:

definition "Integrator dt =

[: x, s ; y, s′. y = s ∧ s′ = s + x * dt :]"

definition "Integrator′ dt =

[- x, s ; s, s + x * dt -]"

All the components presented so far are input-
receptive. As mentioned earlier, a powerful feature of
RCRS is its ability to specify non-input-receptive com-
ponents, i.e., components which reject some inputs as
illegal. For example, consider the following alternative

definitions of a square-root component, where sqrt de-
fines the square root function for floats in Isabelle.

definition "ReceptiveSqrt =

[: x ; y . x ≥ 0 −→ y = sqrt x :]"

definition "SqrRoot =

{. x . x ≥ 0 .} o [- x ; sqrt x -]"

definition "NonDetSqrt =

{. x . x ≥ 0 .} o [: x ; y . y ≥ 0 :]"

ReceptiveSqrt is input-receptive and non-
deterministic. This component accepts all inputs. If
the input x is non-negative, then the output is the
(unique) square root of x. If, however, x is negative,
then the output can be anything, since the implication
x ≥ 0 −→ y = sqrt x is satisfied for any y when x

< 0.

SqrRoot is non-input-receptive: its input x is re-
quired to satisfy x≥0. This is specified by the syntax
{. x . x ≥ 0 .}. Formally, syntax of the form {.
.} denotes a monotonic predicate/property transformer

(MPT) of type assert, whereas [: :] and [- -]

denote demonic update MPTs [30]. The combination of
such MPTs can be seen as resulting in contracts that

constrain the input variables. For example, the contract
of SqrRoot can be seen as being the formula x ≥ 0 ∧
y = sqrt x, which constrains x to be non-negative. In
contrast, the contract of ReceptiveSqrt is x ≥ 0 −→
y = sqrt x, which does not constrain x at all.

We also remark that SqrRoot may be considered
non-atomic as it is defined as the serial composition (de-

noted o ) of two MPTs. However, we include SqrRoot

in the list of atomic components, because the pattern
P ◦ Q, where P is an assert MPT and Q is a demonic

update MPT, is the standard way to define non-input-
receptive atomic components in RCRS. We finally note
that SqrRoot is deterministic (in essence, SqrRoot can
be viewed as a partial function).

NonDetSqrt is a non-deterministic version of
SqrRoot. Like SqrRoot, NonDetSqrt also requires its
input to be non-negative. But contrary to SqrRoot,
NonDetSqrt returns an arbitrary (although non-
negative) output y, and not necessarily the square-root
of input x. So NonDetSqrt is both non-input-receptive
and non-deterministic.

As we shall see in Section 3, a refinement relation-
ship exists between the above three square-root com-
ponents.

One of the design goals of RCRS has been to be
able to capture liveness properties. For this and other
purposes, RCRS allows to describe components using
the temporal logic QLTL, an extension of LTL with
quantifiers [40,30]. For example, consider a component
A which takes as input an infinite sequence of x’s and
returns as output an infinite sequence of y’s. A re-
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Fig. 2: The three composition operators of RCRS.

quires that its input x is infinitely often true, and in
turn guarantees that its output y is infinitely often
true. Therefore, A is both non-input-receptive and non-

deterministic. In RCRS, A can be defined as follows:

definition "A = {. 2 3 (λ x . x 0) .}

o [: 2 3 (λ x y . y 0) :]"

Let X = (λ x . x 0) and Y = (λ x y . y 0).
Then, X is a property (predicate) on a Boolean trace

x which is true when x is true at time 0. X models the
LTL formula x over a single atomic proposition x. Sim-
ilarly, Y models the LTL formula y, but over the atomic
propositions x,y. Property Y is true for traces x, y if

y is true at time 0.

To be able to express LTL formulas without tem-
poral operators like X and Y in a more compact form,

we also introduced in Isabelle the binding (ltl x y z

. expr). Then, a state formula such as x + y < 5 ∧
z can be turned into an LTL formula by simply writ-
ing (ltl x y z . x + y < 5 ∧ z). Using this bind-
ing, component A above can be rewritten as:

definition "A = {. 2 3 (ltl x . x) .}

o [: 2 3 (ltl x y . y) :]"

2.2 Composite Components

Composite components are formed by composing other
(atomic or composite) components using three compo-
sition operators, as illustrated in Fig. 2: C o C ′ (com-
position in series) connects outputs of C to inputs of C ′;
C ** C ′ (composition in parallel) “stacks” C and C ′

“on top of each other”; and feedback(C) connects the
first output of C to its first input. These three operators
are the only composition primitives available in RCRS.

They are sufficient to express any block diagram, as
described in Section 6.

Parallel composition is a total operator, meaning
that C ** C ′ is always defined, no matter what C and
C ′ are. But serial composition and feedback are partial
operators.

C o C ′ is only defined when the type of
the output of C matches the type of the input
of C ′. For example, Add o SqrRoot is legal, but
SqrRoot o Add is not, because SqrRoot has one out-
put whereas Add has two inputs. On the other hand,
(SqrRoot ** SqrRoot) o Add is legal. Id o Add is
also legal because Id is polymorphic.

Beyond the above typing requirements, there are
also semantic compatibility requirements stemming
from the receptiveness constraints that components im-
pose on their input values. For example, consider the
component

definition "Syst = (Constant -1) o SqrRoot"

where we instantiate a constant with value −1 and
connect it in series with the SqrRoot component de-
fined above. This composition is a-priori legal, since

(Constant -1) has a single output, SqrRoot has a sin-
gle input, and their types match. But Syst should be
semantically invalid, because SqrRoot requires its in-

puts to be non-negative and (Constant -1) outputs a
negative number. Indeed, as we shall see in Section 3,
RCRS can automatically simplify Syst and show that
it is semantically equivalent to the MPT ⊥ which cap-

tures all invalid components.

feedback(C) is defined when C has at least two
inputs and at least two outputs. Morever, the types
of the first input and of the first output must match.

The semantics of feedback for non-deterministic and
non-input-receptive systems is a non-trivial topic [34,
30] and beyond the scope of this paper. In the cur-
rent implementation of the RCRS Toolset, feedback is
generally well-defined only when the first output does
not depend on the first input. This condition is satis-
fied when there are no algebraic loops in the system, as
explained in Section 6.

2.3 Running Examples

Consider the Simulink diagrams of Fig. 3. The diagram
of Fig. 3a models a system which computes the square
root of its input. The diagram in Fig. 3b models a sys-
tem which computes the sum of all previously received
inputs. That is, the output at step i is equal to the sum
of all inputs received until and including step i−1, plus
the initial value of the UnitDelay.

These diagrams can be captured in RCRS as shown
in Fig. 4 (we will see in Section 6 how such RCRS code
can be generated automatically using our Translator –
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for now we simply want to illustrate how such systems
can be modeled in RCRS). The first four lines in each
of the RCRS models define a theory, import the rele-
vant files from the RCRS implementation and declare
the results to be used during the analysis. Next, the
atomic components of each model are defined: Sqrt in
the first case, and Add and Delay in the second. Since
the output of the UnitDelay must be fed to both Add

and Out, we define the Split atomic component which
duplicates its input value into two outputs (fan-out).
Finally, the RCRS models for the two diagrams are

defined by composing the atomic components into a
top-level composite components called SqrtSyst and
Summation, respectively.

Since the first diagram is made only of one atomic

component (Sqrt) its top-level model SqrtSyst is de-
fined simply as Sqrt. For the second diagram, Add is
first composed in parallel with Id (i.e., Add ** Id)

in order to match the two inputs of UnitDelay,
and then composed in series with the latter, yield-
ing (Add ** Id) o UnitDelay. The last expression

represents a component C with two outputs, since
UnitDelay has two outputs.2 We want to compose
C in series with a Split component, which would
model the fact that the output wires of the UnitDe-
lay Simulink block in Fig. 4b is split into two wires.
But we cannot directly compose C with Split be-
cause C has two outputs whereas Split has a single

input. Therefore, we first put Split in parallel with
Id, and then compose C in series with the result, yield-
ing (Add ** Id) o UnitDelay o (Split ** Id). The
latter expression captures a composite component D
with 3 inputs and 3 outputs, and we want to connect
its first output to its first input, thereby capturing the
feedback look in the diagram of Fig. 4b. But we can-
not apply the feedback operator directly, because the

2 Note that UnitDelay is the RCRS component, and not
the UnitDelay Simulink block. The latter has a single output
wire, but in RCRS it is modeled as a stateful block which
has an extra input modeling the current state and an extra
output modeling the next state.

theory SqrtSyst imports ...

begin

named_theorems basic_simps

lemmas basic_simps = simulink_simps

definition [basic_simps]: "Sqrt = {. x . x≥ 0}

o [- x ; s_sqrt x -]"

simplify_RCRS "SqrtSyst = Sqrt" "b" "d"

end

(a) Square root

theory Summation imports ...

begin

named_theorems basic_simps

lemmas basic_simps = simulink_simps

definition [basic_simps]: "Add = [- f, g ; f+g -]"

definition [basic_simps]: "UnitDelay =

[- d, s ; s, d -]"

definition [basic_simps]: "Split = [- a ; a, a -]"

simplify_RCRS "Summation =

feedback([- f, g, s ; (f, g), s -]

o (Add ** Id) o UnitDelay o (Split ** Id)

o [- (f, h), s′ ; f, h, s′ -])"

"(g, s)" "(h, s’)"

end

(b) Summation

Fig. 4: Capturing the Simulink diagrams of Fig. 3 in

RCRS.

inputs and outputs of D are structured in the form
(a,b),c. We therefore use two switches, which in that
case “flatten” the inputs and outputs of D to a,b,c.

Once this is done, we can apply feedback and get the
final top-level composite component representing the
entire diagram.

Then, the simplify RCRS keyword is used to invoke
the Analyzer as described in Section 5.

As we shall see in Section 6, the same block diagram
can be captured as (translated into) many different but
semantically equivalent RCRS models. Fig. 4 presents
only one of the possible RCRS models for each of the

diagrams of Fig. 3. Alternative representations are dis-
cussed in Section 6.

3 Basic Reasoning in RCRS: Demonstration

Let us illustrate the most important capabilities of
the RCRS reasoning engine in the form of a demo.
The demo can be found in the RCRS distribution at
http://rcrs.gitlab.io/ under the Isabelle folder,
file RCRS Demo.thy. The file can be processed with Is-

abelle version 2018.

The initial skeleton of the file is as shown below:

theory RCRS_Demo imports "Simulink/SimplifyRCRS"

http://rcrs.gitlab.io/
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begin

named_theorems basic_simps

lemmas [basic_simps] = comp_func_simps

end

This code imports the RCRS Isabelle theories and
declares the collection of theorems and lemmas that will
be used later for simplification.

3.1 Simplification

We next define three RCRS components:

definition [basic_simps]: "SqrRoot = {. x. x≥0 .}

o [- x ; sqrt x -]"

definition [basic_simps]: "Cst1 = [- u::unit ; 4 -]"

simplify_RCRS "Syst1 = Cst1 o SqrRoot" "u" "y"

SqrRoot models the square root function as we de-
scribed in Section 2. Cst1 models the constant 4. The
composite component Syst1 is formed by composing
Cst1 and SqrRoot in series. To define Syst1 we use the
construct simplify RCRS which performs a number of
things as explained in Section 5. First, it defines Syst1

= Cst1 o SqrRoot. Second, it gives names to the ex-
ternal inputs and outputs of Syst1: "u" and "y" in this
case. Third, it calls the RCRS Analyzer. The Analyzer

performs expansion and simplification and finds that
Syst1 simplifies to [- u ; 2 -]. To actually see the
result of this simplification, we need to type:

thm Syst1_simp

The construct thm name instructs Isabelle to display

the theorem/lemma specified by name in Isabelle’s jEdit
output window (Fig. 5). In our case, by placing the cur-
sor on the line thm Syst1 simp, we can see the simpli-

fied version of Syst1 in the Isabelle’s output window
as shown in Fig. 5:

Syst1 = [- u ; 2 -]

This result is to be expected, as the whole system out-
puts the square root of 4, which is 2.

3.2 Contract Checking

Let us now see what happens if we change the constant
to −1:

definition [basic_simps] : "Cst2 = [- u ; -1 -]"

simplify_RCRS "Syst2 = Cst2 o SqrRoot" "u" "y"

thm Syst2_simp

As before, by placing the cursor on the line thm

Syst2 simp, we can see in the Isabelle’s output window
the simplified version of Syst2:

Syst2 = ⊥

Fig. 5: Simplification in RCRS. The result is shown out-
lined in red in Isabelle’s output window.

Now the Analyzer simplifies Syst2 to ⊥, which mod-
els the invalid component as stated in Section 2.2. This

result indicates an inconsistency in our model. The in-
consistency here is obviously that −1 violates the input
condition of SqrRoot, meaning that the components
Const2 and SqrRoot are incompatible. This incompat-

ibility detection can be seen as advanced static type
checking.

So far, all our components were deterministic. Let us

continue our demo by showing what happens if we try to
connect SqrRoot to the non-deterministic component
true which can output any value:

definition [basic_simps] : "true =

[: u ; y. True :]"

Component true can be seen as modeling a “black-
box” system for which we have no information (e.g., no
available source code) or which we are unable to ana-
lyze. Obviously, in such a case, it is difficult to guaran-
tee anything. Therefore, connecting true to SqrRoot

should result in an incompatibility. Let us see what
RCRS does. First, we instruct the Analyzer to use also

the results for the relational monotonic predicate trans-
formers.

lemmas [basic_simps] = comp_func_simps

comp_rel_simps

Next, we invoke the Analyzer for the desired system.

simplify_RCRS "Syst3 = true o SqrRoot" "u" "y"

Finally, we check the Analyzer results.

thm Syst3_simp

We see that the Analyzer simplifies Syst3 to

{.u. ∀y. 0 ≤ y.} o [: u ; y. ∃z. y = sqrt z:]

The formula ∀y.0 ≤ y is unsatisfiable which means that
Syst3 is invalid. But why wasn’t Syst3 simplified to ⊥?
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This is because of Isabelle’s limitations in simplifying
expressions with quantifiers such as ∀y.0 ≤ y. In this
case we have to “help” Isabelle, by recognizing that the
formula ∀y.0 ≤ y is unsatisfiable. We state this as a
lemma:

lemma aux1: "(∀y::real. 0 ≤ y) = False"

(* sledgehammer *)

using le_minus_one_simps(3) by blast

and we use Isabelle’s “sledgehammer” mechanism to
prove it. The “sledgehammer” keyword of Isabelle
transforms the goal to prove in a format understood
by different SMT solvers. Then it calls some of them
(e.g. cvc4 [5] or Z3 [10]) and if a proof is found it is
displayed to the user. Then the user can just copy the
proof. In the case above, sledgehammer manages to find
the one line proof of the above lemma.

Having proved this lemma, we can call the simpli-
fication procedure again on Syst4 which is a copy of
Syst3. The only difference is that this time we ask the
simplification procedure to use the lemma:

simplify_RCRS "Syst4 = true o SqrRoot" "u" "y"

use (aux1)

thm Syst4_simp

This time simplification succeeds and produces:

Syst4 = ⊥

Let us end this section by illustrating also contract
checking of QLTL components. We first define the fol-

lowing two components:

definition "Syst7 = {. 2 3 (ltl x . x) .} o [:

2 3 (ltl x y . y) :]"

definition "Syst8 = [: 3 2 (ltl x y . ¬ y) :]"

Component Syst7 is identical to component A de-
fined at the end of Section 2.1. Syst7 requires that its
input x is infinitely often true and guarantees that its

output y is also infinitely often true. Component Syst8
also takes as input an infinite sequence x and returns
as output an infinite sequence y. Syst8 imposes no re-
quirements on its input (i.e., it is input-receptive) and
guarantees that its output y satisfies 32¬y, meaning
that y is after some point always false. Clearly, the serial
composition Syst8 o Syst7 should be invalid, since

the output guarantees of Syst8 contradict the input
requirements of Syst7.

As with some of the examples above, in order to
have RCRS automatically prove that Syst8 and Syst7

are incompatible, we need to help Isabelle by providing
the following lemma:

lemma simp_ltl: "(∀ y . (3 2 (ltl x y. ¬ y)) x y

→ (2 3 (ltl x. x)) y) = False"

apply (simp add: LTL_def always_def

eventually_def at_fun_def)

(*expanding definitions*)

apply (rule_tac x = ⊥ in exI)

by auto

Having proved the above lemma, we can call the
RCRS simplification procedure on the serial composi-
tion of Syst8 and Syst7:

simplify_RCRS "Syst9 = Syst8 o Syst7" "x" "y"

use (Syst7_def Syst8_def simp_ltl)

Simplification succeeds and produces:

Syst9 = ⊥

3.3 Contract Inference

Now, suppose that we have a component for which
we know something, for instance, that its output y is
greater than its input x plus 1:

definition [basic_simps]: "A =

[: x ; y. y ≥ x + 1 :]"

Let us see what happens if we connect A to SqrRoot,

and try to simplify:

simplify_RCRS "Syst5 = A o SqrRoot" "x" "y"

thm Syst5_simp

We get:

Syst5 = {.x. ∀y≥ x + 1. 0 ≤ y.}

o [: x ; y. ∃ z ≥ x + 1. y = sqrt z :]

Again, Isabelle has trouble eliminating the quantifiers

from the formulas and needs our help. We recognize
that the formula of the input condition is equivalent to
x ≥ −1, and state this as a lemma:

lemma aux2: "(∀y::real ≥ x + 1. 0 ≤ y) = (-1 ≤ x)"

by auto

We can now use the above lemma to simplify further:

simplify_RCRS "Syst6 = A o SqrRoot" "x" "y"

use (aux2)

and we get:

Syst6 = {.x. -1 ≤ x.}

o [: x ; y. ∃ z ≥ x + 1 . y = sqrt z :]

The constraint −1 ≤ x can be seen as the weakest
constraint on the input (similar to a weakest precon-
dition [11]) which ensures that all internal contracts of
the system will be satisfied. Note that the constraint
−1 ≤ x is as simple as it can be.

Next, consider the postcondition ∃ z ≥ x + 1 . y

= sqrt z. This can be simplified further by eliminat-
ing the existential quantifier. This quantifier elimina-
tion requires manual intervention in Isabelle, performed
as follows.

First we introduce a general lemma for simplifying
the relation of an MPT assuming that the input condi-
tion is true:
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lemma prec_rel: "(
∧

x y . p x =⇒ r x y = r′ x y)
=⇒ {.p.} o [:r:] = {.p.} o [:r′:]"

by (auto simp add: fun_eq_iff assert_def

demonic_def le_fun_def)

If for all x and y we have p x =⇒ r x y = r′ x y,
then we can replace r by r′ in {.p.} o [:r:].

Next, assuming -1 ≤ x, we show that the existen-
tial quantifier can be eliminated in (∃ z. z ≥ x + 1

∧ y = sqrt z) since z is always greater or equal than
0, i.e., the sqrt function is defined:

lemma aux3: "-1 ≤ x =⇒
(∃ z. z ≥ x + 1 ∧ y = sqrt z)

= (sqrt (x + 1) ≤ y)"

proof (safe, simp_all)

fix x y

assume A[simp]: "sqrt (x + 1) ≤ y"

assume "-1 ≤ x"

from this have B[simp]: "0 ≤ x + 1"

by simp

have "(sqrt (x + 1))^2 ≤ y^2"

by (rule power_mono, simp_all)

from this have [simp]: "x + 1 ≤ y^2"

by simp

have [simp]: "0 ≤ y"

using A B by (metis order_trans

real_sqrt_ge_0_iff)

show "∃ z ≥ x + 1. y = sqrt z"

by (rule_tac x = "y^2" in exI, simp)

qed

Finally, we eliminate the existential quantifier in Syst6:

lemma "Syst6 = {. x. -1 ≤ x .}

o [: x ; y. sqrt (x + 1) ≤ y :]"

proof -

have "Syst6 = {. x . -1 ≤ x .}

o [:x ; y. ∃ z ≥ x + 1. y = sqrt z:]"

by (simp add: Syst6_simp)

also have "... = {. x . -1 ≤ x .}

o [:x ; y. (sqrt (x + 1) ≤ y):]"

by (rule prec_rel, simp add: aux3)

finally show ?thesis

by simp

qed

3.4 Refinement Checking

The above examples illustrated several of the features
of RCRS as a reasoning tool, similar to a behavioral

type checking and inference engine. Indeed, detecting
incompatible connections is akin to catching type errors
in programs, and inferring conditions such as the con-
dition on the input in the last example above is akin to
type inference. In addition to these capabilities, RCRS
can be used to check refinement (and its counterpart,
abstraction) between components. Refinement is a pow-
erful design methodology, useful in many scenarios. For
instance, consider a scenario where some component

C in the system is to be replaced by C ′. In this case,
both C and C ′ are available, and we need to ensure
that replacing C by C ′ does not cause any problems,
i.e., that the properties of the original system (contain-
ing C) are preserved. Checking that C ′ refines C is a
way to ensure this. Another scenario where refinement
is useful is when the system is too detailed/large, and
needs to be simplified/abstracted, e.g., in order to make
verification easier. In that case, we may choose to ab-
stract some component C with a simpler component
Ca. Refinement can be used in this case to ensure that
C refines Ca, i.e., that Ca is a proper abstraction of C.

As an example, let us show how to prove that
the SqrRoot component refines NonDetSqrt and that
the ReceptiveSqrt component in turn refines SqrRoot
(components NonDetSqrt and ReceptiveSqrt are de-
fined in Section 2). We have:

lemmas [basic_simps] = comp_rel_simps

basic_block_rel_simps update_def

refinement_simps

definition [basic_simps] : "NonDetSqrt =

{. x. 0 ≤ x .} o [: x ; y. 0 ≤ y :]"

lemma "NonDetSqrt ≤ SqrRoot"

by (auto simp add: basic_simps)

definition [basic_simps] : "ReceptiveSqrt =

[: x ; y . 0 ≤ x → y = sqrt x :]"

lemma "SqrRoot ≤ ReceptiveSqrt"

by (simp add: basic_simps)

The first line instructs the Analyzer to use simplifi-
cation rules for relational predicate transformers [30].
Then, we define the new components and state the re-

finements as lemmas. The proofs are simple and are
based on the necessary and sufficient conditions for
checking refinement included in the RCRS library:

lemma assert_demonic_refinement:

"({.p.} o [:r:] ≤ {.p′.} o [:r′:]) =

(p ≤ p′ ∧ (∀ x . p x → r′ x ≤ r x))"

by (auto simp add: le_fun_def assert_def

demonic_def)

lemma spec_demonic_refinement:

"({.p.} o [:r:] ≤ [:r′:]) =

(∀ x . p x → r′ x ≤ r x)"

by (auto simp add: le_fun_def assert_def

demonic_def)

3.5 Discussion

As can be seen by the above examples, RCRS offers
powerful reasoning capabilities. Some of these capabil-
ities are fully automatic, despite the fact that they are
implemented on top of Isabelle, a general proof assistant

which generally requires human intervention. In par-
ticular, RCRS theories generated automatically from
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Simulink diagrams by our Translator can be processed
by our Analyzer fully automatically (see Section 5).
Other reasoning capabilities currently require human
intervention. We expect that as automated theorem
proving capabilities improve, these RCRS capabilities
will also become more and more automatic.

4 The Implementation of RCRS in Isabelle

RCRS is fully formalized in the Isabelle theorem prover.
The RCRS implementation currently consists of 23 Is-
abelle theories (.thy files), totaling 29707 lines of Is-
abelle code. The structure and dependencies between
those theories are shown in Fig. 6.

4.1 Core Theories

Theory Refinement.thy (1220 lines) contains a stan-
dard implementation of the refinement calculus [4]. Sys-

tems are modeled as monotonic predicate transform-
ers [11] with a weakest precondition interpretation.
Within this theory we implemented non-deterministic
and deterministic update statements, assert state-

ments, parallel composition, refinement and other oper-
ations, and proved necessary properties of these. Addi-
tionally, this theory implements control statements and

proves Hoare total correctness rules required in order to
prove the determinacy of our block-diagram translation
algorithms [31].

Theory Temporal.thy (801 lines) implements a se-

mantic version of QLTL, where temporal operators are
interpreted as predicate transformers. For example, the
operator 2, when applied to the predicate on infinite
traces (x > 0) : (nat→ real)→ bool, returns another

predicate on infinite traces 2(x > 0) : (nat→ real)→
bool. Temporal operators have been implemented to be
polymorphic in the sense that they apply to predicates
over an arbitrary number of variables.

Theory RefinementReactive.thy (1155 lines) ex-
tends Refinement.thy and Temporal.thy to reactive
systems by introducing predicates over infinite traces in
addition to predicates over values, and property trans-
formers in addition to predicate transformers [33,30].

Theory TransitionFeedback.thy (637 lines) de-
fines and implements the feedback operator for predi-
cate transformers represented with both deterministic
and non-deterministic update statements.

Theory IterateOperators.thy (2806 lines) defines
the operator that maps predicate transformers on input
and current state to output and next state into property

transformers on infinite traces of input values to infinite
traces of output values.

Theory ReactiveFeedback.thy (1268 lines) defines
the feedback operator for property transformers. For de-
terministic systems, this theory also establishes the con-
nection between the feedback on predicate transformers
and the feedback on property transformers via the it-
eration operators.

Theory InstantaneousFeedback.thy (2405 lines)
defines a feedback operator for predicate transformers
using unknown values. This operation has been pro-
posed in [34] as an extension of the constructive seman-
tics for synchronous circuits [24] to non-deterministic
and non-input receptive systems.

Theory SimplifyRCRS.thy (2271 lines) implements
several of the Analyzer’s procedures. In particular, it
contains a simplification procedure which reduces com-
posite RCRS components into atomic ones (see Sec-
tion 5).

Finally, theory RCRS Overview.thy (1650 lines)
summarizes and proves all the results presented in [30].

4.2 Simulink-Related Theories

Theory Simulink.thy (886 lines) defines a subset of

the basic blocks in the Simulink library as RCRS com-
ponents (at the time of writing, 48 Simulink block types
can be handled).

Theory SimulinkTypes.thy (259 lines) defines a

polymorphic simulink type for wires and functions (e.g.,
s sqrt) that is used in the formalization of basic blocks.
The purpose of this theory is to abstract as much as
possible the typing mechanism of Simulink, and to be

able to handle as many Simulink diagrams as possible,
without modifying them. This theory implements the
results presented in [29].

Theory PythonSimulation.thy (234 lines) imple-
ments rewriting rules for automatically transforming
predicate transformers RCRS terms into Python code.
This code can be executed to validate the behavior of

the system and is of particular interest when Simulink
diagrams are modeled with RCRS (see Section 6).

4.3 Theories Regarding the Translation of Block
Diagrams

Several theories concern translation methods from hi-
erarchical block diagrams (such as Simulink diagrams)
into RCRS composite components, and a proof of cor-
rectness (determinacy) of such translations (see Sec-
tion 6 and [13,31]). In particular:

Theory ListProp.thy (671 lines) proves several

properties about permutations and substitutions on
lists.
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HOL

SimulinkTypesRefinementTemporal ListProp Constructive

RefinementReactive

IterateOperators

InstantaneousFeedback

TransitionFeedback

ReactiveFeedback

RCRS Overview

PythonSimulation

Simulink

SimplifyRCRS

RCRS Demo

HBDAlgebra

Diagrams ExtendedHBDAlgebra

ConsFuncHBDModel

FeedbacklessHBDTranslation

HBDTranslationProperties

HBDTranslationsUsingFeedback

Fig. 6: Structure of the RCRS Isabelle theories. Arrows denote dependencies. Dependencies are from the source

to the destination of each arrow, so theory RCRS Demo depends on theory SimplifyRCRS, the latter depends on
theory Simulink, etc.

Theory HBDAlgebra.thy (1700 lines) defines the
abstract algebra of HBDs presented in [31]. Theory
ExtendedHBDAlgebra.thy (191 lines) completes it with

additional results.

Theory Constructive.thy (268 lines) defines

the model of constructive functions. In theory
ConsFuncHBDModel.thy (1479 lines) it is shown that
constructive functions are a model of the (extended)
HBD algebra.

Theory Diagrams.thy (8552 lines) defines the
input-output diagrams that can be expressed with
RCRS and proves several properties. These re-
sults are completed with those from the theory
HBDTranslationProperties that are used by the main
algorithms.

Determinacy is proved in theory
FeedbacklessHBDTranslation.thy (229 lines)
for those diagrams involving only the serial
and parallel composition operators. The feed-
back composition operator is considered in theory
HBDTranslationsUsingFeedback.thy (484 lines).

4.4 Demo Theory

The results presented in this paper are fully repro-

ducible and can be found in theory RCRS Demo.thy (115
lines).

4.5 Discussion: Shallow vs. Deep Embedding of RCRS
Syntax

The syntax of RCRS components is implemented in Is-

abelle using a shallow embedding [6]. This has the ad-
vantage of all datatypes and other mechanisms of Is-
abelle (e.g., renaming) being available for component

specification, but also the disadvantage of not being
able to express properties and simplifications of the
RCRS language within Isabelle, as discussed in [30].

A deep embedding, in which the syntax of components
is defined as a datatype of Isabelle, is possible, and is
left as an open future work direction.

5 The Analyzer

The Analyzer is a set of procedures implemented on

top of Isabelle and ML, the programming language of
Isabelle. These procedures implement a set of function-
alities such as simplification, compatibility checking, re-
finement checking, etc. Here we describe the main func-
tionalities, implemented by the simplify RCRS con-
struct.

As illustrated in Fig. 4, the general usage of this
construct is:

simplify_RCRS "Model = C"

"in" "out"

use (additional simps)

C is a (generally composite) component, in and out are
(nested tuples of) names for its input and output vari-
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ables, and use indicates what existing proven results
should be used by the analyzer. The input and output
tuples should match the typing of the component C.
Conceptually, the tuples in and out are not required,
but we use them to name the input and output vari-
ables in the simplified version of C, to make the final
result more readable.

The result of the above Isabelle declaration is a defi-
nition Model def stating the equality Model = C, and a
theorem Model simp, stating the equality Model = C’,
where C’ is the result of the simplification of C, and it
has the form {.p.} o [-f-] for algebraic loop-free
deterministic systems or the form {.p.} o [:r:] for
non-deterministic systems and systems with algebraic
loops. The proof of Model simp is automatically con-
structed by simplify RCRS, i.e. Model simp is proved
to follow from some existing RCRS and Isabelle theo-
rems, which in turn are proved to follow from the basic
HOL principles.

The internal structure of simplify RCRS is repre-
sented by the pseudo-code from Fig. 7.

fun simplify_RCRS(Name, Expr, In, Out, Simps)

def_thm = definition(Name, Expr)

expd_thm = simplify(Expr, Simps + BasicSimps)

t = rhs(expd_thm)

(at_thm, rep) = simplify_comp(t, In, Out)

at_thm′ = simplify(right_hand_side(at_thm))

simp_thm = trans(def_thm, expd_thm, at_thm, at_thm′)
register def_thm as Name + "_def"

register simp_thm as Name + "_simp"

Fig. 7: Pseudocode for simplify RCRS

Next we explain how this algorithm works on the

Summation example from Fig. 33:

simplify_RCRS "Summation =

feedback([- f, g, s ; (f, g), s -]

o (Add ** Id) o UnitDelay o (Split ** Id)

o [- (f, h), s′ ; f, h, s′ -])"

"(g, s)" "(h, s’)"

use (Add_def UnitDelay_def Split_def)

The parameters of the algorithm are given by:

Name := Summation

Expr := feedback([- f, g, s ; (f, g), s -]

o (Add ** Id) o UnitDelay o (Split ** Id)

o [- (f, h), s′ ; f, h, s′ -])

In := (g, s)

Out := (h, s′)
Simps := (Add_def UnitDelay_def Split_def)

The first step

3 Note that we duplicate here the use of atomic compo-
nents definitions in order to illustrate the algorithm. These
are already part of the basic simps simplification rules.

def_thm = definition(Name, Expr)

uses the definition mechanism of Isabelle and creates
the theorem def thm:

Summation

=

feedback([- f, g, s ; (f, g), s -]

o (Add ** Id) o UnitDelay o (Split ** Id)

o [- (f, h), s′ ; f, h, s′ -])

Next, the step

expd_thm = simplify(Expr, Simps + BasicSimps)

simplifies Expr by unfolding the definitions of the basic
blocks (BasicSimps) and also by using the equalities
from Simps. In practice for this example the definitions
of the basic blocks Add, UnitDelay, and Split are al-
ready included in BasicSimps, but we included them
also in Simps for exemplification purposes. The result
of this step is the theorem expd thm:

feedback([- f, g, s ; (f, g), s -]

o (Add ** Id) o UnitDelay o (Split ** Id)

o [- (f, h), s′ ; f, h, s′ -])

=

feedback([- f, g, s ; (f, g), s -]

o ([- x, y ; x + y -] ** Id)

o [- x, s ; s, x -]

o ([- x ; x, x -] ** Id)

o [- (f, h), s′ ; f, h, s′ -])

The goal of this step is to eliminate all basic blocks
and subcomponents and replace them with their canon-
ical form {. .} o [- -] or {. .} o [:

:]. Some additional small simplifications are also per-
formed at this step (Id ** Id = Id, Id o S =

S). After this step, the simplified result must contain

only the atomic RCRS constructs {. .}, [- -],
[: :], Id and the composition operators (feedback,
serial, and parallel). We call this form basic composite
property transformer (BCPT).

Next step:

t = rhs(expd_thm)

assigns to variable t the right hand side of theorem
expd thm to be further simplified.

Next step:

(at_thm, rep) = simplify_comp(t, In, Out)

simplifies the term t into its canonical form by recursion
on the structure of t. The result of this step is the
theorem at thm and the first order representation rep

of the simplified predicate transformer. For our example
the theorem at thm is

feedback([- f, g, s ; (f, g), s -]

o ([- x, y ; x + y -] ** Id)

o [- x, s ; s, x -]

o ([- x ; x, x -] ** Id)

o [- (f, h), s′ ; f, h, s′ -])

=
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{. g, s . True .} o [- g, s ; s, s + g -]

and the first order representation of the simplified pred-
icate transformer is

rep = Func((g,s), True, (s, s + g))

This representation is discarded for the topmost call to
simplify comp, but is used for the recursive calls to
improve the efficiency of the simplification.

Next step:

at_thm′ = simplify(rhs(at_thm))

eliminates vacuous assertions {. g, s . True .} or
turns {. g, s . False .} o [- -] into ⊥. For
the running example at thm’ is

{. g, s . True .} o [- g, s ; s, s + g -]

=

[- g, s ; s, s + g -]

The step

simp_thm=trans(def_thm, expd_thm, at_thm, at_thm′)

applies transitivity of equality for the theorems
def thm, expd thm, at thm, at thm′ to obtain the final
simplification theorem simp thm:

Summation = [- g, s ; s, s + g -]

The last two steps of the algorithm are registering,

in the current Isabelle theory, the definition theorem
def thm and the simplification theorem simp thm as
Summation def and Summation simp, respectively.

The step performed by simplify comp assumes that
the term t is in the form of BCPT. If this is not the
case, then simplify comp fails. It is the responsibil-

ity of the user to ensure that Simps + BasicSimps

contains all necessary rules such that all non-atomic
sub-components of Expr are reduced to BCPTs. Our
automatic translator from Simulink to RCRS ensures
this property. The translator adds all the definitions
of the basic Simulink blocks into BasicSimps via the
basic simps mechanism:

named_theorems basic_simps

lemmas [basic_simps] = comp_func_simps

definition [basic_simps]: "Cst = [- u::unit;1 -]"

simplify_RCRS "SubModel = (Cst ** Id) o Add"

"x" "y"

The translator also adds the simplification rules of the
sub-components to Simps via the use mechanism:

simplify_RCRS "Model = SubModel o SqrRoot" "x" "z"

use (SubModel_simp)

For the feedback operation feedback(S) with S de-
terministic, the function simplify comp tests if S is al-
gebraic loop-free, and in this case applies a special sim-
plification rule resulting in a deterministic component,
otherwise it applies the feedback definition resulting in
a non-deterministic component.

To complete our presentation of the Analyzer, we
show how simplify comp is defined for serial composi-
tion, the other operations being similar. Assume that t
= t1 o t2, and that both t1 and t2 are determinis-
tic, then:

fun simplify_comp(t1 o t2, In, Out)

NewVar = new tuple of output type of t1

thm1, Func(In1, p1, e1) = simplify_comp(t1, In,

NewVar)

thm2, Func(In2, p2, e2) = simplify_comp(t2,

NewVar, Out)

p, f = (λIn1.p1), (λIn1.e1)
f′, p′ = (λIn2.p2), (λIn2.e2)
p_simp_thm = simplify((p u (p′ o f)) In1)

f_simp_thm = simplify((f′ o f) In1)

p_abs_thm = abstract(p_simp_thm)

f_abs_thm = abstract(f_simp_thm)

serial_rep = Func(In1, rhs(p_simp_thm),

rhs(f_simp_thm))

serial_thm = serial_det OF [thm1, thm2,

p_abs_thm, f_abs_thm]

return (serial_thm, serial_rep)

The idea of simplify comp is the following. First t1

and t2 are simplified using simplify comp recursively.
For this we need a new tuple NewVar of variable names
of the same type as the type of the output of t1. After

this simplification we obtain the theorems thm1 and
thm2:

thm1: t1 = {.In1 . p1.} o [-In1 . e1-]

thm2: t2 = {.In2 . p2.} o [-In2 . e2-]

and we also obtain the first order representations:

Func(In1, p1, e1) and Func(In2, p2, e2)

Next we define

p = (λIn1.p1) and f = (λIn1.e1)
p′ = (λIn2.p2) and f′ = (λIn2.e2)

With these notations, theorems thm1 and thm2 can be
stated as:

thm1: t1 = {.p.} o [-f-]

thm2: t2 = {.p′.} o [-f′-]

We remark that the notation {.x,y . x + y.} is just
a syntactic sugar for the term {.(λ(x,y).x+y).}, and
similarly for [- -] and [: :].

Next we compute the simplifications of the terms
(p u (p′ o f)) In1 and (f′ o f) In1, where u
is the pointwise extension of the conjunction operation
to predicates, as the theorems:

p_simp_thm: (p u (p′ o f)) In1 = p_exp

f_simp_thm: (f′ o f) In1 = f_exp

We also compute the corresponding abstract versions
of these theorems:

p_abs_thm: (p u (p′ o f)) = (λ In1 . p_exp)

f_abs_thm: f′ o f) = (λ In1 . f_exp)
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The Boolean expression p exp is the simplified expres-
sion of the assert statement of the serial composition
of t1 and t2, and f exp is the simplified expression of
the functional outputs for the inputs In1 of the serial
composition of t1 and t2, i.e.

serial_thm:

t1 o t2 = {.In1.p_exp.} o [-In1.f_exp-]

= {.(λIn1.p_exp).} o [-(λIn1.f_exp)-]

and

serial_rep = Func(In1, p_exp, f_exp)

However, we must construct the theorem serial thm

as a consequence of existing proved results. For this
purpose we introduce lemma serial det:

lemma serial_det: "t1 = {.p.} o [-f-]

=⇒ t2 = {.p′.} o [-f′-]
=⇒ p u (p′ o f) = p′′

=⇒ f o f′ = f′′

=⇒ t1 o t2 = {.p′′.} o [-f′′-]"

This lemma is the specialization of the definition of
the serial composition to deterministic systems, stated

in a form that can be applied directly to conclude
serial thm. In fact, for p′′ = (λIn1.p exp) and f′′

= (λIn1.f exp), and for all other variables as al-
ready defined, the conclusion of serial det is ex-

actly serial thm, and the premises of serial det are
the theorems thm1, thm2, p abs thm, and f abs thm.
Therefore serial thm is a consequence of serial det,

thm1, thm2, p abs thm, and f abs thm. This is ex-
pressed in the definition of simplify comp as:

serial_thm = serial_det OF [thm1, thm2,

p_abs_thm, f_abs_thm]

Note that the execution by the Analyzer of the .thy
file generated by the Translator is fully automatic, de-

spite the fact that Isabelle generally requires human
interaction. This is thanks to the fact that the theory
generated by the Translator contains all declarations
(equalities, rewriting rules, etc.) necessary for the Ana-
lyzer to produce the simplifications and their mechani-
cal proofs, without user interaction.

If the model contains incompatibilities, where for in-
stance the input condition of a block like SqrRoot can-
not be guaranteed by the upstream diagram, the top-
level component automatically simplifies to ⊥. Thus, in
this usage scenario, RCRS can be seen as a static anal-
ysis and behavioral type checking and inference tool for
Simulink.

6 The Translator

So far we have mainly demonstrated the capabilities
of the back-end of the RCRS Toolset, namely, every-
thing implemented on top of Isabelle (see Fig. 1). This

back-end can certainly be used independently of the
front-end, i.e. the Translator described in this section.
Indeed, users of RCRS do not a-priori need the Transla-
tor. They can model systems by directly defining RCRS
components, including instantiating predefined compo-
nents from the RCRS component library, and they can
reason about such components along the lines of what
has been described in the previous sections. However,
the Translator is a useful tool to have as it allows users
to model systems in the widespread Simulink environ-
ment, and generate RCRS formal models automatically.
The Translator also enables formal reasoning capabili-
ties for Simulink models.

The Translator is a Python program (about 7100
lines of Python code) called simulink2isabelle. The
program is based on techniques for translating gen-
eral hierarchical block diagrams (HBDs) into a composi-
tional algebra of components like the one used in RCRS
(see [13,32] and Section 6.2 that follows). The current
version of the Translator takes as input Simulink dia-
grams, but could be modified to accept other types of
HBD-based languages.

simulink2isabelle takes as input a Simulink

model (.slx file) and a list of options and generates
as output an Isabelle theory (.thy file). The output
file contains, among other things: (1) the definition of

all instances of basic blocks in the Simulink diagram
(e.g., all Adders, Integrators, Constants, etc.) as atomic
RCRS components; (2) the bottom-up definition of all
subdiagrams as composite RCRS components; (3) calls

to simplification procedures; and (4) theorems stating
that the resulting simplified components are equivalent
to the original ones. The .thy file may also contain ad-

ditional content depending on user options as explained
below.

6.1 Revisiting the Running Examples

The RCRS models shown in Fig. 4 are slightly simpli-
fied versions of models automatically generated by the
Traslator from the corresponding Simulink diagrams of
Fig. 3. Specifically, the two RCRS theories are gener-
ated by running the Translator with the following op-
tions on the corresponding Simulink files:

./simulink2isabelle.py sqrt_syst.slx -ic

./simulink2isabelle.py Summation.slx -ic

The Translator will generate the theory header and

footer, the definition of basic blocks relying on the li-
brary (e.g., In = Inport) and the definition of the sys-
tem. In both cases we call the Translator with the -ic

option, which specifies the composition strategy to be
used (see Section 6.2). This option corresponds to the



14 Iulia Dragomir et al.
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Fig. 8: A simple block diagram.

incremental composition described on the examples in
Section 2.3.

6.2 Translation Strategies

Translating HBDs into a formal algebra with composi-
tion primitives like the ones used in RCRS is an inter-
esting and non-trivial problem. As shown in [13], there
are many possible ways to translate a block diagram
into an algebra of components with the three primitive
composition operators of RCRS (parallel, serial, feed-
back). This means that step (2) described at the begin-
ning of this section is not unique. simulink2isabelle
implements the several translation strategies proposed
in [13] as user options.

For example, consider the block diagram shown in
Fig. 8. The dashed lines represent connections between
the two blocks, A and B. The labels a, b, c, d have been

added to facilitate referring to the wires in the discus-
sion that follows.

How could we translate such a diagram into an
RCRS component? There are several ways. First, let’s

assume that A and B are RCRS components correspond-
ing to the blocks A and B. The latter could be atomic
blocks or they could themselves be block diagrams, in

which case they would have to be translated first into
some composite components A and B before the diagram
of Fig. 8. Independently of whether A and B are atomic
or composite, we assume they are already defined. Our
task is to use them to define the diagram of Fig. 8 as
an RCRS component.

One first idea is to attempt to connect A and B in se-
ries, thus implementing the connection between the two
wires labeled c. This does not directly work, however,
because A has two outputs whereas B only has one input.
Therefore, A o B is not a syntactically legal RCRS

component. We can solve this problem by first compos-
ing B in parallel with an Id component, as explained
in Section 2.2. Then we get A o (B ** Id), which is
syntactically legal. Moreover, the resulting component
has two inputs, the first of which is input wire a, and
two outputs, the first of which is output wire a. There-
fore we can apply feedback composition to get the final
result (also illustrated as a block diagram in Fig. 9a):

C1 = feedback(A o (B ** Id))

But this is not the only translation possible. An-
other syntactically legal RCRS term representing the
original diagram is

C2 = feedback((B ** Id) o A)

illustrated as a block diagram in Fig. 9b. Both C1 and
C2 correspond to the incremental translation strategy
described in [13]. The only difference is the order in
which the blocks are handled: for C1, A is picked be-
fore B, while for C2, B is picked first and then A. RCRS
guarantees that no matter which order is picked, the re-
sulting components are semantically equivalent (see [32]
and discussion at the end of this subsection).

The subterms of C1 and C2 above can also be defined
separately and incrementally, as in:

C1_1 = A o (B ** Id)

C_1 = feedback(C1_1)

This strategy is called incremental with intermediate
outputs in [13], and can be called with the option -ici

of the translator.

A third possible translation is:

C3 = feedback(feedback(Switch1 o (A ** B) o Switch2))

where

Switch1 = [- c,a,b ; a,b,c -]

Switch2 = [- c,d,a ; c,a,d -]

C3 is illustrated as a block diagram in Fig. 9c. This term
corresponds to the so-called feedback-parallel transla-
tion strategy [13] and can be obtained with the -fp

option.

A fourth possible RCRS term could be obtained
with the feedbackless translation strategy (named so be-
cause it results in terms which do not use the feedback

operator at all [13]) which gives

C4 = Split o ((A1 o B) ** Id) o A2

This strategy can be employed only when the diagram
is free from algebraic loops, meaning that it has no in-
stantaneous cyclic dependencies. By instantaneous we
mean that the values of two signals depend on each
other in the same reaction step. For example, the out-

put of the Add component depends instantaneously on
both its inputs. However, the output of the UnitDelay

only depends on the value of its input at the previous
step, and therefore, UnitDelay can be used in feedback
loops without introducing instantaneous (algebraic) de-
pendencies. Several other Simulink blocks like the In-
tegrator, TransferFunction, etc., behave similarly. The
feedbackless translation strategy can handle all such
models without problems [13].

On the diagram of Fig. 8 this means that c can only
depend (instantaneously) on b. In this case, the strategy
called with the -nfb option produces the result from
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Fig. 9: Possible views of the block diagram of Fig. 8.

Fig. 9d. The main idea is to split blocks such that they

have only one output and only those inputs on which it
depends. Then the connections consist only of serial and
parallel. In our example we have A1 with output c and
input only b, and A2 with output d and input a and b.

Then the feedback is unfolded with serial connections. If
c had depended on a (which is equal to c), this strategy
could not be applied.

When many translations of a given diagram are pos-
sible, which one should be chosen? What are the pros

and cons of each possible target term? Are the terms
semantically equivalent? How can such terms be gener-
ated automatically from a given diagram (what are the
translation algorithms)? All these and more interesting
questions are beyond the scope of the current paper.
We refer the reader to our previous works which provide
some (partial) answers. Specifically, [13] presents three

translation algorithms, and examines their trade-offs as
well as the trade-offs of the respective generated terms.
The semantic equivalence of the terms generated by the
three translation algorithms proposed in [13] is exam-
ined in [32]. In this latter paper we provide a mechanic
formalization of the three algorithms (in Isabelle) and
prove (also in Isabelle) their semantic equivalence. This

formalization and proof correspond to 14797 lines of Is-
abelle code and is available as part of the RCRS code
distribution.

We note that what is formalized in [32] are the trans-
lation strategies and not the actual Python code of the

Translator. The latter is quite detailed in dealing with
the actual structure of Simulink files. Our goal was not
to formalize this part, but the high-level translation
strategies (i.e., algorithms). For the latter, it is far from
obvious that the various choices made in the different

strategies [13] result in semantically equivalent transla-
tions, hence the interest behind the proof of [32].

6.3 Other Functionalities of the Translator

The Translator proposes additional options that allow

to explore different expressions of the obtained RCRS
model.

The -flat option flattens the Simulink model, usu-
ally a hierarchical block diagram, before performing the

translation. The tradeoffs of using this option on the
Analyzer are illustrated in Table 1.

Several options allow to deal with the typing of
Simulink diagrams. By default, if the inputs or outputs

of a block are typed, the Translator uses them in the
blocks definitions generation. Other cases can be han-
dled with the following options as described in [29]. Op-
tion -const generates additional parameters with types
for blocks of type Constant, Relational, etc. These ex-
tra parameters in the definition of a (composed) block
ensure the automated execution of the Analyzer in all
cases. Option -generic generates generic types for all
inputs and outputs of blocks. Then the simplified ex-
pression obtained is as general as possible. Finally, op-
tion -type takes a type as parameter expressed in Is-
abelle, e.g., real, and instantiates all untyped inputs
and outputs with the given type.

The -equiv option generates the RCRS terms with

all translation strategies, as well as an extra theory
proving the semantical equivalence of the terms.

The -iter option additionally generates the prop-
erty transformer corresponding to the (simplified) sys-
tem. Additionally the option -consist can be used here
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to generate the proof that the iteration of the property
transformer is consistent as illustrated in Section 7.3.

Finally, the -sim option also generates a python
template for simulation purposes. The generated the-
ory contains instructions to write the simplified RCRS
formula in a format understood by python. This python
file contains all the necessary definitions to simulate the
simplified RCRS formula of the system and plot it. It
also defines additional simulation options such as: -dt
for the simulation step, -time for the duration of simu-
lation and -plot to represent in python the simulation
results.

7 An Automotive Case Study

We have used the RCRS Toolset on several case stud-
ies, the most significant of which is a real-world bench-
mark provided by Toyota [22]. The benchmark consists
of a set of Simulink diagrams modeling a Fuel Control

System (FCS).4 A typical diagram in the above suite
contains 3 levels of hierarchy, 104 Simulink blocks in
total (out of which 8 subsystems), and 101 wires (out

of which 8 result in feedback loops).

In the rest of this section we report on experimental

results obtained from running the RCRS Toolset on a
Toyota Fuel Control System (FCS) Simulink model, an
excerpt of which is shown in Fig. 10. Table 1 presents
metrics obtained from running the Translator and the

Analyzer on this model, taking into account different
translation options. More specifically, we provide

– Ttrans the translation time (in seconds),
– Lcpt the length of the generated RCRS terms (num-

ber of characters),

– Ncpt the number of generated RCRS terms
– Tsimp the analysis time (in seconds), and
– Lsimp the length of the simplified RCRS term

(number of characters).

The results are obtained with all translation strategies:
-fp, -ic, -ici, and -nfb, and considering -flat when-
ever suitable. For example, using the Translator on the
FCS Simulink model with the -nfb option results in a

.thy file of 1671 lines and 56947 characters.

7.1 Running the Translator

We ran the translator as follows, adding different addi-
tional options for each different experiment:

4 We downloaded the Simulink models from https://

cps-vo.org/group/ARCH/benchmarks. One of those models is
made available both in the figshare repository [15] and the
distribution.

./simulink2isabelle.py afcs.slx -const -type real

We remark that the translation time is negligible in all
cases (see Table 1).

7.2 Running the Analyzer

The Analyzer simplifies this model to a top-level atomic
RCRS component with no inputs, 7 (external) out-
puts and 14 state variables (note that all internal wires
have been automatically eliminated in this top-level
description). For the theory produced with -nfb sim-
plification takes 13 seconds and generates a formula
which is 10186 characters long. Note that simplifica-
tion times are significantly longer for theories produced
using other translation methods than the feedback-
less one. This is because simplifications involving the
feedback operator are resource consuming.

The Analyzer detects no incompatibilities and com-

putes a simplified top-level atomic component whose
description is between 8000 and 10000 characters long
depending on the translation strategy used (an excerpt

is shown in Fig. 11). This formula simplifies automati-
cally to a non-trivial condition of the form s ≥ 0, where
s is a state variable. This condition is automatically in-
ferred by RCRS and is due to the fact that the stateful

block corresponding to s (which is an Integrator) feeds
its output into a square root block. This condition indi-
cates that the state of the Integrator should never be-

come negative during execution of the model, and can
be seen as an automatically derived invariant which en-
sures the consistency of the entire FCS model. However,
this invariant still needs to be proven. We show how to

do this next.

7.3 Proving the Automatically Inferred Invariant

We would like to prove that the automatically inferred

invariant s ≥ 0 above is satisfied during execution of
the model. In this case the model does not have any in-
puts, and all components are deterministic, which im-
plies that the condition s ≥ 0 must be true at every ex-
ecution step. In such cases, we have a completely auto-
matic method. We show next how exactly this method
works on the FCS model.

Since RCRS discretizes time by performing Euler in-
tegration with step dt, this property generally depends
on the value of dt: the invariant might hold for some
values and not hold for other values. Here, we prove a
stronger result, namely, that it holds for any dt > 0.

For this we call first the translator with the -iter

option to obtain the property transformer characteriz-
ing the system’s behavior over time:

https://cps-vo.org/group/ARCH/benchmarks
https://cps-vo.org/group/ARCH/benchmarks
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Powertrain	Control	Benchmark	Model
Toyota	Technial	Center

2014

This	is	a	model	of	a	hybrid	automaton	with	polynomial	dynamics,	and	an	implementation	of	the	3rd	model	that	appears	in	
"Powertrain	Control	Verification	Benchmark",	2014	Hybrid	Systems:	Computation	and	Control,	
X.	Jin,	J.	V.	Deshmukh,	J.Kapinski,	K.	Ueda,	and	K.	Butts	

Fuel	Control	System	Model This	model	uses	only	the	ODEs	to	implement	the	dynamics.
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Fig. 10: Excerpt of the Toyota Fuel Control System Simulink model [22].

Fig. 11: The simplified predicate transformer of the Fuel Control System.

-fp -ic -ici -nfb

-flat -flat -flat

Translator
Ttrans (sec) 0.33 0.30 0.37 0.35 0.41 0.36 0.29
Lcpt (#chars) 33126 28999 54624 71362 107362 151537 56947

Ncpt (#defs) 148 127 148 127 258 244 269

Analyzer
Tsimp (sec) 284 920 78 294 65 114 13

Lsimp (#chars) 8343 8324 8324 8324 8344 10167 10186

Table 1: Experimental results for the FCS model.

./simulink2isabelle.py afcs.slx -const -type real

-iter -consist

The -iter option will generate the following expression

for the iterated simplified system:

definition "init_vals = (0.017,0.6353,0.0,

0.0,14.7,0.5573,0.0,0.0,0.0,0,0.0,0.0,0.0,0)"

simplify_RCRS "FCS_iter dt =

DelayFeedbackInit init_vals (FCS dt)"

"(x)" "(y)"

use(FCS_simp init_vals_def iter_simps)

type "real"

Here init vals is the tuple of all initial values of all
stateful blocks (delays, integrators, transfer functions),
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and DelayFeedbackInit constructs the systems that
takes as input infinite sequences of input values (empty
tuples in this case) and produces infinite sequences of
output values. DelayFeedbackInit iterates the system
FCS indefinitely, starting from the initial values of the
state variables.

Proving the inferred invariant is done automatically
in Isabelle using a complete rule, as we show below. Al-
though the rule is complete it relies on Isabelle’s simpli-
fication mechanism to simplify the first order formulas
generated by the rule. The consistency of FCS is ob-
tained by the following lemma and its proof:

lemma "dt > 0 =⇒ prec (FCS_iter dt) x"

apply (unfold FCS_iter_simp prec_assert_update)

apply (subst iter_prec_induction_unit_iff)

by auto

This lemma states that the invariant of FCS iter dt

is true for any input sequence x, assuming dt > 0.
The lemma together with its proof is generated au-

tomatically by the translator when using the option
-consist. First step in the proof replaces FCS iter dt

by its simplified version using FCS iter simp, and then

it calculates the input condition using the RCRS library
lemma:

lemma prec_assert_update: prec ({.p.} o [-f-]) =

p

Next step uses the complete induction rule
iter prec induction unit iff to reduce the problem

to proving first order statements over the logic used
for expressing the system (in this case real arithmetic).
Finally auto is used to prove all these statements.

7.4 Validation by Simulation

The Translator defines a formal semantics for Simulink
diagrams in terms of RCRS models. One question that
may be raised is how the RCRS semantics compares
to Simulink’s own semantics, which is essentially “what
the Simulink simulator does”. Note that there is not
one simulator behavior in Simulink, but many, as the
tool offers many different types of solvers, with many
parameters/options each, etc. Here, we just provide a
simple validation by simulation.

First, we use our Translator to generate Python sim-
ulation code:

./simulink2isabelle.py afcs.slx -const -type real

-sim

Then we execute the generated simulation script with

python afcs.py -dt 0.001 -time 50 -plot

We compare the simulation results obtained from
Simulink to those obtained from the RCRS-generated

simulation code. Since this model is closed (i.e., has no
external inputs) and deterministic, it only has a single
behavior (assuming all Simulink solver parameters are
fixed). Therefore, we only generate one simulation plot
for each method. Graphically the plots look identical
and if we compute their maximum difference between
the values computed by Simulink and our simulation we
find that it is on the order of magnitude e-05. Better
results can be obtained by reducing the time step dt.
For instance, a step of 5e-05 gives a maximum error of
2.0354e-06.

8 Related Work

The theory of RCRS is related to FOCUS [7], input-
output automata [23], reactive modules [3], interface
automata [9], and Dill’s trace theory [12]. Although
RCRS shares with these theories several composition-
ality principles, such as refinement, it differs from them
in important ways. Specifically, FOCUS, IO-automata,
and reactive modules, are limited to input-receptive

systems, while RCRS can handle non-input-receptive
specifications (for an extensive discussion of the ben-
efits of the latter see [41]). Interface automata and
Dill’s trace theory are asynchronous and low-level the-

ories whereas RCRS is synchronous and can model and
reason about systems at a higher, symbolic level. Ad-
ditional discussion of work related to the RCRS the-

ory can be found in [30,34]. In the rest of this section
we limit our discussion to work related to the RCRS
Toolset.

The RCRS Toolset is related to verification tools
for hybrid systems, such as Hytech [21], Charon [2],
SpaceEx [19], KeYmaera [35], and C2E2 [17]. However,
the focus of the above tools is on verification (using

reachability analysis or theorem proving techniques)
whereas the focus of RCRS is compositional reason-
ing and static analysis. In particular, RCRS does not
perform reachability analysis (except of the kind de-
scribed in Section 7.3). As far as we know, none of the
above tools allow modeling of both non-deterministic
and non-input-receptive systems.

SimCheck [38] is a contract-based tool for Simulink
which allows the user to annotate ports and wires with
types and also units (e.g., cm). A translation to Yices
[16] supports the automated static and behavioral type
checking. In contrast to SimCheck, RCRS automati-
cally infers the types and dimensions of signals from

the Simulink diagrams, although it does not infer or
check for physical units. RCRS contracts can be very
expressive and can relate input, output, and state vari-
ables, whereas SimCheck contracts appear much more
restrictive (separate constraints on inputs and outputs
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but not on both). SimCheck also does not appear to
have a notion of refinement, neither a compositional
algebra of block diagrams.

Several tools translate Simulink diagrams to vari-
ous types of models, including to Hybrid Automata [1],
BIP [39], NuSMV [25], Lustre [42], Boogie [36], Timed
Interval Calculus [8], Function Blocks [45], I/O Ex-
tended Finite Automata [46], Hybrid CSP [47], and
SpaceEx [27]. These target languages are all differ-
ent from RCRS, and in particular do not allow, to
our knowledge, to describe both non-deterministic and
non-input-receptive systems. In addition, it is unclear
whether these approaches provide any formal guaran-
tees on the determinism of the translation. For exam-
ple, the order in which blocks in the Simulink diagram
are processed might a-priori influence the result. Some
works fix this order, e.g., [36] computes the control flow

graph and translates the model according to this com-
puted order. In contrast, the RCRS Translator has been
formally and mechanically proven to be deterministic,

in the sense that the different results of the translation
are semantically equivalent independently of the com-
position order [32,13].

RCRS can be seen as a type system and tool for

Simulink. The RCRS Analyzer can be seen as per-
forming type checking and type inference (synthesiz-
ing contracts of composite components from the con-

tracts of their children components). From that point
of view, RCRS is related to type systems for pro-
gramming languages, such as Standard ML [26], Re-
finement Types for ML [18], Dependent Types [44], or
Liquid Types [37]. The main difference between these
languages and RCRS is that RCRS focuses on reac-
tive systems and dynamic behavior, whereas the above
are classic programming languages focusing on input-
output behavior. Another difference is that the above
type systems use techniques based on subtypes and

dependent-types that allow checking invariants about
the program at compile time. These techniques need to
be in general automated, and therefore apply only to
certain classes of decidable problems. The compatibil-
ity checks that RCRS performs for system compositions
are more general, and not necessarily decidable, as the
logic on which RCRS operates is very general. In the
RCRS case checking compatibility of system composi-
tions is reduced to checking satisfiability of formulas.
If the underlying logic of these formulas happens to be
decidable, then we can have an automatic compatibility

test.

9 Conclusions

The RCRS Toolset is a state-of-the-art compositional
formal modeling and reasoning tool for embedded and
cyber-physical systems. It is, to our knowledge, the only
tool which is able to capture both non-deterministic
and non-input-receptive reactive systems. It is able to
perform various types of formal reasoning (built on
top of Isabelle), including compatibility checks, con-
tract synthesis, and refinement checking. It also comes
with a Translator of Simulink diagrams. The Trans-
lator implements a set of translation strategies which
have been formally verified to yield deterministic re-
sults. The RCRS Toolset has been evaluated on a set
of examples, including real-world benchmarks provided
by industrial partners (Toyota).

Future work includes extending the Toolset along
several dimensions. First, the library of Simulink blocks
can be extended to include more of Simulink’s basic
blocks. More challenging would be an extension to han-
dle Stateflow state machines. Such machines can have
an arbitrary number of states and structure. Therefore,

automatically extracting a contract for such a machine
involves non-trivial static analysis of the structure of
the machine. Another non-trivial extension involves be-

ing able to handle continuous-time dynamics without
discretizing time. An alternative is to be able to handle
other types of integration than the basic Euler scheme

which RCRS currently uses. It would be interesting also
to be able to handle acausal models, similar to those
captured in languages such as Modelica [20]. Several
improvements to the usability, effectiveness, and effi-

ciency of the tools in the Toolset can also be envisaged.
Among those are techniques to localize incompatibili-
ties when debugging a model.
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