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ABSTRACT
It is particularly challenging to defend common distributed systems
against security vulnerabilities because of the complexity and their
large sizes. However, traditional solutions, that attack the informa-
tion flow security problem, often fail for large, complex real-world
distributed systems due to scalability problems. The problem would
be even exacerbated for the online defense of continuously-running
systems. My proposed research consists of three connected themes.
First, I have developed metrics to help users understand and analyze
the security characteristics of distributed systems at runtime in rela-
tion to their couplingmeasures.Then, I have also developed a highly
scalable, cost-effective dynamic information flow analysis approach
for distributed systems. It can detect implicit dependencies and
find real security vulnerabilities in industrial distributed systems
with practical portability and scalability. In order to thoroughly
solve the scalability problem in general scenarios, I am developing
a self-adaptive dynamic dependency analysis framework to mon-
itor security issues during continuous running. In this proposal,
I outline the three projects in a related manner as to how they
consistently target the central objective of my thesis research.
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1 THE RESEARCH PROBLEMS
With more and more performance and scalability demands by vari-
ous computation tasks, distributed systems are developed increas-
ingly. Compared with centralized software, distributed systems
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have multiple unique characteristics. Their code size is generally
very large. And their decoupled components run at different ma-
chines asynchronously without a global timing mechanism. These
characteristics not only complicate security issues in distributed
systems [1–4, 12], but also bring about severe challenges to infor-
mation flow analysis techniques.

Among a variety of security threats (e.g., code injection) dis-
tributed software suffers, a major type lies in assorted vulnerabil-
ities in information flow paths in distributed programs. In these
programs, sensitive information (e.g., username or password) might
leak and cause serious losses/damages. To defend against such infor-
mation flow threats, it is crucial to check sensitive data that passes
throughout the entire system (across its distributed components
and corresponding processes).

Effective information flow analysis often requires fine-grained
(e.g., statement-level) computation of control and data flows. How-
ever, precise, fine-grained information flow analysis is usually very
expensive. The great complexity of distributed systems is a major
reason that most existing relevant approaches are not applicable
(e.g., due to scalability barriers) or very limited utility (e.g., only
for single component/process). For many distributed systems (e.g.,
online/cloud services) that are normally running continuously, it
is desirable to keep monitoring them against security threats. In
these scenarios, it is even more difficult to achieve and maintain
the scalability.

Moreover, in addition to the scalability problem, there are multi-
ple additional challenges to cost-effective information flow analysis
solutions for distributed systems. One such difficulty is that inter-
process flows among components are implicit since the components
of the distributed system are decoupled [9]. These implicit flows
are often not modeled by traditional information flow analysis
approaches, which rely on explicit reference among code entities
to compute the dependencies among them. Yet another problem
concerns portability—the analysis approach based on customized
environments would require frequent updating due to the constant
evolution of the underlying platforms.

In the rest of this proposal, I outline my current contributions.
The focus is put on how to design realistic solutions to deal with
the scalability challenges in information flow security defense for
large, complex distributed systems. Then, I lay out ongoing/future
research that aims to generalize those solutions to more challenging
use scenarios (e.g., continuously system running).

2 EXISTING AND EXPECTED
CONTRIBUTIONS

The objective of the research is to establish a cost-effective dynamic
information flow security analysis framework, which can address
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Figure 1: An overview of thesis research on scalable
information flow security analysis for distributed software.

the scalability and other relevant challenges (e.g., portability and
implicit dependency) for distributed systems. Accordingly, my the-
sis research has been focused on three associated themes which are
depicted in Figure 1.

2.1 DistMeasure: Understanding and
Predicting Information Flow Security
through IPC Measurement

In distributed systems, inter-process communications (IPC) repre-
sent a major aspect of their (run-time) behaviors. Using IPC metrics,
I attempted to predict security factors such as the number and length
of information flow paths after understanding the communication
with respect to typical user input. However, there were not many
appropriate metrics for IPC in distributed software. Thus, I defined
four novel IPC metrics: run-time message coupling (RMC), run-time
class coupling (RCC), class central coupling (CCC), and inter-process
reuse (IPR) with various (method/class/process/system) levels [16].

Firstly, the process-level RMC is the number of messages sent
from one process to another. The system-level RMC is then defined
as the average of the process-level RMC on all communicating
process pairs. Moreover, the class-level RCC is the ratio of the total
number of methods in the first class in the first process that is
dependent on any method in the second class in the second process,
to the total number of methods in any process, other than the first
process, that is dependent on any method in the second process.
The process-level RCC metric is then set to the size of the union
set of entire dependence sets of all methods in all classes of the
process, where the numerator is the size of the union set of remote
dependence sets of those methods. The system-level RCC metric is
the average of such process-level RCC measures on the Cartesian
product of two sets which include all processes.

Next, the process-level CCC is the sum of all RCC of all possible
class pairs which one class is in any local process and another
in any remote process. The system-level CCC is then defined as
the mean of process-level CCC measures. For inter-process reuse,
the method-level IPR is the ratio of the intersection of the local
dependence set (set of methods in the process that depends on the
given method) and remote dependence set (set of methods that
depend on the given method but are in any process other than the
first process), to the size of the entire set of methods covered in
the execution. The system-level IPR metric is then set to the ratio
of the sum of method-level IPR measures on all methods in the

execution, to the size of the entire set of these methods. CCC and
IPR are derived from coupling metrics essentially.

Table 1: Correlations between IPC metrics and (the direct
measures of) information flow security

IPC metrics
Quality factors RMC RCC CCC IPR

Security (path count) 0.159 0.348 0.618 -0.450
Security (path length) 0.196 0.453 0.583 -0.371

As shown in Table 1, I got the information flow path number and
length have positive correlationswith threemetrics (RMC, RCC, and
CCC). Correlations are significant for CCC especially. The reason is
perhaps that those higher values indicate more complicated systems
which should have more and longer information flow paths (lower
security). On the contrary, IPR has significant, negative correlations
with both direct security measures. It means that more sharing
of functionalities (measured by IPR) related to fewer and shorted
vulnerable paths (higher security) while the more inter-process
dependencies (measured by RMC/RCC/CCC) are related to more
and longer taint flow paths (lower security) [16]. Moreover, we
could predict the security trend of the system, upward or downward,
according to trends of IPC metrics and relevant correlations.

In sum, I defined (four) IPC metrics which provide a promising
approach for quantifying information flow security in executions.
They could help us understand, analyze, and even predict security
factors of distributed systems.

2.2 DistTaint: Application-level Dynamic
Information Flow Analysis for Distributed
Systems

To resolve the aforementioned challenges (applicability, portability,
and scalability) of information flow security solutions, I also devel-
oped DistTaint, a creative application-level dynamic information
flow analysis approach for distributed programs. First, it addresses
the applicability challenge by inferring inter-process implicit de-
pendencies from happens-before relations among method events.
Conversely, most traditional information flow analyses, such as
DTA++ [18], are only applied to centralized programs because of
the lack of the capability of detecting implicit dependencies. Second,
as an application-level approach, it overcomes the portability chal-
lenge without requiring any platform customizations. By contrary,
as system-level analysis, TaintDroid [15] needs to customize An-
droid with the portability problem. Lastly, even though DistTaint is
an application-level dynamic information flow analysis, it can solve
the scalability challenge through a multi-phase analysis strategy. It
precedes a pre-analysis to produce method-level results employed
to narrow down the scope of the fine-grained flow analysis in order
to reduce the overall analysis overhead.

DistTaint computes an approximated set of method-level infor-
mation flows with respect to the sources and sinks (Phase 1) firstly,
followed by a statement coverage profiling (Phase 2). Guided by
method-level flows and the statement coverage, DistTaint then
refines the approximated results to statement-level using the infor-
mation of multiple modalities and levels—static dependencies at
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Figure 2: The architecture and overall work flow of DistTaint

statement-level and execution events at method-level (Phase 3). Dist-
Taint checks all possible pairs of sources and sinks exercised during
the analyzed system execution and reports valid statement-level in-
formation flow paths from the sources to sinks with source, remote
and sink statement paths. Besides the statement-level information
flow analysis time, efficiency metrics such as execution/analysis
time and storage costs are recorded too. The architecture with the
overall work flow of DistTaint is shown in Figure 2.

DistTaint Phase 1 (Pre-Process): In the first step, DistTaint in-
serts probes for communication events using a list of IPC APIs (e.g.,
Socket APIs) to identify probe points based on string matching [10].
In the second step, monitors reuse relevant parts of DistIA [10] and
piggyback the additional items (the data length, a logical clock and
the sender id) to it. In the third step, DistTaint creates method-level
source-sink pairs from the source-sink configuration file given by
the user. Lastly, method-level path analysis gathers execution traces
to compute themethod-level information flow paths using an offline
algorithm, which retrieves the partial ordering of method-execution
events by comparing their time stamps.

DistTaint Phase 2 (Statement-Coverage Analysis): Phase 2
contains three steps. First, DistTaint constructs intra-procedural
control dependency graphs for all components and inserts one
coverage monitoring probe for each branch of each component.
Second, when the instrumented system executes, covered branches
are recorded. Eventually, from covered branches and control depen-
dencies on graphs, covered statements are inferred.

DistTaint Phase 3 (Refinement): In this phase, DistTaint
computes statements-level information flow paths as the final out-
put, using the pre-computed method-level paths. DistTaint also
utilizes statement coverage gathered from phase 2 to optimize
its performance and reduce the analysis costs. Specifically, it uti-
lizes DIVER [8], a hybrid dynamic dependence analysis for single-
process programs and executions, to profile method-execution
events at instance-level. Next, DistTaint merges distributed execu-
tion traces (collected from distributed processes) and then builds a
dynamic dependency graph (𝐷𝐷𝐺) followed by pruning it with
the statement coverage. Finally, statement-level information flow
paths are computed from the 𝐷𝐷𝐺.

Discovering Information Flow Paths and Real-world Vul-
nerabilities: DisTaint detected information flow paths in four
Java distributed software with high precision. We could find real
vulnerabilities related to information flow security from sources
(e.g., CVE database and bug repositories). DistTaint successfully
discovered 9 of 10 real vulnerabilities, such as CVE-2014-0085 [1]. It
only missed one for Voldemort subject because it was not exercised
in the executions considered.

Monitoring

Analysis

Adjustment

Execution

Process1

Monitoring

Analysis

Adjustment

Execution

Process2
Monitoring

Analysis

Adjustment

Execution

Process3

Monitoring

Analysis

Adjustment

Execution

Process4

Query Tool
to send queries and merge 
returned results

Figure 3: The high-level architecture of DistODD

2.3 DistODD: Distributed Online Self-adaptive
Dynamic Dependency Analysis

As an ongoing effort, I am developing DistODD, a self-adaptive dy-
namic dependency analysis approach, against the scalability prob-
lem in monitoring information flow paths in continuously-running
distributed systems. DistODD will monitor the distributed system
continuously. It will compute and return relevant dependency sets
from all distributed processes of the system in an online fashion
according to the queries provided by users.

DistODD will have feedback control loops that will realize the
self-adaption. These feedback control loops are infinite and decen-
tralized with four activities: monitoring, analysis, adjustment, and
execution. Every decoupled process should have a control loop. I
will develop a query tool whose client sends queries and merges
results computed and returned from tool services instrumented in
distributed processes. The high-level architecture of DistODD is
illustrated in Figure 3.

As a self-adaptive dynamic dependency analysis approach, Dis-
tODD should automatically choose a suitable configuration and
computation strategy to meet the requirements (e.g., cost budget)
defined by users. For example, it monitors the system to gather
and analyze performance data such as the calculation time of a
dependency set. If the analysis cost exceeds a predefined threshold
(e.g., 2 seconds, as part of the user’s cost budget), DistODD can
adjust itself via choosing and exerting optimal analysis configura-
tions. And a self-adaptation action would be initiated. DistODD
would then change to the most effective configuration and compu-
tation strategy that should finish within 2 seconds. Next, DistODD
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would compute new analysis results according to configuration and
strategy adjusted. After the execution (computation), DistODD will
monitor the system again and a new control loop will start.

3 RELATED WORK
Dynamic coupling metrics were defined by Arisholm et al. [6] for
object-oriented software.The dynamic class export/import coupling
(𝐼𝐶 𝐶𝐷 and 𝐸𝐶 𝐶𝐷) metrics initially motivated us to define
RMC metric. Dynamic coupling metrics are also used to measure
complexity [17] and architectural risks [27]. Most of these metrics
were defined according to explicit dependencies among the enti-
ties (e.g., method, class, instance, etc.). So, they are not suitable to
measure inter-process communication in distributed systems. By
contrary, our IPC metrics can be used to measure inter-process
communication and to predict security and performance factors for
distributed systems.

For information flow security, there are various static and dy-
namic analysis solutions developed. Some static information flow
analysis tools [20] [20] [25] [5] have been developed for main-
stream languages. And several other static analysis algorithms for
distributed systems were developed, but they focus on special types
of systems rather than the generically most type of distributed
systems [11], such as EAndroid [21]/DroidForce [22]/IccTA [19]
for Android applications, and points-to analysis [24] for Java RMI
programs. The techniques based on dynamic analysis can moni-
tor information flows during executions [23]. They can analyze
information flow paths more precisely and efficiently than static
analyses do [7]. Dynamic information flow analyses are able to keep
runtime overhead moderate via gathering some static information
before the executions.

Automating software activities allow software systems to auto-
maticallymonitor system behaviors and to trigger self-adaptation to
compensate for deviations if thresholds predefined are exceeded [14].
There are two dimensions for a self-adaptive application: the man-
aged system (the system to be controlled), and the controller [26].
Adaption feedback control loops should be main entities through-
out the life-cycle of self-adaptive applications [13]. They should
be called MAPE loops because of their four activities: Monitor,
Analyze, Plan and Execute [13].

For distributed systems, I have to consider the interactions among
the different activities of control loops realized in different compo-
nents [13]. According to the different interaction methods, there are
five patterns: hierarchical control, master/slave, regional planner,
fully decentralized, and information sharing [13]. For DistODD, the
fully decentralized pattern is employed such that each component
of the analysis itself has a complete control loop for adaptability
and scalability purposes.

4 CONCLUSION
My thesis research aims at a scalable approach to information flow
security defense for distributed systems. Towards this goal, I have
been exploring three connected directions. First, I proposed a novel
set of IPC metrics for measuring distributed systems’ run-time
behaviors in relation to information flow securitywith several levels.
I also demonstrated the practical usefulness of the IPC metrics for
understanding and predicting information flow security factors

computed from relevant datasets collected from diverse sources.
As future work, I will explore how IPC coupling measures predict
different security factors that are difficult to measure directly. I
also plan to expand the scope to include some cohesion metrics of
distributed systems.

Second, I have developed an application-level dynamic informa-
tion flow analysis approach (DistTaint) for distributed programs,
with several advantages to solve key analysis challenges (implicit
dependence, portability, and scalability). In the first place, DistTaint
could detect explicit and implicit information flows (i.e., data and
control dependencies, respectively). Also, it is an application-level
approach so that it could work transparently on distributed systems
without customizing the underlying platforms. Along this line, I
also plan for a few following lines of work. Firstly, I will research
ways to further optimize the efficiency of DistTaint. Then, I will
gather feedback information from users to estimate whether should
the approach contain the variable-level analysis with apt costs.

As an ongoing research project, I am currently working on a self-
adaptive dynamic dependency analysis approach, called DistODD.
It is able to enable online information flow security defense for
continuously-running systems. This would address the scalability
problem in a more general context. The approach is expected to
meet the scalability needs of users via its decentralized control that
realizes the self-adaptation.
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