
On the Scalable Dynamic Taint Analysis for Distributed Systems
Xiaoqin Fu

Washington State University
Pullman, WA, USA
xiaoqin.fu@wsu.edu

ABSTRACT

To protect the privacy and search sensitive data leaks, we must
solve multiple challenges (e.g., applicability, portability, and scala-
bility) for developing an appropriate taint analysis for distributed
systems. We hence present DistTaint, a dynamic taint analysis for
distributed systems against these challenges. It could infer implicit
dependencies from partial-ordering method events in executions
to resolve the applicability challenge. DistTaint fully works at
application-level without any customization of platforms to over-
come the portability challenge. It exploits a multi-phase analysis
to achieve scalability. By proposing a pre-analysis, DistTaint nar-
rows down the following fine-grained analysis’ scope to reduce the
overall cost significantly. Empirical results showed DistTaint’s
practical applicability, portability, and scalability to industry-scale
distributed programs, and its capability of discovering security vul-
nerabilities in real-world distributed systems. The tool package can
be downloaded here.

CCS CONCEPTS

• Security and privacy → Distributed systems security; Soft-
ware security engineering.

KEYWORDS

Distributed systems, Dynamic taint analysis, Scalability

ACM Reference Format:

Xiaoqin Fu. 2019. On the Scalable Dynamic Taint Analysis for Distributed
Systems. In Proceedings of the 27th ACM Joint European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE ’19), August 26–30, 2019, Tallinn, Estonia. ACM, New York, NY,
USA, 3 pages. https://doi.org/10.1145/3338906.3342506

1 PROBLEM AND MOTIVATION

Distributed systems have been increasingly developed for vari-
ous computation tasks. However, Distributed systems are usually
complex and have large code sizes. Their decoupled components
typically run at different machines without a global clock. They
hence suffer from security vulnerabilities, such as data leakage,
owing to these characteristics. For example, sensitive information
(e.g., account/password) might leak and cause serious losses and
damages. Thus, we need to check sensitive data flowing throughout

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5572-8/19/08.
https://doi.org/10.1145/3338906.3342506

a distributed program (across its decoupled processes) to defend
against such information flow threats.

Taint analysis is employed for defending against code vulnerabil-
ities by identifying where the sensitive data may be leaked via taint
flows. However, existing (static or dynamic) taint analyses have
suffered several challenges. The applicability challenge presents
because most of them were developed for centralized software and
relied on explicit dependencies, but dependencies among decou-
pled (distributed) components in common distributed software are
implicit. The portability challenge exists since some existing taint
analyzers may depend on customized or modified platforms. The
scalability challenge arises due to the great complexity and large
sizes of real-world distributed systems.

2 BACKGROUND AND RELATEDWORK

Developers have developed both static and dynamic taint analy-
ses. Most early analyses are static [18] (e.g., FlowCaml [20] and
JFlow [15]). These solutions suffer the imprecision of static anal-
ysis naturally and are unsound owing to the dynamic features
of modern languages [14]. Some other static analyses focus on
special programs rather than the most common distributed sys-
tems [9], such as points-to analysis [19] for Java RMI systems, and
EAndroid [16] for Android apps. Thus, they face applicability chal-
lenges. On the other hand, most dynamic analyses [8, 11, 12, 21, 22]
require architecture-specific frameworks and emulators (e.g., PIN
and QEMU) or platform (Java virtual machine or even operating
system) customizations, hence portability challenges exist. Several
other dynamic analyses [1, 2] focus on special JavaScript programs
and they are unsuitable for general distributed systems so that
there are also applicability challenges. In particular, the algorithm
CGCA [3] could induce inter-process dependencies. However, it
has not been implemented on large distributed programs so that it
might still face the scalability challenge.

3 APPROACH

To support information flow security defense for distributed soft-
ware, we have developed DistTaint, an application-level dynamic
taint analyzer (a.k.a information flow analyzer) based on Soot [13].
It reused relevant components from our previous works for method
execution profiling [5, 7] and hybrid dependence abstraction [4, 6],
and the Indus framework [17] for threading-induced dependence
analysis.DistTaint could solve challenges to existing analyzers. To
overcome the applicability challenge, DistTaint infers statically
implicit inter-process dependencies from a global partial order-
ing of executed methods via monitoring happens-before relations
among method events in the executions. As an application-level
solution, it eliminates the requirement of platform customizations
so as to resolve the portability challenge. DistTaint generates the

https://www.dropbox.com/sh/kfr9ixucyny1jp2/AAC00aI-I8O-d4ywZCqwZ1uaa?dl=0
https://doi.org/10.1145/3338906.3342506
https://doi.org/10.1145/3338906.3342506


ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Xiaoqin Fu

User configuration CDistributed program D

Phase 1: Pre-analysis
computing method-level 

taint flow paths

User Inputs

Method-level 
taint paths Phase 2: Coverage analysis

profiling statement coverage

Phase 3: Refinement
computing statement-level 

taint flow paths

 Statement 
coverage

Statement-level 
taint paths

DISTTAINT Outputs

Program input I

Figure 1: The overall workflow of DistTaint

final results (statement-level taint paths) after a rapid but rough
computation of method-level results in a pre-analysis. By using
approximate intermediate results to narrow down the scope of the
fine-grained analysis, DistTaint reduces the overall cost greatly
to solve the scalability challenge.

The overall workflow of DistTaint is illustrated in Figure 1.
To balance effectiveness and cost, DistTaint has three phases for
distributed systems: pre-analysis, coverage analysis, and refinement.
There are three inputs from the user: the distribute program 𝐷
under analysis, the input 𝐼 for𝐷 needed by DistTaint, and a user
configuration 𝐶 including a list of message-passing APIs and the
lists of sources and sinks between which DistTaint will compute
all possible taint paths with respect to 𝐼 .

The approach starts with the pre-analysis phase which computes
an approximated set of method-level taint paths with respect to
the sources and sinks in 𝐶 (Phase 1). Next, coverage-analysis phase
produces a statement coverage only for the methods on any of the
method-level taint paths (Phase 2). Finally, refinement phase refines
the approximated results to statement-level using method-level
flows and the statement coverage (Phase 3). DistTaint checks all
possible pairs of sources and sinks exercised during the analyzed
system execution, and reports as the final results valid statement-
level taint paths from any source to any sink.

4 EVALUATION

Table 1: Experimental subjects

Subject (version) #Method #SLOC

MultiChat (r5) 37 470
NIOEcho (r69) 27 412
OpenChord (v1.0.5) 736 9,244
Thrift (v0.11.0) 1,941 14,510
xSocket (v2.8.15) 2,209 15,760
Voldemort (v1.9.6) 20,406 115,310
ZooKeeper (v3.4.11) 5,383 62,194
NettY (v4.1.19) 12,389 167,961

As shown in Table 1, we applied DistTaint to eight distributed
Java programs, most of which are real-world systems, with various
codes. Three types (Integration, load, and system) of testing were
implemented. The subject sizes are measured by numbers of num-
bers of methods defined in the subject (#Method) and non-blank
non-comment Java source lines of code (#SLOC). We considered
pairs of all (24) sources and (39) sinks from the default user con-
figuration as queries to each execution. We aimed to estimate the
effectiveness, scalability, and practicality ofDistTaint, and answer
three research questions through the evaluation:

RQ1 How effective is DistTaint in terms of its precision?
Answers: DistTaint significantly reduced the taint checking ef-
fort by users so that it was effective. The evaluation showed high
precision and potentially promising recall of DistTaint after we
validated with all or 20 sampled paths for each subject manually
and then found that the paths were all true positives.
RQ2 How efficient/scalable is DistTaint?
Answers: DistTaint was promisingly scalable and reasonably
efficient for distributed systems. It took 15 minutes for analyses on
all possible queries from a given user configuration and 7 seconds
on a query (a source/sink pair). The executions had less than 1x
run-time slowdown and a small (81MB) storage cost.

Table 2: Real-world vulnerabilities discovered byDistTaint

Subject Vulnerability Found #Cases #FNs

Thrift CVE-2015-3254 Yes 1 0

Voldemort

Issue 101 Yes

7 1

Issue 381 Yes
Issue 387 Yes
Issue 352 Yes
Issue 378 Yes
Issue 377 No
Issue 155 Yes

ZooKeeper
CVE-2014-0085 Yes

3 0Bug 2569 Yes
CVE-2018-8012 Yes

RQ3 Can DistTaint discover real-world vulnerabilities?
Answer: DistTaint showed promising capabilities in successfully
discovering 9 of 10 real-world security vulnerabilities, shown in
Table 2. Meanwhile, only one false negative demonstrated that
DistTaint relies on the vulnerabilities exercised during the ana-
lyzed executions of distributed systems. Nevertheless, DistTaint
is able to find real vulnerabilities related to sensitive information
flows. For example, the real Zookeeper vulnerability CVE-2018-
8012 [10], ”No authentication/authorization is enforced when a server
attempts to join a quorum in Apache ZooKeeper……”, could be found
after DistTaint detected relevant tainted data passing through
distributed processes (e.g., Client, Container, and Server), which
might be on different machines, of Apache Zookeeper system.

5 CONCLUSION

We developed DistTaint, an application-level dynamic taint anal-
ysis for distributed systems, to output taint paths as the results.
It is able to overcome several practicality challenges to existing
taint analysis approaches. DistTaint approximates inter-process
dependencies based on happens-before relations among methods
to address the applicability challenge (implicit dependencies). It
transparently works on distributed systems without changing un-
derlying platforms to overcome the portability challenge. Finally,
DistTaint resolves the scalability challenge by using a multi-phase
analysis strategy. We implemented DistTaint for Java and applied
it to several large-scale distributed systems against diverse execu-
tions, and demonstrated its promising scalability and effectiveness,
along with its capability of discovering various real security vul-
nerabilities in industry-scale distributed software.



On the Scalable Dynamic Taint Analysis for Distributed Systems ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

REFERENCES

[1] Thomas H Austin and Cormac Flanagan. 2009. Efficient purely-dynamic infor-
mation flow analysis. In Proceedings of the ACM SIGPLAN Fourth Workshop on
Programming Languages and Analysis for Security. ACM, 113–124.

[2] Thomas H Austin and Cormac Flanagan. 2010. Permissive dynamic information
flow analysis. In Proceedings of the 5th ACM SIGPLAN Workshop on Programming
Languages and Analysis for Security. ACM, 3.

[3] Soubhagya Sankar Barpanda and Durga PrasadMohapatra. 2011. Dynamic slicing
of distributed object-oriented programs. IET software 5, 5 (2011), 425–433.

[4] Haipeng Cai. 2018. Hybrid Program Dependence Approximation for Effective
Dynamic Impact Prediction. IEEE Transactions on Software Engineering 44, 4
(2018), 334–364.

[5] Haipeng Cai and Raul Santelices. 2014. DIVER: Precise Dynamic Impact Analysis
Using Dependence-based Trace Pruning. In Proceedings of International Confer-
ence on Automated Software Engineering. 343–348.

[6] Haipeng Cai, Raul Santelices, and DouglasThain. 2016. DiaPro: Unifying Dynamic
Impact Analyses for Improved and Variable Cost-Effectiveness. ACM Transactions
on Software Engineering and Methodology (TOSEM) 25, 2 (2016), 18.

[7] Haipeng Cai and Douglas Thain. 2016. DistIA: A cost-effective dynamic impact
analysis for distributed programs. In Proceedings of the 31st IEEE/ACM Interna-
tional Conference on Automated Software Engineering. 344–355.

[8] James Clause, Wanchun Li, and Alessandro Orso. 2007. Dytan: a generic dynamic
taint analysis framework. In Proceedings of the 2007 international symposium on
Software testing and analysis. ACM, 196–206.

[9] George Coulouris, Jean Dollimore, Tim Kindberg, and Gordon Blair. 2011. Dis-
tributed Systems: Concepts and Design (5th ed.). Addison-Wesley Publishing
Company.

[10] NATIONAL VULNERABILITY DATABASE. [n.d.]. Vulnerability Details : CVE-
2018-8012.

[11] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon
Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. 2014.
TaintDroid: an information-flow tracking system for realtime privacy monitoring
on smartphones. ACM Transactions on Computer Systems (TOCS) 32, 2 (2014), 5.

[12] Christophe Hauser, Frédéric Tronel, Colin Fidge, and Ludovic Mé. 2013. Intru-
sion detection in distributed systems, an approach based on taint marking. In
Communications (ICC), 2013 IEEE International Conference on. IEEE, 1962–1967.

[13] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren. 2011. Soot - a Java
Bytecode Optimization Framework. In Cetus Users and Compiler Infrastructure
Workshop.

[14] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej Lhoták, J Nelson
Amaral, Bor-Yuh Evan Chang, Samuel Z Guyer, Uday P Khedker, Anders Møller,
and Dimitrios Vardoulakis. 2015. In defense of soundiness: a manifesto. Commun.
ACM 58, 2 (2015), 44–46.

[15] Andrew C Myers. 1999. JFlow: Practical mostly-static information flow control.
In Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. ACM, 228–241.

[16] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden,
Jacques Klein, and Yves Le Traon. 2013. Effective Inter-Component Communica-
tion Mapping in Android with Epicc: An Essential Step Towards Holistic Security
Analysis. In Proceedings of USENIX Security Symposium.

[17] Venkatesh Prasad Ranganath and John Hatcliff. 2007. Slicing concurrent Java
programs using Indus and Kaveri. International Journal on Software Tools for
Technology Transfer 9, 5-6 (2007), 489–504.

[18] Andrei Sabelfeld and Andrew C Myers. 2003. Language-based information-flow
security. IEEE Journal on selected areas in communications 21, 1 (2003), 5–19.

[19] Mariana Sharp and Atanas Rountev. 2006. Static analysis of object references in
RMI-based Java software. IEEE Transactions on Software Engineering 32, 9 (2006),
664–681.

[20] Vincent Simonet and Inria Rocquencourt. 2003. Flow Caml in a nutshell. In
Proceedings of the first APPSEM-II workshop. 152–165.

[21] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin Kirda.
2007. Panorama: capturing system-wide information flow for malware detec-
tion and analysis. In Proceedings of the 14th ACM conference on Computer and
communications security. ACM, 116–127.

[22] David Yu Zhu, Jaeyeon Jung, Dawn Song, Tadayoshi Kohno, and David Wetherall.
2011. TaintEraser: Protecting sensitive data leaks using application-level taint
tracking. ACM SIGOPS Operating Systems Review 45, 1 (2011), 142–154.


	Abstract
	1 Problem and Motivation
	2 Background and Related Work
	3 Approach
	4 Evaluation
	5 Conclusion
	References

