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Abstract—Light-weight devices have become ubiquitous in our
daily life, such as smartphones, smart monitors, and other smart
devices in our home. As light-weight devices are becoming pop-
ular, the demand for sophisticated human-computer interaction
(HCI) applications for light-weight devices is also increasing. One
particularly promising HCI application for light-weight devices
is facial expression recognition (FER), since it may open up
possibilities of various medical, psychological or psychiatric mon-
itoring. However, its high computational demand has prevented
widespread adoption of FER on light-weight devices. To address
this issue, here we aim at decreasing computational overhead of
FER by reducing the number of facial landmarks. We calculated
mutual information of facial landmarks’ movements and detected
their clusters using hierarchical agglomerative clustering (HAC).
We also applied a genetic algorithm (GA)-inspired landmark
selection method to filter out low-utility features from each
facial landmark cluster. The selected features were provided to a
support vector machine (SVM) classifier to classify facial expres-
sions, and its performance was compared among several different
algorithm settings. Results showed that our proposed method
achieved classification accuracy similar to the classifier that used
the original full-featured dataset, with improved performance
robustness and computational time reduced by 63.5%.

Keywords—facial expression recognition; light-weight devices;
feature selection; mutual information; hierarchical agglomerative
clustering; support vector machine.

I. INTRODUCTION

With the development of 5G technology, light-weight de-

vices, especially mobile phones, are becoming increasingly

common and useful in our daily life. As such light-weight

devices decrease in price and become more widely available,

they occupy an increasingly critical position in human life, in

both personal/entertainment and professional/business scenes

[1]. Several advanced applications of human-computer inter-

action (HCI) have been developed for light-weight devices.

For example, some smartphones now use facial recognition to

unlock the system.

One promising HCI technology that has significant potential

benefit is facial expression recognition (FER). Over the past

decades, FER has been utilized in several successful applica-

tions, including analysis of human emotional behaviors and

monitoring of patients’ emotional status in hospitals. Typical

FER methods are computationally demanding using 25–130

landmarks [2]–[6], and therefore, many of the earlier FER

studies utilized high-end stand-alone computational environ-

ments. Meanwhile, implementation of FER on mobile devices

is also actively studied because of its prospect to realize greater

flexibility and convenience. Earlier studies in this direction

implemented FER on high-end mobile devices with substantial

computational power [7], [8]. There is still a gap in this

body of literature regarding how to implement FER on more

computationally limited light-weight devices that are more

widely available on the market, without losing recognition

performance. Reducing computational overhead will also help

reduce power consumption, leading to more continuous, more

robust FER on those devices.

In this study, we aim to reduce the number of facial land-

marks required in FER by detecting informational correlations

among them and carefully selecting the most useful features

from the correlated feature clusters. We used a dataset obtained

from the Manual Annotation on AR Face Database [6], [9],

which contains 2D coordinates of 130 manually annotated

facial landmarks for 112 subjects’ four different facial expres-

sions. The movements (displacements) of facial landmarks’

coordinates across different facial expressions represent a

coordinated unique pattern of facial muscle behaviors. Such

landmark movements contain a lot of information about facial

expressions and thus were used to classify facial expressions.

We measured mutual information (MI) between pairs of facial

landmarks with regard to their movements. Using the results

of MI calculation, we constructed a MI distance matrix. We

then applied hierarchical agglomerative clustering (HAC) to

the matrix to classify the landmarks into clusters of similar

movement patterns. We selected one representative feature

from each cluster using several different methods, and then

constructed a support vector machine (SVM)-based facial

expression classifier. We evaluated the performance of the

developed classifiers through comparison with the classifier

that used the original full-featured dataset.
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The rest of the paper is structured as follows. In Section II,

we will review the relevant literature. We will discuss detailed

methods in Section III. The design and results of experiments

will be described in Sections IV and V, respectively. Finally,

Section VI concludes the paper with future research directions.

II. RELATED WORK

A. Feature Selection with Mutual Information

Feature selection is a critical problem in pattern recogni-

tion. It is used to remove redundant and irrelevant features

and thereby improve the performance of pattern recognition.

Mutual information (MI), i.e., information-theoretic nonlinear

correlation between two random variables [10], has been heav-

ily utilized in feature selection studies to detect correlations

between features and outcome variables. A classic is the work

by Battiti [11] that introduced MI for feature selection (MIFS),

which selects features based on their MI with class variables.

This method can reduce the dimensionality of input data, and

it is now considered an important procedure for classification

[12].

MIFS was followed by a large number of studies that

improved its performance. Peng et al. [13] used the maximal

statistical dependency criterion based on MI to select good

features. As there were difficulties in calculating maximal

dependency directly, they developed the minimal-redundancy-

maximal-relevance criterion (mRMR), which led to smaller

classification errors. Based on mRMR, Zhang et al. [14]

proposed the mCRE method that included mRMR, clustering,

and recursive feature elimination. The mCRE method was

shown to choose fewer features with higher classification

accuracy. Estevez et al. [15] proposed normalized MI feature

selection (NMIFS) that used normalized MI as a measure of

redundancy. Yin et al. [16] proposed improved normalized

MI feature selection (INMIFS) by introducing a new quality

estimation function. The INMIFS method shows good results

both in accuracy and redundancy reduction. More recent

developments in MI-based feature selection include Lee et al.’s

work [17] on multi-label feature selection and Gao et al.’s work

[18] on dynamic changes of selected features (DCSF) using

conditional MI between selected features and classes.

These prior studies commonly used MI to measure cor-

relations between features and variables to be explained or

predicted. In our study, in contrast, we will use MI between

features themselves to identify informational clusters that we

can exploit for reduction of the number of features, which is

different from the earlier works reviewed above.

In addition to feature selection on information theory, there

are other methods for measuring similarity. Yu et al. [19] cre-

ated a feature selection model named Fast Correlation Based

Filter (FCBF). They measured F-correlations between pairwise

features, and used symmetrical uncertainty as the goodness

measure. Their approach was successful in reducing com-

putational overhead and removing redundant and irrelevant

features. Zhang et al. [20] conducted a hybrid feature selection

algorithm, in which they applied one-class F-score, improved

F-score and genetic algorithm to do feature selection. Then,

they applied four classification methods, k-nearest neighbors

(k-NN), random forest, Gaussian näıve Bayes and SVM,

to evaluate the selected features. Their work demonstrated

improved performance, but time efficiency was not considered.

Genetic algorithm (GA) is also a widely used feature

selection method. Vafaie et al. [21] compared the results of

image texture recognition using sequential backward selection

(SBS) with those of GA. They found the features selected by

GA worked better than those selected by SBS. Oh et al. [22]

developed a hybrid GA for feature selection, which made some

changes in local search operations based on the typical GA.

They improved offsprings with local search operations applied

before the replacement step. In this way, they controlled the

size of offsprings while improving the overall performance.

In this paper, we present a new feature selection application

that was not explored in the literature reviewed above. We

propose a hybrid feature selection method for selecting a small

number of facial landmarks for facial expression recognition

tasks. Our approach is based on the information theoretic

analysis of the characteristics of the data.

B. Facial Expression Recognition

Over the past decades, facial expression recognition (FER)

has become a major research area with significant achieve-

ments, including FER based on Gabor Wavelets [23]–[25]

and FER by local binary pattern (LBP) [26]. Facial landmark

localization is an essential part of FER as well [3]–[6], in

which most studies detected and used at least 25 (and often

a lot more) facial landmarks. Real-time FER [2] is another

hot research topic, especially on mobile platforms. Choi et al.

[27] developed locally random incremental classifier (LRIC)

using local random projection (LRP) to extract facial features

in real time efficiently. Suk et al. [7] developed a smartphone

FER application using SVM and the Active Shape Model

(ASM). Suchitra et al. [28] proposed a real-time FER method

for mobile devices using the Haar cascade and ASM.

In these prior studies, the number of facial landmarks

used for FER remained fairly large, ranging from 26 to 77.

Naturally, the number of facial landmarks is directly linked to

the computational overhead of FER, and our aim is to reduce

it significantly.

III. METHODS

The overall methodology is summarized in Fig. 1. The

whole work was done using Python 3. We will describe details

of the method in the following part.

A. Facial Landmarks’ Movement

The dataset we used was obtained from the Manual An-

notation on AR Face Database [9], which includes 112 sub-

jects’ 130 facial landmark coordinates in four different facial

expressions (neutral, smile, anger and scream) recorded on

two different days. We set the neutral expressions’ coordinates

as the baseline (xneu,δ
i,j , yneu,δi,j ), where δ ∈ {1, 2} is the day

of recording and i and j are indices for subjects and facial
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Select one landmark 
from each cluster.

Neutral Face Smile Face vs. Neutral Face Anger Face vs. Neutral Face Scream Face vs. Neutral Face

Landmark 1

Landmark 0

Landmark 3Landmark 2

Landmark 4

Landmark 5

Conduct SVM on 
selected 6 landmarks.

a.

b.

c. d.
e.

f.

g.

Fig. 1. A schematic illustration of our proposed method. a. We set the locations of 130 facial landmarks on the neutral expression as the baseline and
measured the displacement of the landmarks in the other three expressions. b. We binned the movements of each landmark in polar coordinates to obtain
its movement distribution. We obtained 130 such distributions for each subject’s face. c. We calculated mutual information and mutual information distance
between every pair of movement distributions and conducted the hierarchical clustering of the landmarks using their mutual information distances. d. The
result of the clustering. e. Landmarks in the same cluster have similar movement distributions while landmarks in different clusters have distinct movement
distributions. f. We selected one landmark from each cluster. g. Using the selected 6 landmarks, we classified different expressions with SVM.

landmarks, respectively. We then measured the landmarks’ dis-

placements from the baseline for each of the other expressions

and captured them in a polar coordinate system, as follows:

Δxε,δ
i,j = xε,δ

i,j − xneu,δ
i,j (1)

Δyε,δi,j = yε,δi,j − yneu,δi,j (2)

rε,δi,j =
√
(Δxε,δ

i,j )
2 + (Δyε,δi,j )

2 (3)

φε,δ
i,j = atan2(Δyε,δi,j ,Δxε,δ

i,j ) (4)

Here, ε ∈ {smi (smile), ang (anger), scr (scream)} is the

facial expression. (Δxε,δ
i,j ,Δyε,δi,j ) represents the displacement

of facial landmark j of subject i in expression ε on day δ
in a Euclidean coordinate system, and (rε,δi,j , φ

ε,δ
i,j ) represents

the same displacement in a polar coordinate system that has a

better rotational symmetry. These polar coordinate data were

binned into multiple discrete bins by unit distance (5 in this

study) for r and unit angle (45◦ in this study) for φ so that

r ∈ {0-5, 5-10, . . . , } and φ ∈ {0-45◦, 45-90◦, . . .}. Using

these discretized data, we constructed pi,j(r, φ), a discrete

probability distribution of movements of subject i’s facial

landmark j (Fig. 2), and also pi,j,k(rj , φj , rk, φk), a joint

probability distribution of simultaneous movements of subject

i’s two landmarks j and k.

B. Mutual Information and Distance

Using pi,j and pi,j,k obtained above, we calculated Shan-

non’s information entropies, joint entropies and mutual infor-
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Fig. 2. Examples of probability distributions of facial landmark movements pi,j(r, φ). Red dots in face figures on the left show which landmark was visualized.
The polar scatter plots in the middle show distributions of the landmark’s movements. The histograms on the right show the probability distributions in the (r, φ)
space. Top: Right iris. Bottom: Right side of the nose root. Different facial landmarks show different, though potentially correlated, movement distributions.

mation of landmarks’ movements as follows:

Hi(j) = −
∑
r,φ

pi,j(r, φ) log pi,j(r, φ)

Hi(j, k) = −
∑

rj, φj,

rk, φk

pi,j,k(rj , φj , rk, φk) log pi,j,k(rj , φj , rk, φk)

Ii(j; k) = Hi(j) +Hi(k)−Hi(j, k)

The MI values tell us which pairs of subject i’s facial land-

marks have higher nonlinear correlations in movements.
To conduct clustering on landmarks, we converted MI

values into MI distance metrics, as follows:

di(j, k) = Hi(j, k)− Ii(j; k)

= Hi(j) +Hi(k)− 2Ii(j; k)

These MI distance metrics were organized into a 130 × 130

distance matrix Di = (di(j, k))j,k for subject i. In total, we

obtained 112 such distance matrices (n = 112), which were

then averaged for all subjects as follows:

D̄ =
1

n

n∑
i=1

Di

This average matrix D̄ gives a symmetric table of average

MI distances for every pair of landmarks obtained from all

subjects, which is visualized in Fig. 3.

C. Hierarchical Agglomerative Clustering
We conducted hierarchical agglomerative clustering (HAC)

on the average MI distance matrix D̄ to detect clusters of

))

Fig. 3. Visualization of the average MI distance matrix D̄. X-axis and y-axis
represent the IDs of landmarks j and k, respectively. The shade represents
the value of MI distance between a pair of landmarks (light = small, dark =
large). The diagonal white line shows self-identity with distance 0. There are
some cluster structures already visible in this figure.

landmarks’ movements. We applied Ward’s method [29] in

HAC. The resulting dendrogram is shown in Fig. 4. We applied

the Thorndike method [30] to decide the number of clusters,

with the minimum required number of clusters set to 5. Fig. 5

shows the distances between clusters joined, in which the

2458

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on July 04,2020 at 17:34:26 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4. HAC dendrogram. From bottom to top shows the agglomeration
process by which individual landmarks were gradually combined into one
cluster. X-axis represents the ID of landmarks, while y-axis represents the
distance between the joined clusters.

Fig. 5. Distances between joined clusters plotted over the number of clusters.
The dotted line in this figure shows the minimum required number of clusters
assumed in this study (5). The red line shows the biggest gap (between 5 and
6), so we chose 6 as the number of clusters.

biggest gap was observed between 5 and 6. Based on this

result, we chose 6 as the number of clusters. The spatial

distributions of these 6 clusters of facial landmarks are as

shown in Fig. 6.

D. Support Vector Machine Classification

We used the support vector machine (SVM) [31] as a

classifier of facial expressions. The clusters of facial landmarks

obtained above were utilized to select representative landmarks

in several different ways (details will be explained in the next

section). The coordinates of selected facial landmarks were

used as inputs to SVM, and the classification model was built

to predict which facial expression the subject was showing. A

radial basis function (RBF) was used as a kernel function in

this SVM classification.

Fig. 6. Visualization of 6 facial landmark clusters detected in this study.
Different colors/numbers represent different clusters.

E. Landmark Selection

In our experiments, we selected landmarks in two ways.

One is a random selection (either from the whole set of 130

landmarks or from each of the six clusters), and the other is to

filter landmarks using a computationally light selection process

inspired by genetic algorithm. We call the latter selection

method “FF” (for feature filtering) hereafter.

The FF landmark selection was implemented as follows:

1) Put the 130 landmarks into m bin(s). In this study, we

used either m = 1 (i.e., all the 130 landmarks are in a

single bin) or m = 6 (i.e., the landmarks are separated

according to the result of clustering).

2) Choose 6/m landmark(s) randomly from each bin to

create a set of 6 landmarks.

3) Conduct the SVM classification using the 6 landmarks

selected above, and evaluate its accuracy.

4) Repeat 2 and 3 above t times and keep only the results

whose accuracies exceed threshold θ. In this study, we

used t = 1000 and initial threshold θ = 0.87.

5) Refresh the contents of the bins by removing landmarks

that did not appear in any of the results that met the

accuracy threshold above.

6) Increase θ a little and repeat 2–5 above.

Through these steps, landmarks that are not useful for facial

expression recognition will be quickly eliminated. We tested

this landmark selection method with several variations of

settings and found that conducting the filtering (steps 2–5

above) just for one iteration would produce results as good

as those of multiple iterations, and therefore, all the results

presented in this paper are based on a single iteration of

filtering.
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IV. EXPERIMENTS

A. Feature Selection Methods

The following five feature selection methods were imple-

mented and compared with each other in terms of classification

performance and computational time.

1) 130 landmarks

• This method uses all the 130 landmarks included in

the data for classification with no feature selection.

This method serves as the baseline.

2) R6

• This method uses 6 landmarks that are randomly

selected from the original 130 landmarks.

3) S6

• This method uses 6 landmarks, each of which is

randomly selected from one of the 6 clusters.

4) FF on R6

• This method uses 6 landmarks that are selected from

the original 130 landmarks after FF is applied.

5) FF on S6

• This method uses 6 landmarks, each of which is

selected from one of the 6 clusters after FF is

applied.

B. SVM Classification and Computational Time

We used each of the above five methods to generate a

dataset of the landmarks’ coordinates that were then used for

classification with SVM. Each dataset was split into a training

set and a test set with the splitting rate of 20%. Specifically,

we used 90 subjects’ data as the training set and 22 subjects’

data as the test set.

We ran the classification 1,000 times on each of the five

datasets, and then we compared their accuracy results.

We used Raspberry Pi 3 as a representative of light-weight

devices in our study. The Raspberry Pi 3 we used was a B+

model with a quad-core processor.

V. RESULTS

The accuracy results of the classification are shown in Fig. 7.

We can see that the accuracies of datasets of S6 and FF on

S6 are better than those of R6 and FF on R6. This means

that the landmarks selected from clusters outperformed the

landmarks not selected from clusters. We also compared the

results of S6 and FF on S6 against the result obtained using

130 landmarks. We found that the result of S6 worked slightly

worse than that of 130 landmarks, but the result of FF on

S6 worked as good as (even slightly better than) that of 130

landmarks, and moreover, the results of FF on S6 were more

consistent with less variance than those of 130 landmarks. To

show the comparison directly, we listed the statistical values

of the accuracy results in Table I.

We conducted the Mann-Whitney U test on the classification

results of S6 and R6. The p-value was 1.4127×10−19, which

means distributions of accuracy results in S6 and R6 are

significantly different. We also conducted the same test on the

Fig. 7. Comparison of accuracy results of running SVM classification 1,000
times on different feature selection methods.

TABLE I
STATISTICS TABLE OF ACCURACY RESULTS

Datasets Mean Standard Deviation (Minimum, Maximum)
130 Landmarks 0.8821 0.0326 (0.7667, 0.9667)

R6 0.7998 0.0820 (0.5111, 0.9333)
S6 0.8366 0.0450 (0.6444, 0.9333)

FF on R6 0.8558 0.6258 (0.5333, 0.9333)
FF on S6 0.8876 0.0225 (0.8, 0.9444)

classification results of FF on S6 and FF on R6. The p-value

was 1.4796 × 10−32. We concluded that the distributions of

accuracy results in FF on S6 and FF on R6 are significantly

different.

The computational time distributions on Raspberry Pi are

shown in Fig. 8. The computational time of running classifi-

cation experiments with dataset of selected 6 landmarks was

reduced by 63.5% compared to the computation time with the

dataset of 130 landmarks.

VI. CONCLUSION AND FUTURE WORK

This study sheds new light on mitigating computational

overhead on light-weight devices. We proposed a feature

selection method with measuring the relationship on facial

landmarks and clustering the facial landmarks to select 6

landmarks. We achieved good performance in classification

and computational time reduction with selected landmarks.

We concluded that FF on S6 shows more robust performance

even compared to 130 landmarks, since FF on S6 showed

less variance of accuracies. Using a small number of facial

landmarks in FER is significant to reduce computational time.

However, the scale of the dataset we used in our study is small,

and we will find more datasets to do the work in the future.

In the future, we will conduct feature selection on datasets

of 3D facial landmarks. We will find 6 or more landmarks

which are the most representative to create a pre-trained facial

landmarks detection model. We will apply the selected 6 facial
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Fig. 8. Comparison of computation time for running 1,000 SVM classifica-
tions on Raspberry Pi.

landmarks for other tasks, such as tracking facial landmarks’

movement in a video.
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