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Abstract—Light-weight devices have become ubiquitous in our
daily life, such as smartphones, smart monitors, and other smart
devices in our home. As light-weight devices are becoming pop-
ular, the demand for sophisticated human-computer interaction
(HCI) applications for light-weight devices is also increasing. One
particularly promising HCI application for light-weight devices
is facial expression recognition (FER), since it may open up
possibilities of various medical, psychological or psychiatric mon-
itoring. However, its high computational demand has prevented
widespread adoption of FER on light-weight devices. To address
this issue, here we aim at decreasing computational overhead of
FER by reducing the number of facial landmarks. We calculated
mutual information of facial landmarks’ movements and detected
their clusters using hierarchical agglomerative clustering (HAC).
We also applied a genetic algorithm (GA)-inspired landmark
selection method to filter out low-utility features from each
facial landmark cluster. The selected features were provided to a
support vector machine (SVM) classifier to classify facial expres-
sions, and its performance was compared among several different
algorithm settings. Results showed that our proposed method
achieved classification accuracy similar to the classifier that used
the original full-featured dataset, with improved performance
robustness and computational time reduced by 63.5%.

Keywords—ftacial expression recognition; light-weight devices;
feature selection; mutual information; hierarchical agglomerative
clustering; support vector machine.

I. INTRODUCTION

With the development of 5G technology, light-weight de-
vices, especially mobile phones, are becoming increasingly
common and useful in our daily life. As such light-weight
devices decrease in price and become more widely available,
they occupy an increasingly critical position in human life, in
both personal/entertainment and professional/business scenes
[1]. Several advanced applications of human-computer inter-
action (HCI) have been developed for light-weight devices.
For example, some smartphones now use facial recognition to
unlock the system.

One promising HCI technology that has significant potential
benefit is facial expression recognition (FER). Over the past
decades, FER has been utilized in several successful applica-
tions, including analysis of human emotional behaviors and
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monitoring of patients’ emotional status in hospitals. Typical
FER methods are computationally demanding using 25-130
landmarks [2]-[6], and therefore, many of the earlier FER
studies utilized high-end stand-alone computational environ-
ments. Meanwhile, implementation of FER on mobile devices
is also actively studied because of its prospect to realize greater
flexibility and convenience. Earlier studies in this direction
implemented FER on high-end mobile devices with substantial
computational power [7], [8]. There is still a gap in this
body of literature regarding how to implement FER on more
computationally limited light-weight devices that are more
widely available on the market, without losing recognition
performance. Reducing computational overhead will also help
reduce power consumption, leading to more continuous, more
robust FER on those devices.

In this study, we aim to reduce the number of facial land-
marks required in FER by detecting informational correlations
among them and carefully selecting the most useful features
from the correlated feature clusters. We used a dataset obtained
from the Manual Annotation on AR Face Database [6], [9],
which contains 2D coordinates of 130 manually annotated
facial landmarks for 112 subjects’ four different facial expres-
sions. The movements (displacements) of facial landmarks’
coordinates across different facial expressions represent a
coordinated unique pattern of facial muscle behaviors. Such
landmark movements contain a lot of information about facial
expressions and thus were used to classify facial expressions.
We measured mutual information (MI) between pairs of facial
landmarks with regard to their movements. Using the results
of MI calculation, we constructed a MI distance matrix. We
then applied hierarchical agglomerative clustering (HAC) to
the matrix to classify the landmarks into clusters of similar
movement patterns. We selected one representative feature
from each cluster using several different methods, and then
constructed a support vector machine (SVM)-based facial
expression classifier. We evaluated the performance of the
developed classifiers through comparison with the classifier
that used the original full-featured dataset.
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The rest of the paper is structured as follows. In Section II,
we will review the relevant literature. We will discuss detailed
methods in Section III. The design and results of experiments
will be described in Sections IV and V, respectively. Finally,
Section VI concludes the paper with future research directions.

II. RELATED WORK
A. Feature Selection with Mutual Information

Feature selection is a critical problem in pattern recogni-
tion. It is used to remove redundant and irrelevant features
and thereby improve the performance of pattern recognition.
Mutual information (MI), i.e., information-theoretic nonlinear
correlation between two random variables [10], has been heav-
ily utilized in feature selection studies to detect correlations
between features and outcome variables. A classic is the work
by Battiti [11] that introduced MI for feature selection (MIFES),
which selects features based on their MI with class variables.
This method can reduce the dimensionality of input data, and
it is now considered an important procedure for classification
[12].

MIFS was followed by a large number of studies that
improved its performance. Peng et al. [13] used the maximal
statistical dependency criterion based on MI to select good
features. As there were difficulties in calculating maximal
dependency directly, they developed the minimal-redundancy-
maximal-relevance criterion (mRMR), which led to smaller
classification errors. Based on mRMR, Zhang et al. [14]
proposed the mCRE method that included mRMR, clustering,
and recursive feature elimination. The mCRE method was
shown to choose fewer features with higher classification
accuracy. Estevez et al. [15] proposed normalized MI feature
selection (NMIFS) that used normalized MI as a measure of
redundancy. Yin et al. [16] proposed improved normalized
MI feature selection (INMIFS) by introducing a new quality
estimation function. The INMIFS method shows good results
both in accuracy and redundancy reduction. More recent
developments in MI-based feature selection include Lee et al.’s
work [17] on multi-label feature selection and Gao et al.’s work
[18] on dynamic changes of selected features (DCSF) using
conditional MI between selected features and classes.

These prior studies commonly used MI to measure cor-
relations between features and variables to be explained or
predicted. In our study, in contrast, we will use MI between
features themselves to identify informational clusters that we
can exploit for reduction of the number of features, which is
different from the earlier works reviewed above.

In addition to feature selection on information theory, there
are other methods for measuring similarity. Yu et al. [19] cre-
ated a feature selection model named Fast Correlation Based
Filter (FCBF). They measured F-correlations between pairwise
features, and used symmetrical uncertainty as the goodness
measure. Their approach was successful in reducing com-
putational overhead and removing redundant and irrelevant
features. Zhang et al. [20] conducted a hybrid feature selection
algorithm, in which they applied one-class F-score, improved
F-score and genetic algorithm to do feature selection. Then,

they applied four classification methods, k-nearest neighbors
(k-NN), random forest, Gaussian naive Bayes and SVM,
to evaluate the selected features. Their work demonstrated
improved performance, but time efficiency was not considered.

Genetic algorithm (GA) is also a widely used feature
selection method. Vafaie et al. [21] compared the results of
image texture recognition using sequential backward selection
(SBS) with those of GA. They found the features selected by
GA worked better than those selected by SBS. Oh et al. [22]
developed a hybrid GA for feature selection, which made some
changes in local search operations based on the typical GA.
They improved offsprings with local search operations applied
before the replacement step. In this way, they controlled the
size of offsprings while improving the overall performance.

In this paper, we present a new feature selection application
that was not explored in the literature reviewed above. We
propose a hybrid feature selection method for selecting a small
number of facial landmarks for facial expression recognition
tasks. Our approach is based on the information theoretic
analysis of the characteristics of the data.

B. Facial Expression Recognition

Over the past decades, facial expression recognition (FER)
has become a major research area with significant achieve-
ments, including FER based on Gabor Wavelets [23]-[25]
and FER by local binary pattern (LBP) [26]. Facial landmark
localization is an essential part of FER as well [3]-[6], in
which most studies detected and used at least 25 (and often
a lot more) facial landmarks. Real-time FER [2] is another
hot research topic, especially on mobile platforms. Choi et al.
[27] developed locally random incremental classifier (LRIC)
using local random projection (LRP) to extract facial features
in real time efficiently. Suk et al. [7] developed a smartphone
FER application using SVM and the Active Shape Model
(ASM). Suchitra et al. [28] proposed a real-time FER method
for mobile devices using the Haar cascade and ASM.

In these prior studies, the number of facial landmarks
used for FER remained fairly large, ranging from 26 to 77.
Naturally, the number of facial landmarks is directly linked to
the computational overhead of FER, and our aim is to reduce
it significantly.

III. METHODS

The overall methodology is summarized in Fig. 1. The
whole work was done using Python 3. We will describe details
of the method in the following part.

A. Facial Landmarks’ Movement

The dataset we used was obtained from the Manual An-
notation on AR Face Database [9], which includes 112 sub-
jects’ 130 facial landmark coordinates in four different facial
expressions (neutral, smile, anger and scream) recorded on
two different days. We set the neutral expressions’ coordinates
as the baseline (xi‘}“"s,y;(;“’é), where § € {1,2} is the day
of recording and 7 and j are indices for subjects and facial
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Fig. 1.

A schematic illustration of our proposed method. a. We set the locations of 130 facial landmarks on the neutral expression as the baseline and

measured the displacement of the landmarks in the other three expressions. b. We binned the movements of each landmark in polar coordinates to obtain
its movement distribution. We obtained 130 such distributions for each subject’s face. ¢. We calculated mutual information and mutual information distance
between every pair of movement distributions and conducted the hierarchical clustering of the landmarks using their mutual information distances. d. The
result of the clustering. e. Landmarks in the same cluster have similar movement distributions while landmarks in different clusters have distinct movement
distributions. f. We selected one landmark from each cluster. g. Using the selected 6 landmarks, we classified different expressions with SVM.

landmarks, respectively. We then measured the landmarks’ dis-
placements from the baseline for each of the other expressions
and captured them in a polar coordinate system, as follows:

Aafy =afy —aig M
N @)
riy = J (Az59)? + (Ay;))? 3)
¢ff = atan2(Ayfv’j, Axfj) 4)

Here, ¢ € {smi (smileg,ang (anger), scr (scream)} is the
facial expression. (AI'EJ , Ayf,’j) represents the displacement
of facial landmark j of subject 7 in expression ¢ on day ¢
&d (bff) represents

in a Euclidean coordinate system, and (r;’;,
the same displacement in a polar coordinate system that has a

better rotational symmetry. These polar coordinate data were
binned into multiple discrete bins by unit distance (5 in this
study) for r and unit angle (45° in this study) for ¢ so that
r € {0-5,5-10,...,} and ¢ € {0-45°,45-90°,...}. Using
these discretized data, we constructed p; ; (r,¢), a discrete
probability distribution of movements of subject i’s facial
landmark j (Fig. 2), and also p; ;r(rj, ¢, 7k, &), a joint
probability distribution of simultaneous movements of subject
i’s two landmarks 7 and k.

B. Mutual Information and Distance

Using p; ; and p; ;1 obtained above, we calculated Shan-
non’s information entropies, joint entropies and mutual infor-
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Fig. 2. Examples of probability distributions of facial landmark movements p; ; (7, ¢). Red dots in face figures on the left show which landmark was visualized.
The polar scatter plots in the middle show distributions of the landmark’s movements. The histograms on the right show the probability distributions in the (7, ¢)
space. Top: Right iris. Bottom: Right side of the nose root. Different facial landmarks show different, though potentially correlated, movement distributions.

mation of landmarks’ movements as follows:

Hi(j) == pi(r,¢)log pij(r, ¢)
r.¢

Hi(j, k)=~ > pijn(rj, d5.rn &) 108 pij i (ri, &5, 7k, b1

Ti P
Tk Pl

Ii(js k) = Hi(j) + Hi(k) — Hi(j, k)

The MI values tell us which pairs of subject ¢’s facial land-
marks have higher nonlinear correlations in movements.

To conduct clustering on landmarks, we converted MI
values into MI distance metrics, as follows:

= H,(j) + Hi(k) — 2L;(j; k)
These MI distance metrics were organized into a 130 x 130
distance matrix D; = (d;(j, k)); , for subject i. In total, we

obtained 112 such distance matrices (n = 112), which were
then averaged for all subjects as follows:

1 n
D= Z D;
i=1
This average matrix D gives a symmetric table of average
MI distances for every pair of landmarks obtained from all
subjects, which is visualized in Fig. 3.
C. Hierarchical Agglomerative Clustering

We conducted hierarchical agglomerative clustering (HAC)
on the average MI distance matrix D to detect clusters of

ID of Landmarks

60 80
ID of Landmarks

Fig. 3. Visualization of the average MI distance matrix D. X-axis and y-axis
represent the IDs of landmarks j and k, respectively. The shade represents
the value of MI distance between a pair of landmarks (light = small, dark =
large). The diagonal white line shows self-identity with distance 0. There are
some cluster structures already visible in this figure.

landmarks’ movements. We applied Ward’s method [29] in
HAC. The resulting dendrogram is shown in Fig. 4. We applied
the Thorndike method [30] to decide the number of clusters,
with the minimum required number of clusters set to 5. Fig. 5
shows the distances between clusters joined, in which the
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Fig. 4. HAC dendrogram. From bottom to top shows the agglomeration
process by which individual landmarks were gradually combined into one
cluster. X-axis represents the ID of landmarks, while y-axis represents the
distance between the joined clusters.

Distance between Clusters Joined

5 10 15 20 25 30
Number of Clusters

Fig. 5. Distances between joined clusters plotted over the number of clusters.
The dotted line in this figure shows the minimum required number of clusters
assumed in this study (5). The red line shows the biggest gap (between 5 and
6), so we chose 6 as the number of clusters.

biggest gap was observed between 5 and 6. Based on this
result, we chose 6 as the number of clusters. The spatial
distributions of these 6 clusters of facial landmarks are as
shown in Fig. 6.

D. Support Vector Machine Classification

We used the support vector machine (SVM) [31] as a
classifier of facial expressions. The clusters of facial landmarks
obtained above were utilized to select representative landmarks
in several different ways (details will be explained in the next
section). The coordinates of selected facial landmarks were
used as inputs to SVM, and the classification model was built
to predict which facial expression the subject was showing. A
radial basis function (RBF) was used as a kernel function in
this SVM classification.
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Fig. 6. Visualization of 6 facial landmark clusters detected in this study.
Different colors/numbers represent different clusters.

E. Landmark Selection

In our experiments, we selected landmarks in two ways.
One is a random selection (either from the whole set of 130
landmarks or from each of the six clusters), and the other is to
filter landmarks using a computationally light selection process
inspired by genetic algorithm. We call the latter selection
method “FF” (for feature filtering) hereafter.

The FF landmark selection was implemented as follows:

1) Put the 130 landmarks into m bin(s). In this study, we
used either m = 1 (i.e., all the 130 landmarks are in a
single bin) or m = 6 (i.e., the landmarks are separated
according to the result of clustering).

2) Choose 6/m landmark(s) randomly from each bin to
create a set of 6 landmarks.

3) Conduct the SVM classification using the 6 landmarks
selected above, and evaluate its accuracy.

4) Repeat 2 and 3 above ¢ times and keep only the results
whose accuracies exceed threshold 6. In this study, we
used ¢t = 1000 and initial threshold 6 = 0.87.

5) Refresh the contents of the bins by removing landmarks
that did not appear in any of the results that met the
accuracy threshold above.

6) Increase 6 a little and repeat 2-5 above.

Through these steps, landmarks that are not useful for facial
expression recognition will be quickly eliminated. We tested
this landmark selection method with several variations of
settings and found that conducting the filtering (steps 2-5
above) just for one iteration would produce results as good
as those of multiple iterations, and therefore, all the results
presented in this paper are based on a single iteration of
filtering.
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IV. EXPERIMENTS
A. Feature Selection Methods

The following five feature selection methods were imple-
mented and compared with each other in terms of classification
performance and computational time.

1) 130 landmarks

o This method uses all the 130 landmarks included in
the data for classification with no feature selection.
This method serves as the baseline.

2) R6
o This method uses 6 landmarks that are randomly
selected from the original 130 landmarks.

3) S6
e This method uses 6 landmarks, each of which is
randomly selected from one of the 6 clusters.

4) FF on R6

o This method uses 6 landmarks that are selected from
the original 130 landmarks after FF is applied.

5) FF on S6

e This method uses 6 landmarks, each of which is
selected from one of the 6 clusters after FF is
applied.

B. SVM Classification and Computational Time

We used each of the above five methods to generate a
dataset of the landmarks’ coordinates that were then used for
classification with SVM. Each dataset was split into a training
set and a test set with the splitting rate of 20%. Specifically,
we used 90 subjects’ data as the training set and 22 subjects’
data as the test set.

We ran the classification 1,000 times on each of the five
datasets, and then we compared their accuracy results.

We used Raspberry Pi 3 as a representative of light-weight
devices in our study. The Raspberry Pi 3 we used was a B+
model with a quad-core processor.

V. RESULTS

The accuracy results of the classification are shown in Fig. 7.
We can see that the accuracies of datasets of S6 and FF on
S6 are better than those of R6 and FF on R6. This means
that the landmarks selected from clusters outperformed the
landmarks not selected from clusters. We also compared the
results of S6 and FF on S6 against the result obtained using
130 landmarks. We found that the result of S6 worked slightly
worse than that of 130 landmarks, but the result of FF on
S6 worked as good as (even slightly better than) that of 130
landmarks, and moreover, the results of FF on S6 were more
consistent with less variance than those of 130 landmarks. To
show the comparison directly, we listed the statistical values
of the accuracy results in Table 1.

We conducted the Mann-Whitney U test on the classification
results of S6 and R6. The p-value was 1.4127 x 10~1?, which
means distributions of accuracy results in S6 and R6 are
significantly different. We also conducted the same test on the

D9

0.8

Classification Accuracy Rate

5

0.6

FFE-E
?

8
8

0.5
T T
130 Landmarks R6 S6

T T
FF on R6 FF on 56

Fig. 7. Comparison of accuracy results of running SVM classification 1,000
times on different feature selection methods.

TABLE I
STATISTICS TABLE OF ACCURACY RESULTS
Datasets Mean Standard Deviation | (Minimum, Maximum)
130 Landmarks | 0.8821 0.0326 (0.7667, 0.9667)
R6 0.7998 0.0820 (0.5111, 0.9333)
S6 0.8366 0.0450 (0.6444, 0.9333)
FF on R6 0.8558 0.6258 (0.5333, 0.9333)
FF on S6 0.8876 0.0225 (0.8, 0.9444)

classification results of FF on S6 and FF on R6. The p-value
was 1.4796 x 10732, We concluded that the distributions of
accuracy results in FF on S6 and FF on R6 are significantly
different.

The computational time distributions on Raspberry Pi are
shown in Fig. 8. The computational time of running classifi-
cation experiments with dataset of selected 6 landmarks was
reduced by 63.5% compared to the computation time with the
dataset of 130 landmarks.

VI. CONCLUSION AND FUTURE WORK

This study sheds new light on mitigating computational
overhead on light-weight devices. We proposed a feature
selection method with measuring the relationship on facial
landmarks and clustering the facial landmarks to select 6
landmarks. We achieved good performance in classification
and computational time reduction with selected landmarks.
We concluded that FF on S6 shows more robust performance
even compared to 130 landmarks, since FF on S6 showed
less variance of accuracies. Using a small number of facial
landmarks in FER is significant to reduce computational time.
However, the scale of the dataset we used in our study is small,
and we will find more datasets to do the work in the future.

In the future, we will conduct feature selection on datasets
of 3D facial landmarks. We will find 6 or more landmarks
which are the most representative to create a pre-trained facial
landmarks detection model. We will apply the selected 6 facial
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landmarks for other tasks, such as tracking facial landmarks’
movement in a video.
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