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Abstract

We present a simple, effective, and scalable approach for significantly accelerating the con-
vergence in Topology Optimization simulations. Specifically, treating the design process as
a fixed-point iteration, we propose employing a recently developed acceleration technique in
which Anderson extrapolation is applied periodically, with simple weighted relaxation used for
the remaining steps. Through selected examples in compliance minimization, we show that the
proposed approach is able to accelerate the overall simulation several fold, while maintaining

the quality of the solution.
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1. Introduction

Topology optimization is finding increas-
ingly widespread use in a number of dif-
ferent fields, including aerospace engineer-
ing, biomedical engineering, and architecture
[1, 2, 3]. It consists of a nonlinear program-
ming problem, which can be solved, for exam-
ple, by means of sequential convex program-
ming schemes [1, 4], such as the Optimality
Criteria (OC) update [1] and the Method of
Moving Asymptotes (MMA) [5]. However,
the large computational cost associated with
such simulations severely restricts the system
sizes that can be studied, and ultimately, the
resolution that can be achieved in the final
designs [6].

In order to obtain converged designs, the
aforementioned techniques can require hun-
dreds or even thousands of optimization
steps, with each step involving the solution
of an ill-conditioned linear system. To ac-

*Corresponding author
Email address:
phanish.suryanarayana@ce.gatech.edu (Phanish
Suryanarayana)

Preprint submitted to Mechanics Research Communications

celerate the convergence of the design pro-
cess, a number of techniques have been pro-
posed to incorporate second-order informa-
tion. These include variants of the MMA
[7, 8, 9, 10, 11], sequential quadratic pro-
gramming (SQP) [12, 13], and interior point
algorithms [14]. In spite of significant ad-
vances, these techniques are generally chal-
lenging to implement, have relatively poor
scaling with system size, and are associated
with larger computational time, which makes
them unattractive compared to first-order
methods.

In this work, we present a simple, effec-
tive, and scalable approach for accelerating
convergence in Topology Optimization sim-
ulations. Specifically, in order to accelerate
the standard fixed-point iteration employed
in such computations, we adopt a recently
developed extrapolation method [15] that has
found application in large-scale linear [15, 16,
17] as well as nonlinear [18, 19, 20] problems.
In this technique, Anderson extrapolations
[21] are applied periodically in the fixed-point
iteration, with standard weighted relaxations
used for the remaining steps. Through se-
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lected examples in compliance minimization,
we demonstrate that the proposed approach
can significantly accelerate the design process
in the framework of the SIMP (Solid Istropic
Material with Penalization) approach and the
OC update [1]. Notably, we find that the pro-
posed approach is able to not only achieve
significant speedup, but also achieve lower ob-
jective function values.

The remainder of this paper is organized
as follows. We present the accelerated fixed-
point formulation of Topology Optimization
in Section 2, verify its accuracy and efficiency
through selected examples in Section 3, and
finally conclude in Section 4.

2. Accelerated fixed-point formulation
of Topology Optimization

In Topology Optimization, the solution of
the design problem is typically achieved via a
fixed-point iteration of the form

Xpr1 = g(xx), k=0,1,... (1)
where g denotes the mapping of the density
vector x € RNX! between consecutive itera-
tions. This mapping is typically comprised
of the solution of the equilibrium equation,
filtering of the sensitivity/density, and the
application of an update scheme (see Algo-
rithm 1). In the vicinity of the solution, a
necessary condition for ensuring convergence
of the above fixed-point iteration is

of
_aix x: ) (2)

X *

cI-J)<1, J=

where o(-) denotes the spectral radius of the
associated matrix, I € RN*N ig the identity
matrix, and J* € RV*N is the negative Jaco-
bian of the residual function:

f(x) = g(x) —x, (3)

evaluated at the solution x*. In general, the
condition given in Eqn. (2) is not necessar-
ily satisfied and even in cases where it holds,
the convergence can be extremely slow, par-
ticularly when o(I — J*) ~ 1. Indeed, the
convergence is faster as the value of o(I—J*)
becomes smaller.

In order to enhance convergence of the de-
sign process in Topology Optimization, we
propose generalizing the fixed-point iteration
in Eqn. (1) to

Xpp1 =X +Bify, k=0,1,... (4)
where f}, = f(x), and By € RN*N are appro-
priately chosen matrices. The necessary con-
dition for ensuring convergence of the fixed-
point iteration now becomes

o(I—BJ*) <1, (5)

with faster convergence again achieved for
smaller values of the spectral radius. There-
fore, the ideal choice would be B ~ J*~1,
which unfortunately requires knowledge of
the solution." More importantly, the calcula-
tion of such a matrix and its inverse in topol-
ogy optimization is prohibitively expensive,
even for small to moderately sized problems.
This provides the motivation for the use of an
extrapolation technique that is not only able
to accelerate the convergence of the fixed-
point iteration, but at the same time does
not require Jacobian related information.

In view of the above discussion, we pro-
pose using a recently developed fixed-point
acceleration method [15] in which Ander-
son extrapolation [21] is applied periodically
within the fixed-point iteration, while a sim-
ple weighted relaxation is used in the remain-
ing steps. Mathematically, this translates to
the matrix By taking the form [16]

ol if (k+1)/q¢N,
BI — (Xj + BFx)(FLF;,) "'F}
if (k+1)/q €N,

B =

(6)

where o € R and 8 € R are relaxation pa-
rameters, ¢ € N is the frequency of An-
derson extrapolation, and X; € RN*™ and
Fj, € RN*™ are matrices containing the iter-

't is possible to utilize the Jacobian of the residual
function at the current iterate with the hope that it
is sufficiently close to J*.



ation and residual histories:

Xi = [AXpom  AXp_ptr Axp-1] ,
(7)
N

(8)

Above, (m+1) is the number of iterates used
for Anderson extrapolation, Ax; = x;41—X;,
and Af; = f; 1 — ;. Anderson extrapolation
can be understood as taking the weighted av-
erage of the previous (m + 1) iterates to gen-
erate the next iterate, with the weights cho-
sen so as to minimize the £5 norm of the vec-
tor resulting from the same weighted average
of the previous (m + 1) residuals. Note that
the matrix B never needs to be calculated,
but rather only its multiplication with fj is
required. Therefore, the acceleration step is
associated with low computational cost and
computer memory requirements.

In Algorithm 1, we summarize the above
described fixed-point formulation for accel-
erating Topology Optimization simulations.
Each design cycle (i.e., fixed-point map g)
is comprised of solving the equilibrium equa-
tion, computing and filtering the sensitivity?,
and updating the density field. As discussed
above, the design process is accelerated by
employing Anderson extrapolations period-
ically, with weighted relaxation in the re-
maining steps. The acceleration is performed
starting from step number s, since we have
observed that applying the acceleration from
the very beginning can sometimes stagnate
the design process. Note that, although the
acceleration step conserves the total volume,
some elements of the density vector can occa-
sionally fall outside the range [0, 1] after ap-
plying Anderson extrapolation.® Therefore,
we restrict the elements of the density vec-
tor to [0, 1] after this step, which can result
in small violations of the volume constraint.
However, based on the tens of simulations
performed in this work, we have found that
such violations fade out as the iteration heads

Fip=[Afpm Afp_mia

2An alternative to filtering the sensitivity is the
filtering of the density.

3In Topology Optimization, the density typically
takes values in the interval [0, 1].

towards convergence.

Algorithm 1 Periodic Anderson accelerated
topology optimization update

Initialize: xq, s, q,m, «, 3, €, iterpax
for £k =0,1,...,iteryp.x do

Solve: K(x,)u=d

Compute and filter sensitivity

Use an update scheme to compute: x; and fj

if ||fx|| < € then
quit

end if

if £ > s then
if k/q € N then

Obtain xj4+1: Anderson extrapolation (3, m)

Restrict xj41 to [0,1]
else

Obtain xj41: Weighted relaxation (o)

end if
else

Obtain Xp41: Xp+1 = Xg
end if
Form K(xz11)

end for

At first glance, it would appear that set-
ting ¢ = 1, i.e., performing Anderson ex-
trapolation every iteration is likely to be the
optimal choice. However, similar to previ-
ous observations in the context of both linear
[15, 16] and nonlinear problems [18], we have
found that applying the Anderson extrapola-
tion periodically provides substantially faster
convergence, an observation that can be at-
tributed to the better subspace over which
the residual is minimized.* As is to be ex-
pected for nonlinear problems, both large and
small values of the mixing history (i.e., m)
can negatively impact the convergence. In
addition, larger values of the relaxation pa-
rameters (i.e.,  and ) can result in faster
convergence, but at the cost of the method
being less stable/robust. Overall, the pro-
posed approach has the potential to signifi-
cantly accelerate Topology Optimization sim-

“We have also found that the proposed ap-
proach demonstrates superior performance compared
to other extrapolation techniques such as Broyden
mixing [22].



ulations, as demonstrated by selected exam-
ples in the next section.

3. Results and discussion

In this section, we verify the accuracy and
efficiency of the proposed fixed-point formu-
lation in accelerating Topology Optimization
simulations. Specifically, we consider the fol-
lowing compliance minimization problem in
the context of the finite-element discretiza-
tion:

min uTK(x)u
X

st. 0<z,<1 and Za;egv, (9)
e=1

with K(x)u=d,

where u = u(x) denotes the displacement
vector, K is the stiffness matrix, z. de-
notes the component of the density vector
x corresponding to element number e, n. is
the total number of elements, V represents
the volume fraction, and d is the force vec-
tor. We implement the proposed accelera-
tion scheme within the top88 [23] and top3D
[24] codes, which are used to study 2D MBB
(Messerschmitt-Bolkow-Blohm) and 3D can-
tilever beams with concentrated loads, re-
spectively. In both examples, we employ the
modified SIMP approach [25] with the Op-
timality Criteria (OC) update [1]. In this
context, we refer to the proposed accelera-
tion scheme as PAOC (Periodic Anderson ac-
celerated OC), an abbreviation we will use
henceforth. We have found the following pa-
rameters to work well in PAOC: m = 3 ~ 5,
g=3~5,a=08~0.95and f=2~9. In
addition, we have found that continuously in-
creasing the relaxation parameter § with de-
sign cycles helps in accelerating convergence.

3.1. 2D MBB beam with concentrated load

We first consider a 2D MBB beam with a
concentrated load, as shown in Fig. la. We
choose a 600 x 300 mesh consisting of 4-node
quad bilinear elements, a volume fraction of
V = 0.3, penalization of p = 3, and sensitiv-
ity filter radius of » = 12. In PAOC, we select

m=4,q=4,a=0.9, 8 =4+(k—s)/50, and
s = 50. In Figs. 1b and 1c, we present the fi-
nal designs obtained by the OC and PAOC
methods, which are practically indistinguish-
able. In fact, PAOC is able to achieve lower
values of the compliance (i.e., objective func-
tion) and the residual®, as demonstrated by
the results in Figs. 2a and 2b, respectively.
Furthermore, it is clear from the timings pre-
sented in Fig. 2c that PAOC is able to sig-
nificantly accelerate the convergence, demon-
strating larger speedup for tighter tolerances.
In particular, PAOC requires a factor of 5
lower time compared to OC for achieving a
tolerance of 1076 in the residual.

3.2. 8D cantilever beam with concentrated
load

We now consider a 3D cantilever beam
with a end concentrated load, as shown in
Fig. 3a. We discretize the design domain with
a 160 x 80 x 80 mesh consisting of 8-node hex-
ahedral trilinear elements, resulting in over 1
million elements. In addition, we choose a
volume fraction of V' = 0.12, penalization of
p = 3, and sensitivity filter radius of r = 8.
In PAOC, we select m =4, g =4, a = 0.9,
B =3+ (k—1s)/50 <5, and s = 25. Given
the relatively large size of the problem, par-
ticularly for simulations in Matlab, instead
of using a direct solver, we use the conjugate
gradient (CG) method [26] with IC(0) pre-
conditioner for solving the equilibrium equa-
tion. To further reduce the computational
time, we use a continuation strategy for the
tolerance of the relative residual, wherein it
is made stricter by one order of magnitude
every 50 design cycles, starting from 10~% up
to 1078, Although this leads to larger dis-
placement errors in the early stages of the
design process, it has been found that the de-
sign sensitivity is insensitive to the accuracy
of the linear system’s solution [6].

In Figs. 3b and 3c, we present the final
designs so obtained by the OC and PAOC
methods. As in the previous example, the
designs are indistinguishable and PAOC is

5We are denoting the l2 norm of the residual vector
as the residual.
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Figure 1: 2D MBB beam with concentrated load. (a)
Design domain. (b) Design generated by OC. (c) De-
sign generated by PAOC.

able to achieve lower values of the compli-
ance (i.e., objective function) and the resid-
ual, as demonstrated by the results in Figs. 4a
and 4b, respectively. Furthermore, it is clear
from the CPU times presented in Fig. 4c
that PAOC is able to significantly accelerate
the convergence, again demonstrating larger
speedup for tighter tolerances, requiring a
factor of greater than 3 lower time compared
to OC for achieving a tolerance of 107 in the
residual. Note that since the residual of the
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Figure 2: Comparison of the performance of OC and
PAOC for the 2D MBB beam with a concentrated
load. (a) Objective function history. (b) Residual
history. (c¢) Timing.

OC did not reach 1079 in even 400 cycles, the
corresponding time is estimated by adopting
a linear fit to the data in Fig. 4b. Indeed,
the linear fit provides a lower bound on the
speedup, since the increase in time as a func-
tion of residual is worse than linear, as shown
in Fig. 2c.

3.8. Discussion

We have shown that PAOC significantly ac-
celerates the convergence of the design pro-
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Figure 3: 3D cantilever beam with concentrated load.
(a) Design domain. (b) Design generated by OC. (c)
Design generated by PAOC.

cess in Topology Optimization simulations.
Since the additional time associated with the
extrapolation is negligible (less than 0.1% of
the total time), the reduction in the number
of iterations required directly translates to
the observed speedup. Note that the speedup
of PAOC over OC reduces as the sensitiv-
ity filter radius becomes smaller, which is to
be expected due to the reduced smoothness
of the solution. Interestingly, PAOC is also
able to achieve smaller values of the objective
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Figure 4: Comparison of the performance of OC and
PAOC for the 3D cantilever beam with a concentrated
load. (a) Objective function history. (b) Residual
history. (c¢) Timing.

function, an observation that warrants fur-
ther investigation. Due to the non-convex na-
ture of the problems, PAOC can indeed con-
verge to different designs compared to OC,
even though this was not the case for the ex-
amples studied here. A limitation of PAOC
that warrants further investigation is the ap-
parent stagnation for the choice of a density
filter. It is worth noting that the extrapola-
tion technique employed here can be used to



accelerate the Richardson/Jacobi fixed-point
iteration [16], resulting in the AAR linear
solver. AAR can outperform state-of-the-art
Krylov subspace solvers like CG and GM-
RES [27], with larger speedups as the number
of processors increase in parallel computing.
This has the potential to further increase the
size of problems that can be studied using
Topology Optimization.

4. Conclusions

We have presented a new strategy for ac-
celerating the convergence in Topology Op-
timization simulations. Specifically, viewing
the design process as a fixed-point iteration,
we have proposed employing a recently devel-
oped acceleration technique in which Ander-
son extrapolations are applied periodically,
with simple weighted relaxation used for the
remaining steps. For the specific problem
of compliance minimization, we have shown
through selected examples that the proposed
approach is able to not only accelerate the
complete simulation several fold, but also
achieve lower values of the objective func-
tion. Overall, the proposed approach is sim-
ple, effective, and scalable. Topics for fu-
ture investigation include addressing larger-
scale problems through parallel computing,
and the study of problems other than com-
pliance minimization, e.g. compliant mecha-
nisms and multiphysics problems.
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