

REVIEW PAPER

Reprogramming and remodeling: transcriptional and epigenetic regulation of salicylic acid-mediated plant defense

Jian Chen^{1,2,1,0}, Michael Clinton², Guang Qi^{2,3}, Daowen Wang³, Fengquan Liu¹ and Zheng Qing Fu²

- ¹ Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety–State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, P. R. China
- ² Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
- ³ State Key Laboratory of Wheat and Maize Crop Science and College of Agronomy, Henan Agricultural University, Zhengzhou 450002, P. R. China
- * Correspondence: fgliu20011@sina.com or zfu@mailbox.sc.edu.

Received 27 August 2019; Editorial decision 31 January 2020; Accepted 11 February 2020

Editor: Steven Spoel, University of Edinburgh, UK

Abstract

As a plant hormone, salicylic acid (SA) plays essential roles in plant defense against biotrophic and hemibiotrophic pathogens. Significant progress has been made in understanding the SA biosynthesis pathways and SA-mediated defense signaling networks in the past two decades. Plant defense responses involve rapid and massive transcriptional reprogramming upon the recognition of pathogens. Plant transcription factors and their co-regulators are critical players in establishing a transcription regulatory network and boosting plant immunity. A multitude of transcription factors and epigenetic regulators have been discovered, and their roles in SA-mediated defense responses have been reported. However, our understanding of plant transcriptional networks is still limited. As such, novel genomic tools and bioinformatic techniques will be necessary if we are to fully understand the mechanisms behind plant immunity. Here, we discuss current knowledge, provide an update on the SA biosynthesis pathway, and describe the transcriptional and epigenetic regulation of SA-mediated plant immune responses.

Keywords: Arabidopsis, epigenetic regulators, plant immunity, Pseudomonas syringae, salicylic acid, transcription factors.

Introduction

In their natural environment, plants are constantly exposed to various kinds of microbial communities, including pathogens such as fungi, oomycetes, viruses, bacteria, and nematodes. As a consequence, plants have developed a multilayer system of immune responses (Jones and Dangl, 2006). The first line of defense in this system is initiated by the recognition of pathogen-associated molecular patterns (PAMPs) via pattern recognition receptors (PRRs), resulting in PAMP-triggered immunity (PTI) (Dodds and Rathjen, 2010). One of the best characterized PAMPs is flg22, a conserved 22 amino acid peptide from flagellin protein, which is recognized by the FLS2 (FLAGELLIN-SENSITIVE 2) receptor in Arabidopsis (Gómez-Gómez and Boller, 2000). As a counter defense,

pathogens deliver effectors into the plant cell to suppress PTI, resulting in effector-triggered susceptibility (ETS) (Jones and Dangl, 2006). Through coevolution with pathogens, plants have developed resistance (R) genes that encode nucleotide-binding and leucine-rich repeat (NB-LRR) proteins, such as RPM1, RPS2, and RPS4, which specifically recognize corresponding avirulence (Avr) proteins AvrB or AvrRPM1, AvrRpt2, and AvrRPS4, resulting in effector-triggered immunity (ETI) (Jones and Dangl, 2006). There are two major classes of NB-LRR proteins that are distinguished by the domains present at their N termini: the Toll and Interleukin-1 Receptor homology (TIR) domain and coiled-coil (CC) motif (Adachi et al., 2019). ETI is accompanied by hypersensitive

cell death, which prevents the spread of infection by microbial pathogens (Jones and Dangl, 2006). Both PTI and ETI activate several signaling events such as the production of reactive oxygen species (ROS) and nitric oxide (NO), and influx of Ca²⁺, as well as the induction of different protein kinases such as the mitogen-activated protein kinases (MAPKs) (Chen et al., 2014; Wendehenne et al., 2014; Bi and Zhou, 2017). The subsequent localized defense response triggers systemic acquired resistance (SAR) in distal leaves preventing or reducing further infection (Pieterse et al., 2009). In plants, PTI, ETI, and SAR are associated with elevated levels of the phytohormone salicylic acid (SA, 2-hydroxybenzoic acid), a small phenolic compound produced by a wide range of prokaryotic and eukaryotic organisms including plants (An and Mou, 2011; Dempsey et al., 2011).

Salicylic acid biosynthesis pathways

SA levels increase in both local and distal parts of the plant upon pathogen infection (Malamy *et al.*, 1990; Métraux *et al.*, 1990). Biosynthesis of SA was proposed to occur in plants via two separate pathways: the isochorismate (IC) and the phenylalanine ammonia-lyase (PAL) (Dempsey *et al.*, 2011). Both pathways originate from chorismate, which is the end product of the shikimate pathway.

Isochorismate synthase (ICS) catalyses the conversion of chorismite to isochorismate (Wildermuth et al., 2001; Strawn et al., 2007; Garcion et al., 2008). In some bacteria, the conversion of isochorismate to SA is catalysed by an isochorismate pyruvate lyase (IPL) (Gaille et al., 2002). However, even after decades of study, an IPL homolog in plants has yet to be identified. Surprisingly, it was demonstrated recently that plants synthesize SA from isochorismate through a unique pathway (Chen et al., 2019a; Rekhter et al., 2019; Torrens-Spence et al., 2019). In the chloroplast, ICS1 converts chorismate into isochorismate, which is then exported to the cytosol by a MATE transporter family protein ENHANCED DISEASE SUSCEPTIBILITY 5 (EDS5) (Nawrath et al., 2002; Rekhter et al., 2019; Torrens-Spence et al., 2019). In the cytosol, AVRPPHB SUSCEPTIBLE 3 (PBS3) catalyses the conjugation of L-glutamate to isochorismate producing isochorismate-9-glutamate (Fig. 1) (Rekhter et al., 2019; Torrens-Spence et al., 2019). The final product, SA, is then synthesized from two different pathways. In one, SA is synthesized by spontaneous decay from isochorismate-9glutamate without the use of an enzyme (Fig. 1) (Rekhter et al., 2019; Torrens-Spence et al., 2019). The other is an accelerated pathway in which ENHANCED PSEUDOMONAS SUSCEPTIBILITY 1 (EPS1) functions as an isochorismoylglutamate pyruvoyl-glutamate lyase (IPGL) N-pyruvoyl-L-glutamate from isochorismate-9-glutamate to produce SA. However, this second pathway only occurs in Brassica family plants (Fig. 1) (Torrens-Spence et al., 2019). Together, PBS3 and EPS1 complete a new SA biosynthesis pathway from isochorismate in plants (Chen et al., 2019a; Rekhter et al., 2019; Torrens-Spence et al., 2019), closing a significant knowledge gap.

Phenylalanine ammonia-lyase (PAL) converts phenylalanine to trans-cinnamic acid and ammonia via a non-oxidative deamination reaction (Rohde et al., 2004). trans-Cinnamic acid is then converted to SA via two possible intermediates: ortho-coumaric acid or benzoic acid (BA) (Dempsey et al., 2011). Genetic evidence supports an essential role of PAL in Arabidopsis SA biosynthesis. Arabidopsis contains four PAL genes (PAL1-PAL4), mutation of which results in a 90% loss of PAL activity (Huang et al., 2010). The quadruple mutants accumulated 70% less SA compared with wild-type plants at basal level (Huang et al., 2010). Similarly, SA content in the mutants was 40% lower than that in wild-type plants when challenged with an avirulent Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) strain carrying avrRpt2, indicating that PAL genes are also important for SA biosynthesis during the pathogen infection in Arabidopsis (Huang et al., 2010). In contrast, a previous study showed that ICS1 contributes to 90-95% of pathogen-induced SA biosynthesis in Arabidopsis (Wildermuth et al., 2001). Further studies will be required to resolve this discrepancy.

Important regulators of salicylic acid accumulation: EDS1, PAD4, SAG101, and NDR1

Over the past three decades, several defense-associated signaling genes that act upstream of SA have been revealed, such as ENHANCED DISEASE SUSCEPTIBILITY1 PHYTOALEXIN DEFICIENT4 (PAD4), SENESCENCE-ASSOCIATED GENE 101 (SAG101), and NON RACE-SPECIFIC DISEASE RESISTANCE 1 (NDR1) (Vlot et al., 2009; Dempsey et al., 2011; Qi et al., 2018). Arabidopsis EDS1 is a lipase-like protein that confers resistance to biotrophic, hemibiotrophic, and non-host pathogens (Parker et al., 1996; Aarts et al., 1998; Falk et al., 1999; Wiermer et al., 2005; Moreau et al., 2012). SA accumulation was abolished entirely in eds1-2 mutants challenged with Pst DC3000 with or without the avirulence gene avrRPS4 but not avrRPM1 (Feys et al., 2001), suggesting that EDS1 is required for avrRPS4-induced SA accumulation in Arabidopsis. It was shown that EDS1 is shuttled between the nucleus and cytoplasm, a function necessary for a complete innate immune response in plants (García et al., 2010). Yeast two-hybrid screening of EDS1 interacting proteins resulted in the identification of PAD4, a lipase-like protein that is also important for SA signaling (Feys et al., 2001). The PAD4 gene was previously shown to be required for the synthesis of camalexin, which functions as a phytoalexin, in response to infection by the virulent bacterial pathogen P. s. pv. maculicola ES4326 (Psm ES4326) (Glazebrook et al., 1997). In pad4 mutants, SA synthesis was found to be reduced and delayed compared with wild-type plants in response to Psm ES4326 carrying avrRpt2 (Zhou et al., 1998). SAG101, another EDS1 interacting protein was discovered using a proteomic approach (Feys et al., 2005). In sag101 mutants, SA accumulation is reduced during the infection by Fusarium graminearum and cold stress (Chen et al., 2015; Makandar et al., 2015). EDS1 and PAD4 are present in the nucleus and cytoplasm,

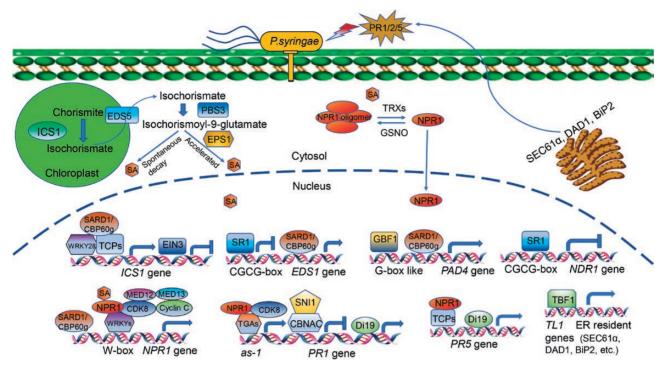


Fig. 1. Transcriptional regulation of salicylic acid-mediated plant immune responses. Upon pathogen infection, SA biosynthesis is initiated in the chloroplast. ICS1 converts chorismite to isochorismate, which is exported to the cytosol by EDS5. In the cytosol, PBS3 catalyses the conjugation of L-glutamate to isochorismate, creating isochorismate-9-glutamate. Next, SA is synthesized from L-glutamate via two separate pathways. In the spontaneous decay pathway, SA is produced from isochorismate-9-glutamate without any enzyme. In the accelerated pathway, EPS1 in Brassica family plants functions as an isochorismoyl-glutamate A pyruvoyl-glutamate lyase (IPGL) cleaving N-pyruvoyl-L-glutamate from isochorismate-9-glutamate to produce SA. SA biosynthesis is tightly controlled by several genes. SARD1 and CBP60g have been found to bind to the promoters of many genes including ICS1, EDS1, NPR1, and PAD4, but not NDR1. SR1 binds to the CGCG-box of these promoters and functions as a negative regulator of NDR1 and EDS1. WRKY28, TCPs, and SARD1/CBP60g form a protein complex that positively regulates ICS1 gene expression, whereas EIN3 acts conversely as a negative regulator. GBF1 binds to the G-box-like motif on the PAD4 gene positively regulating its expression. SA promotes NPR1 gene expression through the promotion of the interaction between WRKY transcription factors and NPR1, which recruits CDK8 to the W-box of the NPR1 promoter facilitating its gene expression. The mediators of the CDK8 kinase module are also involved in NPR1 gene expression. A high level of SA induced by pathogen infection causes the reduction of NPR1 oligomers to monomers, which enter the nucleus to activate downstream NPR1-dependent genes, including PR and ER-resident genes. PR genes represent the hallmark of defense responses under the control of NPR1 and TGAs. SNI1 negatively regulates PR1 gene expression through interaction with CBNAC, a transcription repressor of PR1. Di19 positively regulates PR genes, including PR1, PR2, and PR5. NPR1 interacts with TCP transcription factors, including TCP8, TCP14, and TCP15, which bind to the TCP binding site of the PR5 promoter to promote PR5 expression. PR1 is also tightly controlled by epigenetic regulation. SA induces elevated levels of H3Ac, H4Ac, H3K4me2, and H3K4me3 at the PR1 promoter. HAC-NPR1-TGA form a protein complex that binds to the as-1 sequence of the PR1 promoter to positively regulate PR1 gene expression, HAC1 and HAC5 facilitate acetylation of Histone 3 on the PR1 promoter, HDA6 and HDA19 function as histone deacetylases negatively regulating PR1 gene expression through WRKY transcription factors. JMJ27 functions as an H3K9 demethylase that positively regulates PR1 gene expression. TBF1 recognizes the TL1 cis-element on the promoter of ER-resident genes, such as SEC61α, DAD1, and BiP2, to control their expression. ER-resident genes control the secretion of PR proteins into the apoplast to combat pathogens.

whereas SAG101 preferentially localizes to the nucleus (Zhu et al., 2011). EDS1 forms separate protein complexes with PAD4 and SAG101 at different subcellular locations and is required for PAD4 and SAG101 protein stability. Apart from promoting SA biosynthesis, the EDS1 and PAD4 protein complex maintains important SA-related resistance programs thereby increasing the effectiveness of the innate immune system (Cui et al., 2017). EDS1 and PAD4 work in parallel with SA to protect against perturbations to SA in Arabidopsis basal and effector-triggered immunity (Cui et al., 2017).

While EDS1 is required for resistance mediated by RPS4, a TIR-NB-LRR type R protein, NDR1 plays a vital role in resistance responses initiated by the CC-NB-LRR (coiled-coilnucleotide binding-leucine-rich repeat) class of R proteins (Aarts et al., 1998). NDR1 was first identified by the screening of mutants susceptible to Pst DC3000 carrying avrB gene (Century et al., 1995). The ndr1-1 mutant is SAR defective. SA accumulation, PATHOGENESIS-RELATED GENE 1 (PR1) gene expression, and ROS production are impaired in the ndr1-1 mutant in response to Pseudomonas syringae strains carrying avrRpt2 (Shapiro and Zhang, 2001). NDR1 is localized to the plasma membrane via a C-terminal glycosylphosphatidylinositol (GPI) anchor, which allows NDR1 to act as an intercellular transducer of pathogen signals (Coppinger et al., 2004). NDR1 undergoes several post-translational modifications, including carboxy-terminal processing and N-linked glycosylation (Coppinger et al., 2004). Using a yeast twohybrid screening, RIN4 was identified as an NDR1 interacting partner (Day et al., 2006). RIN4-NDR1 interaction occurs in the cytoplasm and is required for activation of resistance signaling after infection by Pst DC3000 carrying avrRpt2 gene (Day et al., 2006). NDR1 was predicted to have a high degree

of structural similarity to Arabidopsis integrin-like protein LATE EMBRYOGENESIS ABUNDANT14 (Knepper *et al.*, 2011). This led to the identification of the role of NDR1 in preventing fluid loss and maintaining cell integrity (Knepper *et al.*, 2011).

Transcription factors involved in the regulation of salicylic acid biosynthesis and/or accumulation

A large group of transcription factors has been found to regulate the expression of important genes involved in SA biosynthesis and/or accumulation. Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assay showed that WRKY28 binds to the ICS1 promoter positioned -445 and -460 base pairs upstream of the transcription start site (van Verk et al., 2011). Mutation of the binding site demonstrated that WRKY28 binding sites are essential for the activation of the ICS1 promoter (van Verk et al., 2011). In addition, SARD1 and CBP60g were also identified as crucial regulators of ICS1 induction and SA biosynthesis (Zhang et al., 2010). After pathogen infection, both proteins are targeted to the promoter region of ICS1. Pathogen-induced ICS1 up-regulation and SA biosynthesis are compromised in sard 1-1 cbp60g-1 double mutants, resulting in compromised basal resistance and loss of SAR. A yeast one-hybrid system was used to screen for regulators of ICS1, leading to the identification of the TCP family transcription factor AtTCP8 (Wang et al., 2015). TCP8 binds to the ICS1 promoter at the TCP binding site in vitro and in vivo. Tcp8 tcp9 double mutants show a significant reduction of ICS1 transcription (Wang et al., 2015). Furthermore, both TCP8 and TCP20 interact with SARD1, WRKY28, and NAC019, and TCP9 and TCP19 interact with SARD1 and WRKY28, suggesting that a transcription complex including TCP proteins is involved in the orchestrated regulation of ICS1 expression (Fig. 1) (Wang et al., 2015).

Negative regulators have also been found to suppress ICS1 gene expression. The transcription factors Ethylene Insensitive 3 (EIN3) and EIN3-Like 1 (EIL1) have long been known to positively regulate ethylene-dependent responses (Guo and Ecker, 2003). However, increasing evidence suggests that EIN3 and EIL1 are important regulators of PTI and SA-mediated plant defense (Chen et al., 2009; Boutrot et al., 2010). Plants lacking EIN3 and EIL1 display enhanced PTI and are more resistant to both virulent and avirulent Pseudomonas syringae (Chen et al., 2009). The ein3-1 eil1-1 double mutants constitutively accumulate SA in the absence of pathogen stress (Chen et al., 2009). Further analyses showed that EIN3 specifically binds to P5 fragments (-117 to -324 bp upstream of translational start site) of the ICS1 promoter sequence in vitro and in vivo (Fig. 1) (Chen et al., 2009). Thus, EIN3 and EIL1 appear to be key regulators at the intersection of ethylene and SA signaling by directly targeting ICS1 to down-regulate SA-mediated defense.

Arabidopsis signal responsive (AtSR) proteins (also known as CAMTA3), a class of Ca²⁺/calmodulin-binding transcription factors, play an essential role in regulating *EDS1* expression

(Du *et al.*, 2009). In an EMSA, it was shown that the SR1 DNA-binding domain binds to the *EDS1* promoter at CGCG box. This binding was confirmed by a ChIP assay. *EDS1* promoter activity in *sr1-1* mutants is increased compared with that of Col-0, indicating that AtSR1 negatively regulates *EDS1* (Fig. 1). In addition, SR1 plays a pivotal role in plant immunity by directly regulating *NDR1* (Nie *et al.*, 2012). SR1 directly binds the promoter region of *NDR1* to suppress its expression (Fig. 1).

Recent studies indicate that PBS3 functions as one of the most important proteins in SA biosynthesis (Rekhter *et al.*, 2019; Torrens-Spence *et al.*, 2019); however, the transcription of *PBS3* is not well understood. One study showed that Arabidopsis protoplasts overexpressing *WRKY46* display a 4-fold increase in levels of *PBS3* mRNA accumulation, suggesting that WRKY46 is a transcriptional activator of *PBS3*. However, there are no data confirming that WRKY46 directly binds to the *PBS3* promoter (van Verk *et al.*, 2011).

The expression of *PAD4* is regulated by G-BOX BINDING FACTOR 1 (GBF1) in an intron-dependent manner (Giri *et al.*, 2017). It was found that GBF1 binds to the G-box-like element in the intron of *PAD4*, which is enhanced upon pathogen infection (Fig. 1). In *gbf1* mutants, like *pad4* mutants, SA accumulation and *PR1* gene expression are compromised. Compared with wild-type plants, *GBF1* overexpression plants showed significantly higher levels of *PAD4* mRNA accumulation upon pathogen inoculation.

Perception of salicylic acid

Generally, it is understood that plant and animal hormones transduce their signals by binding to one or multiple receptors. In the early 1990s, after the discovery of the function of SA in plant immunity, the first SA binding protein was identified (Chen and Klessig, 1991). Since then, dozens of SA binding proteins have been discovered or characterized (Chen et al., 1993; Du and Klessig, 1997; Slaymaker et al., 2002; Kumar and Klessig, 2003; Fu et al., 2012; Manohar et al., 2014; Yuan et al., 2017; Ding et al., 2018). SA binding proteins play important roles in plant immunity. For instance, silencing of NtSABP2, which encodes a methyl salicylate esterase, suppresses local resistance to tobacco mosaic virus, induction of PR1 gene expression by SA, and development of SAR (Kumar and Klessig, 2003). However, only NPR1, NPR3, and NPR4 are considered bona fide SA receptors (Fu et al., 2012; Wu et al., 2012; Ding et al., 2018). Among all the NPRs that have been tested, NPR4 shows the highest binding affinity to SA (Fu et al., 2012; Ding et al., 2018).

In order to identify key components that function downstream of SA, several forward genetic screenings were implemented to identify the mutants that do not respond to SA or its active analogs. The *NONEXPRESSER OF PR GENES* 1 (npr1) mutant was first identified during a screening of Arabidopsis mutants that were unable to activate the expression of *PR* genes or mount SAR (Cao et al., 1994; Delaney et al., 1995). NPR1 contains an N-terminal BTB/POZ domain, central ankyrin-repeats, and a C-terminal transcriptional

activation motif (Cao et al., 1997; Rochon et al., 2006). In the cytosol, NPR1 mainly exists as oligomers. Upon pathogen infection or SA treatment, NPR1 is reduced from an oligomeric state to a monomeric state and translocated to the nucleus to accomplish its function (Mou et al., 2003). SA affects NPR1 function at two stages: first, it induces NPR1 gene expression; second, SA promotes translocation of NPR1 into the nucleus. SA-induced NPR1 oligomer-to-monomer transition is catalysed by thioredoxins (Tada et al., 2008). NPR1 is not only sensitive to redox changes but also regulated by several posttranslational modifications, such as phosphorylation, ubiquitination, and sumoylation (Spoel et al., 2009; Lee et al., 2015; Saleh et al., 2015; Chen et al., 2017).

In contrast to NPR1, which positively regulates SA-mediated plant immunity, NPR3 and NPR4 function as negative regulators of plant defense (Zhang et al., 2006; Fu et al., 2012). It has been demonstrated that NPR3 and NPR4 function as adaptors of the Cullin3 ubiquitin 3 E3 ligase to mediate NPR1 and EDS1 degradation (Fu et al., 2012; Chang et al., 2019). Supporting this, it was shown that npr3 npr4 double mutant accumulates a higher level of NPR1 and EDS1 proteins (Fu et al., 2012; Chang et al., 2019). In addition, NPR3 and NPR4 have been shown to facilitate the degradation of JASMONATE ZIM-DOMAIN (JAZ) proteins to promote ETI (Liu et al., 2016). Ding et al. showed that NPR3 and NPR4 function as transcriptional co-repressors and SA inhibits their activities to promote plant defense gene expression (Ding et al., 2018).

Transcriptional regulation of NPR1 gene

NPR1 plays a pivotal role in plant immunity, but the regulation of NPR1 gene expression has not been extensively studied. Only two transcription factors have been reported to regulate NPR1 gene expression through binding to its promoter (Yu et al., 2001; Chai et al., 2014). WRKY18, a SA-induced protein, specifically recognizes the W-box motif in the NPR1 promoter (Yu et al., 2001). The npr1 mutants containing an NPR1 gene with a mutated W-box are unable to induce SA-dependent gene expression or resistance, indicating that the W-box motif in the NPR1 promoter is essential for its gene expression (Yu et al., 2001). It was found that several other WRKY genes are up-regulated in the presence of SA, suggesting that there may be additional WRKY family proteins involved in NPR1 gene regulation (Yu et al., 2001). More recently, it was shown that WRKY6 binds to the W-box of the NPR1 promoter and is required for NPR1 gene expression (Chai et al., 2014).

Not only are transcription factors involved in the promotion of NPR1 gene expression, but also NPR1 itself. It has been found that NPR1 is capable of binding to the W-box motif of its own promoter (Chen et al., 2019b). Because NPR1 does not have a DNA binding domain, the binding of NPR1 to its own promoter must be mediated by transcription factors. Indeed, it has been shown that WRKY18 interacts with NPR1, an interaction that is enhanced by SA (Chen et al., 2019b). Filling the gap between transcription

factors and transcription machinery, Chen et al. found that CDK8 functions as a bridge between WRKY18 and RNA polymerase II. WRKY6 and WRKY18 interact with CDK8, which brings RNA polymerase II to NPR1 promoters and coding regions, facilitating its expression (Chen et al., 2019b). Furthermore, it has been shown that SA promotes the interaction between NPR1 and CDK8 as well, indicating that NPR1 recruits CDK8 to facilitate its own expression (Fig. 1) (Chen et al., 2019b). Consistent with these findings, the expression of NPR1 and NPR1-dependent defense genes, including PR1, is significantly reduced in cdk8 mutants compared with wild-type plants (Chen et al., 2019b).

Transcriptional regulation of PR genes

As a master immune regulator, NPR1 controls the expression of over 2000 genes (Wang et al., 2006). However, NPR1 itself does not contain a known DNA binding domain. NPR1-mediated signaling requires interaction with other transcription factors. Yeast two-hybrid screening has revealed that NPR1 interacts with seven members of the TGACG-Binding (TGA) transcription factor family (Després et al., 2000; Zhou et al., 2000; Kim and Delaney, 2002; Boyle et al., 2009). Interestingly, in planta protein-protein interaction assays showed that the interaction between NPR1 and TGA1 or TGA4 requires SA (Després et al., 2003). The interaction between NPR1 and TGA2 has been detected in the absence of SA, but this interaction is known to be enhanced by SA (Fan and Dong, 2002). NPR1 is capable of amplifying the DNA binding activity of TGA proteins and thus affects the expression of PR genes (Fig. 1) (Després et al., 2000). In the nucleus, NPR1 monomers interact with TGAs, which target the activation sequence-1 (as-1) element of the PR1 promoter (Zhou et al., 2000). NPR1 promotes the expression of PR5 through interaction with TCP15, which promotes the expression of PR5 by directly binding to a TCP binding site within its promoter (Fig. 1) (Li et al., 2018). Another transcription factor that positively regulates PR genes expression is Drought-induced 19 (Di19), which is a seven Cys2/His2-type zinc-finger protein (Liu et al., 2013). Di19 exhibits transactivation activity in yeast and binds to the TACA(A/G)T element within the PR1, PR2, and PR5 promoters in Arabidopsis (Liu et al., 2013). It promotes the expression of PR1, PR2, and PR5, and the expression was enhanced by Di19 interacting protein CPK11 (Liu et al., 2013).

Through genetic screening for suppressors of npr1-1, the suppressor of npr1-1, inducible 1 (sni1) mutant was identified (Li et al., 1999). The sni1 npr1 double mutants show near wildtype levels of PR1 expression and resistance to pathogens (Li et al., 1999). SNI1 is a leucine-rich nuclear protein that exerts its negative effect on PR1 expression by association with PR1 promoter at -816 and -573 under non-induced conditions (Pape et al., 2010). In the presence of SA, the function of SNI1 and its target is inactivated (Pape et al., 2010). Kim et al. demonstrated that CBNAC, a calmodulin-regulated NAC transcriptional repressor, is the target of SNI1 (Kim et al., 2012). SNI1 interacts with CBNAC and enhances the binding of CBNAC

to the *PR1* promoter (Kim *et al.*, 2012). The *cbnac1* mutant displays enhanced resistance to *Pst* DC3000 and increased *PR1* expression (Kim *et al.*, 2012).

Transcriptional regulation of secretion-related genes

In addition to PR genes, NPR1 also directly controls the expression of genes governing protein secretory pathways (Wang et al., 2005). These secretion-related genes include SUPPRESSORS OF SECRETION-DEFECTIVE (Sec61) a and Sec61B, which provide a channel for proteins to cross the ER (endoplasmic reticulum) membrane (Wang et al., 2005). NPR1 also regulates genes encoding ER-resident chaperones, such as luminal binding protein (BiP2) and glucose-regulated protein 94 (GRP94), as well as co-chaperones such as defender against apoptotic death 1 (AtDAD1), calnexins (CNXs), calreticulins (CRTs), and protein disulfide isomerases (PDIs) (Wang et al., 2005). In $sec61\alpha$, dad1, and bip2 single and $sec61\alpha$ bip2 and dad1 bip2 double mutants, benzothiadiazole (BTH)induced PR1 secretion and disease resistance against Psm ES4326 were significantly reduced (Wang et al., 2005). Using a MEME program, Wang et al. identified a consensus sequence, TL1 (CTGAAGAAGAA), in the promoter regions of NPR1responsive ER-resident genes (Wang et al., 2005). Subsequent EMSA results showed that SA promotes the binding of nuclear protein extracts to TL1 elements in wild type plants but not npr1 mutants, suggesting that TL1 is a cis-element involved in SA induction of secretion-related genes via NPR1 (Wang et al., 2005).

To identify the transcription factors that bind to TL1 cis-element (TBF), Pajerowska-Mukhtar et al. (2012) used the TFSEARCH database and found the heat-shock factorlike protein (HSF) was a potential target. The Arabidopsis genome contains 21 HSF-like genes, but only HSF4 is strongly induced by BTH and Psm ES4326 (Pajerowska-Mukhtar et al., 2012). Combining a yeast one-hybrid and an EMSA assay, it was found that HSF4 is the TL1-binding transcription factor TBF1 (Pajerowska-Mukhtar et al., 2012). Using a ChIP assay, it was demonstrated that HSF4 binds to the TL1 element in the BiP2 promoter, a function induced by SA (Fig. 1) (Pajerowska-Mukhtar et al., 2012). Interestingly, NPR1 gene expression in tbf1 mutants is reduced compared with Col-0 in response to SA (Pajerowska-Mukhtar et al., 2012). The NPR1 promoter contains a TL1 element. Thus, TBF1 may directly regulate NPR1 expression through a TL1 cis-element.

The function of Mediators in salicylic acid-mediated plant defense

An important feature of plant defense response is the massive reprogramming of gene expression (Gruner *et al.*, 2013). Recent studies have revealed a link between Mediators and plant immune transcriptional processes against bacterial and fungal pathogens (Wathugala *et al.*, 2012; An and Mou, 2013;

Lai et al., 2014; Zhu et al., 2014). These Mediators are purported to function as a bridge between RNA polymerase II and DNA binding transcription factors (Kidd et al., 2011). The Mediator complex consists of 20–30 subunits forming four subcomplexes: Head, Middle, Tail, and the cyclin-dependent kinase module (Jeronimo and Robert, 2017). Here, we discuss various Mediators that have been identified as essential regulators in SA signaling.

Mediator 14 (MED14) functions as a bridge between three (Head, Middle, and Tail) modules (Soutourina, 2018). The *med14* mutation strongly suppresses the expression of SA pathway genes, such as *PR1*, *NPR1*, *EDS1*, *PAD4*, *ICS1*, and *EDS5*, and reduces disease resistance to *Pst* DC3000 and *Pst* DC3000 avrRpt2 (Zhang et al., 2013). Microarray data show that *med14* mutation inhibits a large group of defense genes, including positive and negative SAR regulators (Zhang et al., 2013).

Mediator 15 (MED15) and Mediator 16 (MED16) in the tail module of the Mediator complex positively regulate plant immunity. NRB4, an ortholog of MED15, was identified during a genetic screening for mutants that are insensitive to SA (Canet et al., 2010). NRB4 null mutants exhibit even more insensitivity to SA than npr1 (Canet et al., 2012). The nrb4 mutants are more susceptible to Pst DC3000 but not to Pst DC3000 carrying avrRpm1 compared with Col-0 (Canet et al., 2012). SA-induced disease resistance and PR1 expression are compromised in *nrb4* mutants as well (Canet *et al.*, 2012; Wang et al., 2016). Another member of the tail module subunits, MED16, also known as SENSITIVE TO FREEZING6 (SFR6), was first identified in a screening for mutants that fail to acclimate to cold stress (Warren et al., 1996). Later, another study identified a mutant, insensitive to exogenous NAD⁺ (ien1)/med16-1, that was defective in PR1 gene expression in response to exogenous NAD+ (Zhang et al., 2012). The sfr6 and *med16-1* mutants are more susceptible to virulent or avirulent Pseudomonas syringae infection and accumulate less PR1, PR2, and PR5 mRNA compared with Col-0 (Wathugala et al., 2012; Zhang et al., 2012). MED16 is an essential regulator of SAR. It was shown that mutation in MED16 results in reduced NPR1 protein levels and completely compromised SAR (Zhang et al., 2012). It is not clear how MED16 regulates NPR1 protein stability. This should be a focal point of future investigation.

The CDK8 kinase module is a conserved dissociable Mediator subcomplex that links to the RNA polymerase II (RNAPII) C-terminal domain (Tsai et al., 2013). CDK8 contributes to the transcriptional regulation of genes involved in SA biosynthesis and the SA signaling pathway (Huang et al., 2019). The expression of SA biosynthesis genes such as ICS1 and EDS5 is down-regulated in cdk8 mutants under uninfected conditions (Huang et al., 2019). As discussed earlier, Chen et al. found that CDK8 positively regulates the expression of NPR1 and its target genes by connecting WRKY transcription factors to RNAPII (Chen et al., 2019b). CDK8 also fine-tunes SA levels in plants that overaccumulate SA. It was shown that CDK8 mutation suppresses the SA level in calmodulin-binding transcription activator 1/2/3 (camta1/2/3) mutants (Huang et al., 2019).

The MED5 mutant reduced epidermal fluorescence 4 (ref4)-3 displays a dwarf phenotype and overaccumulates SA, which are not observed in ref4-3 cdk8 double mutants (Mao et al., 2019). Apart from CDK8, Mediator kinase module members MED12 and MED13 also play an important role in SA-mediated gene expression (Fig. 1). Arabidopsis med 12 and med13 mutants accumulate significantly lower amounts of NPR1 and PR1 transcripts compared with Col-0 under SA treatment (Chen et al., 2019b). SAR is compromised in med 12 and med 13 mutants as well (Chen et al., 2019b; Huang et al., 2019). Moreover, med 12 mutants show reduced SA levels and reduced ICS1 and EDS5 gene expression under uninfected conditions, indicating that MED12 contributes to SA biosynthesis (Huang et al., 2019).

Epigenetic regulators involved in the transcriptional regulation of salicylic acid-mediated plant immune response

Salicylic acid and its active analogs induce chromatin modifications

Chromatin modification and remodeling were described as another layer of regulation for transcriptional reprogramming during SA-mediated plant immune responses (Alvarez et al., 2010). SA accumulation induces changes in chromatin structure, and exogenous application of SA induces increased levels of H3Ac, H4Ac, H3K4me2, and H3K4me3 at the PR1 promoter facilitating the expression of PR1 gene (Fig. 2) (Mosher et al., 2006; van den Burg and Takken, 2009).

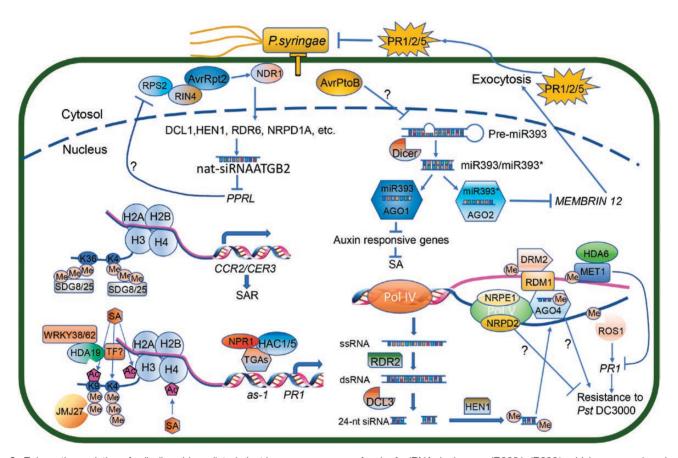


Fig. 2. Epigenetic regulation of salicylic acid-mediated plant immune responses. A pair of miRNA duplexes, miR393/miR393*, which were produced by dicer from Pre-miR393, function differently in plant immunity. miR393 was loaded into AGO1, resulting in the suppression of auxin-responsive genes, which are negative regulators in SA-mediated plant immunity. miR393*, on the other hand, was loaded into AGO2 to suppress the expression of MEMBRIN 12, which positively modulates the exocytosis of antimicrobial PR proteins. Pseudomonas syringae pv. tomato DC3000 delivers type III effector protein AvrPtoB into the plant cell causing the suppression of Pre-miR393 accumulation. The type III effector AvrRpt2 delivered by Pseudomonas syringae induces the accumulation of nat-siRNAATGB2, which suppresses the expression of PPRL, a negative regulator of RPS2-mediated plant immunity. The accumulation of nat-siRNAATGB2 is dependent on the resistance genes NDR1 and RPS2. DCL1, HEN1, RDR6, and NRPD1A are required for biosynthesis of nat-siRNAATGB2. SDG8 and SDG25 histone methyltransferases regulate H3K4 and H3K36 methylations on chromatin surrounding the CCR2 and CER3 locus. SA induces increased levels of H3Ac, H4Ac, H3K4me2, and H3K4me3 at the PR1 promoter. The HAC1/5-NPR1-TGAs protein complex is recruited to the PR chromatin to activate PR transcription by histone acetylation. HDA19 binds to the promoter through unknown transcription factor(s), causing the deacetylation of H3K9. HDA19 interacts with WRKY38 and WRKY62, which negatively regulate plant immunity. JMJ27 is a histone demethylase that regulates the level of methylation of H3K9 at the PR1 promoter. Proteins involved in RNA-directed DNA methylation pathways are also involved in SA-mediated plant immunity. Pol IV synthesizes siRNAs, which are subsequently transcribed by RDR2 to produce dsRNAs. The dsRNAs are processed by DCL3 into 24-nt siRNAs that are methylated at their 3' ends by HEN1 and incorporated into AGO4, which is required for resistance to Pst DC3000. The two largest subunits of PolV, NRPE1 and NRPD2, suppress plant resistance to Pst DC3000. RDM1 mediates the interaction between AGO4 and DRM2, which is required for de novo DNA methylation. HDA6 interacts with MET1, which encodes a cytosine methyltransferase that negatively regulates the expression of PR1. ROS1, a DNA demethylase, positively regulates the expression of PR1. Ac, acetylation; Me, methylation.

NPR1 is required for H3Ac increase at the *PR1* promoter (Koornneef *et al.*, 2008). In addition, BTH treatment induces H3K4 trimethylation and dimethylation at the promoters of BTH-inducible WRKY transcription factors *WRKY6* and *WRKY53* (Jaskiewicz *et al.*, 2011).

Reversible histone acetylation regulates many aspects of plant defense

Histone deacetylases, a class of enzymes that remove acetyl groups from histone, allow the histones to wrap DNA more tightly, making the DNA less accessible to transcription factors. Studies have shown that histone deacetylases are involved in biotic and abiotic stress responses (Kim et al., 2008; Chen et al., 2010; Choi et al., 2012; Buszewicz et al., 2016; Zheng et al., 2016; Wang et al., 2017). Histone deacetylase 19 (HDA19) was found to interact with WRKY62 and WRKY38 (Kim et al., 2008). Hda19 mutants accumulate less PR1 mRNA and are more susceptible to Pst DC3000 when compared with Col-0 (Kim et al., 2008). However, an independent study performed by Choi et al. found that the expression of defense genes such as PR1 and PR2 and genes involved in SA accumulation such as EDS1, EDS5, and ICS1 was increased in hda19 mutants (Choi et al., 2012). The different conclusions obtained from these independent studies may be due to differences in bacterial concentration used in the assay. The ChIP assay showed that levels of H3K9Ac in the PR1 and PR2 promoter regions were higher in hda19 mutants than that in wild-type plants, indicating that hda19 mutations may cause hyper-acetylation of histones at PR loci (Choi et al., 2012). HDA19 regulates PR promoter activity by binding to its promoter via an unknown transcription factor(s) (Fig. 2). For this reason, it would be interesting to identify the HDA19-recruiting transcription factors that negatively regulate PR genes.

Another histone deacetylase involved in epigenetic regulation of SA-mediated plant immune response is histone deacetylase 6 (HDA6). Wang et al. (2017) identified a novel hda6 mutant allele (designated shi5) with a spontaneous defense response. The shi5 mutant displays increased resistance to Pst DC3000 and constitutively activates several defense genes, including PRs and WRKYs (Wang et al., 2017). It was found that HDA6 binds to the promoter of both genes (Wang et al., 2017). Moreover, histone acetylation levels at the promoter of many defense genes are up-regulated in shi5 mutants (Wang et al., 2017). Thus, HDA6 plays a vital role in inhibiting the expression of defense genes via the regulation of histone acetylation levels.

In contrast to histone deacetylases, histone acetyltransferases (HATs or HACs) are well-known transcriptional coactivators that facilitate transcription through a diverse set of functions including the relaxing of histones by acetylation making DNA more accessible to transcription factors (Ogryzko *et al.*, 1996; Barlev *et al.*, 2001). A recent study showed that CBP/p300-family HATs HAC1 and HAC5 are essential in developing SA-triggered immunity and expression of genes involved in the SA pathway, such as *ICS1*, *EDS5*, *PAD4*, and *PR1* (Jin *et al.*, 2018). The *hac1-2* single and *hac1-2 hac5-2* double mutants are

more susceptible to *Pst* DC3000 infection and accumulate significantly lower amounts of *PR1* transcript (Jin *et al.*, 2018). Both SA analog 2,6-dichloroisonicotinc acid (INA) and *Pst* DC3000 induce H3Ac levels in *PR1* chromatin in Col-0 but not in *hac1-2 hac5-2* double mutants, indicating that HAC1 and HAC5 are required for histone 3 acetylation in *PR1* chromatin (Jin *et al.*, 2018). Interestingly, HAC1 and HAC5 interact with NPR1 to form a coactivator complex with TGAs (Jin *et al.*, 2018). Thus, HAC1/5–NPR1–TGAs are recruited to the *PR* chromatin to activate *PR* transcription by histone acetylation-mediated epigenetic reprogramming (Fig. 2).

Dynamic histone methylation and demethylation play key roles in plant defense gene expression

Histone lysine methylation activates or represses transcription depending on the specific residue that is modified (Shilatifard, 2006). A recent study revealed that Arabidopsis histone methyltransferases SET DOMAIN GROUP8 (SDG8) and SDG25 regulate peptide-triggered immunity as well as SAR (Lee et al., 2016). The sdg8 and sdg25 mutants are more susceptible to the bacterial pathogen Pst DC3000 with or without avrB and the fungal pathogen Botrytis cinerea (Lee et al., 2016). The RNA-seq and qPCR data revealed that SDGs regulate a diverse set of immune response genes implicated in bacterial and fungal resistance, such as PR1 and PDF1.2 (Lee et al., 2016). Loss of immunity in sdg mutants was attributed to altered global and CAROTENOID ISOMERASE2 (CCR2)- and ECERIFERUM3 (CER3)-specific histone lysine methylation (Lee et al., 2016). Thus, SDG8 and SDG25 contribute to plant immunity directly through histone lysine methylation of plant immunity genes to regulate expression (Fig. 2).

Histone demethylases, which remove methyl groups from histone proteins, are also involved in SA-mediated immunity. A recent study identified a JmjC domain-containing histone demethylase 2 (JmijC domain-containing protein, JMJ27) that modulates defense against pathogens as well as flowering time (Dutta et al., 2017). JMJ27 is induced in response to virulent Pseudomonas syringae pathogens and is required for resistance against these pathogens (Dutta et al., 2017). In jmj27-1 mutants, the expression of PR1, PR3, PR4, and PR5 genes is dramatically reduced but not PR2 compared with wild-type plants challenged with Pst DC3000 (Dutta et al., 2017). ChIP-qPCR results show that levels of H3K9me2 at the PR1 promoter in jmj27 mutants are increased compared with Col-0, indicating that loss of JMJ27 function leads to hypermethylation of histones at the PR1 promoter (Fig. 2) (Dutta et al., 2017).

DNA methylation: a new player in salicylic acid-mediated plant immunity

In plants, DNA methylation plays an important role in silencing transposable elements (TEs) and endogenous genes (Zhang, 2012). In addition, DNA methylation can also affect chromatin structure (Martinowich *et al.*, 2003). In Arabidopsis,

DNA is methylated at CG, CHG, and CHH sequences (where H is A, C, or T) through three genetically separate pathways (López et al., 2011). Cytosine methylation is established by de novo methyltransferases (DRM1/2) through the RNA-directed DNA methylation (RdDM) pathway (Fig. 2) (Cao and Jacobsen, 2002). Methylation of CGs and CHGs is maintained through DNA replication by MET1 (cytosine methyltransferase), and the plant-specific Chromomethylase 3 (CMT3) methyltransferase, respectively (Lindroth et al., 2001; Kankel et al., 2003). The met1 and drm1 drm2 cmt3 (ddc) mutants are more resistant to the bacterial pathogen Pst DC3000 (López et al., 2011; Matzke and Mosher, 2014). Subsequent RNA-seq data showed that many defense genes were constitutively expressed in met1 and ddc mutants in the absence of infection, indicating that DNA methylation negatively regulates defense genes expression (Agorio and Vera, 2007). Genomewide methylation profiling (MethylC-seq) revealed that DNA methylation dynamically responds to pathogen infection and SA treatment, further confirming the role of DNA methylation in SA-mediated plant immunity (Dowen et al., 2012). DNA methylation is antagonistically controlled by DNA demethylases. Conversely, hyper-methylated ros1 (repressor of silencing 1, encoding a DNA demethylase) mutants displayed reduced PR1 gene expression (Fig. 2) (López Sánchez et al., 2016). Together, these data indicate that DNA methylation plays negative roles in SA-mediated plant defense by downregulating defense gene expression.

As an important component in the RdDM pathway, ARGONAUTE 4 (AGO4) plays a vital role in SA-mediated plant immunity (Fig. 2). ago 4 mutants are susceptible to Pst DC3000 and Pst DC3000 (avrRPM1) (Agorio and Vera, 2007). The extent of DNA cytosine methylation at CpNpG and CpHpH positions of Ep5C (which encodes an extracellular peroxidase in tomato) promoter region was reduced, leading to the constitutive expression of Ep5C, a negative regulator of defense, in ago4 mutants (Agorio and Vera, 2007). RNA Polymerase V is another crucial component in the RdDM pathway (Fig. 2). NRPE1 and NRPD2 encode the largest and second-largest subunits of the Pol V complex, respectively (Fig. 2) (López et al., 2011). Interestingly, both nrpe1 and nrpd2 mutants show enhanced disease resistance towards Pst (López et al., 2011), but it is not clear whether this is a direct or indirect effect on disease-related genes (López et al., 2011). AGO4 and PolV function differently in SA-mediated defense in the RdDM pathway (Fig. 2). A deeper understanding of how RdDM regulates SA-mediated plant immunity warrants further research.

Small RNAs fine-tune salicylic acid-mediated plant immunity

Besides histone modifications and DNA methylation, small RNAs play a crucial role in the epigenetic regulation of plant immunity (Weiberg *et al.*, 2014). For instance, Arabidopsis *miR393* (*microRNA393*) induced by flg22 contributes to resistance against *Pst* DC3000 by down-regulating auxin-responsive genes, which antagonize SA and SA signaling (Fig. 2) (Navarro

et al., 2006). miR393*, a complementary strand of miR393, is loaded into AGO2 and regulates plant immunity by suppressing the MEMBRIN 12 (MEMB12) gene, which causes the increased exocytosis of antimicrobial PR proteins (Fig. 2) (Zhang et al., 2011). The first small interfering RNA (siRNA) reported to regulate plant immunity was nat-siRNAATGB2, which is highly and specifically induced by *Pst avrRpt2* (Fig. 2) (Katiyar-Agarwal et al., 2006). RPS2- and NDR1-dependent induction of nat-siRNAATGB2 leads to the silencing of the antisense gene Pentatricopeptide repeats protein-like (PPRL), a negative regulator of the RPS2 resistance pathway (Fig. 2) (Katiyar-Agarwal et al., 2006). In response, Pseudomonas syringae developed strategies to suppress transcriptional activation of PAMP-responsive miRNAs (microRNAs) (Navarro et al., 2008). For instance, AvrPtoB down-regulates pri-miR393a and pri-miR393b accumulation independently of its E3-ligase activity (Fig. 2) (Navarro et al., 2008). In addition, AvrPto and HopT1-1 suppress the accumulation and stability of miRNAs (Navarro et al., 2008).

Concluding remarks and future directions

Significant progress has been made in understanding the biosynthesis and signaling of SA in plant immunity over the past two decades. However, the SA biosynthesis pathway has yet to be fully elucidated. For example, in the PAL-mediated SA biosynthesis pathway, the gene that encodes benzoic acid 2-hydroxylase, the last step in catalysing benzoic acid to SA, has not been identified in Arabidopsis (Dempsey et al., 2011). Similarly, it has been implicated that EDS5 functions as a transporter of SA, which was postulated from evidence that SA was trapped in the chloroplast of eds 5 mutants (Serrano et al., 2013), but a recent study indicates that EDS5 functions to transport isochorismate rather than SA (Rekhter et al., 2019). A more recent paper provided evidence that EDS5 is required for UV-C induced pipecolic acid production likely by exporting pipecolic acid from the chloroplast to the cytosol (Rekhter et al., 2019). Further studies on the exact function of EDS5 will help us better understand how SA is synthesized.

The transcription of SA biosynthesis gene regulators has been extensively studied and significant progress in this area has been made. Several transcription factors that regulate ICS1, EDS1, PAD4, PBS3, EDS5, and EPS1 have been identified. However, a full understanding of the transcription network remains elusive, especially the transcription of EPS1, PBS3, and PAD4, which until recently has been poorly understood. Moreover, the enzymatic activity of EDS1 and PAD4 remains elusive. Although EDS1 and PAD4 possess potential lipase activity, this activity has not been demonstrated so far. To fully uncover the transcription network underlying the SA signaling pathway, next-generation technologies, such as DNase-seq, MNase-seq, FAIRE-seq, and ATAC-seq, must be utilized. These advanced techniques represent an excellent opportunity for identifying regulatory sequences in their native chromatin environment on a genome-wide scale. The adoption of CRISPR/Cas9 for genomically editing epitope-tags onto TFs in combination with ChIP (CETCh-seq) will continue to

facilitate and increase our understanding of the defense transcription network (Birkenbihl *et al.*, 2017). In addition, Hi-C, as a genome-wide sequencing technique, can be used to investigate 3D chromatin conformation inside the nucleus (Forcato *et al.*, 2017).

Small RNAs play a crucial role in epigenetic regulation of plant immunity (Weiberg et al., 2014). However, it is not clear if miRNA(s) produced by pathogens can specifically target the SA signaling pathway. Deep RNA sequencing could be useful to identify novel siRNAs and miRNAs produced by pathogens suppressing SA-mediated plant immunity, and vice versa, the identification of plant siRNAs and miRNAs that regulate SA-mediated plant defense could further expand our knowledge and understanding of plant-pathogen interactions.

Acknowledgements

This work was supported by the National Science Foundation (EAGER grant 1464527 and grant IOS-1758994 to ZF). JC is supported by a JAAS postdoc fellowship.

References

- **Aarts N, Metz M, Holub E, Staskawicz BJ, Daniels MJ, Parker JE.** 1998. Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in *Arabidopsis*. Proceedings of the National Academy of Sciences, USA **95**, 10306–10311.
- **Adachi H, Derevnina L, Kamoun S.** 2019. NLR singletons, pairs, and networks: evolution, assembly, and regulation of the intracellular immunoreceptor circuitry of plants. Current Opinion in Plant Biology **50**, 121–131.
- **Agorio A, Vera P.** 2007. ARGONAUTE4 is required for resistance to *Pseudomonas syringae* in *Arabidopsis*. The Plant Cell **19**, 3778–3790.
- **Alvarez ME, Nota F, Cambiagno DA.** 2010. Epigenetic control of plant immunity. Molecular Plant Pathology **11**, 563–576.
- **An C, Mou Z.** 2011. Salicylic acid and its function in plant immunity. Journal of Integrative Plant Biology **53**, 412–428.
- An C, Mou Z. 2013. The function of the Mediator complex in plant immunity. Plant Signaling & Behavior 8, e23182.
- Barlev NA, Liu L, Chehab NH, Mansfield K, Harris KG, Halazonetis TD, Berger SL. 2001. Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases. Molecular Cell 8, 1243–1254.
- **Bi G, Zhou JM.** 2017. MAP kinase signaling pathways: a hub of plant-microbe interactions. Cell Host & Microbe **21**, 270–273.
- **Birkenbihl RP, Liu S, Somssich IE.** 2017. Transcriptional events defining plant immune responses. Current Opinion in Plant Biology **38**, 1–9.
- Boutrot F, Segonzac C, Chang KN, Qiao H, Ecker JR, Zipfel C, Rathjen JP. 2010. Direct transcriptional control of the *Arabidopsis* immune receptor FLS2 by the ethylene-dependent transcription factors EIN3 and EIL1. Proceedings of the National Academy of Sciences, USA 107, 14502–14507.
- Boyle P, Le Su E, Rochon A, Shearer HL, Murmu J, Chu JY, Fobert PR, Després C. 2009. The BTB/POZ domain of the *Arabidopsis* disease resistance protein NPR1 interacts with the repression domain of TGA2 to negate its function. The Plant Cell 21, 3700–3713.
- **Buszewicz D, Archacki R, Palusiński A, et al.** 2016. HD2C histone deacetylase and a SWI/SNF chromatin remodelling complex interact and both are involved in mediating the heat stress response in *Arabidopsis*. Plant, Cell & Environment **39**, 2108–2122.
- **Canet JV, Dobón A, Roig A, Tornero P.** 2010. Structure-function analysis of *npr1* alleles in Arabidopsis reveals a role for its paralogs in the perception of salicylic acid. Plant, Cell & Environment **33**, 1911–1922.

- **Canet JV, Dobón A, Tornero P.** 2012. Non-recognition-of-BTH4, an *Arabidopsis* mediator subunit homolog, is necessary for development and response to salicylic acid. The Plant Cell **24**, 4220–4235.
- Cao H, Bowling SA, Gordon AS, Dong X. 1994. Characterization of an *Arabidopsis* mutant that is nonresponsive to inducers of systemic acquired resistance. The Plant Cell **6**, 1583–1592.
- **Cao H, Glazebrook J, Clarke JD, Volko S, Dong X.** 1997. The Arabidopsis *NPR1* gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell **88**, 57–63.
- **Cao X, Jacobsen SE.** 2002. Role of the *Arabidopsis* DRM methyltransferases in de novo DNA methylation and gene silencing. Current Biology **12**, 1138–1144.
- **Century KS, Holub EB, Staskawicz BJ.** 1995. *NDR1*, a locus of *Arabidopsis thaliana* that is required for disease resistance to both a bacterial and a fungal pathogen. Proceedings of the National Academy of Sciences, USA **92**, 6597–6601.
- **Chai J, Liu J, Zhou J, Xing D.** 2014. Mitogen-activated protein kinase 6 regulates *NPR1* gene expression and activation during leaf senescence induced by salicylic acid. Journal of Experimental Botany **65**, 6513–6528.
- **Chang M, Zhao J, Chen H, et al.** 2019. PBS3 protects EDS1 from proteasome-mediated degradation in plant immunity. Molecular Plant **12**, 678–688.
- **Chen H, Chen J, Li M, et al.** 2017. A bacterial type III effector targets the master regulator of salicylic acid signaling, NPR1, to subvert plant immunity. Cell Host & Microbe **22**, 777–788.e7.
- Chen H, Clinton M, Qi G, Wang D, Liu F, Fu ZQ. 2019a. Connecting the dots: a new and complete salicylic acid biosynthesis pathway. Molecular Plant 12, 1539–1541.
- **Chen H, Xue L, Chintamanani S, et al.** 2009. ETHYLENE INSENSITIVE3 and ETHYLENE INSENSITIVE3-LIKE1 repress *SALICYLIC ACID INDUCTION DEFICIENT2* expression to negatively regulate plant innate immunity in *Arabidopsis*. The Plant Cell **21**, 2527–2540.
- **Chen J, Mohan R, Zhang Y, et al.** 2019b. NPR1 promotes its own and target gene expression in plant defense by recruiting CDK8. Plant Physiology **181**, 289–304
- **Chen J, Vandelle E, Bellin D, Delledonne M.** 2014. Detection and function of nitric oxide during the hypersensitive response in *Arabidopsis thaliana*: where there's a will there's a way. Nitric Oxide **43**, 81–88.
- **Chen LT, Luo M, Wang YY, Wu K.** 2010. Involvement of *Arabidopsis* histone deacetylase HDA6 in ABA and salt stress response. Journal of Experimental Botany **61**, 3345–3353.
- **Chen QF, Xu L, Tan WJ, et al.** 2015. Disruption of the *Arabidopsis* defense regulator genes SAG101, EDS1, and PAD4 confers enhanced freezing tolerance. Molecular Plant **8**, 1536–1549.
- **Chen Z, Klessig DF.** 1991. Identification of a soluble salicylic acid-binding protein that may function in signal transduction in the plant disease-resistance response. Proceedings of the National Academy of Sciences, USA **88**, 8179–8183.
- **Chen Z, Ricigliano JW, Klessig DF.** 1993. Purification and characterization of a soluble salicylic acid-binding protein from tobacco. Proceedings of the National Academy of Sciences, USA **90**, 9533–9537.
- Choi SM, Song HR, Han SK, Han M, Kim CY, Park J, Lee YH, Jeon JS, Noh YS, Noh B. 2012. HDA19 is required for the repression of salicylic acid biosynthesis and salicylic acid-mediated defense responses in Arabidopsis. The Plant Journal 71, 135–146.
- **Coppinger P, Repetti PP, Day B, Dahlbeck D, Mehlert A, Staskawicz BJ.** 2004. Overexpression of the plasma membrane-localized NDR1 protein results in enhanced bacterial disease resistance in *Arabidopsis thaliana*. The Plant Journal **40**, 225–237.
- **Cui H, Gobbato E, Kracher B, Qiu J, Bautor J, Parker JE.** 2017. A core function of EDS1 with PAD4 is to protect the salicylic acid defense sector in Arabidopsis immunity. New Phytologist **213**, 1802–1817.
- **Day B, Dahlbeck D, Staskawicz BJ.** 2006. NDR1 interaction with RIN4 mediates the differential activation of multiple disease resistance pathways in *Arabidopsis*. The Plant Cell **18**, 2782–2791.
- **Delaney TP, Friedrich L, Ryals JA.** 1995. *Arabidopsis* signal transduction mutant defective in chemically and biologically induced disease resistance. Proceedings of the National Academy of Sciences, USA **92**, 6602–6606.
- **Dempsey DA, Vlot AC, Wildermuth MC, Klessig DF.** 2011. Salicylic acid biosynthesis and metabolism. The Arabidopsis Book **9**, e0156.

- Després C, Chubak C, Rochon A, Clark R, Bethune T, Desveaux D, Fobert PR. 2003. The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. The Plant Cell 15, 2181–2191.
- **Després C, DeLong C, Glaze S, Liu E, Fobert PR.** 2000. The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. The Plant Cell **12.** 279–290.
- Ding Y, Sun T, Ao K, Peng Y, Zhang Y, Li X, Zhang Y. 2018. Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in transcriptional regulation of plant immunity. Cell 173, 1454–1467.e15.
- **Dodds PN, Rathjen JP.** 2010. Plant immunity: towards an integrated view of plant-pathogen interactions. Nature Reviews. Genetics **11**, 539–548.
- Dowen RH, Pelizzola M, Schmitz RJ, Lister R, Dowen JM, Nery JR, Dixon JE, Ecker JR. 2012. Widespread dynamic DNA methylation in response to biotic stress. Proceedings of the National Academy of Sciences, USA 109, E2183–E2191.
- **Du H, Klessig DF.** 1997. Identification of a soluble, high-affinity salicylic acid-binding protein in tobacco. Plant Physiology **113**, 1319–1327.
- **Du L, Ali GS, Simons KA, Hou J, Yang T, Reddy AS, Poovaiah BW.** 2009. Ca²⁺/calmodulin regulates salicylic-acid-mediated plant immunity. Nature **457**, 1154–1158.
- **Dutta A, Choudhary P, Caruana J, Raina R.** 2017. JMJ27, an Arabidopsis H3K9 histone demethylase, modulates defense against *Pseudomonas syringae* and flowering time. The Plant Journal **91**, 1015–1028.
- Falk A, Feys BJ, Frost LN, Jones JD, Daniels MJ, Parker JE. 1999. EDS1, an essential component of R gene-mediated disease resistance in *Arabidopsis* has homology to eukaryotic lipases. Proceedings of the National Academy of Sciences, USA 96, 3292–3297.
- **Fan W, Dong X.** 2002. In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis. The Plant Cell **14**, 1377–1389.
- **Feys BJ, Moisan LJ, Newman MA, Parker JE.** 2001. Direct interaction between the *Arabidopsis* disease resistance signaling proteins, EDS1 and PAD4. The EMBO Journal **20**, 5400–5411.
- Feys BJ, Wiermer M, Bhat RA, Moisan LJ, Medina-Escobar N, Neu C, Cabral A, Parker JE. 2005. *Arabidopsis* SENESCENCE-ASSOCIATED GENE101 stabilizes and signals within an ENHANCED DISEASE SUSCEPTIBILITY1 complex in plant innate immunity. The Plant Cell 17, 2601–2613.
- Forcato M, Nicoletti C, Pal K, Livi CM, Ferrari F, Bicciato S. 2017. Comparison of computational methods for Hi-C data analysis. Nature Methods 14, 679–685.
- **Fu ZQ, Yan S, Saleh A, et al.** 2012. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature **486**, 228–232.
- **Gaille C, Kast P, Haas D.** 2002. Salicylate biosynthesis in *Pseudomonas aeruginosa*. Purification and characterization of PchB, a novel bifunctional enzyme displaying isochorismate pyruvate-lyase and chorismate mutase activities. The Journal of Biological Chemistry **277**, 21768–21775.
- García AV, Blanvillain-Baufumé S, Huibers RP, Wiermer M, Li G, Gobbato E, Rietz S, Parker JE. 2010. Balanced nuclear and cytoplasmic activities of EDS1 are required for a complete plant innate immune response. PLoS Pathogens 6, e1000970.
- **Garcion C, Lohmann A, Lamodière E, Catinot J, Buchala A, Doermann P, Métraux JP.** 2008. Characterization and biological function of the *ISOCHORISMATE SYNTHASE2* gene of Arabidopsis. Plant Physiology **147**, 1279–1287.
- **Giri MK, Singh N, Banday ZZ, Singh V, Ram H, Singh D, Chattopadhyay S, Nandi AK.** 2017. GBF1 differentially regulates CAT2 and PAD4 transcription to promote pathogen defense in *Arabidopsis thaliana*. The Plant Journal **91**, 802–815.
- Glazebrook J, Zook M, Mert F, Kagan I, Rogers EE, Crute IR, Holub EB, Hammerschmidt R, Ausubel FM. 1997. Phytoalexin-deficient mutants of Arabidopsis reveal that *PAD4* encodes a regulatory factor and that four PAD genes contribute to downy mildew resistance. Genetics **146**, 381–392.
- **Gómez-Gómez L, Boller T.** 2000. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in *Arabidopsis*. Molecular Cell **5**, 1003–1011.

- **Gruner K, Griebel T, Návarová H, Attaran E, Zeier J.** 2013. Reprogramming of plants during systemic acquired resistance. Frontiers in Plant Science **4.** 252.
- **Guo H, Ecker JR.** 2003. Plant responses to ethylene gas are mediated by SCF(EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. Cell **115**. 667–677.
- **Huang J, Gu M, Lai Z, Fan B, Shi K, Zhou YH, Yu JQ, Chen Z.** 2010. Functional analysis of the Arabidopsis *PAL* gene family in plant growth, development, and response to environmental stress. Plant Physiology **153**, 1526–1538.
- **Huang J, Sun Y, Orduna AR, Jetter R, Li X.** 2019. The Mediator kinase module serves as a positive regulator of salicylic acid accumulation and systemic acquired resistance. The Plant Journal **98**, 842–852.
- **Jaskiewicz M, Conrath U, Peterhänsel C.** 2011. Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Reports **12**, 50–55.
- **Jeronimo C, Robert F.** 2017. The mediator complex: at the nexus of RNA polymerase II transcription. Trends in Cell Biology **27**, 765–783.
- **Jin H, Choi SM, Kang MJ, Yun SH, Kwon DJ, Noh YS, Noh B.** 2018. Salicylic acid-induced transcriptional reprogramming by the HAC-NPR1-TGA histone acetyltransferase complex in *Arabidopsis*. Nucleic Acids Research **46**, 11712–11725.
- Jones JD, Dangl JL. 2006. The plant immune system. Nature 444, 323-329.
- Kankel MW, Ramsey DE, Stokes TL, Flowers SK, Haag JR, Jeddeloh JA, Riddle NC, Verbsky ML, Richards EJ. 2003. Arabidopsis *MET1* cytosine methyltransferase mutants. Genetics **163**, 1109–1122.
- Katiyar-Agarwal S, Morgan R, Dahlbeck D, Borsani O, Villegas A Jr, Zhu JK, Staskawicz BJ, Jin H. 2006. A pathogen-inducible endogenous siRNA in plant immunity. Proceedings of the National Academy of Sciences, USA 103, 18002–18007.
- **Kidd BN, Cahill DM, Manners JM, Schenk PM, Kazan K.** 2011. Diverse roles of the mediator complex in plants. Seminars in Cell & Developmental Biology **22**, 741–748.
- **Kim HS, Delaney TP.** 2002. Over-expression of *TGA5*, which encodes a bZIP transcription factor that interacts with NIM1/NPR1, confers SAR-independent resistance in *Arabidopsis thaliana* to *Peronospora parasitica*. The Plant Journal **32**, 151–163.
- Kim HS, Park HC, Kim KE, et al. 2012. A NAC transcription factor and SNI1 cooperatively suppress basal pathogen resistance in *Arabidopsis thaliana*. Nucleic Acids Research 40, 9182–9192.
- **Kim KC, Lai Z, Fan B, Chen Z.** 2008. Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. The Plant Cell **20**, 2357–2371.
- **Knepper C, Savory EA, Day B.** 2011. Arabidopsis NDR1 is an integrin-like protein with a role in fluid loss and plasma membrane-cell wall adhesion. Plant Physiology **156**, 286–300.
- **Koornneef A, Rindermann K, Gatz C, Pieterse CM.** 2008. Histone modifications do not play a major role in salicylate-mediated suppression of jasmonate-induced *PDF1.2* gene expression. Communicative & Integrative Biology **1**, 143–145.
- **Kumar D, Klessig DF.** 2003. High-affinity salicylic acid-binding protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity. Proceedings of the National Academy of Sciences, USA **100**, 16101–16106.
- Lai Z, Schluttenhofer CM, Bhide K, Shreve J, Thimmapuram J, Lee SY, Yun DJ, Mengiste T. 2014. MED18 interaction with distinct transcription factors regulates multiple plant functions. Nature Communications 5, 3064.
- **Lee HJ, Park YJ, Seo PJ, Kim JH, Sim HJ, Kim SG, Park CM.** 2015. Systemic immunity requires SnRK2.8-mediated nuclear import of NPR1 in *Arabidopsis*. The Plant Cell **27**, 3425–3438.
- Lee S, Fu F, Xu S, Lee SY, Yun DJ, Mengiste T. 2016. Global regulation of plant immunity by histone lysine methyl transferases. The Plant Cell 28, 1640–1661.
- Li M, Chen H, Chen J, Chang M, Palmer IA, Gassmann W, Liu F, Fu ZQ. 2018. TCP transcription factors interact with NPR1 and contribute redundantly to systemic acquired resistance. Frontiers in Plant Science 9, 1153.

- Li X, Zhang Y, Clarke JD, Li Y, Dong X. 1999. Identification and cloning of a negative regulator of systemic acquired resistance, SNI1, through a screen for suppressors of npr1-1. Cell 98, 329–339.
- **Lindroth AM, Cao X, Jackson JP, Zilberman D, McCallum CM, Henikoff S, Jacobsen SE.** 2001. Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science **292**, 2077–2080.
- **Liu L, Sonbol FM, Huot B, Gu Y, Withers J, Mwimba M, Yao J, He SY, Dong X.** 2016. Salicylic acid receptors activate jasmonic acid signalling through a non-canonical pathway to promote effector-triggered immunity. Nature Communications **7**, 13099.
- **Liu WX, Zhang FC, Zhang WZ, Song LF, Wu WH, Chen YF.** 2013. Arabidopsis Di19 functions as a transcription factor and modulates PR1, PR2, and PR5 expression in response to drought stress. Molecular Plant **6**. 1487–1502.
- **López A, Ramírez V, García-Andrade J, Flors V, Vera P.** 2011. The RNA silencing enzyme RNA polymerase V is required for plant immunity. PLoS Genetics **7**. e1002434.
- **López Sánchez A, Stassen JH, Furci L, Smith LM, Ton J.** 2016. The role of DNA (de)methylation in immune responsiveness of Arabidopsis. The Plant Journal **88**. 361–374.
- **Makandar R, Nalam VJ, Chowdhury Z, et al.** 2015. The combined action of ENHANCED DISEASE SUSCEPTIBILITY1, PHYTOALEXIN DEFICIENT4, and SENESCENCE-ASSOCIATED101 promotes salicylic acid-mediated defenses to limit *Fusarium graminearum* infection in *Arabidopsis thaliana*. Molecular Plant-Microbe Interactions **28**, 943–953.
- Malamy J, Carr JP, Klessig DF, Raskin I. 1990. Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science **250**, 1002–1004.
- **Manohar M, Tian M, Moreau M, et al.** 2014. Identification of multiple salicylic acid-binding proteins using two high throughput screens. Frontiers in Plant Science **5**, 777.
- **Mao X, Kim JI, Wheeler MT, Heintzelman AK, Weake VM, Chapple C.** 2019. Mutation of Mediator subunit *CDK8* counteracts the stunted growth and salicylic acid hyperaccumulation phenotypes of an Arabidopsis *MED5* mutant. New Phytologist **223**, 233–245.
- Martinowich K, Hattori D, Wu H, Fouse S, He F, Hu Y, Fan G, Sun YE. 2003. DNA methylation-related chromatin remodeling in activity-dependent *Bdnf* gene regulation. Science **302**, 890–893.
- **Matzke MA, Mosher RA.** 2014. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nature Reviews. Genetics **15**, 394–408.
- Métraux JP, Signer H, Ryals J, Ward E, Wyss-Benz M, Gaudin J, Raschdorf K, Schmid E, Blum W, Inverardi B. 1990. Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science 250, 1004–1006.
- Moreau M, Degrave A, Vedel R, Bitton F, Patrit O, Renou JP, Barny MA, Fagard M. 2012. EDS1 contributes to nonhost resistance of *Arabidopsis thaliana* against *Erwinia amylovora*. Molecular Plant-Microbe Interactions **25**, 421–430.
- Mosher RA, Durrant WE, Wang D, Song J, Dong X. 2006. A comprehensive structure-function analysis of *Arabidopsis* SNI1 defines essential regions and transcriptional repressor activity. The Plant Cell **18**, 1750–1765.
- **Mou Z, Fan W, Dong X.** 2003. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell **113**, 935–944.
- Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD. 2006. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science **312**, 436–439.
- **Navarro L, Jay F, Nomura K, He SY, Voinnet O.** 2008. Suppression of the microRNA pathway by bacterial effector proteins. Science **321**, 964–967.
- Nawrath C, Heck S, Parinthawong N, Métraux JP. 2002. EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family. The Plant Cell 14. 275–286.
- **Nie H, Zhao C, Wu G, Wu Y, Chen Y, Tang D.** 2012. SR1, a calmodulinbinding transcription factor, modulates plant defense and ethylene-induced senescence by directly regulating NDR1 and EIN3. Plant Physiology **158**, 1847–1859.
- **Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y.** 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell **87**, 953–959.

- Pajerowska-Mukhtar KM, Wang W, Tada Y, Oka N, Tucker CL, Fonseca JP, Dong X. 2012. The HSF-like transcription factor TBF1 is a major molecular switch for plant growth-to-defense transition. Current Biology 22, 103–112.
- **Pape S, Thurow C, Gatz C.** 2010. The Arabidopsis PR-1 promoter contains multiple integration sites for the coactivator NPR1 and the repressor SNI1. Plant Physiology **154**, 1805–1818.
- **Parker JE, Holub EB, Frost LN, Falk A, Gunn ND, Daniels MJ.** 1996. Characterization of *eds1*, a mutation in Arabidopsis suppressing resistance to *Peronospora parasitica* specified by several different *RPP* genes. The Plant Cell **8**, 2033–2046.
- **Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC.** 2009. Networking by small-molecule hormones in plant immunity. Nature Chemical Biology **5**, 308–316.
- **Qi G, Chen J, Chang M, Chen H, Hall K, Korin J, Liu F, Wang D, Fu ZQ.** 2018. Pandemonium breaks out: disruption of salicylic acid-mediated defense by plant pathogens. Molecular Plant **11**, 1427–1439
- Rekhter D, Lüdke D, Ding Y, Feussner K, Zienkiewicz K, Lipka V, Wiermer M, Zhang Y, Feussner I. 2019. Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid. Science **365**, 498–502.
- **Rochon A, Boyle P, Wignes T, Fobert PR, Després C.** 2006. The coactivator function of *Arabidopsis* NPR1 requires the core of its BTB/POZ domain and the oxidation of C-terminal cysteines. The Plant Cell **18**, 3670–3685.
- **Rohde A, Morreel K, Ralph J, et al.** 2004. Molecular phenotyping of the *pal1* and *pal2* mutants of *Arabidopsis thaliana* reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism. The Plant Cell **16**, 2749–2771.
- Saleh A, Withers J, Mohan R, Marqués J, Gu Y, Yan S, Zavaliev R, Nomoto M, Tada Y, Dong X. 2015. Posttranslational modifications of the master transcriptional regulator NPR1 enable dynamic but tight control of plant immune responses. Cell Host & Microbe 18, 169–182.
- Serrano M, Wang B, Aryal B, Garcion C, Abou-Mansour E, Heck S, Geisler M, Mauch F, Nawrath C, Métraux JP. 2013. Export of salicylic acid from the chloroplast requires the multidrug and toxin extrusion-like transporter EDS5. Plant Physiology 162, 1815–1821.
- **Shapiro AD, Zhang C.** 2001. The role of NDR1 in avirulence gene-directed signaling and control of programmed cell death in Arabidopsis. Plant Physiology **127**, 1089–1101.
- **Shilatifard A.** 2006. Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annual Review of Biochemistry **75**, 243–269.
- Slaymaker DH, Navarre DA, Clark D, del Pozo O, Martin GB, Klessig DF. 2002. The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proceedings of the National Academy of Sciences, USA 99, 11640–11645.
- **Soutourina J.** 2018. Transcription regulation by the mediator complex. Nature Reviews. Molecular Cell Biology **19**, 262–274.
- **Spoel SH, Mou Z, Tada Y, Spivey NW, Genschik P, Dong X.** 2009. Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity. Cell **137**, 860–872.
- **Strawn MA, Marr SK, Inoue K, Inada N, Zubieta C, Wildermuth MC.** 2007. *Arabidopsis* isochorismate synthase functional in pathogen-induced salicylate biosynthesis exhibits properties consistent with a role in diverse stress responses. The Journal of Biological Chemistry **282**, 5919–5933.
- **Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X.** 2008. Plant immunity requires conformational changes [corrected] of NPR1 via S-nitrosylation and thioredoxins. Science **321**, 952–956.
- **Torrens-Spence MP, Bobokalonova A, Carballo V, Glinkerman CM, Pluskal T, Shen A, Weng JK.** 2019. PBS3 and EPS1 complete salicylic acid biosynthesis from isochorismate in *Arabidopsis*. Molecular Plant **12**, 1577–1586.
- Tsai KL, Sato S, Tomomori-Sato C, Conaway RC, Conaway JW, Asturias FJ. 2013. A conserved mediator-CDK8 kinase module association regulates mediator-RNA polymerase II interaction. Nature Structural & Molecular Biology 20, 611–619.
- van den Burg HA, Takken FL. 2009. Does chromatin remodeling mark systemic acquired resistance? Trends in Plant Science 14, 286–294.

- van Verk MC, Bol JF, Linthorst HJ. 2011. WRKY transcription factors involved in activation of SA biosynthesis genes. BMC Plant Biology 11, 89.
- Viot AC, Dempsey DA, Klessig DF. 2009. Salicylic acid, a multifaceted hormone to combat disease. Annual Review of Phytopathology 47, 177–206.
- **Wang C, Du X, Mou Z.** 2016. The mediator complex subunits MED14, MED15, and MED16 are involved in defense signaling crosstalk in *Arabidopsis*. Frontiers in Plant Science **7**, 1947.
- **Wang D, Amornsiripanitch N, Dong X.** 2006. A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathogens **2**, e123.
- **Wang D, Weaver ND, Kesarwani M, Dong X.** 2005. Induction of protein secretory pathway is required for systemic acquired resistance. Science **308**, 1036–1040.
- Wang X, Gao J, Zhu Z, Dong X, Wang X, Ren G, Zhou X, Kuai B. 2015. TCP transcription factors are critical for the coordinated regulation of isochorismate synthase 1 expression in *Arabidopsis thaliana*. The Plant Journal 82, 151–162.
- Wang Y, Hu Q, Wu Z, et al. 2017. HISTONE DEACETYLASE 6 represses pathogen defence responses in *Arabidopsis thaliana*. Plant, Cell & Environment 40, 2972–2986.
- **Warren G, McKown R, Marin AL, Teutonico R.** 1996. Isolation of mutations affecting the development of freezing tolerance in *Arabidopsis thaliana* (L.) Heynh. Plant Physiology **111**, 1011–1019.
- Wathugala DL, Hemsley PA, Moffat CS, Cremelie P, Knight MR, Knight H. 2012. The Mediator subunit SFR6/MED16 controls defence gene expression mediated by salicylic acid and jasmonate responsive pathways. New Phytologist 195, 217–230.
- **Weiberg A, Wang M, Bellinger M, Jin H.** 2014. Small RNAs: a new paradigm in plant-microbe interactions. Annual Review of Phytopathology **52**, 495–516.
- **Wendehenne D, Gao QM, Kachroo A, Kachroo P.** 2014. Free radical-mediated systemic immunity in plants. Current Opinion in Plant Biology **20**, 127–134.
- Wiermer M, Feys BJ, Parker JE. 2005. Plant immunity: the EDS1 regulatory node. Current Opinion in Plant Biology 8, 383–389.
- **Wildermuth MC, Dewdney J, Wu G, Ausubel FM.** 2001. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature **414**, 562–565.
- Wu Y, Zhang D, Chu JY, Boyle P, Wang Y, Brindle ID, De Luca V, Després C. 2012. The *Arabidopsis* NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Reports 1, 639–647.
- **Yu D, Chen C, Chen Z.** 2001. Evidence for an important role of WRKY DNA binding proteins in the regulation of *NPR1* gene expression. The Plant Cell **13**. 1527–1540.

- **Yuan HM, Liu WC, Lu YT.** 2017. CATALASE2 coordinates SA-mediated repression of both auxin accumulation and JA biosynthesis in plant defenses. Cell Host & Microbe **21**, 143–155.
- **Zhang X.** 2012. Dynamic differential methylation facilitates pathogen stress response in Arabidopsis. Proceedings of the National Academy of Sciences, USA **109**, 12842–12843.
- **Zhang X, Wang C, Zhang Y, Sun Y, Mou Z.** 2012. The *Arabidopsis* mediator complex subunit16 positively regulates salicylate-mediated systemic acquired resistance and jasmonate/ethylene-induced defense pathways. The Plant Cell **24**, 4294–4309.
- **Zhang X, Yao J, Zhang Y, Sun Y, Mou Z.** 2013. The Arabidopsis Mediator complex subunits MED14/SWP and MED16/SFR6/IEN1 differentially regulate defense gene expression in plant immune responses. The Plant Journal **75**, 484–497.
- Zhang X, Zhao H, Gao S, Wang WC, Katiyar-Agarwal S, Huang HD, Raikhel N, Jin H. 2011. *Arabidopsis* Argonaute 2 regulates innate immunity via miRNA393(*)-mediated silencing of a Golgi-localized SNARE gene, *MEMB12*. Molecular Cell **42**, 356–366.
- **Zhang Y, Cheng YT, Qu N, Zhao Q, Bi D, Li X.** 2006. Negative regulation of defense responses in Arabidopsis by two NPR1 paralogs. The Plant Journal **48**, 647–656.
- **Zhang Y, Xu S, Ding P, et al.** 2010. Control of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors. Proceedings of the National Academy of Sciences, USA **107**, 18220–18225.
- Zheng Y, Ding Y, Sun X, Xie S, Wang D, Liu X, Su L, Wei W, Pan L, Zhou DX. 2016. Histone deacetylase HDA9 negatively regulates salt and drought stress responsiveness in Arabidopsis. Journal of Experimental Botany 67, 1703–1713.
- **Zhou JM, Trifa Y, Silva H, Pontier D, Lam E, Shah J, Klessig DF.** 2000. NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. Molecular Plant-Microbe Interactions **13**, 191–202.
- **Zhou N, Tootle TL, Tsui F, Klessig DF, Glazebrook J.** 1998. *PAD4* functions upstream from salicylic acid to control defense responses in Arabidopsis. The Plant Cell **10**, 1021–1030.
- Zhu S, Jeong RD, Venugopal SC, Lapchyk L, Navarre D, Kachroo A, Kachroo P. 2011. SAG101 forms a ternary complex with EDS1 and PAD4 and is required for resistance signaling against turnip crinkle virus. PLoS Pathogens 7, e1002318.
- Zhu Y, Schluttenhoffer CM, Wang P, Fu F, Thimmapuram J, Zhu JK, Lee SY, Yun DJ, Mengiste T. 2014. CYCLIN-DEPENDENT KINASE8 differentially regulates plant immunity to fungal pathogens through kinase-dependent and -independent functions in *Arabidopsis*. The Plant Cell **26**, 4149–4170.