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Abstract. We prove the two dimensional KPZ equation with a logarithmically
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1. Introduction

1.1. Main result. We are interested in the two dimensional KPZ equation driven
by a mollified spacetime white noise and starting from flat initial data:
(1.1) ∂thε =

1
2∆hε +

β

2
√

∣ log ε∣
∣∇hε∣

2
+ Ẇε(t, x), hε(0, x) ≡ 0, x ∈ R2,

where
Ẇε(t, x) =

1
ε2 ∫R2

ϕ(
x−y
ε

)Ẇ (t, y)dy,

with Ẇ a spacetime white noise built on the probability space (Ω,F ,P) and 0 ≤ ϕ ∈

C∞
c (R2). The covariance function of Ẇε is formally written as

(1.2)
E[̇Wε(t, x)Ẇε(s, y)] =δ(t − s) 1

ε2
R(

x−y
ε

), with R(x) =∫
R2
ϕ(x + y)ϕ(y)dy.

Without loss of generality, we assume ϕ(x) =0 for ∣x∣ ≥ 1
2 and ∫R2 ϕ(x)dx=1. The

following is our main result:

Theorem 1.1. There exists β0 depending on ϕ such that if β < β0 ≤
√

2π, then for
any t > 0 and test function g ∈ C∞

c (R2), we have

(1.3) ∫
R2

(hε(t, x) − E[hε(t, x)]) g(x)dx⇒ ∫
R2

H (t, x)g(x)dx

in distribution as ε→0, where H solves the Edwards-Wilkinson equation
∂tH =1

2∆H + νeffẆ (t, x), H (0, x) ≡ 0,
with the effective variance
(1.4) ν2

eff = 2π
2π−β2 .

There is a lot of activities on the study of singular SPDEs over the past decade.
We refer to the reviews [12, 13, 25] and the references therein. For the KPZ equation,
progresses in d ≥ 3 can be found in [15, 20], where results similar to Theorem 1.1
were proved. In two dimensions, the tightness of {hε}ε∈(0,1), as a sequence of random
distributions, was proved in the recent work of Chatterjee-Dunlap [7]. To prove
Theorem 1.1, we implement the same strategy laid out in [15].

The convergence in (1.3) is expected to hold for all β ∈ (0,
√

2π), and our proof
seems to only work for β small enough. Near the completion of this paper, we learnt
the very recent work of Caravenna-Sun-Zygouras [6] which proved Theorem 1.1 for
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all β ∈ (0,
√

2π), using a different method. While their result is more general and
covers the entire “subcritical” regime, the proof presented here seems to be simpler
and offers another perspective. We discuss the approaches of [6, 7] in Section 2.4.

At the critical value β =
√

2π, the early work of Bertini-Cancrini [1] identified the
limiting covariance function of the corresponding stochastic heat equation. While
the limiting distribution remains an open question, we refer to the work of [5, 16] in
this direction.

If we write the nonlinear term in (1.1) as ∣∇hε∣
2 =∇hε⋅Λ∇hε, our case corresponds

to Λ being the 2 × 2 identity matrix. The so-called anisotropic class refers to the
case of det[Λ] < 0. It is a very interesting question to study the asymptotics of the
anisotropic version of (1.1), where the Hopf-Cole transformation to the stochastic
heat equation is unavailable and all existing methods break down. Some recent
work on the interacting particle systems belonging to this class can be found in
[2, 3, 9, 26].

While we always view {hε}ε>0 as a family of random distributions in d ≥ 2 and
study the asymptotics of ∫ hεg with test function g, there are also recent studies on
the pointwise fluctuations of hε (or ehε), see e.g. [4, 10, 11, 14, 21].

1.2. Connection to the stochastic heat equation and heuristics. Through
a Hopf-Cole transformation, the hε defined in (1.1) is related to the solution of the
heat equation with a weak random potential

(1.5) ∂tu=
1
2∆u + βεV (t, x)u, u(0, x) ≡ 1, x ∈ R2,

with

(1.6) βε =
β√

∣ log ε∣
,

and
V (t, x) =∫

R2
ϕ(x − y)Ẇ (t, y)dy.

Here, the product V (t, x)u in (1.5) is interpreted in the Itô sense. Consider uε(t, x) =
u( t

ε2
, x
ε
), which solves

∂tuε =
1
2∆uε +

βε
ε2
V ( t

ε2
, x
ε
)uε.

By the scaling property of the spacetime white noise and the fact that d=2, we
have

(1.7) 1
ε2
V ( t

ε2
, x
ε
)

law
=Ẇε(t, x).

Applying Itô’s formula yields

β−1
ε (loguε − E[loguε])

law
=hε − E[hε].

From now on, we will study loguε rather than hε.
Our proof of Theorem 1.1 implies a similar result of uε: for β < β0,

(1.8) β−1
ε ∫R2

(uε(t, x) − 1)g(x)dx⇒ ∫
R2

H (t, x)g(x)dx, in distribution.

This was previously proved in [4, Theorem 2.17] for all β ∈ (0,
√

2π). Let us explain
the mechanism behind the convergence of (1.8) for the stochastic heat equation
(SHE) and how it relates to the convergence of the KPZ in (1.3).

First, the variance of the l.h.s. of (1.8) is
(1.9)
Var[β−1

ε ∫R2
uε(t, x)g(x)dx] =β

−2
∣ log ε∣ ∫

R4
Cov[u( t

ε2
, x
ε
), u( t

ε2
, y
ε
)]g(x)g(y)dxdy.
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The covariance is written explicitly by the Feynman-Kac formula:
(1.10)
u(t, x) =EB[eβε ∫

t
0 V (t−s,x+Bs)ds− 1

2β
2
εR(0)t

],

Cov[u( t
ε2
, x
ε
), u( t

ε2
, y
ε
)] =EB[eβ

2∣ log ε∣−1 ∫
t/ε2
0 R(x−y

ε
+B1

s−B2
s)ds] − 1 =F ( t

ε2
, x−y
ε

) − 1,

where B1,B2 are independent Brownian motions starting from the origin and EB
denotes the expectation with respect to the Brownian motions. Note that in the
Feynman-Kac representation of u, we have the factor ∫

t
0 V (t − s, x +Bs)ds. While

the Brownian motion Bs starts from the origin, it is sometimes more convenient for
us to write the integral as ∫

t
0 V (s, x+Bt−s)ds and view {x+Bt−s}s≥0 as a Brownian

motion starting at (t, x) and running backwards in time. The function F in (1.10)
solves the deterministic PDE

∂tF =∆F + β2
∣ log ε∣−1R(x)F, F (0, x) ≡ 1.

Similar to u, we have omitted the dependence of F on ε. The above equation can
be written in the mild formulation as

F ( t
ε2
, x−y
ε

) =1 + β2
∣ log ε∣−1

∫

t/ε2

0
∫
R2
G2(t/ε2−`)(

x−y
ε

−w)R(w)F (`,w)dwd`,

where Gt(x) =(2πt)−1 exp(−∣x∣2/2t) is the standard heat kernel. After a change of
variable `↦ `/ε2, we have

(1.11) β−2
∣ log ε∣[F ( t

ε2
, x−y
ε

) − 1] =∫
t

0
∫
R2
G2(t−`)(x − y − εw)R(w)F ( `

ε2
,w)dwd`.

By the Feynman-Kac representation of F in (1.10), we know that F (`/ε2,w) mea-
sures the intersection time of the two Brownian motions during [0, `/ε2]. By a
classical result of Kallianpur-Robbins [19, Theorem 1], for β > 0, ` > 0 and w ∈ R2,
the following convergence in distribution holds:
(1.12)

∣ log ε∣−1
∫

`/ε2

0
R(w +B1

s −B2
s)ds

law
=(2∣ log ε∣)−1

∫

2`/ε2

0
R(w +Bs)ds⇒

1
2πExp(1),

where we used the fact that ∫ R=1. Together with the uniform integrability we
will establish later, this implies

(1.13) F ( `
ε2
,w) =EB[eβ

2∣ log ε∣−1 ∫
`/ε2
0 R(w+B1

s−B2
s)ds] → 2π

2π−β2 =ν2
eff

for small β, as ε→0. Combining (1.11) and (1.13), the variance in (1.9) converges:
(1.14)

Var[β−1
ε ∫R2

uε(t, x)g(x)dx] →ν
2
eff ∫

t

0
∫
R6
G2(t−`)(x − y)R(w)g(x)g(y)dxdydwd`

=Var[∫
R2

H (t, x)g(x)dx].

In the last step we used the fact that ∫ R=(∫ ϕ)2 =1. While the effective variance
ν2

eff only depends on the mollifier through the integral ∫ ϕ in our setting, it is not
the case at the critical value β =

√
2π in d=2 or in higher dimensions d ≥ 3, see

[1, 15, 17], which is very different from the subcritical setting. The above calculation
and the convergence in (1.13) interprets the effective variance ν2

eff in terms of the
intersection of two Brownian paths.

Now we explain the origin of the Gaussianity. It is important to note that the
main contribution to the integral in (1.12) comes from s ∈ [0,Kε] provided that
∣ log(ε2Kε)∣ ≪ ∣ log ε∣. Actually, the heat kernel in d=2 satisfies that Gt(x) ∼ t−1 for
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x near the origin, so we have

(1.15)

∣ log ε∣−1
(∫

`/ε2

0
−∫

Kε

0
)EB[R(w +B1

s −B2
s)]ds

=∣ log ε∣−1
∫

`/ε2

Kε
EB[R(w +B1

s −B2
s)]ds

∼ ∣ log ε∣−1
∣ log(ε2Kε)∣ →0.

For example, we can pick Kε =
1

ε2∣ log ε∣ =o(ε
−2) and replace F (`/ε2,w) in (1.11) by

F (Kε,w) without changing the asymptotic covariance:
(1.16)

β−2
∣ log ε∣[F ( t

ε2
, x−y
ε

) − 1] ≈∫
t

0
∫
R2
G2(t−`)(x − y − εw)R(w)F (Kε,w)dwd`.

Recall that

Var[β−1
ε ∫R2

uε(t, x)g(x)dx] =∫
R4
β−2

∣ log ε∣[F ( t
ε2
, x−y
ε

) − 1]g(x)g(y)dxdy.

The r.h.s. of (1.16) indicates the main contribution to the variance of our interested
quantity, from the perspective of Brownian paths intersections. In microscopic
variables, we have two Brownian paths, starting from x

ε
and y

ε
respectively and

running backwards in time. After first “meeting” each other at the time (t−`)/ε2 for
some ` ∈ (0, t), the two paths spend Kε =o(ε

−2) amount of time “intersecting” before
splitting again. As a result, the random environment involved in this “intersection”
only consists of Ẇ (s,⋅) with s ∈ [̀/ε2 − o(ε−2), `/ε2], which induces a temporal
decorrelation for different `1 ≠ `2 ∈ (0, t) and creates the Gaussianity. Together with
the variance convergence in (1.14), we have the Edwards-Wilkinson limit in (1.8).
The results in [17] for d ≥ 3 is based on the above heuristics.

For the KPZ equation, the Gaussianity comes from a similar temporal decor-
relation as discussed above (we will prove it by a different method though). The
convergence of the variance

Var[∫
R2
hε(t, x)g(x)dx] =Var[β−1

ε ∫R2
loguε(t, x)g(x)dx]

→Var[∫
R2

H (t, x)g(x)dx]

is however more involved. While we do not have a Feynman-Kac representation for
Cov[loguε(t, x), loguε(t, y)] as (1.10), an application of the Clark-Ocone formula
will help us express the covariance in terms of an integral of

(1.17) E[D loguε(t, z)∣Fr] =E[u−1
ε (t, z)Duε(t, z)∣Fr], z=x, y, r ≤ t

ε2
.

Here D is the Malliavin derivative with respect to the random noise and Fr is the
filtration generated by {Ẇ (s,⋅), s ≤ r}. The key difficulty in analyzing (1.17) is to
deal with the factor u−1

ε and to evaluate the conditional expectation given Fr. By the
same discussion for (1.15), the random variable uε(t,⋅) mainly depends on the noise
Ẇ (s,⋅) for s ∈ [t/ε2 − o(ε−2), t/ε2], so we could replace the factor u−1

ε (t,⋅) in (1.17)
with a small error by something that is independent of Fr for those r < t

ε2
− o(ε−2).

The rest of the discussion is similar to the SHE case.

1.3. Notation. We use the following notation and conventions.

(1) We use a ≲ b for a ≤ Cb for some constant C independent of ε.
(2) We use (p, q) to denote the Hölder exponents 1

p
+ 1
q
=1, and always choose

p≫ 1.
(3) Gt(x) =(2πt)−1 exp(−∣x∣2/2t) denotes the standard heat kernel.
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(4) We let H denote the Hilbert space L2(R2+1), with norm ∥ ⋅∥H and inner
product ⟨⋅,⋅⟩H .

(5) {Bjt ∶ t ≥ 0, j =1, . . .} is a family of standard independent 2−dimensional
Brownian motions built on another probability space (Σ,A,PB). We will
use EB ,PB when taking the expectation and the probability with respect
to B.

(6) We use ∥ ⋅∥p to denote the Lp norm of the product probability space
(Ω × Σ,F ⊗A,P × PB) for p ≥ 1.

(7) We use dTV(⋅,⋅) to denote the total variation distance between two distribu-
tions.

(8) We let ∥ ⋅∥op denotes the operator norm.
(9) We use [0, t]n< to denote the n−dimensional simplex {0 ≤ t1 < . . . < tn ≤ t}.
(10) We use f̂(ξ) =∫Rd f(x)e

−iξ⋅xdx to denote the Fourier transform of f .

Acknowledgments. We would like to thank Li-Cheng Tsai for his initial involve-
ment in this project and multiple inspiring discussions. We thank Nikolaos Zygouras
for some helpful discussions, and two anonymous referees for a very careful reading
of the manuscript and many helpful suggestions to improve the presentation. The
research is supported by NSF grant DMS-1613301/1807748/1907928 and the Center
for Nonlinear Analysis of CMU.

2. Sketch of the proof

The main result (1.3) is equivalent with the convergence in distribution of

(2.1) β−1
ε ∫R2

(loguε(t, x) − E[loguε(t, x)])g(x)dx⇒ ∫
R2

H (t, x)g(x)dx.

We rely on the Feynman-Kac representation of the solution to (1.5):

(2.2) u(t, x) =EB [eβε ∫
t
0 V (t−s,x+Bs)ds− 1

2β
2
εR(0)t

] ,

which has the same distribution, if viewed as a random field in x with t fixed, as

Z(t, x) =EB[M(t, x)], with M(t, x) =exp(βε ∫
t

0
V (s, x +Bs)ds − 1

2β
2
εR(0)t) .

We keep in mind that M,Z depend on ε through the small factor βε defined in (1.6)
but omit its dependence to simplify the notation. For fixed B and x, M(⋅, x) is a
martingale. Defining

Zε(t, x) =Z( t
ε2
, x
ε
), Mε(t, x) =M( t

ε2
, x
ε
),

and
Xε(t) =∫

R2
logZε(t, x)g(x)dx.

The convergence in (2.1) is equivalent to

β−1
ε (Xε(t) − E[Xε(t)]) ⇒ ∫

R2
H (t, x)g(x)dx.

Throughout the paper, we fix the variable t > 0 and sometimes omit its dependence.
Define

(2.3) σ2
t =Var[∫ H (t,⋅)g(⋅)] =ν2

eff ∫
t

0
∫
R4
g(x1)g(x2)G2s(x1 − x2)dx1dx2ds,

where we recall that Gt(x) is the standard heat kernel. The proof of Theorem 1.1
consists of two steps:

Proposition 2.1. As ε→0, β−2
ε Var[Xε(t)] →σ2

t .
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Proposition 2.2. As ε→0,
Xε(t) − E[Xε(t)]

√
Var[Xε(t)]

⇒ N(0,1).

2.1. Negative moments. Throughout the paper, we rely on the existence of
negative moments of Zε(t, x) for small β, which essentially comes from [18] and was
also presented in [6, Equation (5.13)].

Proposition 2.3. There exits β0 > 0 such that if β < β0,
sup
t∈[0,T ]

sup
ε∈(0,1)

E[Zε(t, x)
−n

] ≤ Cβ,n,T .

The proof is presented in Appendix B.

2.2. The Clark-Ocone representation. For each realization of the Brownian
motion B, we can write

∫

t/ε2

0
V (s, x

ε
+Bs)ds=∫

t/ε2

0
(∫

R2
ϕ(x

ε
+Bs − y)Ẇ (s, y)dy)ds

=∫
R3

Φεt,x,B(s, y)dW (s, y),

with
Φεt,x,B(s, y) =1[0,t/ε2](s)ϕ(x

ε
+Bs − y).

Therefore,
Ds,yZε(t, x) =Ds,yEB[Mε(t, x)] =βεEB [Mε(t, x)Φεt,x,B(s, y)] ,

where Ds,y denotes the Malliavin derivative operator with respect to Ẇ . By [15,
Lemma A.1], we have

Ds,y logZε(t, x) =
Ds,yZε(t, x)

Zε(t, x)
,

and the Clark-Ocone formula says

Xε − E[Xε] = ∫
R3

E[Ds,yXε∣Fs]dW (s, y)

= ∫
R3

E[∫
R2

Ds,yZε(t, x)

Zε(t, x)
g(x)dx∣Fs]dW (s, y)(2.4)

= βε ∫
t/ε2

0
∫
R2

(∫
R2
g(x)E[

EB[Mε(t, x)Φεt,x,B(s, y)]

Zε(t, x)
∣Fs]dx)dW (s, y).

Here Fs is the filtration generated by Ẇ (`,⋅) up to ` ≤ s.
For

(2.5) Kε =
1

ε2∣ log ε∣α

with some α > 0 to be determined, we decompose the stochastic integral in (2.4)
into three parts:

β−1
ε (Xε − E[Xε]) =I1,ε + I2,ε + I3,ε,

with

(2.6) I1,ε =∫
Kε

0
∫
R2

(∫
R2
g(x)E[

EB[Mε(t, x)Φεt,x,B(s, y)]

Zε(t, x)
∣Fs]dx)dW (s, y),

(2.7)

I2,ε =∫
t/ε2

Kε
∫
R2

(∫
R2
g(x)E[

EB[Mε(t, x)Φεt,x,B(s, y)]

Z(Kε, x/ε)
(
Z(Kε, x/ε)

Z(t/ε2, x/ε)
− 1) ∣Fs]dx)dW (s, y),
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and

(2.8) I3,ε =∫
t/ε2

Kε
∫
R2

(∫
R2
g(x)E[

EB[Mε(t, x)Φεt,x,B(s, y)]

Z(Kε, x/ε)
∣Fs]dx)dW (s, y).

Since 1 ≪ Kε ≪ ε−2 and we expect that Z(Kε, x/ε) is close to Z(t/ε2, x/ε), the
contribution from I1,ε, I2,ε is small compared to that from I3,ε. For I3,ε, the
integration is in s ≥Kε, so the random variable Z(Kε, x/ε) is Fs−measurable, and
(2.9)

I3,ε =∫
t/ε2

Kε
∫
R2

(∫
R2

g(x)

Z(Kε, x/ε)
E[EB[Mε(t, x)Φεt,x,B(s, y)]∣Fs]dx)dW (s, y).

Note that the procedure we took here is slightly different from the heuristics provided
in Section 1.2 due to the time reversal and the fact that we considered Z(t, x) rather
than u(t, x). Mathematically they are equivalent.

2.3. The second order Poincaré inequality. To simplify the notation, we define

Yε =
Xε−E[Xε]√

Var[Xε]
.

To show that Yε ⇒ N(0,1), we apply the second order Poincaré inequality, which
was originally proved in the discrete setting in [8] and generalized to the continuous
setting in [23]. Since E[Yε] =0 and Var[Yε] =1, with ζ a standard centered Gaussian
random variable, by [23, Theorem 1.1], we have

(2.10) dTV(Yε, ζ) ≲ E[∥DYε∥
4
H]

1/4E[∥D2Yε∥
4
op]

1/4,

where we recall H =L2(R2+1) and ∥D2Yε∥op denotes the operator norm of the
mapping H ⊗H ∋D2Yε ∶ H →H defined as D2Yεh ∶=⟨h,D2Yε⟩H , i.e., for any h ∈H,
we have [D2Yεh](s, y) =∫R2+1 h(s

′, y′)Ds′,y′Ds,yYεds
′dy′.

Since
DYε =

DXε√
Var[Xε]

, D2Yε =
D2Xε√
Var[Xε]

,

and Var[Xε] ∼ ∣ log ε∣−1 from Proposition 2.1, to show dTV(Yε, ζ) →0 using (2.10),
we only need to prove

(2.11) E[∥DXε∥
4
H]

1/4E[∥D2Xε∥
4
op]

1/4
=o(∣ log ε∣−1

), as ε→0.

Another possible way to prove the Gaussianity is to utilize the fast temporal
mixing, as explained heuristically in Section 1.2 and implemented in d ≥ 3 in [17].

2.4. Discussions and remarks.

A comparison with [6] and [7]. The basic ideas behind our approach and the one in
[6] are similar, and the key is to modify the partition function so that logZ( t

ε2
, x
ε
)

can be “linearized” in some sense. As we will prove later, I3,ε is the main contribution
to the random fluctuations, which essentially corresponds to the partition function
of a directed polymer {Bs}s≥0 that interacts only with the random environment
Ẇ (s,⋅) in s ≥ Kε. The initial layer in s < Kε only determines the starting point
BKε for this interaction. By our choice of Kε =o(ε

−2), it is easy to show that in
the weak disorder regime (β small), the polymer behaves like the Brownian motion
so εBKε →0 as ε →0, which indicates that the initial layer plays no role in the
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limit. Given this heuristics, if we ignore the factor Z(Kε, x/ε)
−1 in (2.9), then I3,ε

becomes

I3,ε ↦∫
t/ε2

Kε
∫
R2

(∫
R2
g(x)E[EB[Mε(t, x)Φεt,x,B(s, y)]∣Fs]dx)dW (s, y)

=∫
R2
g(x)(∫

t/ε2

Kε
∫
R2

E[Ds,yZ( t
ε2
, x
ε
)∣Fs]dW (s, y))dx.

The last expression precisely describes the fluctuation of the partition function
that only involves the environment in s ≥Kε. A similar heuristics was given in [6,
Section 2.1], and the ZB≥N,βN (x)− 1 defined in [6, Equation (2.11)] corresponds to the
above expression. The Clark-Ocone formula seems to be particularly handy for this
“linearization”. We also note a naive Taylor expansion does not necessarily work for
f(Z( t

ε2
, x
ε
)) with arbitrary smooth f, as shown in [15, Theorem 1.2].

Another difference between the two approaches is the proof of the Gaussianity.
After the “linearization” in [6, Proposition 2.3], the convergence to the Edwards-
Wilkinson limit follows from the convergence of SHE proved in [4, Theorem 2.17],
which was based on a polynomial chaos expansion and the fourth moment theorem
[22, 24]. In our case, we directly apply the second order Poincaré inequality to
the KPZ equation, which simplifies some analysis. On the other hand, the fourth
moment theorem covers more general distributions of the random environment and
the convergence of a discrete directed polymer model to the Edwards-Wilkinson limit
was proved in [6, Theorem 1.6], while we only deal with the continuous Gaussian
environment in our setting.

The approach in [7] relies on the Feynman-Kac formula and the concentration
inequality to control the intersection time of two polymer paths. While a naive
application of the Gaussian-Poincaré inequality fails for a similar reason as our
Lemma 4.1 does not allow δ → 0, the authors have designed a clever recursive
scheme that is similar to perturbative renormalization, using which they obtained
the desired estimates to prove the tightness.

The assumption of β ≪ 1. Throughout the paper, we assume β < β0 for some β0 ≪ 1,
which is used to control expectations of the form EB[eβ

2fε(B)gε(B)], where fε, gε
are Brownian functionals and fε measures the intersection time of multiple pairs
of independent Brownian motions. Take fε(B) =∣ log ε∣−1

∫
t/ε2

0 R(B1
s − B2

s)ds for
example. It is easy to show that EB[eβ

2fε(B)] ≲ 1 for all β <
√

2π, and we can view

EB[eβ
2fε(B)gε(B)] =EB[eβ

2fε(B)
]
EB[eβ

2fε(B)gε(B)]

EB[eβ2fε(B)]

as the average of gε(B) under the annealed polymer measure. In the weak disorder
regime, the polymer behaves like the Brownian motion, so ideally we would like to
control EB[eβ

2fε(B)gε(B)] in terms of ∥gε(B)∥1. As it is hard to achieve this, we
sacrifice to use the Hölder’s inequality

EB[eβ
2fε(B)gε(B)] ≲ EB[epβ

2fε(B)
]
1/p

∥gε(B)∥q

for the Hölder exponent p, q > 1. To make the error small enough for our purpose, we
need q to be close to 1 so that ∥gε(B)∥q is close to ∥gε(B)∥1. As a result, the dual
exponent p is large which put a more restrictive condition on β through the constraint
of pβ2 < 2π. From this perspective, the method of using the chaos expansion and
the hypercontractivity [6, Theorem B.1] is preferable in obtaining sharp estimates,
compared to analyzing the Feynman-Kac representation and Brownian functionals.
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Asymptotics of E[hε]. While we are only interested in the random fluctuations of
hε here, it is natural to ask whether the average height E[hε] can be expressed more
explicitly in terms of ε. Recall that βε =β∣ log ε∣−1/2 and uε solves the equation
interpreted in the Itô’s sense. By Itô’s formula, we know that β−1

ε loguε
law
= h̃ε with

∂th̃ε =
1
2∆h̃ε + 1

2βε∣∇h̃ε∣
2

+ Ẇε −
βεR(0)

2ε2 .

By the negative and positive moments bound on uε, we have

E[̃hε] =E[β−1
ε loguε] =O(∣ log ε∣

1
2 ).

Compare to the equation (1.1) satisfied by hε, we see that h̃ε(t, x) =hε(t, x)−
βεR(0)

2ε2 t,
which implies

E[hε(t, x)] =
βεR(0)

2ε2 t +O(∣ log ε∣1/2)
and matches [7, Lemma 7.4]. On the other hand, it was shown in [4] that E[loguε] →
− 1

2 log 2π
2π−β2 , thus a more precise expansion takes the form

E[hε(t, x)] =
βεR(0)

2ε2 t + β−1
ε E[loguε] =βεR(0)

2ε2 t − 1
2β

−1
ε log 2π

2π−β2 + o(∣ log ε∣1/2).

3. Variance convergence

To simplify the notation, we define

Mε,j(t, x) ∶=exp(βε ∫
t/ε2

0
V (s, x

ε
+Bjs)ds −

β2
εR(0)t
2ε2 ) ,

where {Bj}j are independent Brownian motions. For any set I ⊂ R+, x ∈ R2 and
Brownian motions Bi,Bj , we define

(3.1) R(I, x,Bi,Bj) =∫
I
R(x +Bis −Bjs)ds

as the intersection time of Bi,Bj during the interval I, and x is the initial distance.
For I =[0, T ], we write R(T,x,Bi,Bj) =R([0, T ], x,Bi,Bj).

The following lemma will be used repeatedly and is taken from [15, Lemma 3.1].

Lemma 3.1. For any n ∈ Z+ and q > 1, there exists β(n, q) > 0 such that if β <

β(n, q), then for any random variable F (B1, . . . ,Bn) ≥ 0, t > 0 and {xj ∈ R2}j=1,...,n,
we have

(3.2) E [
EB[∏

n
j=1Mε,j(t, xj)F (B1, . . . ,Bn)]

∏
n
j=1Zε(t, xj)

] ≲ EB[F (B1, . . . ,Bn)q]1/q.

Proof. By the Cauchy-Schwarz inequality and Proposition 2.3, the square of the
l.h.s. of (3.2) is bounded by

E
⎡
⎢
⎢
⎢
⎢
⎣

RRRRRRRRRRR

EB[
n

∏
j=1

Mε,j(t, xj)F (B1, . . . ,Bn)]
RRRRRRRRRRR

2⎤
⎥
⎥
⎥
⎥
⎦

=EBE
⎡
⎢
⎢
⎢
⎣

2n
∏
j=1

Mε,j(t, xj)F (B1, . . . ,Bn)F (Bn+1, . . . ,B2n
)
⎤
⎥
⎥
⎥
⎦
,

where xj+n =xj for j =1, . . . , n. Evaluating the expectation with respect to Ẇ , we
obtain

E
⎡
⎢
⎢
⎢
⎣

2n
∏
j=1

Mε,j(t, xj)
⎤
⎥
⎥
⎥
⎦
=exp

⎛

⎝

β2
ε

2

2n
∑
j,k=1

1j≠kR( t
ε2
,
xj−xk
ε

,Bj ,Bk)
⎞

⎠
.

With p= q
q−1 , Lemma A.1 shows that the r.h.s. of the above expression has an Lp

norm that is bounded uniformly in ε and xj , provided that β is chosen small. We
apply Hölder inequality to complete the proof. ◻
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3.1. The analysis of I1,ε. Recall that I1,ε is defined in (2.6).

Lemma 3.2. For Kε =
1

ε2∣ log ε∣α with α > 1, we have E[I2
1,ε] →0 as ε→0.

Proof. Writing I1,ε =∫
Kε

0 ∫R2 E[Ys,y ∣Fs]dW (s, y) for the appropriate Ys,y, we have
by Itô’s isometry that

E[I2
1,ε] =∫

Kε

0
∫
R2

E[∣E[Ys,y ∣Fs]∣
2
]dyds ≤ ∫

Kε

0
∫
R2

E[Y2
s,y]dyds,

and

E[Y2
s,y] =∫R4

g(x1)g(x2)E
⎡
⎢
⎢
⎢
⎢
⎣

EB[∏
2
j=1Mε,j(t, xj)Φεt,xj ,Bj(s, y)]
Zε(t, x1)Zε(t, x2)

⎤
⎥
⎥
⎥
⎥
⎦

dx1dx2.

Using the fact that

∫

Kε

0
∫
R2

2
∏
j=1

Φεt,xj ,Bj(s, y)dyds=∫
Kε

0
R(x1−x2

ε
+B1

s−B2
s)ds=R(Kε,

x1−x2
ε

,B1,B2
),

where we recall that R(x) =∫ ϕ(x + y)ϕ(y)dy, we have

E[I2
1,ε] ≲ ∫

R4
∣g(x1)g(x2)∣E

⎡
⎢
⎢
⎢
⎣

EB[∏
2
j=1Mε,j(t, xj)R(Kε,

x1−x2
ε

,B1,B2)]

Zε(t, x1)Zε(t, x2)

⎤
⎥
⎥
⎥
⎦
dx1dx2.

By Lemma 3.1, we have

(3.3)
E[I2

1,ε] ≲∫
R4

∣g(x1)g(x2)∣
√

EB[R2(Kε,
x1−x2
ε

,B1,B2)]dx1dx2

≲

√

∫
R4

∣g(x1)g(x2)∣EB[R2(Kε,
x1−x2
ε

,B1,B2)]dx1dx2.

We apply Lemma A.2 to deduce

E[I2
1,ε] ≲

√
(1 + logKε)ε2Kε ≲ 1

∣ log ε∣(α−1)/2 →0.

The proof is complete. ◻

3.2. The analysis of I2,ε. Recall that I2,ε is defined in (2.7).

Lemma 3.3. For Kε =
1

ε2∣ log ε∣α with α > 0, we have E[I2
2,ε] →0 as ε→0.

Proof. By the same calculation as in the proof of Lemma 3.2, we have

E[I2
2,ε] ≲ ∫

R4
g(x1)g(x2)Aε(x1, x2)dx1dx2,

with
Aε(x1, x2)

=E
⎡
⎢
⎢
⎢
⎣

EB[∏
2
j=1Mε,j(t, xj)R([Kε, t/ε

2], x1−x2
ε

,B1,B2)]

Z(Kε, x1/ε)Z(Kε, x2/ε)

2
∏
j=1

(
Z(Kε, xj/ε)

Z(t/ε2, xj/ε)
− 1)

⎤
⎥
⎥
⎥
⎦
.

Applying Proposition 2.3, Hölder inequality, and the fact that Z(t, x) is stationary
in x, we have

∣Aε(x1, x2)∣ ≲ ∥a∥8∥b∥2∥b∥4,

where we simply denoted

a=EB[
2
∏
j=1

Mε,j(t, xj)R([Kε, t/ε
2
], x1−x2

ε
,B1,B2

)], b=Z(Kε,0) −Z(t/ε2,0).

First, we write b4 =b2+δb2−δ and apply Hölder inequality to derive
E[b4] =E[b2+δb2−δ

] ≤ E[b(2+δ)p
]
1/pE[b2]1/q
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with p−1 +q−1 =1 and q= 2
2−δ . Since ∣b∣ ≤ Z(Kε, 0)+Z(t/ε2, 0), we apply Lemma A.1

to bound E[b(2+δ)p]1/p by some constant (for those β ≪ 1 depending on δ). Thus
we obtain ∥b∥4 ≲ ∥b∥

2−δ
4

2 and further applying Lemma 3.4 below yields

∥b∥2∥b∥4 ≲ ∥b∥
6−δ
4

2 ≲
1

∣ log ε∣ 34 −δ′

for some δ′ > 0 that is sufficiently close to zero. To analyze a, to simplify the notation,
we write a1(V,B

1,B2) =∏
2
j=1Mε,j(t, xj) and a2(B

1,B2) =R([Kε,
t
ε2

], x1−x2
ε

,B1,B2)

so a=EB[a1(V,B
1,B2)a2(B

1,B2)]. We first write

∥a∥8
8 =E[∣EB[a1(V,B

1,B2
)a2(B

1,B2
)]∣

8
]

=EBE[
8
∏
j=1

a1(V,B
2j−1,B2j

)a2(B
2j−1,B2j

)],

where Bj are independent Brownian motions, then we average with respect to V
and follow the same proof of Lemma 3.1 to derive

∥a∥8
8 ≲ EB[

8
∏
j=1

∣a2(B
2j−1,B2j

)∣
2
]
1/2

=∣EB[∣a2(B
1,B2

)∣
2
]∣

4
=∥a2∥

8
2

This implies

∫
R4

∣g(x1)g(x2)∣ × ∥a∥8 dx1dx2

≲

√

∫
R4

∣g(x1)g(x2)∣ × ∥R([Kε,
t
ε2

], x1−x2
ε

,B1,B2)∥2
2dx1dx2 ≲

√
∣ log ε∣,

where the second ≲ comes from Lemma A.2. The proof is completed by choosing
δ′ < 1

4 . ◻

Lemma 3.4. Recall Kε =
1

ε2∣ log ε∣α with α > 0. For any δ > 0, there exists β(δ) > 0
such that if β < β(δ), we have

E[∣Z( t
ε2
,0) −Z(Kε,0)∣2] ≲

1
∣ log ε∣1−δ .

Proof. By the second moment calculation, we have

E[∣Z( t
ε2
,0) −Z(Kε,0)∣2] =E[Z( t

ε2
,0)2

] − E[Z(Kε,0)2
]

=EB [eβ
2
ε ∫

t/ε2
0 R(B2s)ds − eβ

2
ε ∫

Kε
0 R(B2s)ds] .

Applying the simple inequality ∣ex − ey ∣ ≤ (ex + ey)∣x − y∣, Hölder inequality and
Lemma A.1, we have

(3.4) EB [eβ
2
ε ∫

t/ε2
0 R(B2s)ds − eβ

2
ε ∫

Kε
0 R(B2s)ds] ≲

1
∣ log ε∣

∥∫

t/ε2

Kε
R(B2s)ds∥

q

for any q > 1 (provided that β < β(q)). To estimate the above Lq norm, we note
that

∥∫

t/ε2

Kε
R(B2s)ds∥

1
≲ log ∣ log ε∣, ∥∫

t/ε2

Kε
R(B2s)ds∥

2
≲

√
∣ log ε∣(log ∣ log ε∣),

with both estimates coming from the same proof of Lemma A.2. More precisely, for
the first estimate, we simply write the expectation in terms of the convolution of
R with the heat kernel and an integration of the heat kernel in time in [Kε, t/ε

2]
leads to the bound of log t

ε2Kε
. The analysis of the second estimate is the same
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and gives an upper bound
√

log t
ε2Kε

log t
ε2
. For θ ∈ (0,1) and q = 2

2−θ , by the
Lp−interpolation inequality we have

(3.5) ∥∫

t/ε2

Kε
R(B2s)ds∥

q

≲ ∥∫

t/ε2

Kε
R(B2s)ds∥

1−θ

1
∥∫

t/ε2

Kε
R(B2s)ds∥

θ

2
≲ ∣ log ε∣δ,

provided that θ is chosen sufficiently close to zero (i.e., q is sufficiently close to 1).
The proof is complete. ◻

3.3. The analysis of I3,ε. Recall that I3,ε is defined in (2.8). Using the fact that
E[M(t/ε2, x/ε)∣Fs] =M(s, x/ε), we have that

I3,ε =∫
t/ε2

Kε
∫
R2

(∫
R2

g(x)

Z(Kε, x/ε)
EB[M(s, x/ε)Φεt,x,B(s, y)]dx)dW (s, y).

For any T > 0, x1, x2 ∈ R2 and a standard 2-dimensional Brownian motion B̄, we
define the deterministic function

Hε(T,x1, x2) =EB̄ [eβ
2
ε ∫

T
0 R(x1+B̄2s)ds∣B̄2T =x2] .

We introduce the following notation: for any x, y ∈ R2, the expectation Êx,y is
defined as

Êx,y[F ] =E [
EB[M1(Kε, x)M2(Kε, y)F ]

Z(Kε, x)Z(Kε, y)
]

for any random variable F . In particular, we will consider functional of

XKε =B
1
Kε −B2

Kε ,

so

Êx,y[F (XKε)] =E [
EB[M1(Kε, x)M2(Kε, y)F (B1

Kε
−B2

Kε
)]

Z(Kε, x)Z(Kε, y)
] .

Note that we have omitted the dependence of the expectation Êx,y on ε to simplify
the notation.

The following three lemmas combine to show the convergence of

(3.6) E[I2
3,ε] →σ2

t

with σ2
t given in (2.3).

Lemma 3.5. E[I2
3,ε] =∫

t−ε2Kε
0 Gε(s)ds, with

(3.7)
Gε(s) =∫

R6
g(x −w)g(x)R(y)

× Ê−w/ε,0 [G2s(w + εy − εXKε)Hε(
s
ε2
, y,XKε − w

ε
− y)]dxdydw.

Lemma 3.6. There exists β0 > 0 so that there exists γ ∈ (0,1) such that, for all
β < β0, Gε(s) ≲ s−γ for s ∈ (0, t).

Lemma 3.7. For any s ∈ (0, t), Gε(s) → ν2
eff ∫R4 g(x − w)g(x)G2s(w)dwdx, as

ε→0.

The proof of Lemmas 3.5 and 3.6 is the same as [15, Lemma 3.5, 3.6].
Proof of Lemma 3.7. Recall that

Gε(s) =∫
R6
g(x −w)g(x)R(y)

× Ê−w/ε,0 [G2s(w + εy − εXKε)Hε(
s
ε2
, y,XKε − w

ε
− y)]dxdydw.
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Since s > 0 is fixed and the term Hε is uniformly bounded by Lemma A.1, the
expectation in the above expression is bounded uniformly in x, y,w, ε, so we only
need to pass to the limit of the expectation for fixed x, y,w ∈ R2 and w ≠ 0. The
proof is divided into three steps.

(i) We show that Ê−w/ε,0[∣G2s(w+ εy− εXKε)−G2s(w)∣] →0 as ε→0. Using the
fact that G2s(⋅) has bounded derivatives (for fixed s > 0) so ∣G2s(x)−G2s(y)∣ ≲ ∣x−y∣:

∣G2s(w + εy − εXKε) −G2s(w)∣ ≲ ε∣y∣ + ε∣XKε ∣,

it suffices to show Ê−w/ε,0[∣εXKε ∣] →0. We apply Lemma 3.1 to derive

(3.8) Ê−w/ε,0[∣εXKε ∣] ≲
√
EB[∣εXKε ∣

2] =
√

2ε2Kε→0.

(ii) Define sε = s
ε2∣ log ε∣ and

H̃ε =EB̄ [eβ
2
ε ∫

sε
0 R(y+B̄2r)dr∣B̄2s/ε2 =XKε − w

ε
− y] ,

we show that

(3.9) Ê−w/ε,0[̃Hε] →
2π

2π−β2 , as ε→0.

We first note that H̃ε can be written more explicitly by conditioning on B̄2sε :

H̃ε =EB̄ [eβ
2
ε ∫

sε
0 R(y+B̄2r)dr ×

G2s(1−∣ log ε∣−1)(εXKε −w − εy − εB̄2sε)

G2s(εXKε −w − εy)
]

=
1

(1 − ∣ log ε∣−1)
EB̄ [eβ

2
ε ∫

sε
0 R(y+B̄2r)dre

−
(εXKε−w−εy−εB̄2sε )

2

4s(1−∣ logε∣−1
) e

(εXKε−w−εy)
2

4s ] .

There are three factors inside the above expectation. By an application of Lemma 3.1
again and the fact that ε2Kε→0 as ε→0, we have

(3.10) lim sup
ε→0

Ê−w/ε,0[e
λ∣εXKε ∣

2
] ≲ 1,

for any λ > 0. We also have EB̄[eλβ
2
ε ∫

sε
0 R(y+B̄2r)dr] ≲ 1 for β < β(λ). Thus, by

the same proof of (i) and applying Hölder’s inequality, we can replace the second
factor by e−w2/4s with a negligible error. For the third factor, we use the inequality
∣ex − ey ∣ ≤ (ex + ey)∣x − y∣ so

∣e
(εXKε−w−εy)

2

4s − e
w2
4s ∣ ≲ (e

(εXKε−w−εy)
2

4s + e
w2
4s )∣εXKε − εy∣(∣εXKε −w − εy∣ + ∣w∣).

By the exponential moment bounds given in (3.10) we can show the r.h.s. of the
above display is small hence replace the third factor by ew

2/4s with a negligible error.
In the end, we apply [19, Theorem 1],

β2
ε ∫

sε

0
R(y+B̄2r)dr=

β2 log 2sε
2∣ log ε∣

1
log 2sε ∫

2sε

0
R(y+B̄r)dr⇒ λβExp(1), λβ =

β2

2π
.

Note that ∫
sε

0 R(y+B̄2r)dr measures the “local time” of the planar Brownian motion
near the origin, and the 2π factor in λβ comes from the two dimensional heat kernel.
Lemma A.1 ensures the uniform integrability, and we pass to the limit to obtain
(3.9).

(iii) We show that

(3.11) Ê−w/ε,0[∣Hε(
s
ε2
, y,XKε − w

ε
− y) − H̃ε∣] →0
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as ε→0. For the fixed w ≠ 0, define the event Aw ∶={∣εXKε ∣ > w/2}. First, we have

∣H( s
ε2
, y,XKε − w

ε
− y) − H̃ε∣

=∣H( s
ε2
, y,XKε − w

ε
− y) − H̃ε∣1Aw + ∣H( s

ε2
, y,XKε − w

ε
− y) − H̃ε∣1Acw

≲ 1Aw + ∣H( s
ε2
, y,XKε − w

ε
− y) − H̃ε∣1Acw ,

where in the last step we applied (A.2) (note that s < t) to bound H̃ε ≤ H( s
ε2
, y,XKε−

w
ε

− y) ≲ 1. Thus

Ê−w/ε,0[∣H( s
ε2
, y,XKε − w

ε
− y) − H̃ε∣]

≲ Ê−w/ε,0[1Aw] + Ê−w/ε,0[∣H( s
ε2
, y,XKε − w

ε
− y) − H̃ε∣1Acw].

The first term on the r.h.s. goes to zero as ε→0 by (3.8). For the second term, we
have
Ê−w/ε,0[∣H( s

ε2
, y,XKε − w

ε
− y) − H̃ε∣1Acw]

≤ Ê−w/ε,0 [EB[eβ
2
ε ∫

s/ε2
0 R(y+B̄2r)drβ2

ε ∫

s/ε2

sε
R(y + B̄2r)dr∣B̄2s/ε2 =XKε − w

ε
− y]1Acw] .

The conditional expectation can be bounded using Lemma A.1:

(3.12)

EB[eβ
2
ε ∫

s/ε2
0 R(y+B̄2r)drβ2

ε ∫

s/ε2

sε
R(y + B̄2r)dr∣B̄2s/ε2 =XKε − w

ε
− y]

≲
1

∣ log ε∣

¿
Á
ÁÀEB[∣∫

s/ε2

sε
R(y + B̄2r)dr∣2∣B̄2s/ε2 =XKε − w

ε
− y].

In the event Acw, we have ∣εXKε ∣ ≤ w/2, thus c1w ≤ ∣εXKε −w − εy∣ ≤ c2w for some
c1, c2 > 0 (note that y is fixed). Recall that sε = s

ε2∣ log ε∣ , we apply Lemma A.3 to
derive

EB[∣∫

s/ε2

sε
R(y + B̄2r)dr∣

2
∣B̄2s/ε2 =XKε − w

ε
− y] ≲ ∣ log ε∣(log ∣ log ε∣),

uniformly in ∣εXKε ∣ ≤ w/2, so we pass to the limit in (3.12), then obtain (3.11).
To summarize, we have

Gε(s) →
2π

2π−β2 ∫
R3d

g(x −w)g(x)R(y)G2s(w)dxdydw

=ν2
eff ∫R4

g(x −w)g(x)G2s(w)dxdw,

which completes the proof. ◻

3.4. Proof of Proposition 2.1. Recall that Xε −E[Xε] =βε(I1,ε + I2,ε + I3,ε). We
combine Lemmas 3.2, 3.3 and (3.6) to derive

β−2
ε Var[Xε] =E[∣I1,ε + I2,ε + I3,ε∣

2
] →σ2

t .

4. Gaussianity

Recall the goal is to show

E[∥DXε∥
4
H]

1/4E[∥D2Xε∥
4
op]

1/4
=o(∣ log ε∣−1

), as ε→0,

where Xε =∫R2 logZε(t, x)g(x)dx and H =L2(R2+1). Since

DXε =∫
R2

DZε(t, x)

Zε(t, x)
g(x)dx,
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we have

D2Xε =D∫
R2

DZε(t, x)

Zε(t, x)
g(x)dx

=∫
R2

Zε(t, x)D
2Zε(t, x) −DZε(t, x) ⊗DZε(t, x)

Z2
ε (t, x)

g(x)dx.

Using the Feynman-Kac representation (2.2),

D2Zε(t, x) =β
2
εEB[Mε(t, x)Φεt,x,B ⊗ Φεt,x,B],

so

Zε(t, x)D
2Zε(t, x) =β

2
εEB

⎡
⎢
⎢
⎢
⎣

2
∏
j=1

Mε,j(t, x)Φεt,x,B2 ⊗ Φεt,x,B2

⎤
⎥
⎥
⎥
⎦
,

and

DZε(t, x) ⊗DZε(t, x) =β
2
εEB

⎡
⎢
⎢
⎢
⎣

2
∏
j=1

Mε,j(t, x)Φεt,x,B1 ⊗ Φεt,x,B2

⎤
⎥
⎥
⎥
⎦
.

Thus we can write

D2Xε =β
2
ε ∫R2

EB[∏
2
j=1Mε,j(t, x)(Φεt,x,B2 − Φεt,x,B1) ⊗ Φεt,x,B2]

Z2
ε (t, x)

g(x)dx=P2 − P1,

where

H ⊗H ∋ Pk =β
2
ε ∫R2

EB[∏
2
j=1Mε,j(t, x)Φεt,x,Bk ⊗ Φεt,x,B2]

Z2
ε (t, x)

g(x)dx.

Thus,
∥D2Xε∥

4
op ≲ ∥P1∥

4
op + ∥P2∥

4
op,

and we only need to estimate E[∥Pk∥
4
op], k=1,2.

4.1. The first derivative.

Lemma 4.1. For any δ > 0, there exists β(δ) > 0 such that if β < β(δ),

E[∥DXε∥
4
H]

1/4
≲ ∣ log ε∣−

1
2 +δ.

Proof. A direct calculation gives

∥DXε∥
4
H =β4

ε ∫R8

4
∏
j=1

g(xj)

Zε(t, xj)
EB

⎡
⎢
⎢
⎢
⎣

4
∏
j=1

Mε,j(t, xj)R( t
ε2
, x1−x2

ε
,B1,B2

)R( t
ε2
, x3−x4

ε
,B3,B4

)
⎤
⎥
⎥
⎥
⎦
dx,

with R defined in (3.1). Taking the expectation and applying Lemma 3.1, we have

β−4
ε E[∥DXε∥

4
H] ≲∫

R8

4
∏
j=1

∣g(xj)∣EB [R
q
( t
ε2
, x1−x2

ε
,B1,B2

)R
q
( t
ε2
, x3−x4

ε
,B3,B4

)]
1/q

dx

≲(∫
R4

∣g(x1)g(x2)∣EB[R
q
( t
ε2
, x1−x2

ε
,B1,B2

)]dx)
2/q

.

We can view the factor ∣g(x1)g(x2)∣ as a weight (without loss of generality assume
∫ ∣g∣ =1), so the integral

∫
R4

∣g(x1)g(x2)∣EB[R
q
( t
ε2
, x1−x2

ε
,B1,B2

)]dx
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can be viewed as an expectation of Rq( t
ε2
, x1−x2

ε
,B1,B2) with x1, x2 independently

sampled from the density ∣g∣. Therefore, by the Lp−interpolation inequality and
arguing similarly as (3.5), we have

(4.1)

(∫
R4

∣g(x1)g(x2)∣EB[R
q
( t
ε2
, x1−x2

ε
,B1,B2

)]dx)
1/q

≲(∫
R4

∣g(x1)g(x2)∣EB[R( t
ε2
, x1−x2

ε
,B1,B2

)]dx)
1−θ

× (∫
R4

∣g(x1)g(x2)∣EB[R
2
( t
ε2
, x1−x2

ε
,B1,B2

)]dx)
θ/2

for θ=2 − 2
q
. Applying Lemma A.2, we know that the first factor on the r.h.s. is

uniformly bounded and the second factor is bounded by ∣ log ε∣θ/2. Thus,

E[∥DXε∥
4
H] ≲

∣ log ε∣θ
∣ log ε∣2 .

By choosing q sufficiently close to 1, we can make θ arbitrarily small, which completes
the proof. ◻

4.2. The second derivative. To estimate ∥Pk∥op, we use the contraction inequality
[23, Proposition 4.1], which says that

∥Pk∥
4
op ≤ ∥Pk ⊗1 Pk∥

2
H⊗H .

Here Pk ⊗1 Pk is the random element of H ⊗H obtained as the contraction of the
symmetric random tensor Pk. Recall that H =L2(R2+1), we can write the r.h.s. of
the above inequality as

∥Pk ⊗1 Pk∥
2
H⊗H

=∫
R2+1 ∫R2+1

(∫
R2+1

Pk(s1, y1, s
′, y′

)Pk(s2, y2, s
′, y′

)ds′dy′
)

2
ds1dy1ds2dy2.

4.2.1. The case k=1. A direct calculation gives
P1 ⊗1 P1

=β4
ε ∫R4

EB[∏
4
j=1Mε,j(t, xj)R( t

ε2
, x−y
ε
,B1,B3)Φεt,x,B2 ⊗ Φεt,y,B4]

Z2
ε (t, x)Z

2
ε (t, y)

g(x)g(y)dxdy,

where we write x1 =x2 =x,x3 =x4 =y to simplify the notations. Thus,

∥P1 ⊗1 P1∥
2
H⊗H =β8

ε ∫R8
g(x)g(y)g(z)g(w)

⎛

⎝

8
∏
j=1

Zε(t, xj)
⎞

⎠

−1

× EB
⎡
⎢
⎢
⎢
⎢
⎣

8
∏
j=1

Mε,j(t, xj) ∏
(i,k)∈O

R( t
ε2
, xi−xk

ε
,Bi,Bk)

⎤
⎥
⎥
⎥
⎥
⎦

dxdydzdw,

where x5 =x6 =z, x7 =x8 =w, and the set O is O ={(1,3), (5,7), (2,6), (4,8)}.

Lemma 4.2. For any δ > 0, there exists β(δ) such that if β < β(δ),
E[∥P1 ⊗1 P1∥

2
H⊗H] ≲ ∣ log ε∣−4+δ.

Proof. Applying Lemma 3.1, we have
β−8
ε E[∥P1 ⊗1 P1∥

2
H⊗H]

≲ ∫
R8

∣g(x)g(y)g(z)g(w)∣EB[ ∏
(i,k)∈O

R
q
( t
ε2
, xi−xk

ε
,Bi,Bk)]

1/q
dxdydzdw

≲
⎛

⎝
∫
R8

∣g(x)g(y)g(z)g(w)∣EB[ ∏
(i,k)∈O

R
q
( t
ε2
, xi−xk

ε
,Bi,Bk)]dxdydzdw

⎞

⎠

1/q

=∶ aq
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for some q > 1 and we used the simplified notation aq. Again we apply the
Lp−interpolation inequality as in (4.1), with θ=2 − 2

q
, we have

aq ≤ a
1−θ
1 aθ2.

Note that the process (Bi,Bk) are independent for different pairs of (i, k) ∈ O.
Applying Lemma A.2 yields

EB[ ∏
(i,k)∈O

R( t
ε2
, xi−xk

ε
,Bi,Bk)] ≲ ∏

(i,k)∈O
(1 + ∣ log ∣xi − xk ∣∣),

EB[ ∏
(i,k)∈O

R
2
( t
ε2
, xi−xk

ε
,Bi,Bk)] ≲ ∣ log ε∣4 ∏

(i,k)∈O
(1 + ∣ log ∣xi − xk ∣∣).

Thus we have a1 ≲ 1 and a2 ≲ ∣ log ε∣2, which implies aq ≲ ∣ log ε∣2θ. By choosing q
sufficiently close to 1 so that θ is sufficiently close to 0, we complete the proof. ◻

4.2.2. The case k=2. In this case,

P2 =β
2
ε ∫R2

EB[Mε(t, x)Φεt,x,B ⊗ Φεt,x,B]

Zε(t, x)
g(x)dx,

so
P2 ⊗1 P2

=β4
ε ∫R4

EB[∏
2
j=1Mε,j(t, xj)R( t

ε2
, x1−x2

ε
,B1,B2)Φεt,x1,B1 ⊗ Φεt,x2,B2]

Zε(t, x1)Zε(t, x2)
g(x1)g(x2)dx1dx2,

and

∥P2⊗1P2∥
2
H⊗H =β8

ε ∫R8

4
∏
j=1

g(xj)

Zε(t, xj)
EB[

4
∏
j=1

Mε,j(t, xj) ∏
(i,k)∈Õ

R( t
ε2
, xi−xk

ε
,Bi,Bk)]dx,

with the set Õ ={(1,2), (3,4), (1,3), (2,4)}.

Lemma 4.3. For any δ > 0, there exists β(δ) such that if β < β(δ),

E[∥P2 ⊗1 P2∥
2
H⊗H] ≲ ∣ log ε∣−3+δ.

Proof. By Lemma 3.1 and the fact that g is compactly supported, we have

β−8
ε E[∥P2 ⊗1 P2∥

2
H⊗H] ≲∫

R8

4
∏
j=1

∣g(xj)∣EB[ ∏
(i,k)∈Õ

R
q
( t
ε2
, xi−xk

ε
,Bi,Bk)]

1/q
dx

≲
⎛

⎝
∫
R8

4
∏
j=1

∣g(xj)∣EB[ ∏
(i,k)∈Õ

R
q
( t
ε2
, xi−xk

ε
,Bi,Bk)]dx

⎞

⎠

1/q

=∶ aq.

Arguing in the same way as in the proof of Lemma 4.2, we have aq ≤ a1−θ
1 aθ2 with

θ=2 − 2
q
. By Lemma 4.4, we know that a1 ≤ ∣ log ε∣. For a2, to simplify the notation

we write
∏

(i,k)∈Õ
R

2
( t
ε2
, xi−xk

ε
,Bi,Bk) =R2

1R
2
2R

2
3R

2
4,

with Rj denoting R( t
ε2
, xi−xk

ε
,Bi,Bk) for different (i, k) ∈ Õ. Applying Hölder

inequality and Lemma A.2, we derive

EB[ ∏
(i,k)∈Õ

R
2
( t
ε2
, xi−xk

ε
,Bi,Bk)] ≤∥R1∥

2
4∥R2∥

2
8∥R3∥

2
16∥R4∥

2
16

≲∣ log ε∣2(
3
4 + 7

8 + 15
16 + 15

16 )
∏

(i,k)∈Õ
(1 + ∣ log ∣xi − xk ∣∣)

αi,k
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for some αi,k > 0. After integration in xj , we have a2 ≲ ∣ log ε∣ 34 + 7
8 + 15

16 + 15
16 . Thus, by

choosing q sufficiently close to 1, the proof is complete. ◻

Lemma 4.4. Assume 0 ≤ f, h ∈ C∞
c (R2), then

∫
R8

EB
⎡
⎢
⎢
⎢
⎢
⎣

4
∏
j=1

f(xj) ∏
(i,k)∈Õ

∫

t/ε2

0
h(xi−xk

ε
+Bis −Bks )ds

⎤
⎥
⎥
⎥
⎥
⎦

dx ≲ ∣ log ε∣.

Proof. Without loss of generality, assume h is even. By symmetry, we assume in the
proof that Õ ={(1,2), (3,4), (2,3), (1,4)}. In this way we can write

∏
(i,k)∈Õ

∫

t/ε2

0
h(xi−xk

ε
+Bis −Bks )ds=∫[0,t/ε2]4

4
∏
j=1

h(
xj−xj−1

ε
+Bjsj −Bj−1

sj )ds,

with the convention x0 =x4,B
0 =B4. Denoting f̂(ξ) =∫ f(x)e−iξ⋅xdx as the Fourier

transform of f , we have

∫
R8

4
∏
j=1

f(xj)h(
xj−xj−1

ε
+Bjsj −Bj−1

sj )dx

=
1

(2π)8 ∫R16

4
∏
j=1

f(xj)ĥ(ηj)e
iηj⋅(xj−xj−1)/εe

iηj⋅(Bjsj−Bj−1
sj

)
dηdx

=
1

(2π)8 ∫R8

4
∏
j=1

f̂(
ηj−ηj−1

ε
)ĥ(ηj)e

i(ηj⋅Bjsj−ηj+1⋅Bjsj+1
)
dη,

with η0 =η4, η5 =η1, s5 =s1. Thus, it suffices to estimate

∫
[0,t/ε2]4

∫
R8

4
∏
j=1

f̂(
ηj−ηj−1

ε
)ĥ(ηj)EB[ei(ηj⋅Bsj−ηj+1⋅Bsj+1)

]dηds

=∫
[0,t]4

∫
R8

4
∏
j=1

f̂(ηj − ηj−1)ĥ(εηj)EB[ei(ηj⋅Bsj−ηj+1⋅Bsj+1)
]dηds,

where we changed variables sj ↦ sj/ε
2, ηj ↦ εηj and used the scaling property of the

Brownian motion. Without loss of generality, consider the set A1 ={(s1, . . . , s4) ∈
[0, t]4 ∶ s1 ≥ sj , j ≠ 1}, it is clear that in A1 we have

4
∏
j=1

EB[ei(ηj⋅Bsj−ηj+1⋅Bsj+1)
] ≤ e− 1

2 ∣η1∣2(s1−s2),

which implies

∫
A1
∫
R8

4
∏
j=1

∣f̂(ηj − ηj−1)ĥ(εηj)∣EB[ei(ηj⋅Bsj−ηj+1⋅Bsj+1)
]dηds

≤ ∫
A1
∫
R8
e− 1

2 ∣η1∣2(s1−s2)
4
∏
j=1

∣f̂(ηj − ηj−1)ĥ(εηj)∣dηds

≲ ∫
A1
∫
R8
e− 1

2 ∣η1∣2(s1−s2)∣ĥ(εη1)f̂(η̃2)f̂(η̃3)f̂(η̃4)∣dη1dη̃ds.

In the last “≲” we bounded ∣f̂(η1 − η4)∣ ≲ 1 and changed variables ηj − ηj−1 ↦ η̃j , j =
2,3,4. The last integral can be computed explicitly, and we use the fact that

∫

t

0
∫
R2
e− 1

2 ∣η1∣2s∣ĥ(εη1)∣dη1ds=∫
t/ε2

0
∫
R2
e− 1

2 ∣η1∣2s∣ĥ(η1)∣dη1ds ≲ ∣ log ε∣

to complete the proof. ◻
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4.3. Proof of Proposition 2.2. Recall that Yε =Xε−E[Xε]√
Var[Xε]

. Since

dTV(Yε, ζ) ≲ E[∥DYε∥
4
H]

1/4E[∥D2Yε∥
4
op]

1/4
= 1

Var[Xε]E[∥DXε∥
4
H]

1/4E[∥D2Xε∥
4
op]

1/4,

using the fact that Var[Xε] ∼ ∣ log ε∣−1 and applying Lemmas 4.1, 4.2 and 4.3, we
have

dTV(Yε, ζ) ≲ ∣ log ε∣ × ∣ log ε∣−
1
2 +δ

× (∣ log ε∣−4+δ
+ ∣ log ε∣−3+δ)

1
4 .

By choosing δ small, the r.h.s. goes to zero as ε→0.

Appendix A. Auxiliary lemmas

Recall that βε =β∣ log ε∣−1/2 and Gt(x) is the standard heat kernel. We present
some rather standard estimates on the integral of Brownian functionals for the
convenience of readers. Similar estimates can be found in [6, 7].

Lemma A.1. Fix t > 0, there exists β0 > 0 such that if β < β0, we have in d=2
that

(A.1) sup
x∈R2,ε∈(0,1)

EB [eβ
2
ε ∫

t/ε2
0 R(x+Bs)ds] < ∞,

and

(A.2) sup
x,y∈R2,ε∈(0,1)

EB [eβ
2
ε ∫

t/ε2
0 R(x+Bs)ds∣Bt/ε2 =y] < ∞.

Proof. It suffices to prove (A.2) since (A.1) follows from an integration in y. We
claim (A.2) is implied by

(A.3) sup
x,y∈R2,ε∈(0,1)

∣ log ε∣−1
∫

t/ε2

0
EB[R(x +Bs)∣Bt/ε2 =y]ds ≤ C.

The proof essentially follows Portenko’s lemma and we sketch it here for the
convenience of readers. For any n ≥ 1, we can write

EB [(∫

t/ε2

0
R(x +Bs)ds)

n

∣Bt/ε2 =y] =n!∫
[0,t/ε2]n

<

EB
⎡
⎢
⎢
⎢
⎣

n

∏
j=1

R(x +Bsj)∣Bt/ε2 =y
⎤
⎥
⎥
⎥
⎦
ds.

By conditioning on Bsn−1 and applying (A.3) to the integral in sn, we have

∫
[0,t/ε2]n

<

EB
⎡
⎢
⎢
⎢
⎣

n

∏
j=1

R(x +Bsj)∣Bt/ε2 =y
⎤
⎥
⎥
⎥
⎦
ds ≤ C ∣ log ε∣ ∫

[0,t/ε2]n−1
<

EB
⎡
⎢
⎢
⎢
⎣

n−1
∏
j=1

R(x +Bsj)
⎤
⎥
⎥
⎥
⎦
ds.

Iterating this procedure yields

EB [(∫

t/ε2

0
R(x +Bs)ds)

n

∣Bt/ε2 =y] ≤ n!(C ∣ log ε∣)n,

which completes the proof of (A.2).
It remains to show (A.3). For the Brownian bridge, we only need to show

∫

t/2ε2

0
EB[R(x +Bs)∣Bt/ε2 =y]ds ≤ C ∣ log ε∣

for some constant C independent of x, y, ε. Note that Bs has the Gaussian distribu-
tion with mean ys

t/ε2 and variance s(t/ε2−s)
t/ε2 , so its density is bounded from above by

1
s
when s ≤ t

2ε2 . Thus, we have

∫

t/2ε2

0
EB[R(x +Bs)∣Bt/ε2 =y]ds ≲ 1 + ∫

t/2ε2

1
∫
R2
R(x +w) 1

s
dwds ≲ 1 + log t

2ε2 .

The proof is complete. ◻



20 YU GU

Lemma A.2. For any 0 ≤ g ∈ Cc(R2) and t > 1, we have

(A.4)
∫
R4
g(x1)g(x2)EB [∣∫

t

0
R(x1−x2

ε
+Bs)ds∣

2
]dx1dx2 ≤ C(1 + log t)ε2t,

∫
R4
g(x1)g(x2)EB [∫

t

0
R(x1−x2

ε
+Bs)ds]dx1dx2 ≤ Cε

2t,

with some constant C independent of t, ε. For any t > 0, n ∈ Z+, we also have

(A.5) EB [∣∫

t/ε2

0
R(x

ε
+Bs)ds∣

n
] ≤ C(n, t)∣ log ε∣n−1

(1 + ∣ log ∣x∣∣)

with some constant C(n, t) independent of x, ε.

Proof. To prove (A.4), we write the expectation explicitly:
(A.6)

EB [∣∫

t

0
R(x

ε
+Bs)ds∣

2
] =2∫

t

0
ds∫

s

0
duEB[R(x

ε
+Bs)R(x

ε
+Bu)]

=2∫
t

0
ds∫

s

0
du∫

R4
R(y)R(z)Gu(z − x

ε
)Gs−u(y − z)dzdy.

Integrating in s and y yields

(A.7) ∫

t

u
∫
R2
R(y)Gs−u(y − z)dyds ≲ 1 + ∫

t

u+1
∫
R2
R(y) 1

s−udyds ≲ 1 + log t,

which implies

(A.8) EB [∣∫

t

0
R(x

ε
+Bs)ds∣

2
] ≲ (1 + log t)∫

t

0
∫
R2
R(z)Gu(z − x

ε
)dzdu.

Since the integral ∫
t

0 ∫R2 R(z)Gu(z − x
ε
)dzdu=EB[∫

t
0 R(x

ε
+Bs)ds], to prove (A.4),

we only need to note that

∫
R4
g(x1)g(x2)∫

t

0
du∫

R2
R(z)Gu(z − x1−x2

ε
)dz

= ε2

(2π)2 ∫

t

0
∫
R2

∣ĝ(ξ)∣2R̂(εξ)e− 1
2 ∣εξ∣2udξdu ≲ ε2t,

where we used the fact that supξ∈Rd R̂(ξ) ≤ ∫ R=1 in the last step.
To prove (A.5), by the same argument above, we have

EB [∣∫

t/ε2

0
R(x

ε
+Bs)ds∣

n
] ≲ ∣ log ε∣n−1

∫

t/ε2

0
∫
R2
R(z)Gu(z − x

ε
)dzdu.

We estimate the integral in u by

∫

t

0
Gu(z− x

ε
)du ≲ ∫

t

0
u−1e− ∣z−x/ε∣2

2u du ≲ ∫

∞

∣z−x/ε∣2
2t

λ−1e−λdλ ≲ 1+∣ log ∣εz−x∣∣+∣ log ε2t∣.

For the integral in z, recall that R(z) =0 for ∣z∣ ≥ 1, we have

∫
R2
R(z)∣ log ∣εz−x∣∣dz ≲ ∫

∣z∣≤1
∣ log ∣εz−x∣∣dz ≲ 1+∣ log ∣x∣∣+1∣x∣≤3ε∣ log ε∣ ≲ 1+∣ log ∣x∣∣.

The proof is complete. ◻

Lemma A.3. Fix t > 0 and a compact set K ⊂ R2 with 0 ∉K, we have

sup
w∈K

E
⎡
⎢
⎢
⎢
⎢
⎣

(∫

t
ε2

t
ε2∣ log ε∣

R(Bs)ds)
2
∣Bt/ε2 =

w

ε

⎤
⎥
⎥
⎥
⎥
⎦

≲ ∣ log ε∣(log ∣ log ε∣).
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Proof. To simplify the notation, denote t1 = t
ε2∣ log ε∣ and t2 =

t
ε2
, and write

(∫

t2

t1
R(Bs)ds)

2
=2∫

[t1,t2]2<
R(Bs)R(Bu)1s>ududs.

Now we compute the conditional expectation

E[R(Bs)R(Bu)∣Bt2 =w/ε] =∫
R4
R(x)R(y)

Gu(y)Gs−u(x − y)Gt2−s(
w
ε

− x)

Gt2(
w
ε
)

dxdy

=∫
R4
R(x)R(y)

Gu(y)Gs−u(x − y)Gt−ε2s(w − εx)

Gt(w)
dxdy.

Since 0 ∉K, t > 0 is fixed, and supp(R) ⊂ {x ∶ ∣x∣ ≤ 1}, we have for ε≪ 1 that

sup
w∈K, ∣x∣≤1

Gt−ε2s(w − εx)

Gt(w)
≲ 1,

uniformly in s ≤ t/ε2, so the conditional expectation is bounded by

E[R(Bs)R(Bu)∣Bt2 =w/ε] ≲ ∫
R4
R(x)R(y)Gu(y)Gs−u(x − y)dxdy,

which implies

E
⎡
⎢
⎢
⎢
⎢
⎣

(∫

t
ε2

t
ε2∣ log ε∣

R(Bs)ds)
2
∣Bt/ε2 =w/ε

⎤
⎥
⎥
⎥
⎥
⎦

≲ ∫
[t1,t2]2<

∫
R4
R(x)R(y)Gu(y)Gs−u(x − y)dxdyduds.

By (A.7), the above integral bounded by
log(t2 − t1) log t2

t1
≲ ∣ log ε∣(log ∣ log ε∣),

which completes the proof. ◻

Appendix B. Negative moments of Zε(t, x)

The goal is to show there exists β0 > 0 such that if β < β0 and n ∈ Z+, we have
(B.1) sup

t∈[0,T ]
sup
ε∈(0,1)

E[Zε(t, x)
−n

] ≤ Cβ,n,T

for some constant Cβ,n,T > 0. The result is essentially implied by [18, Theorem
4.6], and we only present the details here for the convenience of the readers. Since
Zε(t, x) has the same distribution as u( t

ε2
, x
ε
) and is stationary in the x−variable,

it suffices to estimate the small ball probability P[u( t
ε2
, x) ≤ r] for r ≪ 1. From now

on, we will fix ε > 0 and derive an estimate that is uniform in ε > 0 and t ∈ [0, T ].
We fix t > 0, x ∈ R2.

We first define an approximation of the spacetime white noise

Ẇδ(t, x) =e
−δ(t2+∣x∣2)

∫
R3
φδ(t − s, x − y)dW (s, y),

where φδ(t, x) =1
δ4φ(

t
δ2 ,

x
δ
) with φ ∈ C∞

c (R3) such that φ is even and ∫ φ=1. Thus,
we have almost surely that Ẇδ ∈ L

2(R3) ∩ C∞(R3). Define

Vδ(t, x) =∫
R2
ϕ(x − y)Ẇδ(t, y)dy, Rδ(t, s, x, y) =E[Vδ(t, x)Vδ(s, y)],

and Uε,δ(t, x) =EB [eVε,δ(t,B)], with

Vε,δ(t,B) =βε ∫
t/ε2

0
Vδ(

t
ε2

− s, x +Bs)ds − 1
2β

2
εQδ(

t
ε2
, x, x,B,B),
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where
Qδ(t, x, y,B

1,B2
) =∫

[0,t]2
Rδ(t − s, t − `, x +B1

s , y +B2
` )dsd`.

By [18, Proposition 4.2], for each fixed ε > 0, Uε,δ(t, x) →u( t
ε2
, x) in probability as

δ→0, so we only need to estimate P[Uε,δ(t, x) ≤ r] for r ≪ 1, uniformly in ε, δ > 0
and t ∈ [0, T ].

With any given Ẇδ, define the expectation

EẆδ

B [F (B1,B2
)] =

EB[F (B1,B2)eVε,δ(t,B
1)+Vε,δ(t,B2)]

EB[eVε,δ(t,B
1)+Vε,δ(t,B2)]

.

To emphasize the dependence of Uε,δ on Ẇδ, we write Uε,δ(t, x) =Uε(t, x, Ẇδ). For
any λ > 0, define the set

Aλ(t, x) ={Ẇδ ∶ Uε(t, x, Ẇδ) >
1
2 , β2

ε ∫

t/ε2

0
EẆδ

B [R(B1
s −B2

s)]ds ≤ λ} .

Lemma B.1. For any Ẇδ ∈ Aλ(t, x), we have

Uε(t, x, Ẇδ) ≥
1
2e

−
√
λ∥Ẇδ−Ẇδ∥L2

(R3
) .

Proof. We write

Uε(t, x, Ẇδ) =EB[eVε,δ(t,B)
] =EB[eVε,δ(t,B)

]
EB[eVε,δ(t,B)−Vε,δ(t,B)eVε,δ(t,B)]

EB[eVε,δ(t,B)]

=Uε(t, x, Ẇδ)EẆδ

B [eVε,δ(t,B)−Vε,δ(t,B)
],

where Vε,δ(t,B) is obtained by replacing Ẇδ by Ẇδ in the expression of Vε,δ(t,B).
By the fact that Ẇδ ∈ Aλ and Jensen’s inequality, we have

Uε(t, x, Ẇδ) ≥
1
2 exp(EẆδ

B [Vε,δ(t,B) − Vε,δ(t,B)]).

It remains to show that
(B.2) ∣EẆδ

B [Vε,δ(t,B) − Vε,δ(t,B)]∣ ≤
√
λ∥Wε − W̃ε∥L2(R3).

We write

Vε,δ(t,B) − Vε,δ(t,B) =βε ∫
t/ε2

0
∫
R2
ϕ(x +Bs − y)[̇Wδ(

t
ε2

− s, y) − Ẇδ(
t
ε2

− s, y)]dyds,

and apply Cauchy-Schwarz to derive

∣EẆδ

B [Vε,δ(t,B) − Vε,δ(t,B)]∣

≤ ∥Ẇδ − Ẇδ∥L2(R3)

√

β2
ε ∫

t/ε2

0
∫
R2

∣EẆδ

B [ϕ(x +Bs − y)]∣2dyds

=∥Ẇδ − Ẇδ∥L2(R3)

√

β2
ε ∫

t/ε2

0
EẆδ

B [R(B1
s −B2

s)]ds ≤
√
λ∥Ẇδ − Ẇδ∥L2(R3),

which completes the proof. ◻

Lemma B.2. There exists constants λ, c > 0 independent of ε, δ > 0 and t ∈ [0, T ]

such that P[Aλ(t, x)] ≥ c.

Proof. We have
P[Aλ(t, x)] ≥ P[Uε(t, x, Ẇδ) >

1
2 ] − P[Bλ(t, x)],

with

Bλ(t, x) ={Ẇδ ∶ Uε(t, x, Ẇδ) >
1
2 , β

2
ε ∫

t/ε2

0
EẆδ

B [R(B1
s −B2

s)]ds > λ} .
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Using the fact that E[Uε(t, x, Ẇδ)] =1 and the Paley-Zygmund’s inequality, we
have

P[Uε(t, x, Ẇδ) >
1
2 ] ≥

1
4E[Uε(t, x, Ẇδ)

2]
=

1
4EB[eβ

2
εQδ(t/ε2,x,x,B1,B2)]

.

For Bλ(t, x), we have

P[Bλ(t, x)] ≤P [β2
ε ∫

t/ε2

0
EB[R(B1

s −B2
s)e

Vε,δ(t,B1)+Vε,δ(t,B2)
]ds > λ

4 ]

≤ 4
λ
EB [eβ

2
εQδ(t/ε

2,x,x,B1,B2)β2
ε ∫

t/ε2

0
R(B1

s −B2
s)ds]

≤ 4C
λ
EB [e2β2

εQδ(t/ε
2,x,x,B1,B2)

]
1/2

for some constant C > 0, where the last “≤” comes from an application of Cauchy-
Schwarz inequality and Lemma A.1. By Lemma B.3 and choosing λ large, there
exists some constants c, λ > 0 independent of ε, δ > 0 such that P[Aλ(t, x)] ≥ c, which
completes the proof. ◻

Lemma B.3. There exists β0 > 0 such that if β < β0, we have

1 ≤ sup
t∈[0,T ]

sup
ε,δ∈(0,1)

EB [eβ
2
εQδ(t/ε

2,x,x,B1,B2)
] ≤ Cβ,T .

Proof. Recall that Qδ(t, x, x,B1,B2) =∫[0,t]2 Rδ(t− s, t− `, x+B1
s , x+B2

` )dsd`. We
write Rδ explicitly:

Rδ(t1, t2, x1, x2) =∫
R4
ϕ(x1 − y1)ϕ(x2 − y2)E[̇Wδ(t1, y1)Ẇδ(t2, y2)]dy1dy2

≤∫
R4
ϕ(x1 − y1)ϕ(x2 − y2)φδ ⋆ φδ(t1 − t2, y1 − y2)dy1dy2,

with “⋆” denoting the convolution. By the fact that ϕ,φ have compact supports, it
is clear that

Rδ(t1, t2, x1, x2) ≲ δ−2
1∣x1−x2∣≤c,∣t1−t2∣≤cδ2

for some c > 0. Thus, we have

Qδ(t/ε
2, x, x,B1,B2

) ≲∫
[0,t/ε2]2

δ−2
1∣s−`∣≤cδ21∣B1

s−B2
`
∣≤cdsd`

≲ ∫

c

0
(∫

t/ε2

0
1∣B1

`+δ2s
−B2

`
∣≤cd`)ds.

By Jensen’s inequality, we have

EB[eβ
2
εQδ(t/ε

2,x,x,B1,B2)
] ≤EB [exp(c′

∫

c

0
(β2
ε ∫

t/ε2

0
1∣B1

`+δ2s
−B2

`
∣≤cd`)ds)]

≤ 1
c ∫

c

0
EB[exp (cc′β2

ε ∫

t/ε2

0
1∣B1

`+δ2s
−B2

`
∣≤cd`)]ds,

for some c, c′ > 0. Clearly we have

sup
s∈[0,c]

EB[exp (cc′β2
ε ∫

t/ε2

0
1∣B1

`+δ2s
−B2

`
∣≤cd`)]

≤ sup
x∈R2

EB[exp (cc′β2
ε ∫

t/ε2

0
1∣x+B1

`
−B2

`
∣≤cd`)] ≲ 1

for small β, where the last “≲” comes from Lemma A.1. The proof is complete. ◻
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Now we can write

(B.3)
P[Uε(t, x, Ẇδ) ≤ r] ≤P[1

2e
−
√
λdist(Ẇδ,Aλ(t,x)) ≤ r]

≤P [dist(Ẇδ,Aλ(t, x)) ≥
log(2r)−1

√
λ

] ,

where dist(Ẇδ,Aλ(t, x)) =inf{∥Ẇδ − Ẇδ∥L2(R3) ∶ Ẇδ ∈ Aλ(t, x)}. Now we can apply
[18, Lemma 4.5] to derive that

(B.4) P [dist(Ẇδ,Aλ(t, x)) ≥ τ + 2
√

log 2
c
] ≤ 2e−τ2/4

for all τ > 0, where λ, c > 0 are chosen as in Lemma B.2 and are independent of
ε, δ > 0 and t ∈ [0, T ]. Combining (B.3) and (B.4), we have

P[Uε(t, x, Ẇδ) ≤ r] ≤ 2 exp(− 1
4 (

log(2r)√
λ

+ 2
√

log 2
c
)

2
) ,

which implies E[Uε(t, x, Ẇδ)
−n] ≲ 1 and completes the proof of (B.1).
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