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ABSTRACT. We prove the two dimensional KPZ equation with a logarithmically
tuned nonlinearity and a small coupling constant, scales to the Edwards-
Wilkinson equation with an effective variance.
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1. INTRODUCTION

1.1. Main result. We are interested in the two dimensional KPZ equation driven
by a mollified spacetime white noise and starting from flat initial data:

(1.1) athez%Ah5+2\/|i)7gel|vh€|2+Wg(t,x), he(0,2)=0, zeR?

where
We(ta) =5 [ (=)W (ty)dy.

with W a spacetime white noise built on the probability space (Q,F,P)and 0< pe
C2°(R?). The covariance function of W, is formally written as
(1.2)

E[W. (L) We(s,9)] = 0t - ) BR(ZY). with  R(x)= [ (e +y)e()dy.

Without loss of generality, we assume ¢(xz) =0 for |z[ > 1 and [. ¢(z)dz =1. The
following is our main result:

Theorem 1.1. There exists By depending on ¢ such that if § < By < /2w, then for
any t >0 and test function g e C°(R?), we have

(1.3) [, ett2) ~Elh (b)) gla)da = [ (1 2)g(w)da
in distribution as € - 0, where J€ solves the Edwards- Wilkinson equation

oA = LA +vegW (t,x), H#(0,)=0,

T2
with the effective variance

(1.4) Vit = 525

There is a lot of activities on the study of singular SPDEs over the past decade.
We refer to the reviews [12, 13, 25] and the references therein. For the KPZ equation,
progresses in d > 3 can be found in [15, 20], where results similar to Theorem 1.1
were proved. In two dimensions, the tightness of {h.}.¢(0,1), as a sequence of random
distributions, was proved in the recent work of Chatterjee-Dunlap [7]. To prove
Theorem 1.1, we implement the same strategy laid out in [15].

The convergence in (1.3) is expected to hold for all 8 € (0,v/27), and our proof
seems to only work for 8 small enough. Near the completion of this paper, we learnt
the very recent work of Caravenna-Sun-Zygouras [6] which proved Theorem 1.1 for
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all 8¢ (0,v/27), using a different method. While their result is more general and
covers the entire “subcritical” regime, the proof presented here seems to be simpler
and offers another perspective. We discuss the approaches of [6, 7] in Section 2.4.

At the critical value 3 = /27, the early work of Bertini-Cancrini [1] identified the
limiting covariance function of the corresponding stochastic heat equation. While
the limiting distribution remains an open question, we refer to the work of [5, 16] in
this direction.

If we write the nonlinear term in (1.1) as |Vh.|> = Vh.-AVh,, our case corresponds
to A being the 2 x 2 identity matrix. The so-called anisotropic class refers to the
case of det[A] < 0. It is a very interesting question to study the asymptotics of the
anisotropic version of (1.1), where the Hopf-Cole transformation to the stochastic
heat equation is unavailable and all existing methods break down. Some recent
work on the interacting particle systems belonging to this class can be found in
[2, 3,9, 26].

While we always view {h.}.-0 as a family of random distributions in d > 2 and

study the asymptotics of [ h.g with test function g, there are also recent studies on
the pointwise fluctuations of h. (or e<), see e.g. [4, 10, 11, 14, 21].

1.2. Connection to the stochastic heat equation and heuristics. Through
a Hopf-Cole transformation, the h. defined in (1.1) is related to the solution of the
heat equation with a weak random potential

(1.5) du=3Au+ BV (tx)u, u(0,x)=1, we R?,
with
__ B
(1.6) Be = meea
and

Vta) = [ ola-y)W(ty)dy.
Here, the product V (¢, z)u in (1.5) is interpreted in the It6 sense. Consider u. (¢, ) =
u(%, %), which solves
Ose = %AuE + E—SV(E%, Z)e.
By the scaling property of the spacetime white noise and the fact that d = 2, we
have

(17) V(55 Wt 0).
Applying It0’s formula yields

B (logue - Eloguc]) 2" he - E[h.].
From now on, we will study logu. rather than h..

Our proof of Theorem 1.1 implies a similar result of u.: for 8 < Sy,
(1.8) B!t /2 (ue(tyz) = 1)g(z)dax = /2 H(t,x)g(x)dx, in distribution.
R R

This was previously proved in [4, Theorem 2.17] for all 8 € (0,v/27). Let us explain
the mechanism behind the convergence of (1.8) for the stochastic heat equation
(SHE) and how it relates to the convergence of the KPZ in (1.3).

First, the variance of the L.h.s. of (1.8) is
(1.9)

Va8 [ ue(ta)g(a)da) = 5 loge| [ Covlu(h, 2).u(, )g(e)g(y)dody.
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The covariance is written explicitly by the Feynman-Kac formula:
(1.10)
u(t,z) = EB[eﬁf X V(t—s,:erBS)ds—%leR(o)t]’

20 -1 pt/e? pTTY 1 p2 B
Covlu(Z, £),u(f, )] = Eple” 1ol Jom OSB890 g 2 (220 -1,

where B!, B? are independent Brownian motions starting from the origin and Ep
denotes the expectation with respect to the Brownian motions. Note that in the
Feynman-Kac representation of u, we have the factor fot V(t- s,z + Bs)ds. While
the Brownian motion Bj starts from the origin, it is sometimes more convenient for
us to write the integral as fot V(s,z+ Bi_s)ds and view {x + B;_s }s»0 as a Brownian
motion starting at (¢,z) and running backwards in time. The function F in (1.10)
solves the deterministic PDE

O F = AF + §%|loge| ' R(z)F, F(0,z)=1.

Similar to u, we have omitted the dependence of F' on €. The above equation can
be written in the mild formulation as

_ e o
F(L,2%) =1+ 82 loge| ™ fo fR Giagayez—oy (222 = w) R(w) F(£, w)dwdl,

where Gy (z) = (27t) " exp(—|z[?/2t) is the standard heat kernel. After a change of
variable £ ~ £/e%, we have

t
(L11) 52 logel [F(%.22) ~11= [ [ Gaqoy(@ -y - cw) R(w)F(S, w)dwdr.

By the Feynman-Kac representation of F' in (1.10), we know that F(¢/e? w) mea-
sures the intersection time of the two Brownian motions during [0, ¢/¢?]. By a
classical result of Kallianpur-Robbins [19, Theorem 1], for 3>0,¢>0 and w € R?
the following convergence in distribution holds:

(1.12)

1 2/52 - law 1 22/52 0
|loge| R(w+ B - B;)ds = (2|loge]) R(w + Bs)ds = 5-Exp(1),
0 0

where we used the fact that [ R = 1. Together with the uniform integrability we
will establish later, this implies

— (/52
(1.13) F(E%,w) - EB[662|loge| Ly R(w+B;—B§)ds] R 2772_7%2 _ Vezﬁ

for small 8, as e - 0. Combining (1.11) and (1.13), the variance in (1.9) converges:
(1.14)

Varl5? [ ue(t. )o@ s [ [ Gaen(o - 9)R@)g(@)g()dedyduwde
= Valr[f]Rz H(t, x)g(x)dx].

In the last step we used the fact that [ R = (f ¢)? = 1. While the effective variance
v%; only depends on the mollifier through the integral [ ¢ in our setting, it is not
the case at the critical value 8 = /27 in d = 2 or in higher dimensions d > 3, see
[1, 15, 17], which is very different from the subcritical setting. The above calculation
and the convergence in (1.13) interprets the effective variance VCQH in terms of the
intersection of two Brownian paths.

Now we explain the origin of the Gaussianity. It is important to note that the
main contribution to the integral in (1.12) comes from s € [0, K] provided that
|log(e2K.)| < |loge|. Actually, the heat kernel in d = 2 satisfies that Gy(z) ~ ¢! for
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x near the origin, so we have
1 Ue? K. 1 p2
|log el /; _[0 Ep[R(w+ B; - BZ)]ds

1.15 e
(1.15) :|log5|_1fK Ep[R(w+ B - B%)]ds

~ |log€|_1|log(62K5)| - 0.

For example, we can pick K, = m = o0(e7?) and replace F(¢/e?,w) in (1.11) by
F(K.,w) without changing the asymptotic covariance:

(1.16)

5 2ogel [F(&, 52 11w [ [ Gty (o~ y - cw) ROw) (Ko, w)duwit
Recall that

Var(g:' [ uct)g(@)d) = [ 572 logel [F(&, %24) - g(w)g(y)dudy.

The r.h.s. of (1.16) indicates the main contribution to the variance of our interested
quantity, from the perspective of Brownian paths intersections. In microscopic
variables, we have two Brownian paths, starting from % and g respectively and
running backwards in time. After first “meeting” each other at the time (¢-¢)/e? for
some £ € (0,t), the two paths spend K. = o(¢7?) amount of time “intersecting” before
splitting again. As a result, the random environment involved in this “intersection’
only consists of W(s,-) with s € [£/e% - 0(¢7%),£/?], which induces a temporal
decorrelation for different ¢1 # £5 € (0,¢) and creates the Gaussianity. Together with
the variance convergence in (1.14), we have the Edwards-Wilkinson limit in (1.8).
The results in [17] for d > 3 is based on the above heuristics.

)

For the KPZ equation, the Gaussianity comes from a similar temporal decor-
relation as discussed above (we will prove it by a different method though). The
convergence of the variance

Var[[Rz he(t,2z)g(x)dx] = Var[ 5" [R2 logue(t,2)g(x)dx]
- Var[/RQ H(t,x)g(x)dx]

is however more involved. While we do not have a Feynman-Kac representation for
Cov[log u(t,z),logu.(t,y)] as (1.10), an application of the Clark-Ocone formula
will help us express the covariance in terms of an integral of

(1.17) E[Dlogu.(t, z)|F] = E[u;l(t,z)Dus(t,zﬂfr], z=x,y, T< E%

Here D is the Malliavin derivative with respect to the random noise and F, is the
filtration generated by {W(s,-),s <}. The key difficulty in analyzing (1.17) is to
deal with the factor uZ! and to evaluate the conditional expectation given F,.. By the
same discussion for (1.15), the random variable u.(¢,-) mainly depends on the noise
W (s,-) for s € [t/e? — o(e72),t/e*], so we could replace the factor uZ'(t,-) in (1.17)
with a small error by something that is independent of F,. for those r < & - o(¢7?).
The rest of the discussion is similar to the SHE case.

1.3. Notation. We use the following notation and conventions.

(1) We use a $b for a < Cb for some constant C' independent of ¢.

(2) We use (p,q) to denote the Holder exponents % + % =1, and always choose
p> 1.

(3) Gi(x) = (27t) L exp(~|z|>/2t) denotes the standard heat kernel.
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(4) We let H denote the Hilbert space L?(R?*"!), with norm || - |z and inner
product (-,-)g.

(5) {B! :t>0,j=1,...} is a family of standard independent 2-dimensional
Brownian motions built on another probability space (X, A4, Pg). We will
use Ep,Pp when taking the expectation and the probability with respect
to B.

(6) We use || - |, to denote the LP norm of the product probability space
OxE, Feo A,PxPg) for p>1.

(7) We use drv(-,-) to denote the total variation distance between two distribu-

tions.

8) We let | - |op denotes the operator norm.

9) We use [0,t]” to denote the n—dimensional simplex {0 <t <...<t, <t}.

0) We use f(¢) = Jra f(x)e™®7dx to denote the Fourier transform of f.

(
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2. SKETCH OF THE PROOF

The main result (1.3) is equivalent with the convergence in distribution of

(2.1) Bt fR? (log uc (t,z) — E[loguc (¢, 2)])g(z)dz = /]1;2 H(t,x)g(z)dx.
We rely on the Feynman-Kac representation of the solution to (1.5):

(2.2) u(t, z) = B [P o V{tmsasBod3 2 RO)

)

which has the same distribution, if viewed as a random field in x with ¢ fixed, as
t
Z(t,7) =Ep[M(t,7)], with M(tz) = exp (Bgf V(s,z+ By)ds - %553(0)7:).
0

We keep in mind that M, Z depend on e through the small factor 8. defined in (1.6)
but omit its dependence to simplify the notation. For fixed B and z, M(-,x) is a
martingale. Defining
Ze(t.x)=Z(5. %), Mc(t.x)=M(5, %),
and
X:(t) = fRz log Z.(t,x)g(x)dz.

The convergence in (2.1) is equivalent to

(XD -E[X(0)]) = [ A (ta)g(a)da.

Throughout the paper, we fix the variable ¢t > 0 and sometimes omit its dependence.
Define

(2.3) 0,52 :Var[f H(t,)g()] = gﬁﬂt/]};; 9(x1)g(22)Gas(x1 — x2)dx1drads,

where we recall that G¢(x) is the standard heat kernel. The proof of Theorem 1.1
consists of two steps:

Proposition 2.1. As e — 0, B-Var[X.(t)] » o7.
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Proposition 2.2. Ase — 0,
Xc(t) -E[X.(1)]

= N(0,1).
Var[ X, (t)] ©-1

2.1. Negative moments. Throughout the paper, we rely on the existence of
negative moments of Z.(t,z) for small 8, which essentially comes from [18] and was
also presented in [6, Equation (5.13)].

Proposition 2.3. There exits Sy > 0 such that if 5 < By,

sup sup E[Z.(t,z) "] <Canr.
te[0,T] €€(0,1)

The proof is presented in Appendix B.

2.2. The Clark-Ocone representation. For each realization of the Brownian
motion B, we can write

t/e? t/e? .
[ vezeBgas= [T ([ e+ Bo-pW(sdy) ds

= [ %0 (s AW (5,),
with
D5, 5(5,y) = Ljoe2)(s)p( £ + Bs - ).
Therefore,
styZE(t’m) = DS’QEB [ME(t’ (E)] = BEEB [ME(ta x)q)i,x,B(svy)] )

where Dy, denotes the Malliavin derivative operator with respect to W. By [15,
Lemma A.1], we have
D yZ:(t,x)
D, ,log Z.(t,x) = M,

y10g Z:(t, ) Z(t,7)

and the Clark-Ocone formula says

X-E[X.] = [ E[D,,X|FJdW(s.y)
D ,Z.(t,x)
2.4 - / E [ Py e\ L) | FLdW (s,
(2.4) GEL ) AT IR x| F JdW (5,y)
t/EZ EB[ME(tax)(bfx B(S?y)]
- E .2, Jdz | dw (s, y).
o [ L (L soRl e s ) aw )
Here F, is the filtration generated by W (¢,-) up to £ < s.
For
_ 1
(2.5) K. = ogel

with some a > 0 to be determined, we decompose the stochastic integral in (2.4)
into three parts:

BN (Xe -E[Xe]) = I+ Ioc + Iz,
with

€ IEB Me , L ‘I)im S,
(26) L= fOK fRz ([R2 g(m)E[ [ (tZE()t,a:’)’B( y)]|.7-'s]da:) AW (s,y),

(2.7)
) t/e? Ep[M(t,2)®; , 5(s,9)] { Z(K.,z/e)
I“*g‘fKe [w(/n@zg(x)E[ Z(K.,z/e) (Z(t/eQ,x/e)_1)|fs]dx)dw(s’y)’



GAUSSIAN FLUCTUATIONS FROM THE 2D KPZ EQUATION 7

and

t/e? Ep[M.(t,z)®5, 5(s,y)]
o= [ L (ot R s i)

Since 1 «< K. « €72 and we expect that Z(K.,x/¢) is close to Z(t/e? z/¢), the
contribution from I ., I, is small compared to that from I3.. For I3., the
integration is in s > K, so the random variable Z(K_, x/¢) is Fs—measurable, and
(2.9)

t/e? T
= Je fR( RZ(KJ);/E) [EB[MEWx>¢ix,B<s7y>llfs]dw)dW(s,y).

Note that the procedure we took here is slightly different from the heuristics provided
in Section 1.2 due to the time reversal and the fact that we considered Z(t,z) rather
than u(t,z). Mathematically they are equivalent.

2.3. The second order Poincaré inequality. To simplify the notation, we define

X.-E[X.]
Y. = Var[X.]'

To show that Y. = N(0,1), we apply the second order Poincaré inequality, which
was originally proved in the discrete setting in [8] and generalized to the continuous
setting in [23]. Since E[Y:] =0 and Var[Y.] = 1, with ¢ a standard centered Gaussian
random variable, by [23, Theorem 1.1], we have

(2.10) drv(Y=,Q) SE[ DY ]V 'E[ P2Yy-)3 1M,

where we recall H = L*(R**') and |D?Y.|op denotes the operator norm of the
mapping H ® H > D?Y, : H — H defined as D*Y.h := (h, D*Y.)y, i.e., for any h e H,
we have [D?*Y.h](s,y) = [gou1 h(s',y") Dy Dy, Yods'dy'.

Since

DY, = DX p?y - _D’X.
€ Var[X:]’ € Var[X]’
and Var[X.] ~ |loge|™ from Proposition 2.1, to show drv(Yz,¢) — 0 using (2.10),
we only need to prove

(2.11) E[ DXc[5]VEL P2Xe]5,]Y" = o(llogel ™), as e~ 0.

Another possible way to prove the Gaussianity is to utilize the fast temporal
mixing, as explained heuristically in Section 1.2 and implemented in d > 3 in [17].

4. Discussions and remarks.

A comparison with [6] and [7]. The basic ideas behind our approach and the one in
[6] are similar, and the key is to modify the partition function so that log Z(%, 2

can be “linearized” in some sense. As we will prove later, I3 . is the main contribution
to the random fluctuations, which essentially corresponds to the partition function
of a directed polymer {Bs}sso that interacts only with the random environment
W(s, ) in s > K.. The initial layer in s < K. only determines the starting point
By, for this interaction. By our choice of K. = o(e7?), it is easy to show that in
the weak disorder regime (S small), the polymer behaves like the Brownian motion
so eBk. - 0 as € = 0, which indicates that the initial layer plays no role in the
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limit. Given this heuristics, if we ignore the factor Z(K.,z/e)™* in (2.9), then I3 .
becomes
t/e?

Iy /R (f 9(2)E[Ep[ M. (t,2) 8%, 5(s,1)]| 7 ]dx) dW (s,y)

fRQg()(/ S LD 2 DIFJW ()

The last expression precisely describes the fluctuation of the partition function

that only involves the environment in s > K.. A similar heuristics was given in [6,
Section 2.1], and the Zﬁ?ﬁN (z) -1 defined in [6, Equation (2.11)] corresponds to the

above expression. The Clark-Ocone formula seems to be particularly handy for this

“linearization”. We also note a naive Taylor expansion does not necessarily work for
f(Z(%,%)) with arbitrary smooth f, as shown in [15, Theorem 1.2].

Another difference between the two approaches is the proof of the Gaussianity.
After the “linearization” in [6, Proposition 2.3], the convergence to the Edwards-
Wilkinson limit follows from the convergence of SHE proved in [4, Theorem 2.17],
which was based on a polynomial chaos expansion and the fourth moment theorem
[22, 24]. In our case, we directly apply the second order Poincaré inequality to
the KPZ equation, which simplifies some analysis. On the other hand, the fourth
moment theorem covers more general distributions of the random environment and
the convergence of a discrete directed polymer model to the Edwards-Wilkinson limit
was proved in [6, Theorem 1.6], while we only deal with the continuous Gaussian
environment in our setting.

The approach in [7] relies on the Feynman-Kac formula and the concentration
inequality to control the intersection time of two polymer paths. While a naive
application of the Gaussian-Poincaré inequality fails for a similar reason as our
Lemma 4.1 does not allow § - 0, the authors have designed a clever recursive
scheme that is similar to perturbative renormalization, using which they obtained
the desired estimates to prove the tightness.

The assumption of B < 1. Throughout the paper, we assume [ < 5y for some [y < 1,
2
which is used to control expectations of the form Ep[e? /(B)g_(B)], where f.,g.
are Brownian functionals and f. measures the intersection time of multiple pairs
2
of independent Brownian motions. Take f.(B) = |loge|™ Ot/s R(B! - B?)ds for
2
example. It is easy to show that Eg[e? /<(B)] <1 for all 8 < /2, and we can view

5 fs(B)]EB[eﬂ I=B)g_(B)]

B%fe(B) -
Ep[e 9:(B)] =Eple EB[G’B fa(B)]

as the average of g.(B) under the annealed polymer measure. In the weak disorder
regime, the polymer behaves like the Brownian motion, so ideally we would like to
control EB[e'BQ-ff(B)gE(B)] in terms of ||g-(B)|1. As it is hard to achieve this, we
sacrifice to use the Holder’s inequality

Ep[e’ =B g (B)] s Ep[e?® =B VP|0.(B)|,

for the Holder exponent p,q > 1. To make the error small enough for our purpose, we
need ¢ to be close to 1 so that |g-(B)|, is close to |g-(B)|1. As a result, the dual
exponent p is large which put a more restrictive condition on 8 through the constraint
of pB? < 2n. From this perspective, the method of using the chaos expansion and
the hypercontractivity [6, Theorem B.1] is preferable in obtaining sharp estimates,
compared to analyzing the Feynman-Kac representation and Brownian functionals.
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Asymptotics of E[h.]. While we are only interested in the random fluctuations of
he here, it is natural to ask whether the average height E[h.] can be expressed more
explicitly in terms of e. Recall that 8. = 8|loge|™"/? and u. solves the equation

interpreted in the It6’s sense. By It6’s formula, we know that 8- og ue law h. with

Ohe = LAR. + LB |Vh? + W, - 80

2e2
By the negative and positive moments bound on u., we have
= _ 1
E[h.] = E[B logu.] = O(|logel|?).

Compare to the equation (1.1) satisfied by h., we see that he(t, ) = he(t, ) - BEQIng)t
which implies

E[he(t,2)] = 222901 + O(|loge|'1?)
and matches [7, Lemma 7.4]. On the other hand, it was shown in [4] that E[logu.] —
—% log %2%52, thus a more precise expansion takes the form

E[h(t,2)] = 20 + S Elogu.] = 2220t - 157 log 2275 + o(|log e['/?).

2m— ,32
3. VARIANCE CONVERGENCE

To simplify the notation, we define

t/s2
Me>j(t7w)==exp(6€ [ Vs 2 Bds- R(O)t)
0

where {B7}; are independent Brownian motions. For any set I c R,,x € R? and
Brownian motions B, B’, we define

(3.1) R(I,z,B',B) = fIR(x+Bf;—B§)ds
as the intersection time of B?, B during the interval I, andlw is the initial distance.
For I =[0,T], we write R(T,z,B*, B?) = R([0,T],z, B, B?).

The following lemma will be used repeatedly and is taken from [15, Lemma 3.1].

Lemma 3.1. For any n € Z, and q > 1, there exists 8(n,q) > 0 such that if B <
B(n,q), then for any random variable F(B',...,B™) >0, t>0 and {z; e R*};_1 .,
we have

(3.2) SEg[F(BY,...,B™)]'.

. [EB[H?_l M. ;(t,z;)F(B',..., B")]]
H?:l Ze(ta xj)

Proof. By the Cauchy-Schwarz inequality and Proposition 2.3, the square of the
Lh.s. of (3.2) is bounded by

|

2n
=EgzE [1‘[ M. ;(t,x;)F(B',...,B")F(B™",... ,BQ”)] ;
j=1

2

EB[ﬁ M. ;(t,x;)F(B',...,B™)]
J=1

where z;,, = x; for j =1,...,n. Evaluating the expectation with respect to W, we
obtain

2n ‘
E[HMs,j<t,xj>]:exp( > ﬂﬁkR(Ez,xjjk,Bj,Bk)).

j=1 jok=1
With p = ﬁ, Lemma A.1 shows that the r.h.s. of the above expression has an LP

norm that is bounded uniformly in € and x;, provided that 3 is chosen small. We
apply Holder inequality to complete the proof. O
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3.1. The analysis of I; .. Recall that I; . is defined in (2.6).

Lemma 3.2. For K, = with o> 1, we have E[I7_] -0 as £ - 0.

€2|log5|°“

Proof. Writing I . = fOKE Jrz E[Ys 4| Fs]dW (s,y) for the appropriate Y ,,, we have
by Itd’s isometry that

K.
BlE)= [ [ BRIV \EIPlds < [ [ EIY?, Jdyds,

]EB[HZZ M. j(t,z;)®5 . 5i(s,y)]
E[Y2,]= [ 4g(x1)g<x2>El AR T ]dmm.

Using the fact that

K. 2 K.
T1—-T 1 2 _ T1-T 1 2
fo Aqu@i,xj,Bj(s,y)dyds: fo R(&=224B!-B?)ds = R(K., =%, B'| B?),

and

where we recall that R(z) = [ ¢(x +y)¢(y)dy, we have

Ep[I12, M. ;(t, 2, )R(K., ©=%2 B' B?)]
]E 12 <f E ¥ »J J £ d d .
[ 1,5] S Jpa lg(z1)g(z2)] [ Z(t,21) 2. (t, ) T14T2

By Lemma 3.1, we have

E2.)5 [ lo(en)g(@o)ly/Es[RA(K., 252, B, B2)]dwdos

s\ [ loa)a(en) Ep[R2 (K., 252, BV B2)]drsda
We apply Lemma A.2 to deduce
E[I7.]sV(1+logK.)e2K. §

(3.3)

- 0.

~ \loga\(“ /2

The proof is complete. O

3.2. The analysis of I .. Recall that I5 . is defined in (2.7).

Lemma 3.3. For K, = with o> 0, we have E[I3_] -0 as £ - 0.

e2|log el
Proof. By the same calculation as in the proof of Lemma 3.2, we have

B[13.]5 [, 9(@1)g(e2) Ac(ar, 22)dardas,
with
Ac(z1,72)
:E[EB[H% Me (b 2 R((Ke /%], 152, B, B?)] ﬁ( Z(Kea5e) 1)]
Z(Ke,1/e)Z(Ke, xa/e) Z(tfe? xj/e)

Applying Proposition 2.3, Holder inequality, and the fact that Z(¢,x) is stationary
in z, we have

j=1

[ A (21, 22)[ 5 [lafs[b]2]b]a,

where we simply denoted

2
a=Ep[[] Me;(t,2;)R([Ke,t/"], 252, BY, B?)], b= Z(K.,0) - Z(t/*,0).
j=1

b>*°p?79 and apply Holder inequality to derive

[b4] _ E[b2+6b2—6] < E[b(2+6)p]1/pE[b2]1/q

First, we write bt =
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with pt+¢g'=1andg= 2%5. Since |b| < Z(K.,0)+Z(t/2,0), we apply Lemma A.1
to bound E[b*)P]1/? by some constant (for those 3 <« 1 depending on §). Thus
2.5
we obtain [[b]4 S |b]," and further applying Lemma 3.4 below yields
o5 1
(LPY G PR [ P "
logel?

for some 8’ > 0 that is sufficiently close to zero. To analyze a, to simplify the notation,
we write a1 (V, B', B?) = [To_, M. ;(t,2;) and as(B', B?) = R([K., 5], 2222, B!, B?)
so a = Eg[ai(V, Bt, B?)ay(B*, B%)]. We first write

lal§ = E[ Bplai(V, B, B*)az(B', B*)]*]

8 . . . .
= EB]E[H al(va B2]713B2j )aQ(B2j713B2J):|a
J=1

where B7 are independent Brownian motions, then we average with respect to V'
and follow the same proof of Lemma 3.1 to derive

8 . .
lalg s Es[[Tlaa (B, B¥)[)2 = [Ep[ do(B", BY)P)|" = flaz|3
j=1

This implies

[ aa)g(wo)l < lals dordas

s/ L loGengCen) x IR, 1, 5222, BY, B2) [3desdas 5 V/Tloge],

where the second § comes from Lemma A.2. The proof is completed by choosing
<t o
4

Lemma 3.4. Recall K, = m with a> 0. For any § > 0, there exists $(§) >0
such that if 8 < 5(5), we have
1
E[ Z(%,0) - Z(K.,0)P]s ——.
[ 400~ 205 0)F) oo

Proof. By the second moment calculation, we have
E[ 4(5,0) - Z(K,0)]"] = E[Z(,0)°] - E[Z(K-,0)’]

“Eg [65? S R(B)ds _ B2 [ R(Bm)ds] ,

Applying the simple inequality |e” — e¥| < (e” + e¥)|z — y|, Holder inequality and

Lemma A.1, we have
t/e?
f R(Bs,)ds

€

(3.4) Ep [Eﬁ? S RBayds _ 82 [ R(BQS)dS] S 1
|logel

q

for any ¢ > 1 (provided that 8 < 8(q)). To estimate the above L? norm, we note
that

t/e?
fK " R(By)ds

with both estimates coming from the same proof of Lemma A.2. More precisely, for
the first estimate, we simply write the expectation in terms of the convolution of
R with the heat kernel and an integration of the heat kernel in time in [K,,t/e?]
leads to the bound of log ﬁ The analysis of the second estimate is the same

5 V/[loge|(log |log e]),
2

t/e?
S log|logel, H fK R(Bas)ds

1
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and gives an upper bound /logilog s% For 6 € (0,1) and ¢ = ﬁ, by the
LP—interpolation inequality we have
1-0 0

S |logel’,
2

<

~

q

t/e? t/e? t/e?
(3.5) ‘ fK © R(Byy)ds fK " R(Byy)ds fK " R(Bay)ds

1

provided that € is chosen sufficiently close to zero (i.e., ¢ is sufficiently close to 1).
The proof is complete. O

3.3. The analysis of I3 .. Recall that I3 . is defined in (2.8). Using the fact that
E[M (t/e?,z/e)|Fs] = M(s,x/e), we have that

t/e? T
fe= [ L e S Balb o)) | s

For any T > 0,21,z € R? and a standard 2-dimensional Brownian motion B, we
define the deterministic function
H (T, z1,22) =E [eﬁf T R(Il+é2s)d$|BQT _ xg] .

We introduce the following notation: for any z,y € R?, the expectation ]Ezy is
defined as

A Ep[Mi(K,z)My(K.,y)F
Ezy[F] _ ]E[ B[ M (K., x) M (K-, y) ]]
Z(Ke,x)Z(K:,y)
for any random variable F'. In particular, we will consider functional of
Xk, = By - Bk,

SO

Ep[M)(K.,2)Ms(K.,y)F(Bj._ - B%Q)]]
Z(Kaax)Z(Kay) '

Note that we have omitted the dependence of the expectation I@my on ¢ to simplify
the notation.

B, ,F(X)] - E[

The following three lemmas combine to show the convergence of
(3.6) E(I3.] - o}
with o7 given in (2.3).

2
Lemma 3.5. E[I_] = L K< G.(s)ds, with

G-(5) = [ 9w =w)g(@)R(y)
X ]E—w/E,O [Ggs(w +ey—eXg )He (5,9, XK. - 2~ y)] drdydw.

Lemma 3.6. There exists By > 0 so that there exists v € (0,1) such that, for all
B < Bo, Ge(s) $s77 for se(0,t).

Lemma 3.7. For any s € (0,t), G.(s) » v [pa 9(z — w)g(2)Gas(w)dwdz, as
e—0.

(3.7)

The proof of Lemmas 3.5 and 3.6 is the same as [15, Lemma 3.5, 3.6].
Proof of Lemma 3.7. Recall that

G.(5) = [ 9o -w)g(@)R(y)
x IAE_w/&O [Ggs(w tey-eXp )H(5,y, X, -2 = y)] drdyduw.
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Since s > 0 is fixed and the term H. is uniformly bounded by Lemma A.1, the
expectation in the above expression is bounded uniformly in z,y,w, e, so we only
need to pass to the limit of the expectation for fixed z,y,w € R? and w # 0. The
proof is divided into three steps.

(i) We show that IAE_w/E’O[ Gos(w+ey—eXg,)—Gas(w)|] > 0 as € > 0. Using the
fact that Ga5(+) has bounded derivatives (for fixed s > 0) so |Gas(2)—Gas(y)| S |z —y|:

|Gas(w +ey - eXg, ) - Gas(w)| S ely| + [ X k.|,
it suffices to show IAE_w/EVO[ eXx.|] = 0. We apply Lemma 3.1 to derive
(3.5) B uyeo B 1] § VEBT FKrc. ] = V22K 0.

(ii) Define s, =

s
e2|loge| and

H.=Eg Lﬂf J5® R(y+Bar)dr

B2s/62 = XKE - % - y] )

we show that
(39) IAE*’UJ/E,O[#E] - 271-2%@% as €~ 0.

We first note that H. can be written more explicitly by conditioning on Bsy,_:

H. =Ez [eﬂf J5® R(y+Bay)dr Gas(1-|logel1) (EX Kk, —w — €y —€Ba,, )]
GQS(EX.KE -w - é‘y)
5] (eX e~ W—e -<B 55)2 € —w—¢e 2
:(1|11|1)EB [eﬁ? & R(y+B2r’dre‘We“‘“4S”]
—|logel~

There are three factors inside the above expectation. By an application of Lemma 3.1
again and the fact that e2K, — 0 as € — 0, we have

(3.10) thupE_w/ao[e)“EXKs|2] <1,

e—=0

for any A > 0. We also have EB[e)‘ﬁg Jo R(yJ’BQT)d’”] $ 1 for 8 < B(A). Thus, by
the same proof of (i) and applying Holder’s inequality, we can replace the second

factor by ev’/45 with a negligible error. For the third factor, we use the inequality
le” —e¥| < (e” +eY)|z - y| so
(EXKE —w—sy)2 w? (5XKE —w—sy)Q w?
e = —ew|s(e T +en )|eXk, —eyl(|eX k. —w eyl + [w]).

By the exponential moment bounds given in (3.10) we can show the r.h.s. of the
above display is small hence replace the third factor by ew’l4s

In the end, we apply [19, Theorem 1],

with a negligible error.

B?log2s. 1
2|loge| log2s.

25, _ 52
R(y+B,)dr = M\sExp(1), Ag=—.
fo (y+B,)dr = A\gExp(1), Ag o

53/0 " R(y+Bay)dr =

Note that [;* R(y+ Bs,)dr measures the “local time” of the planar Brownian motion
near the origin, and the 27 factor in Ag comes from the two dimensional heat kernel.
Lemma A.1 ensures the uniform integrability, and we pass to the limit to obtain
(3.9).

(iii) We show that

(3'11) IAE—w/E,O[HE(E%ayvxKE _%_y)_ﬁsﬂ -0
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as € - 0. For the fixed w # 0, define the event A, := {|eXx_| > w/2}. First, we have
(% y Xk, -2 -y) - Hel
=H(S,y, Xk, - L —y) - Hella, +H(Z, v, Xk -2 —y) - He[lac
SLa, +IH(S,y. Xk, -2 -y) - Hellac,

where in the last step we applied (A.2) (note that s < t) to bound H, < H(Z,y, XK.~
2 -y) < 1. Thus

Bl B0 X~ ) ]
S BugeolLa, ]+ Buye ol (5,9, X, - 2~ ) - FelLag |

The first term on the r.h.s. goes to zero as € - 0 by (3.8). For the second term, we
have

E wjeol H(Z v, Xk - L —y) - He|la: ]
A sfe o) 8/62 -
<E o []EB[ 82 f5~ Ry+Bar)dr g2 / R(y + By )dr

The conditional expectation can be bounded using Lemma A.1:

2
|:B ]‘&/6 R(y+§27.)drﬁgf /e R(y+32r)dr

Se

< E |f8/82R( Boy)dr[2
~ 11 + T
[loge] IS Yy e

In the event A, we have |eXk_| < w/2, thus cyw < |eX g, — w — ey < cow for some
c1,c2 > 0 (note that y is fixed). Recall that s; = we apply Lemma A.3 to
derive

B2s/52 = XKE - % - y:|]lA$U:| .

(3.12)

s
e2|logel?

2

sle _
EB[| f R(y + Bay )dr|?

Bayyer = Xy — 2 y] < Jlog =|(log | log =],

uniformly in [eXk_| < w/2, so we pass to the limit in (3.12), then obtain (3.11).

To summarize, we have
G-(s) > 5275 [, 9@~ w)g(a) Ry) G (w)dadydu

=% fR4 g(x —w)g(x)Gas(w)dadw,

which completes the proof. O

3.4. Proof of Proposition 2.1. Recall that X, -E[X.] =B:([1 e+ 12+ 13.). We
combine Lemmas 3.2, 3.3 and (3.6) to derive

B2Var[X | =E[ Iy + Io . + I3.*] = o}

4. GAUSSIANITY

Recall the goal is to show
E[ PXc[5]'E[ P*Xc]3,]"* = o(|loge|™), as £ >0,
where X, = [, log Z.(t,z)g(x)dz and H = L?(R**!). Since

DZ.(t,x) x)
DX, [ Z.(tx g(x)dz,
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we have
DZ.(t,x)
D2X.=D f ( g(z)dz

~ f Zs(t,x)DQZE(t,w) -DZ.(t,x)® DZ.(t,x)
"~ Jre Z2(t,x)

g(x)dx.

Using the Feynman-Kac representation (2.2),
D2Z€(t7 LL') = EEEB[MS(tv x)q);m,B ® (I);x,B]v

SO
2

Ze(t,2)D*Z:(t,x) = B2Ep [H i (t,2) 7, pe @ D, Bz]

and
2

DZS(t7£L') ® DZE(t,QT ﬂ2EB |:H (t l’ z,B! ® (bt = BQ]

Thus we can write

Ep(ll5; Me;(t,x)(95 po — D5 51) @ B
Dszzﬁgfz [ j=1 =i (t2)( t,z,B2 t, ,Bl) t, ’B2]g(x)dx:’P2—771,

Z2(t, )
where
Ep[IT5., M- ;(t, 2) 5, pr ® F, po]
H®H>P; = f i z L dz.
o= Z2(t,1) 9(a)de
Thus,
HD X ”opN HPlH HPQHopa

and we only need to estimate E[ Px[3,], k= 1,2.

4.1. The first derivative.

Lemma 4.1. For any ¢ >0, there exists () >0 such that if B < B(9),
E[ PX|3]* 5 loge#*?

Proof. A direct calculation gives

IDX.|% = ﬁ“f H Z ((tx]) )EB [H M, j(t,x;)R(L, 2222 B B2)R(€2,T3;m4,33,34)]dm,
’ 7

with R defined in (3.1). Taking the expectation and applying Lemma 3.1, we have

4
L DX s [ TTloGnIEs [RY (S, @22, BY BYRY (%, 522, B BY)] M do
J=1

o( [ oteate) EslRI(s, 222 51 Boar)

We can view the factor |g(z1)g(z2)| as a weight (without loss of generality assume
[ lgl =1), so the integral

[ o) g@)Ep[RY (%, 2552, B!, B)]da
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can be viewed as an expectation of 'Rq(a%, %, B!, B?) with 1,2 independently

sampled from the density |g|. Therefore, by the LP-interpolation inequality and
arguing similarly as (3.5), we have

([, o)) EalRI (%, 222, BT, B))d)
(4.1 $( [, lo(eg(@) Es[R(%, 2222, B', 5 Jda)

z1-wa 0/2
< ([ lga)g(a)EpR (S, 252, B, B) Jda)

for =2- %. Applying Lemma A.2, we know that the first factor on the r.h.s. is

1-6

uniformly bounded and the second factor is bounded by |log 5|6/ 2. Thus,

1
E[ PX.I4] s ek
By choosing g sufficiently close to 1, we can make 6 arbitrarily small, which completes
the proof. O

4.2. The second derivative. To estimate |Pyop, we use the contraction inequality
[23, Proposition 4.1], which says that
IPelgp < 1Pk ®1 Prl e

Here P, ®1 Py, is the random element of H ® H obtained as the contraction of the
symmetric random tensor Py. Recall that H = L?(R**!), we can write the r.h.s. of
the above inequality as

|Px @1 Prlfron
2
Lo o (o Prlsrons’ )Pz’ )s'dy ) dssdyndsade

4.2.1. The case k=1. A direct calculation gives
Pr®1 P
EB[H] 1 Me (2, x])R( =4 B! BB)(I)thQ‘X’(I)t

_ 64 52 ) € )

: Z2(t.2) 22 (t.y)
where we write x1 = 22 = x,x3 = x4 = y to simplify the notations. Thus,
-1

v.B ]g(l’)g(y)dwdy,

8
|P1 @1 PilFrom = 52 ngg(x)g(y)g(Z)g(w) (H1 Zs(t,xj))

8 .
xEp [H M. ;(t,z;) [] R(%, =2, B, B | dedydzdw,

j=1 (i,k)eO

where x5 = xg = 2,27 = 13 = w, and the set O is O ={(1,3),(5,7),(2,6),(4,8)}.
Lemma 4.2. For any ¢ >0, there exists (d) such that if 5 < 5(9),
E[ P1 @1 Pilhen] S |loge| ™.
Proof. Applying Lemma 3.1, we have
B°E[ 1 @1 PilFren]

Ti—T 1 1/
s [ lo@gwg)g)Bs[ TT RUE, =22, B, 5] M dedydzdu
(i,k)eO

(i,k)eO

1/q
(f lg( x)g(y)g(z)g(w)ﬂEB[ H Rq(527 misz’“,Bi,Bk)]dIdydzdw) = q
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for some ¢ > 1 and we used the simplified notation a,. Again we apply the
LP—interpolation inequality as in (4.1), with 6 =2 - %, we have

1-0 6
g < A7 Gy

Note that the process (B?, B¥) are independent for different pairs of (i, k) € O.
Applying Lemma A.2 yields

Es[ [1 R(& 22%,B,BY)]s [] (1+loglz; —axl)),

(i,k)eO (i,k)eO
[ H R? E—z,li?’“,Bi,Bk)]§|log5|4 H (1 + |logla; — xkl])-
(i,k)eO (i,k)eO

Thus we have a; < 1 and ay S |loge|?, which implies a, < |loge[?’. By choosing ¢
sufficiently close to 1 so that 6 is sufficiently close to 0, we complete the proof. O

4.2.2. The case k = 2. In this case,

Ep[M:(t,2)®; , 5 ® ®; . ]
= tiad] d
Po = 32 f 7-(t.2) g(x)dx,
o)
P2 ®1 P2
EB[H 1 M. ](t x])R( Z,wl L2 B1 BQ)CI) L ® B¢ 2]
4 j= ) € t,x1,B t,x2,B
= dx1d
55 Zg(t,xl)Zg(t,fL‘Q) (:El)g(l‘z) xr1a4I2,
and
8 g(ﬂ?j) - zi—Tp Rt Rk
|P2@1Pa | 5rom = B [H itz 1 R(L, %22, B, BY)]dz,
J Z (t25) A (i,k)e®

with the set O = {(1,2), (3,4),(1,3),(2,4)}.
Lemma 4.3. For any ¢ >0, there exists (8) such that if 8 < 3(9),

E[ P2 ®1 Po|}on] S [loge[ .

Proof. By Lemma 3.1 and the fact that g is compactly supported, we have

Ti—T 7 1/
BBl B2 @1 Palron] s [ H\gm NEs[ [T RUCE, 222, B, 54V

(i,k)eO

1/q
(/ [To@IEs| TT R f’”fﬂB”,B’“)]dx) = dg.

(i,k)e®

Arguing in the same way as in the proof of Lemma 4.2, we have a, < al~a§ with

0=2- %. By Lemma 4.4, we know that a; <|loge|. For as, to simplify the notation
we write
[T R*(&, =%, B, B") = RIRRER],
(i,k)eO
with R; denoting R(Z%, %,Bi,Bk) for different (i,k) ¢ O. Applying Hélder
inequality and Lemma A.2, we derive

Es[ [T R*(&. =25 B, BY)] <|Ri i RalZIRs 6 I Rale
(i,k)e®
+Z415, 15

<|10g€|2(4 §+16+18) H (1 +|log|z; — x| @
(i,k)e®
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5

for some a1, > 0. After integration in x;, we have as $ |log 5|4 EAS RS Thus, by
choosing ¢ sufficiently close to 1, the proof is complete. O

Lemma 4.4. Assume 0< f,heC¥® (Rz), then

I EBle(%) [ e s 5 - B

(i,k)e®

dz $ |logel.

Proof. Without loss of generality, assume h is even. By symmetry, we assume in the
proof that O = {(1,2),(3,4),(2,3),(1,4)}. In this way we can write

t/s .
Il f (2=t 4 B - B )ds—f Hh(””i"”ﬁ L BI - BI)ds,

(i.k)e® 0.t/e2]

with the convention z = 4, B’ = B*. Denoting f(¢) = [ f(x)e **%dz as the Fourier
transform of f, we have

J. Hf(x»h(%'-%wBJ - B s
A~ i (LT e in;e Bg,—Bgfl
- W/Rw qf(xj)h(nj)e (-2 e g (BB g
i

1 4 A~ U A~ i(n:-B —p...-B7
— ni=Nj-1 h(n: 61(77] 5; M+l s]-+1)d
e o T C2200) n
with 19 = n4,75 =M1, 85 = s1. Thus, it suffices to estimate

4
f [ H ny ?7] 1)h(77 JEgp[e i(n;-Bs;—n;+1-Bs +1)]dnds
[0,t/e2]4 _

4 .
B f f [T 7(nj = nya)h(en; )Ep e Pea=mer B ]dnds,
[0,¢]* j=1
where we changed variables s; ~ s;/e%,n; = en; and used the scaling property of the

Brownian motion. Without loss of generality, consider the set A; = {(s1,...,84) €
[0,¢]%: 51 2 55,7 # 1}, it is clear that in A; we have

4
(1. - M. _1 2 —
HEB [el(ﬁg Bs,;-nj+ stﬂ)] <e zlml7(s1 52)7

which implies

fA fRs H|f(77J Tj- 1)h(577j)|EB[ B 7UH'BS]“)]d77als

< [ f e~ 3lml <81-82>n|f<nj—nj_1>ﬁ<enj>|dnds
A, JRS j=1
s [ e s e hen) o) fGis) f ()l difds.

In the last “<” we bounded |f (71 —n4)| $ 1 and changed variables nj—MNj—1 > 1Nj,J =
2,3,4. The last integral can be computed explicitly, and we use the fact that

t 112, ~ t/e” 1 120~
f /2 e 2! *|h(em)|dmds = / /2 e~ zlml *|lh(m)|dnids $ |loge|
o Jr 0 R

to complete the proof. O
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4.3. Proof of Proposition 2.2. Recall that Y, = )&%. Since

drv(Ye,Q) SE[ Y51V 'EL P*Yelop]"" = Gtz Bl PXcIB 1 EL P2Xc]g, 11",

using the fact that Var[X.] ~ |[loge|™! and applying Lemmas 4.1, 4.2 and 4.3, we
have

1
drv(Yz, () S |loge| x |10g5|_%+(S x (|loge| ™ + |loge[ 7).
By choosing ¢ small, the r.h.s. goes to zero as € - 0.

APPENDIX A. AUXILIARY LEMMAS

Recall that 3. = |loge|™'/? and G4(x) is the standard heat kernel. We present
some rather standard estimates on the integral of Brownian functionals for the
convenience of readers. Similar estimates can be found in [6, 7].

Lemma A.1. Fizt >0, there exists Bg > 0 such that if B < By, we have in d =2
that

(A1) sup Eg [e,e’;‘ fﬂt/gz R(”BS)dS] < 00,
zeR2,e€(0,1)

and

.2
(A.2) sup Ep [eﬁg £/e” R(x+B,)ds
z,yeR2,e€(0,1)

Bt/52 = y] < 00.

Proof. It suffices to prove (A.2) since (A.1) follows from an integration in y. We
claim (A.2) is implied by
2

t/e
(A.3) sup |loge|™* f Ep[R(z + By)|By-2 = y]ds < C.
z,yeR2,e€(0,1) 0

The proof essentially follows Portenko’s lemma and we sketch it here for the
convenience of readers. For any n > 1, we can write

t/e? " ] n
Es [([ R(m+Bs)ds) By =y|=n! [ EB[H R(z+B.)
0 ] [0,t/e?]2 j=1

By conditioning on B, _, and applying (A.3) to the integral in s,, we have

Byjez = y] ds.

n 7 n-1
Eg|[]R(x+ By)|Bye =y |ds < Clloge| [ Ep | [] R(z+ Bs,) |ds.
/[Oi/E?]? B[jl:[l (z + Bs,)|Bye2 y_ s < Clloge] S BI:jI:Il (x _7)] s
Iterating this procedure yields

Ejp [(fot/gz R(z+ Bs)ds)n

which completes the proof of (A.2).

Byyea - y] < nl(C|log )",

It remains to show (A.3). For the Brownian bridge, we only need to show

t/2¢?
f Ep[R(z + B.)|Bye: = ylds < C|loge]
0

for some constant C' independent of z,y,e. Note that B has the Gaussian distribu-
2
tion with mean If/’% and variance 3“{775;*")7 so its density is bounded from above by

% when s < é Thus, we have

t/2e2 t/2e2
f Ep[R(z + B.)|By.: :y]d551+f sz(x+w)%dwds$1+log#.
0 1 R

The proof is complete. O
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Lemma A.2. For any 0< geC.(R?) and t > 1, we have

t
[ o(eng(@)Es [\ [ Rz Bs)ds|2] diydry < C(1+logt)e,
(A.4) ® 0
[]1{4 g(x1)g(x2)Ep [[ R(#=%22 + Bs)ds] dzydzy < Cet,
0
with some constant C independent of t,e. For any t>0,n € Z,, we also have
t/e? n B
(A5) EB |:‘ ,/0‘ R(% +Bs)d5| ] < C’(n,t)|10g€|n 1(1 + |10g|:z:||)

with some constant C(n,t) independent of x, €.

Proof. To prove (A.4), we write the expectation explicitly:
(A.6)

Bo|| [ R+ m)as |2 [ds [T aumalRE + BORE +B)
=2 fot ds /0 du fR R(Y)R(2)Gu(z - £)Go—u(y - 2)dzdy.

Integrating in s and y yields
t t
(A7) / f R(y)Gs-u(y —2)dyds 1+ f / R(y)X-dyds s 1 +logt,
u JR2 u+l JR2 sTu
which implies
t t
(A8)  Eg [|/0 R(z +Bs)d5|2] s(+logt) [* [ R()G(: - 2)dzdu

Since the integral [Ot Jre R(2)G (2 - 2)dzdu = JEB[fot R(% + B, )ds], to prove (A.4),
we only need to note that

t
fwg(xl)g(xz)fo d“fRz R(2)Gy (2 - ©1=22)dz
~ e [ L 6©P R agdu s 2,

where we used the fact that supgga R(€) < [ R=1 in the last step.

To prove (A.5), by the same argument above, we have

t/e? n t/e?
Ep [| fo R(Z+ Bs)ds| ] < |logel™ ™ /0 fRZ R(2)Gu(z - Z)dzdu.

We estimate the integral in u by

t t a—a/e|? =)
f Gu(z-%)du s f ule du s [ o2 A te A < 1+]log ez —x||+|log £2¢|.
0 0 =
For the integral in z, recall that R(z) =0 for |z| > 1, we have
f2 R(2)|log |ez—a||d= < fu |log ez~ al|dz $ 1+|log |||+ L sjesc| log | $ 1+|log ]|
R z|<1

The proof is complete. O

Lemma A.3. Fizt>0 and a compact set K c R? with 0 ¢ K, we have

sup El( ?zt R(Bs)ds)2

weK e2[loge]

w
Bijez = 6] S |loge|(log|logel).
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Proof. To simplify the notation, denote t; = and to = E%, and write

_t
e2|loge|

t-
(f ZR(BS)ds)2:2f R(B,)R(Bu) 1 ssududs.
t1 [t1,t2]2

Now we compute the conditional expectation

Co(y)Gon(@ —y)Crys (¥ —
ELR(B)R(B,)(B, = wfe] = [ Ra)R() “HTE ) ele 20 gy
_ G'u(y)G(sfuur - y)thszs(w - ELC)
- [ R@R@) X dady.

Since 0 ¢ K, t > 0 is fixed, and supp(R) c {« : |z| < 1}, we have for € « 1 that

Gt—€28(w ~ 61‘) <

sup 1

wekK, |z|<1 Gf(w) ”

)

uniformly in s < t/e2, so the conditional expectation is bounded by
E[R(B)R(B.)|Br = w/e] 5 [ R@)R)Gu()Giom(a - y)dady,

which implies
t
2 2
El( “,  R(B)ds)

Bt/sz = ’LU/E“

62|10g5|
s ~[[ ] ‘[]R R(z)R(y)Gu(y)Gs-u(z - y)dudyduds.
t1,t2 3 4

By (A.7), the above integral bounded by
ta

log(t2 = t1) log 2 < |log e[ (log|loge]),

which completes the proof. O

APPENDIX B. NEGATIVE MOMENTS OF Z.(t,x)

The goal is to show there exists 5y > 0 such that if § < 5y and n € Z,, we have

(B.1) sup sup E[Z.(t,) "] <Cpnr
te[0,T] €(0,1)

for some constant Cg , 7 > 0. The result is essentially implied by [18, Theorem
4.6], and we only present the details here for the convenience of the readers. Since
Z.(t,z) has the same distribution as u(%, %) and is stationary in the z—variable,
it suffices to estimate the small ball probability ]P’[u(e%, x) < r] for r « 1. From now
on, we will fix € >0 and derive an estimate that is uniform in € > 0 and t € [0,T].
We fix t >0,z € RZ.

We first define an approximation of the spacetime white noise
Wa(t,2) =) [ G5t = s, - y)dW (s,1),
R

where ¢s(t, ) = 5%(]5(6%, ) with ¢ € C°(R?) such that ¢ is even and [ ¢ = 1. Thus,
we have almost surely that Ws € L?(R?) n C*=(R?). Define

Viltw) = [, @) Wslt,)dy, s(t,s,2,9) =EIVs(t2)Vi(s,9)],

and % s(t,x) =Ep [eva“(t’B)], with

t/e?
Ve,ﬁ(th) :ﬁsfo V(S(E% —S,$+Bs)d3— %ﬁ?Q5(5L27xvxaByB)a
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where
Qs(t,z,y, B, B?) = f[ LAttt BLy + B2)dsdL.
0,

By [18, Proposition 4.2], for each fixed € >0, % 5(t,x) - u(s%, x) in probability as
d - 0, so we only need to estimate P[% 5(¢,z) <] for r « 1, uniformly in ¢, > 0
and t € [0,T].

With any given W;, define the expectation

1 2
B (1, 7)) < BalF (B B2V Ve B
B ’ EB[evs_,g(uBl)wg,a(t,B?)]

To emphasize the dependence of % s on Wy, we write Ues(t,x) = U(t,z, Ws). For
any A > 0, define the set

. . t/e? W
A(t,x) = {Wa U (t,w, Ws) > L, B2 [ Ej°[R(B; - BY)]ds < A}-
0
Lemma B.1. For any #5 € Ax(t,x), we have
U (t,z,Ws) > %efﬁ”WrF*WEHL?(R%.

Proof. We write
B p[eVes (LB)-Yes(tB) Vos (1.)]

]EB [ent/s,é(th)]
=Wt 0, W) B [V (WD) e D))

where ¥, 5(t, B) is obtained by replacing Ws by #s in the expression of Ve s(t, B).
By the fact that #5 € Ay and Jensen’s inequality, we have

U (t,x,Ws) > Lexp(EL [V 5(t, B) - 7-5(t, B)]).
It remains to show that
(B.2) [ER [Ve,s(t, B) = Ye.5(t, B)]| < VAIW2 = We | 12 (goy.-
We write

t/e? . .
Ves(t.B) = Vst B) = B [ [ oo+ Bo=y)[Walh = 5,9) = s(s = 5,9)]dyds,
and apply Cauchy-Schwarz to derive
|EZE [VE,(S (t7 B) - 7/6,5 (t7 B)]|

U(t,x,W5) = Eg[eV=s (B ] =E [0 (5]

. R t/e? .
< s~ Aoy [ [ L oo+ B ) P

. . t/e* . .
=|W6—%IL2<R3)\/53 [ B IR - B2)ds < VAIW - Fs ooy,
which completes the proof. O

Lemma B.2. There exists constants \,c >0 independent of ,6 >0 and t € [0,T]
such that P[Ax(t,z)] > c.
Proof. We have
P[A/\(t, (E)] 2 P[%s(tv T, W&) > %] - P[B)\(ta SC)],
with

. . /e*
B,\(t,x):{Wgz%E(t,x7W5)>é,ﬁff Egé[R(le—Bﬁ)]ds>)\}.

t
0
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Using the fact that E[Z(t,z,Ws)] = 1 and the Paley-Zygmund’s inequality, we
have
1 1

AR[%.(t 7, W5)?]  4Ep[eP Qoo BLEN ]

P[%.(t,x W(;) > ]
For B (t,x), we have

B)\(t m [ R(Bl B2) Ve, 5(tB )+V€5(tB )]d8> :I
Ep

t/e?
[ng(t/e z,z,B! B)ﬂQ/ R(B;—B?)ds]
1/2
S%]EB [626‘3 Qg(t/eQ,:r,z,Bl,BQ):I

for some constant C' > 0, where the last “<” comes from an application of Cauchy-
Schwarz inequality and Lemma A.1. By Lemma B.3 and choosing A large, there
exists some constants ¢, A > 0 independent of €, > 0 such that P[Ax(¢,x)] > ¢, which
completes the proof. O

Lemma B.3. There exists By >0 such that if 5 < 8y, we have

1< sup sup Ep [65395(t/62’x’$’Bl’B2)] <Csr.
te[0,T] €,6¢(0,1)

Proof. Recall that Q;(t,x,x, B*, B?) = /0 . 2ﬁg(t—s,t—é,x+le,x+B?)dsd€. We
write Zs explicitly:

Rs(ti,ta,21,22) = fw (1 —y1)p(za — y2)E[Ws (t1, y1 )W (t2, y2) [dy1 dys

< /R4 o(x1 —y1)e(x2 —y2)ds * ¢5(t1 — ta, y1 — Y2 )dy1dys,

with “x” denoting the convolution. By the fact that ¢, ¢ have compact supports, it
is clear that

-2
%6(t17t23x17x2) S 6 ]l\zl—zg|55,|t1—t2|5c52
for some ¢ > 0. Thus, we have

Q&(t/527w7xaBl7Bz) S[

0
[0,t/e2]?

c t/e?
< fo ( fo L _Bﬂgcdé)ds.

-2
Tjs—pi<cs? ]1\3; _Bg|gcdsd€

By Jensen’s inequality, we have

. c t/e?
EB[eﬂggs(t/az,z,w,Bl,BQ)] <Ep [exp (Cl /0\ (55 L 1|B;+625—B§|SCCM)CZS):|

c t)e?
S%fo EB[exp(cc’ﬁffO IL|B;+5 _Bg‘gcdf)]ds

for some ¢, ¢’ > 0. Clearly we have

t/e?
S[t(l)p]EB[exp (cC 32 / ]llB;sz_Bz‘gcdf)]
S€ (&

t/e?
< sup Eg[exp (cc' 82 /0 ]]-\w+Bl}—Bf|Scd£)] S

TeR2

for small 3, where the last “<” comes from Lemma A.1. The proof is complete. O
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Now we can write

(B.3)

P (t, 2, Ws) < r] <P[LemVAIVs An(10)) ¢ 1]

<P [dist (W5, Ax(t,2)) > 122CD ],

where dist(Ws, Ax(t,z)) = inf{|| W5 - %HLQ(Rg) : W5 € Ax(t,x)}. Now we can apply

[18,

Lemma 4.5] to derive that

(B.4) P[dist(W(;,A,\(t,:z:)) >7+2¢/log %] <2

for all 7 > 0, where \,c > 0 are chosen as in Lemma B.2 and are independent of
£,0 >0 and ¢ € [0,T]. Combining (B.3) and (B.4), we have

2
P[%e(t,fv,Wé)ST]S2exp(—i(1°%}§7’)+2 log%) )7

which implies E[% (t, 2, W5)™] $ 1 and completes the proof of (B.1).
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