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Connecting the Dots: A New and Complete
Salicylic Acid Biosynthesis Pathway
Salicylic acid (SA) or 2-hydroxybenzoic acid, better known as the important role in SA biosynthesis (Figure 1B) (Zheng et al.,
active ingredient in aspirin, is a phenolic plant hormone that plays

an essential role in plant defense against biotrophic and

semi-biotrophic pathogens (Fu and Dong, 2013). It is also well

known that SA regulates seed germination, stomatal closure,

flower development, responses to abiotic stresses, and

thermogenesis, etc. (Vlot et al., 2009).
Early studies have demonstrated that SA production during

pathogen infection in plants shares similarity to SA biosynthesis

in bacteria (Wildermuth et al., 2001). Some bacteria such as

Pseudomonas aeruginosa and Pseudomonas fluorescens can

synthesize SA from chorismate via a two-step isochorismate

synthase (ICS) pathway, in which chorismate is converted to iso-

chorismate by ICS and then SA is synthesized from isochoris-

mate by isochorismate pyruvate lyase (IPL) (Figure 1A). In

Arabidopsis, there are two ICS homologs, ICS1 and ICS2. ICS1

is also called SID2 or EDS16. Both sid2 and eds16 mutants

show a reduced level of SA accumulation in response to

pathogen infection. ICS1 is responsible for 90% of pathogen-

induced SA production, whereas the second homolog, ICS2,

plays a very minor role. ICS catalyzes only the conversion of cho-

rismate to isochorismate, and in bacteria, the IPL enzyme is

responsible for converting isochorismate to SA. For this reason,

scientists have long searched for an IPL homolog in plants. How-

ever, despite many years of intensive research, this putative plant

IPL has not been identified (Figure 1A). For close to 20 years, ever

since the discovery of ICS1, how SA is synthesized from

isochorismate in plants has remained a mystery.
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An important milestone in SA biosynthesis was the discovery of

PBS3 (avrPphB Susceptible 3) (Warren et al., 1999). PBS3 was

identified through genetic screening for Arabidopsis mutants

compromised in defenses that are mediated by a group of

resistance proteins. Further studies demonstrated that pbs3

mutants show reduced accumulation of SA and SA

metabolites. PBS3 is a member of the GH3 family of acyl

adenylase enzymes, which conjugate amino acids to an acyl

substrate (Figure 1B) (Nobuta et al., 2007). One of the most

cited members of this group of enzymes is JAR1, which is

responsible for the conjugation of isoleucine to jasmonic acid

(JA), producing its active form, isoleucine-JA. The next logical

step was to test whether PBS3 could conjugate amino acids to

SA. In subsequent experiments, it was discovered that SA is a

poor substrate for PBS3. Surprisingly however, PBS3 was found

to conjugate amino acids to 4-substituted benzoates (Okrent

et al., 2009). The exact function of PBS3 remained another

piece of the puzzle in SA biosynthesis at that time. Ten years

after the report identifying PBS3, another player EPS1

(Enhanced Pseudomonas Susceptibility 1) was revealed. EPS1

encodes a BAHD acyl transferase-like protein and plays an
Molecu
2009), but how EPS1 contributes to pathogen-induced SA

biosynthesis was not well understood.
SA inhibits PBS3 enzymatic activity in vitro (Okrent et al., 2009),

suggesting that SA is a downstream product of PBS3, and SA

represses PBS3 activity by feedback inhibition. Therefore, it is

more likely that PBS3 conjugates amino acids to isochorismate

than to SA. Chen et al. (2009) in a bold prediction, hypothesized

that SA is produced from isochorismate by PBS3 followed by

EPS1, but exactly how this process is achieved was not clear.

Recently, two independent groups took innovative approaches

and solved this long-standing mystery. First, both groups gener-

ated Arabidopsis lines with increased levels of SA in order to

amplify their SA signaling (Rekhter et al., 2019; Torrens-Spence

et al., 2019). Then they crossed these lines with pbs3 mutants

to generate the same lines in a pbs3 mutant background. Using

high-resolution mass spectrometry, these lines became a power-

ful tool in dissecting the influence of PBS3 on SA-related metab-

olites. By comparing metabolomic datasets, they found there

were significantly higher isochorismate levels and significantly

reduced isochorismate-9-glutamate levels in pbs3 mutants

(Rekhter et al., 2019; Torrens-Spence et al., 2019). This

supports the function of PBS3 in conjugating glutamate to

isochorismate to produce isochorismate-9-glutamate. To test

this hypothesis, both groups had to use purified recombinant

ICS1 protein to produce isochorismate from chorismite because

isochorismate is not commercially available. Next, both groups

incubated isochorismate with L-glutamate and purified PBS3

protein (Rekhter et al., 2019; Torrens-Spence et al., 2019).

Isochorismate-9-glutamate was detected as the main product.

These experiments prove that PBS3 functions as an

isochorismoyl-glutamate synthase conjugating L-glutamate to

isochorismate.
How exactly is SA produced from isochorismate-9-glutamate?

These two independent groups both demonstrated that SA can

be produced from isochorismate-9-glutamate by spontaneous

decay (Torrens-Spence et al., 2019). This discovery itself is

significant because this would be the first example of a

phytohormone that utilizes spontaneous decay for biosynthesis.

If SA can be produced from isochorismate-9-glutamate by spon-

taneous decay, then why do we still need EPS1 for SA biosyn-

thesis? It turns out that EPS1 is unique to the Brassicaceae family

(Torrens-Spence et al., 2019). Even though SA can be produced

from isochorismate-9-glutamate by spontaneous decay without

EPS1, this spontaneous decay happens at a low rate in plants

of the Brassicaceae family. Unlike conventional BAHD
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Figure 1. The Complete Pathogen-Induced Salicylic
Acid (SA) Biosynthesis Pathway in Plants.
(A) Two-step SA biosynthesis pathway in bacteria. ICS1

converts chorismate to isochorismate, which is subse-

quently converted to salicylic acid by IPL, an enzyme yet

unidentified in plants.

(B) Functional domains and enzymatic activities of key plant

proteins involved in pathogen-induced SA biosynthesis.

Y120 R123, SA binding sites; Y112 R123 T331, iso-

chorismate binding sites; S160 S367, two serine sub-

stitutions at the two conserved catalytic residues important

for canonical BAHD acyltransferase.

(C)Model depicting the pathogen-induced SA biosynthesis

pathway in plants. In the chloroplast, chorismate is con-

verted by ICS1 to isochorismate, which is transported to the

cytosol by EDS5. In the cytosol, PBS3 catalyzes the

conjugation of L-glutamate to isochorismate creating iso-

chorismate-9-glutamate, which is then converted to SA by

spontaneous decay or at an accelerated rate by EPS1 in

Brassicaceae family plants.
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acyltransferase, EPS1 has an unusual serine substitution to the

highly conserved catalytic histidine in the active site, suggesting

that EPS1 may be an unconventional enzyme (Figure 1B)

(Torrens-Spence et al., 2019). Further study revealed that in the
1540 Molecular Plant 12, 1539–1541, December 2019 ª The Author 2019.
presence of EPS1, the formation of SA from

isochorismate-9-glutamate is four orders of magni-

tude greater than in the absence of EPS1 (Torrens-

Spence et al., 2019). EPS1 functions as an

unprecedented isochorismate-9-glutamate

pyruvoyl-glutamate lyase (IPGL) to cleave N-pyru-

voyl-L-glutamate from isochorismate-9-glutamate,

resulting in accelerated production of SA in Brassi-

caceae family plants (Torrens-Spence et al., 2019).

In non-Brassicaceae family plants, based on

current knowledge, SA is primarily produced from

isochorismate-9-glutamate through spontaneous

decay.

Here, we provide a short summary of the new and

complete pathogen-induced SA biosynthesis

pathway in plants (Figure 1C). Upon pathogen

infection, the expression of ICS1, EDS5, PBS3, and

EPS1 will be significantly induced (Wildermuth

et al., 2001; Nawrath et al., 2002; Nobuta et al.,

2007; Zheng et al., 2009). ICS1 converts

chorismate to isochorismate in the chloroplast.

EDS5 or SID1, localized in the chloroplast

membrane, functions as a MATE transporter

(Nawrath et al., 2002), exporting isochorismate to

the cytoplasm (Rekhter et al., 2019). PBS3

catalyzes the conjugation of L-glutamate to

isochorismate to produce isochorismate-9-

glutamate. In Brassicaceae family plants, EPS1 facil-

itates the production of SA from isochorismate-9-

glutamate by functioning as an unprecedented

IPGL. In non-Brassicaceae family plants, in the

absence of EPS1, SA is produced mainly from iso-

chorismate-9-glutamate by spontaneous decay. To

validate their data in planta, Torrens-Spence et al.

(2019) reconstituted de novo SA biosynthesis using
Agrobacterium-mediated co-expression of SA biosynthesis

genes. Co-expression of SID1-SID2 or EPS1-SID1-SID2 led to

an increased level of isochorismate, which was depleted when

PBS3-SID-SID2 genes were co-expressed, supporting that
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SID2 or ICS1 produces isochorismate, SID1 or EDS5 exports iso-

chorismate from the chloroplast to the cytosol (Rekhter et al.,

2019), and PBS3 uses isochorismate as a substrate. Co-

expression of SID1-SID2 did not yield a significant level of SA,

however, when SID1-SID2-PBS3 or SID1-SID2-PBS3-EPS1

were co-expressed, a high level of SA was detected. This indi-

cates that PBS3 is required and SID1-SID2-PBS3 are sufficient

for de novo SA biosynthesis.

PBS3 and EPS1 are both required for effector-triggered immu-

nity (ETI), whereas ICS1 is not (Warren et al., 1999; Zheng

et al., 2009), suggesting that PBS3 and EPS1 have additional

functions apart from SA biosynthesis. Future studies on how

PBS3 and EPS1 are associated with resistance proteins may

help us better understand how PBS3 and EPS1 accomplish

their functions in resistance protein-dependent ETI. In addition

to ICS1, EDS5, PBS3, and EPS1, pathogen-induced SA pro-

duction in plants also requires EDS1, PAD4, and NDR1 (Qi

et al., 2018). Dissecting the function of EDS1, PAD4, and

NDR1 in SA production may help us better understand how

SA is produced and/or regulated during plant–pathogen

interactions.
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