Dynamic Weighted Fairness with Minimal Disruptions

SUNGJIN [IM, University of California, Merced, USA
BENJAMIN MOSELEY, Carnegie Mellon University, USA
KAMESH MUNAGALA, Duke University, USA

KIRK PRUHS, University of Pittsburgh, USA

In this paper, we consider the following dynamic fair allocation problem: Given a sequence of job arrivals
and departures, the goal is to maintain an approximately fair allocation of the resource against a target fair
allocation policy, while minimizing the total number of disruptions, which is the number of times the allocation
of any job is changed. We consider a rich class of fair allocation policies that significantly generalize those
considered in previous work.

We first consider the models where jobs only arrive, or jobs only depart. We present tight upper and
lower bounds for the number of disruptions required to maintain a constant approximate fair allocation
every time step. In particular, for the canonical case where jobs have weights and the resource allocation is
proportional to the job’s weight, we show that maintaining a constant approximate fair allocation requires
O(log" n) disruptions per job, almost matching the bounds in prior work for the unit weight case. For the
more general setting where the allocation policy only decreases the allocation to a job when new jobs arrive,
we show that maintaining a constant approximate fair allocation requires O(log n) disruptions per job. We
then consider the model where jobs can both arrive and depart. We first show strong lower bounds on the
number of disruptions required to maintain constant approximate fairness for arbitrary instances. In contrast
we then show that there there is an algorithm that can maintain constant approximate fairness with O(1)
expected disruptions per job if the weights of the jobs are independent of the jobs arrival and departure order.
We finally show how our results can be extended to the setting with multiple resources.

ACM Reference Format:

Sungjin Im, Benjamin Moseley, Kamesh Munagala, and Kirk Pruhs. 2020. Dynamic Weighted Fairness with
Minimal Disruptions. Proc. ACM Meas. Anal. Comput. Syst. 4, 1, Article 19 (March 2020), 18 pages. https:
//doi.org/10.1145/3379485

1 INTRODUCTION

The formal study of fair resource allocation has advanced rapidly in recent years, motivated by
applications to computer systems [2, 4, 7, 10, 19, 24]. The basic theory of fair resource allocation
has its roots in Economics [12, 21] and in scheduling results in computer science [3, 11]. However,
modern applications such as data center scheduling have motivated considering new desiderata in
fair resource allocation.

In this paper, we consider a dynamic model for resource allocation, a topic that has received
significant attention in recent literature [1, 6, 8, 9, 15, 23]. In this model, which is again motivated
by computing systems, each of n jobs (or agents) may potentially arrive or depart from the system,

Authors’ addresses: Sungjin ImUniversity of California, Merced, USA, sim3@ucmerced.edu; Benjamin MoseleyCarnegie
Mellon University, USA, moseleyb@andrew.cmu.edu; Kamesh MunagalaDuke University, USA, kamesh@cs.duke.edu; Kirk
PruhsUniversity of Pittsburgh, USA, kirk@cs.pitt.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

2476-1249/2020/3-ART19 $15.00

https://doi.org/10.1145/3379485

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 1, Article 19. Publication date: March 2020.

https://doi.org/10.1145/3379485
https://doi.org/10.1145/3379485
https://doi.org/10.1145/3379485

19:2 S.Im et al.

so at every time step t we are presented with a set of alive jobs N* C N. The set N* \ N*7! is the
set of jobs that arrive at time ¢, and the set N'™! \ N is the set that departs at time t. We have a
single divisible resource.

There is some underlying fair share policy I(j, t) which specifies the ideal fair share of the
resource for job j at time . At every time step ¢, an allocation policy/algorithm A must determine
A(j, t), its allocation of the resource to a job j € N*. The policy A must be online in that it can not
rely on knowledge of the future. Ideally one would like A to be perfectly fair, that is it is always
the case that A(j, t) = I(j, t). However, a perfectly fair allocation policy would generally lead to a
disruption, which is a change in the resource allocation of a job, of every job when any job arrives or
departs (which is exactly when a job’s fair share changes in most natural fair share policies). These
disruptions can have significant overheads as they involve reassigning resources and changing the
job states [8, 9, 14, 18, 22]. Due to the overhead, limiting the number of disruptions is a key design
factor to most systems; for example, see [20, 22]. Therefore, we follow the lead of [8, 9, 15], and
investigate the minimum number of disruptions required to achieve approximate fairness.

DEFINITION 1. Forc > 1, an allocation policy A is c-approximate if it always guarantees that
A, t) 2 I(j, t)/c.

1.1 Background and Weighted Fairness

Previous work [8, 9, 15] considered the case of uniform fairness, where I(j, t) = ﬁ In particular,
the work of [8] considered the question: Suppose d disruptions are allowed per time step, what

value of c is achievable? They show that ¢ = (d + 1)In %) In particular, even whend = 1, a

constant value of ¢ is achievable. Conceptually, this algorithm splits the allocation of the most
allocated job in half when a new job arrives, and allocates the other half to the new job. The work
of [9] extends this to the case where d < 1.

Weighted Fairness. There are many situations where the appropriate notion of fairness is some-
thing other than a uniform sharing of the resource(s). One natural/common example is weighted
fairness. In this setting each job j has weight w;.

Weights typically correspond to priorities that could be based on criteria such as willingness to
pay for the resource, importance of the job, and so on. Furthermore, as we discuss below, weights
also arise naturally in fair allocation contexts where there are multiple resources that could be
complements or substitutes, and the utility (or rate) of a job is a function of the resources of each
type allocated to the job.

In weighted fair share policies, a job’s ideal fair share is proportional to its weight, that is,
1G,1) = —

' YkeNt Wk

Uniform fairness is a special case of weighted fairness, where the weight of every job is 1.

The weighted case presents new difficulties that are not encountered in the unweighted case. In
the model where jobs only arrive, consider the arrival of a large weight job. This can cause the
allocations of all jobs to change if we wish to approximate their fair share. Indeed, we need to relax
the assumption that the number of disruptions per time step is small, to conditions that either
bound the worst-case or the average number of disruptions per job.

Therefore, the natural questions we seek to answer are:

e What is the optimal bound on the number of disruptions per job for O(1)-approximate
allocation policies with weighted fairness?

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 1, Article 19. Publication date: March 2020.

Dynamic Weighted Fairness with Minimal Disruptions 19:3

e And even more generally, what is the optimal bound on the number of disruptions per job
for O(1)-approximate allocation policies with more general fair share policies?

1.2 Our Results

In this paper, we answer all the above questions by presenting tight results in increasingly
complex models of fairness. Further, unlike the unweighted case, we need to distinguish between
the settings where jobs only arrive from that where jobs are allowed to arrive and depart. Our main
(and somewhat surprising) result is that in the model where jobs only arrive, it is indeed possible
to achieve constant approximation to fairness with nearly constant number of disruptions per job.
When jobs can both arrive and depart, we show that to achieve constant approximate fairness an
algorithm will have to disrupt a large number of jobs per arrival/departure for some instances. In
contrast we show that there there is an algorithm that can maintain constant approximate expected
fairness with O(1) expected disruptions per job if the weights of the jobs are independent of the
jobs arrival and departure order.

1.2.1 Weighted Fairness with Only Arrivals. We first consider weighted fairness in the arrival-only
model, where N*~! C N for all times ¢. The same results will apply to the symmetric departure-only
model where N' € N~! for all times ¢. (Imagine maintaining a fair allocation of some resource
among a batch of jobs as jobs finish and depart.) In section 2 we show the number of disruptions
required to achieve approximate fairness only increases by a very modest factor relative to uniform
fair share.

THEOREM 1. Consider weighted fair share policies in the arrival only model. There is an O(1)-
approximate allocation policy that will cause at most O (log™ n) disruptions for each job, where n is
the total number of arriving jobs. This result is tight, that is, every O(1)-approximate deterministic
policy must suffer Q (log" n) disruptions per each job on average for some instance.

Our allocation policy groups jobs into groups with exponentially increasing weights, and then
treats each group as a single job. It then applies a monotone transform to the weight of each job, and
uses this transformed weight instead of the original weight to perform the weighted fair allocation.
The transformation must both (a) be sufficiently invariant to keep the number of disruptions low;
and (b) sufficiently faithful to the original weight of the jobs to achieve O(1)-approximation. In
fact, it is a priori not even clear that such a transform even exists, and showing its existence is one
of our primary technical contributions.

Cobb-Douglas Utilities and Proportional Fairness. Our allocation policy and its analysis easily
extend to some canonical settings where there are D divisible resources each with unit supply,
and the rate of a job is a function of the resources allocated to it. One canonical rate model is
Cobb-Douglas [25], where job j has a substitutability vector a;q,d = [D] with ZdD:1 ajq = 1. Given
allocation x4 in dimension d, the rate of execution is:

y=| | x5
d=1
A proportionally fair allocation [13, 25] maximizes []; y;. It is easy to check that the resulting
allocation has a closed form where:

. %jd
Ia(j.t) = xja =

e S Vj,d € [D]
2ZkeNt Akd

Note now that this allocation independently performs a weighted fair allocation in each dimension
d, where the weight of job j in dimension d is a;4. Further, it is easy to check that if the allocation

is c-approximate in each dimension, then the resulting rate y; is also a c-approximation. Therefore,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 1, Article 19. Publication date: March 2020.

19:4 S.Im et al.

if we run our allocation policy independently in each dimension, the resulting policy is a constant
approximation to the rate, and the resulting number of disruptions is O(nD log* n), where n is the
total number of arriving jobs.

1.2.2 Weighted Fairness with Both Arrivals and Departures. We next consider the case where jobs
can both arrive and depart. In the uniform setting, the case with both arrivals and departures is not
any harder than the arrival-only model. However, when we generalize to weighted fairness, this
is no longer the case. In Section 3 we prove Theorem 2, which shows that with both arrivals and
departures it is no longer possible to always achieve both O(1)-approximation and a near linear
number of disruptions.

In contrast in Section 4 we prove Theorem 3 that shows that this is possible if job weights are
independent of the jobs arrival and departure order.

THEOREM 2. Consider weighted fair share policies with both job arrivals and departures. For every
c-approximate deterministic algorithm A, there is an instance that causes A to make Q(n'*1/(4¢+D)
disruptions.

THEOREM 3. Consider weighted fair share policies with both job arrivals and departures. Assume
that the weights wy, . .., w, of the jobs are arbitrary, but the assignment of these weights to the n jobs
is uniformly random. In this setting there is an 4-approximate randomized algorithm A, for which the
expected number of disruptions per arrival and per departure is at most 5.

1.2.3 Monotone Fairness. We next consider the number of disruptions needed to achieve approxi-
mate fairness for an arbitrary fair share function I with arrivals only. The first thing to observe
is that one can simulate departures by setting the fair share of a job to zero. (Note that the lower
bound in Theorem 2 extends to the case with both arrivals and departures.) Thus to obtain some
sort of positive result, one needs to impose some additional property on I. One natural property
that many/most fair share policies have is monotonicity, that is, the arrival of a job can not increase
another job’s fair share, and the departure of a job can not decrease another job’s fair share. More
formally:

DEFINITION 2. A fair resource share policy I is monotone if it satisfies the following conditions:
Suppose job j arrives at time t, then I(j,t) < I(j',t — 1) for every j’ € N* \ {j}. Similarly, if job j
departs at timet, then I(j',t) > I(j',t — 1) for every j’ € N* \ {j}.

Fairness Model Dimensions Arrival Model Disruptions per Job
Weighted Round Robin 1 Arrival Only O(log* n)
Monotone Fairness 1 Arrival Only ©(logn)
Cobb-Douglas + Proportional Fairness D Arrival Only O(Dlog" n)
Dominant Resource Fairness D Arrival Only O(Dlogn)
Weighted Round Robin 1 Arrival-Departure Q (nﬁ)
Arbitrary Fair Policy 1 Arrival Only Q (nﬁ)

Fig. 1. Summary of worst case number of disruptions per job needed to achieve c-approximate fairness for
some constant ¢ > 1. The lower bound on the penultimate line extends to monotone fairness. The final line
should be interpreted as: There exists some fair share policy for which the number of disruptions is lower

bounded by Q (nﬁ) Note that this table doesn’t show Theorem 3 which states O(1) disruptions per job on

average when jobs are assigned random weights in the arrival-departure model.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 1, Article 19. Publication date: March 2020.

Dynamic Weighted Fairness with Minimal Disruptions 19:5

In Section 5 we show that while more disruptions may be needed to approximate fairness for an
arbitrary monotone fairness policy than for weighted fairness policies, it is still possible to achieve
an almost linear number of disruptions.

THEOREM 4. Consider general monotone share policies in the arrival-only model. There is a O(1)-
approximate deterministic algorithm A such that the number of disruptions per job is O(log n). This
bound is tight, that is, for every deterministic O(1)-approximate algorithm A, there are instances that
cause A to make Q(log n) disruptions per job on average.

Concave Utilities. We now give some examples of monotone fair share policies in a setting where
the rate at which j executes is a function y; = fj(x;) of the allocated resource amount x;, where f;
is non-decreasing and concave. This models the canonical cluster computing scenario where there
are many identical machines, and parallelizable jobs [5, 13]. The rate of execution is a concave
function of the amount of machines assigned to it. Suppose the fair allocation algorithm either
maximizes minjen: y;, i.e., is max-min fair, or maximizes the product of the rates, [];cn: y;, i€, is
proportionally fair. Then it is easy to check that both these optima are achieved by water-filling on
the x;. Therefore, the resulting allocations I(j, t) = x; are monotone.

Dominant Resource Fairness. In the case of multiple resources, we say that an allocation is
monotone if it is monotone for each resource individually. One popular fair share policy is weighted
Dominant Resource Fairness (weighted DRF) [10, 19] that generalizes a max-min fair allocation.
Suppose job j has weight w; and resource requirement r;4 in resource d € [D]. Assume by scaling
that there is one unit of resource available for each resource. If the job executes at rate y;, it
consumes an amount ;qy; of resource d. The weighted DRF allocation sets y; so that:

(1) X rjay; < 1 for all dimensions d;
(2) wjyj maxg rjq is the same for all jobs, ie., the weighted share of the dominant resource
consumed is equalized.

It is clear that these shares can be computed by water-filling on the y;, so that the fair share
I4(j, t) = rjqy; is monotone in each dimension d.

Thus with D resources, our results immediately imply a bound of O(nD log n) disruptions needed
to maintain a constant approximation to any monotone fair share policy, including the DRF policy
in particular.

1.3 Summary and Related Work

We summarize our results in Table 1. We have already discussed the work of [8, 9, 15], which
considers the unweighted case. The work of [16, 17] study a demand model that is superficially
similar to weighted fairness. In the demand model in [16, 17] each job j has a demand d;, representing
the fraction of the resource that the job wants. An allocation is then c-fair if the fraction of the
resource that a job j gets is at least min(d;, d;/(c - d)), where d is the total demand of the jobs in
the system. They show that ©(log n) disruptions are necessary and sufficient to maintain constant
approximate fairness in this demand model. However, their definition of jobs “present" in the system
at any point in time also includes jobs that departed in the past. In that sense, their model even
with departures is comparable to our arrival only model, where our amortized bound of ©(log™ n)
disruptions is an improved result. Otherwise, this demand model is not directly comparable to our
work.

2 WEIGHTED FAIRNESS: ARRIVAL MODEL AND PROOF OF THEOREM 1

In this section we prove Theorem 1, which we restate below for convenience.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 1, Article 19. Publication date: March 2020.

19:6 S.Imetal.

THEOREM. Consider weighted fair share policies in the arrival only model. There is an O(1)-
approximate allocation policy that will cause at most O (log™ n) disruptions for each job. This result is
tight, that is, every O(1)-approximate deterministic policy must suffer Q (nlog" n) total disruptions
for some instance.

2.1 Upper Bound

In this subsection we give an algorithm that is O(1)-approximate and ensures that the number
of disruptions per job is O(log* n). To build intuition, while postponing some messy details, we
will first discuss some special cases. In particular, our presentation of the special case discussed in
section 2.1.1 is designed to explain the key algorithmic design and analysis insights as simply as
possible.

Throughout the paper, we assume that the number of jobs n is known a priori. This assumption
can be removed by the standard guess-and-double technique, where we use a guess of the number
of jobs, say 1 initially, and keep doubling the guess when the number of jobs exceed the previous
value. It is easy to check that our analysis and bounds in the entire paper will hold with this
modification to the algorithm, and we omit the details.

2.1.1 Geometrically Increasing Weights. First consider the special case where the weight of job j
that arrives at time j is 2/~!, which will eventually be our lower bound instance. Intuitively, the worst
case instance should be a sequence of jobs whose respective weight keeps increasing considerably
but not too drastically: If the increase is tiny, there’s no need to disrupt the existing jobs as their fair
shares change little when a new job arrives. Further, if the increase is huge, the existing jobs’ total
fair share becomes negligible in the near future as opposed to the newly arriving jobs, meaning
that disrupting jobs that arrived long ago doesn’t help serve new jobs of huge weights.

We give an algorithm that is O(1)-approximate and ensures that the total number of disruptions
is O(nlog™ n). Note that the total weight of the alive jobs at time t is essentially 2, and the ideal
fair share for job j is essentially I(j,t) = 1/27/*!. Note that the arrival of a new job decreases
the fair share of existing jobs by a factor of 2. A naive approach that maintains a constant factor
approximation to these rates will attempt to always maintain a constant factor approximation to
every rate, and would therefore reassign the rates of all existing jobs every constant number of
steps. This means it will incur Q(n?) reassignments over n jobs.

Intuition. It is a priori not even obvious we can do any better. The key idea is now to construct a
monotone map from 1/I(j, t) to a small set of integers, and use the inverse of this map as the rate.
Since the set of integers is small and since rates are monotone in the arrival only model, the size of
this set will bound the number of times we reallocate the rate. Of course, in this process, first, the
new rate needs to be at least a constant factor of the original rate (they could be much larger, but
cannot be much smaller); and secondly, the resource should not be over-allocated given we are
increasing rates.

Consider the function g(x) = 2%". Then, for constant d > 1 consider modifying the rate I(j, t) =
1/2t %1 to
1 1 1 1
4 g([log, log, (171, 1)) ~ d g(llogy(t —j+ D)

First note that the value |log,(t — j + 1)] is an integer that is at most O(logn) since t < n,
so this bounds the number of reassignments per job. Second, without the floor, the expression

A(j, 1)

above is exactly % and taking the floor only reduces the value of the denominator, so that
A(j, 1) = S1(j,).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 1, Article 19. Publication date: March 2020.

Dynamic Weighted Fairness with Minimal Disruptions 19:7

The tricky part is to bound the resource allocated. For this, the new rate cannot be too large for
many jobs. In particular, we need to show that for all 1 < t < n, we have

d Z 9([10gz(t —Jj+ 1)J)

Expanding the above summation, we need to bound

1(1 22—-21 2522 2¢4_23
d F+ 22 g g
4
< Z z
< o
dk>02 d

Therefore, we have a O(1) approximation to fairness while performing O(log, n) disruptions per
job.

Algorithm. Our algorithm builds on the above intuition, and constructs a mapping with even
smaller range of integers. The tradeoff is that this can lead to over-allocation of resource if we are
not careful. Further, our algorithm has to work for any weights and not just those that are growing
exponentially. The question is: How far can we push this idea? Turns out, quite a lot!

Our final algorithm for this special case maintains the allocation

ff—0t 1
9(lg™(1/1G,)]) " n

Here d is a constant, and g~!(x) is a slowly growing function, whose final definition will be revealed
by the analysis.

As before, the analysis involves showing the following three facts. Note that this is just a sketch
of analysis as we already gave a simpler and looser analysis and will give the analysis of our
algorithm for the general case momentarily.

A(j,t) = 4 ma

e This allocation is 5-approximate. If the floor in the definition of the allocation was removed,
then the allocation of a job would be the maximum of % of the job’s fair share and ﬁ, which
is obviously é-approximate. And the inclusion of the floor can not decrease the allocation.

e The resource is not over allocated. To show this it is sufficient to show th.:l m <

d — 1. This is not completely straight forward, but one reasonable approach would be to

bound the number of times that a term 1/g(k) can appear in this sum. To get some reasonable

bound, g~! can not be too slowly growing. After a bit of contemplation, one can see that it is
sufficient to define g(x) by: log, g(k + 1) = g(k)/ 2k Then, as in the analysis above, the term

1/g(k) can appear only log, g(k + 1) times in the sum." Thus the summation is then bounded

by Yk»1(1/9(k)) - (g(k)/2¥) < 2. Thus it is sufficient to define d = 3.

No job is disrupted more than log™ n times. This follows from noting three facts. First, that

g~ 1(x) = ©(log" x). Second, if a job’s allocation changes when its fair share is 1/s, then its

allocation will not change again until its fair share is something like 1/2°. Third, the minimum
allocation for each job is ﬁ. Then, if a job j’s initial fair share is 1/s, the number of times

Jj’s allocation changes is maximized when it does at each time j’s fair share becomes 1/2°,

1/ 22° .. until it becomes smaller than ﬁ, which immediately gives the desired bound.

ITo see this, consider the terms in the summation in decreasing order of j. Note that the value of I(j, t) decreases by a factor
of 2 in this order. Consider the two earliest terms of value 1/g(k) and 1/g(k + 1). Then, if n’ is the number of appearances
of 1/g(k), we have 1/(g(k)2”,) = 1/g(k + 1), which gives n’ < log, g(k + 1).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 1, Article 19. Publication date: March 2020.

19:8 S.Im et al.

2.1.2 Super-Geometrically Increasing Weights. As the next special case, we will assume that job
weights at least double over time — the only change we will make to handle the general case will be
grouping jobs so that groups have exponentially increasing weights. For notational convenience,
we assume that exactly one job arrives at each integer time starting from time 0 and index jobs by
their arriving time. Our simplified instance is formally defined as follows. Job ¢ arrives at integer
time ¢ > 0 with the following weight w;: wy = 1 and W, := },},_, wy is a power of 2 and is strictly
increasing in t; thus, we have W; > 2. Note that i’s fair share at time ¢ is ;. We now show an

algorithm that approximately simulates jobs’ fair shares. For more 1ntu1t1ve understanding, we
advise the reader to read the following pretending that wy = 1, and w, = 27! for all ¢t > 1.
Algorithm Description: Recursively define a function g defined over positive integers as follows:
g(1) = 1,9(2) = 2,9(3) = 2%, g(4) = 2% g(k) = 291 /2k=1 for all integers k > 5. We extend ¢’s
domain to any real number no smaller than 1 by interpolating the g’s values over integer points by
arbitrary increasing functions.

In our algorithm a job i’s allocation at time ¢ is

i = bl ()

1
1228
First, we show that each job receives a rate that is (1/12)-approximate.

oWy 1. . . _
if W 2 T otherwise A(i, t) =

LEMMA 1. The algorithm is 55 approxlmate

Proor. The claim immediately follows from the fact that g (or equivalently g~!) is non-decreasing.
Thus, we have A(i, t) > 12 W’ , as desired. o

The next goal is to show that each job is only disrupted O(log™ n) times. This observation easily
follows if w; = 2!~ and ¢! were log* since the value of | g~!(W,/w;)| would change only very
occasionally and log" Wy = ©(log™ n); here, T is the last time when a job arrives. But when job
weights increase much faster over time, we need more careful analysis. We also need to establish
the asymptotic equivalence between log* and ¢!

LEMMA 2. Each job is disrupted at most O(g~*(2%")) times.

Proor. We group jobs so that all jobs in the same group do not change their weight drastically.
Precisely, two jobs arriving at times ¢ and ¢ + 1 are placed into the same group if Wy, < 12W7. Let
I1, I, . . . be the resulting groups — jobs in I; arrive before jobs in ;4.

For the sake of analysis, fix i. We first show that the allocation of every job j in I; remains
unchanged after a)ob in the next group ;4 arrives. Indeed, at time ¢ when the first job in I;44

; w;
arrives, j’s fair share, - w < Wi < 12v</2 = 1zlw < 12 7S thus, by the definition of the algorithm,

A, t) = 12 > and j’s allocation remains unchanged throughout as j’s fair share can only decrease
as time progresses.

Therefore, we now know that a job j in group I; can change its allocation only until the last
job in I; arrives. Let n’ be the number of jobs in I;. Our goal is to upper bound the number of
disruptions of j’s allocation by O(g~!(n’)). Say the first job in I; arrives at time ¢; and the last
job in I; arrives at time t,. Consider any fixed job j in I;. Observe that A(j,t") # A(j,t) only if
lg™! (W /w;)| # [g7" (W, /wj)]. Since g™! is increasing, it follows that j gets disrupted at most
g '(Wy,/wj) — g"'(W,, /w;) + 1 times. This number is again upper bounded by O(g™ (W,,/W;,)).
This is because g~ (uv) < O(g(u) + g~ 1(v)), which can be easily seen as g~! is much more slowly

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 1, Article 19. Publication date: March 2020.

Dynamic Weighted Fairness with Minimal Disruptions 19:9

growing than log asymptotically. Thus, we know j’s allocation changes at most O(g~'(W,,/W,,))
times.

To complete the proof, we only need to upper bound W,,/W;, in terms of n’. Recall that for
any two jobs in [; arriving at adjacent times t and t + 1, we have W;,; < 12Wt2. Thus, we have

n’ = Q(loglog(W,,/W,,)), meaning W,, /W, = 220"
conclude each job j in I; is disrupted at most O(g~'(22")) = O(g~"'(2?")), as desired. O

. Together with the above observation, we

We now establish the asymptotic equivalence between log* and g~*
LEmMA 3. Foranyn > 1,log" n = ©(g71(n)).

PRroOF. Note that log" (2) = ¢g(1), log**(3) = ¢(2), log*'(4) = ¢(3), log" '(5) = g(4), and
log* (k + 1) > g(k) for all integers k > 5. Thus, we have log* n = O(g~'(n)). We can also show
g(2k) = log* (k) by a simple induction on k, thus the proof is omitted. O

COROLLARY 1. Each job is disrupted at most O(log” n) times.

To complete the analysis of our algorithm for the simplified instance, it only remains to show
that resource is never over-allocated.

Cramm 1. For any integerk > 1, the value % appears at most 2log, g(k +1) times in the sequence
of fr(t), fi-1(t), fra(D), ..., fi(D).
Proor. Observe that A(i, t) = (k) if and only if g(k) < Wi/w; < g(k + 1). From the fact that

Wii2/wy > 2 for all t > 0, we know that the value m can appear in the sequence at most

2log,(g(k + 1)/g(k)) < 2log, g(k + 1) times. O
LEMMA 4. At any point in time, the total allocation made by the algorithm is bounded by 1.
Proor. For the sake of analysis, we separately handle jobs j with f](t) 12 57 and the other

jobs. For the first type of jobs, the total allocation is at most Z]>O 5.7 < 1/6. For the other
jobs, we use Claim 1, which ensure that there are at most 2log, g(k + 1) jobs with allocation

m. For any k > 1, we have 2log, g(k + 1) < 2¢g(k). In particular, for any k > 4, we have

2log, g(k + 1) < 29(k)/ 2K, Therefore, the total allocation for the second type of jobs is at most
— o9 92 93 1

Diz12logy gk +1) = 2555 + 293,y + 273473) t Zikza 29(K) ey < 2/3- o

2.1.3 Arbitrary Weights. Finally, to extend our algorithm to handle the general case, we propose
the following pre-processing step that reduces an arbitrary instance to a simplified instance.
Conceptually, partition the jobs in the following way. Assume w.l.o.g. that the first job has weight
1 by scaling. Intuitively, we would like G; to consist of the earliest arriving jobs, that are not in
Go, . . ., Gi_1, with aggregate weight 2 (or a higher value that is a power of 2). In this way, each
group will essentially act like a single job of weight 2'.

Formally, our grouping is defined as follows. In our grouping, a job may belong to either exactly
one group or two consecutive groups. When job j belongs to only group G;, j remains to have
exactly the same weight w; in the group G;. If j belongs to two groups G; and G;,1, then the
sum of j’s weight in both groups is exactly its original weight w;. Our goal is to create groups
starting from the first job, so that the weight of groups simulate a simplified instance: that is,
w(Gy) = 1, and W(G;) is always a power of two, and W(G;) > 2W(G;_) for all i > 1, where
W(G;) := w(Gy) + w(Gy) + . .. + w(G;). Here w(G;) denotes the total weight of jobs in G;.

Towards this end, we let the first group Gy only have the first job. Then, we clearly have
w(Gy) = W(Gy) = 1. If the second job’s weight w; is at most 1, since W(Gy) + w; < 2W(Gy), the job

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 1, Article 19. Publication date: March 2020.

19:10 S.Im et al.

only belongs to group G;. Otherwise, let k := [log,(W(Go) +w;)]. Then, W(G,) := 2*, and job 1 has
weight W(Gy) +wq — 2 in group G, and the remaining weight w; — (W(Gy) + wy — 2k = 2k —W(Gy)
in group G;. In general, suppose job j is to appear in group G;;; (and possibly group G;,). Let
W(Gi+1) be the total weight of jobs that arrived before job j. Then, if W(Gi11) + w; < 2W(G;), then
Jj only belongs to group G;1. Otherwise, j has weight W(Gj41) + w; — 2% in G;,» and the remaining
weight 28 — W(G;41) in Gi41, where k := [log,(W(G;i) + wj)].

So, when a new job arrives, the above reduction updates groups. If Gy, Gy, . . . Gy are the groups
created, our algorithm pretends that each group is a single job and allocates resources to groups.
Note that the last group Gi’s total weight may not be a power of two, but then the algorithm
pretends that w(Gg) = W(Gg_1) by a creating a fictitious job of an appropriate weight in Gi. Then,
the amount of resource allocated to each group is reallocated to individual jobs belonging to the
group in proportion to their weight. If a job appears in two groups, then we simply add up the
amount of resource to reallocated to the job in both groups.

It now remains to argue why this reduction works. First, we observe that the number of jobs
increased by a factor of at most two in the reduction. Therefore, the number of disruptions that
occur to each group is still bounded by O(log" n). Further, jobs in the same group are disrupted
exactly at the same time. Since each job appears in at most two groups, we have an easy conclusion
that each job gets disrupted at most O(log™ n) times. Next, we can see that resource is not over
allocated since each job’s weight is preserved in the reduction (if it appears in two groups, its
weight in both groups is equal to its original weight). Finally, if the current last group Gi’s weight
is a power of two, it is easy to see that every job gets an 1/12-approximate of its fair share, as was
the case for the simplified instance. Otherwise, the algorithm could pretend more competition by
assuming that w(Gy) = W(Gg_1). However, it could over-estimate the total weight by a factor of at
most 2 since w(Gg) < W(Gg—1). Thus, it follows that every job gets an 1/24-approximate of its fair
share. This completes the proof of the upper bound claimed in Theorem 1.

2.2 Lower Bound

This subsection is devoted to proving the lower bound stated in Theorem 1, bounding the number
of disruptions incurred by any c-approximate deterministic algorithm A in the arrival model. The
lower bound instance consists of jobs whose weights geometrically increase. Job i has weight
w; = 271 and arrives at time i. Let W, denote the total weight of the jobs up through job ¢. Since
the algorithm A is c-approximate, it must be the case that for each job i and each time t > i,
A(it) = va’t Let B be a matrix where B; ; is 1 if job i’s is disrupted at time ¢ and 0 otherwise. See
Figure 2.

2.2.1 Overview of the Analysis. Before we formally prove the theorem, we give a high-level overview
of the proof. In this overview, certain less important details, such as constant additive terms, will
be ignored to make the key idea transparent. The overview will be based on a geometric view
of the matrix B. After all, we only need to show that the matrix B has Q(nlog" n) 1s. To count
the number of 1s, we will create non-overlapping triangles within the lower triangle matrix. The
created triangles are grouped into K = O(log™ n) groups, Gy, G, . .., Gx. We will let each triangle
in Gy have horizontal (or equivalently vertical) length exactly h(k + 1) — h(k) for some function
h(k) which will be defined shortly. See Figure 3.

We will find Q(n) 1s within triangles in each group, which will lead to the desired lower bound
Q(nlog" n). Towards this end, we show that for each triangle and jobs j participating in the “triangle"
(the jth row from the bottom intersects the triangle), at least half of them must be disrupted. The
key idea is to show that if j doesn’t get disrupted within the triangle in Gy, j’s allocation is at least
m, where h(k) is some function that we will define. See Figure 4.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 1, Article 19. Publication date: March 2020.

Dynamic Weighted Fairness with Minimal Disruptions 19:11

P

e
7 |

///1: n
1
|
|
|
|
j

Bis L
|
7 |
7z |
// !
|

1 L

1 0 : 3

1 0 1 : 2

1 0 0 1 : 1 =i

7777777777777777777777777777 |
t=1 2 3 t n

\

Time

Fig. 2. The lower triangle matrix B. The entry B; ; is 1if and only if the job i arriving at time i gets disrupted
at time ¢.

Since there are exactly h(k + 1) — h(k) jobs participating in the triangle, if fewer than half of
those jobs are disrupted, the amount of resource allocated at the ending time of the triangle is
greater than %(h(k +1) - h(k)) - m We will define h recursively so that this quantity becomes
more than 1, meaning resource is over allocated.

Thus, we can show that each triangle includes at least half as many 1’s as its (either horizontal or
vertical) edge length. Due to the disjointness of triangles, this implies that triangles in G include 1s
whose number is at least half of their edge length, which is %(h(K) — h(k)) = h(K)/4 = n/4. Since
we created O(log™ n) groups we will have the lower bound.

2.2.2 Formal Analysis. The lower bound instance is formally defined as follows. Job i, i > 1 has
weight w; = 2/"1 and arrives at time i. Job 0 of weight 1 is thought of as a dummy job to keep the
cumulative weight to be a power of two. So, we have W; := wp + wy + ... w; = 2! Forajobianda
time t such that i < t, let L(i, t) be the latest time ¢’ < t such that B; ; is 1. In other words, L(i, t) is
the last time job i’s was reallocated before time ¢.

We begin with the following claim.

CraiM 2. Let A(i, t) denote the allocation to job i at timet by the algorithm A. It must be the case

. LA
that A(i, t) > Win 202000

Proor. By definition job i was not reallocated during (L(i, t), t]. At time L(i,) job i required a
c-approximate allocation of its fair share zzlet) and this remained the same up to time ¢. O

Next, we formally define disjoint triangles. Define the following times recursively. Let A(1) = 1
and h(k + 1) — h(k) = 8c - 2"k Let h(0) = 0 for convenience of notation. Here k € [K] and
h(K) = n. For the lower bound, we will assume that n is chosen such that log™ n is integer. Notice
that K = ©(log™ n). Notice that {h(k)} partitions all job arrival times.

Using this, we recursively define non-overlapping triangles. There will be K groups of triangles
G1, Gy, ...Gg. Let (k) = h(k +1) — h(k). The length ¢(k) is the length and height of each triangle in
Gk The group Gy will contain (n—h(k))/¢(k) triangles. The ith triangle in the group G corresponds
to jobs if(k) + 1 to (i + 1)¢(k) for i € {0,1,...(n — h(k))/{(k)}. Let Ji ; be the set of jobs in the ith

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 1, Article 19. Publication date: March 2020.

19:12 S.Im et al.

triangle in Gy. Each job in the ith triangle will be associated with a set of time steps. The job time
pairs will form a triangle with two equal length sides. The jth job in the group in arrival order is
associated with times h(k) + i - £(k) + (j — 1) to A(k) + (i + 1)f(k) for j = 1,2,...,£(k). Let Ty ; ; be
the time steps corresponding to job j in the ith triangle for group Gg.

We observe the following.

Cramm 3. Each job and time pair is associated with at most one triangle.
Next we prove a key property of the jobs associated with each triangle.

LEMMA 5. Consider any group Gy and the ith triangle in the group. Let t = h(k) + (i + 1){(k) be
the last time associated with the triangle. For each job j € Ji ; if j is not disrupted during a time in
Tk,i,j then L(j, t) —j < h(k)

Proor. Fix a group k. We prove the lemma by induction on the jobs j. Formally, we show a
stronger statement where t; — j < h(k — 1) where t; is the earliest time in Ty ; ; and i is the unique
triangle j contributes to in the kth group. First consider the case where i = 0 and fix j = 1, the lowest
indexed job in Ji ;. By definition Ty ; ; contains all of the times from h(k) to h(k)+£(k) = h(k+1)—1.
Thus, if j is not disrupted during T ; ; then the last time j was reallocated was before time h(k),
and L(j, t) < h(k).

Now consider any j and it’s associated triangle i in the kth group. Inductively, we know that
ti-1 —(j— 1) < h(k) for job j — 1. By definition of the triangles ¢; = t;_; + 1. Thus t; increases by
one, implying t; — j = tj_; — (j — 1) < h(k) and the lemma follows. o

The next lemma bounds the number of disruptions for job and time pairs inside each triangle.

LEMMA 6. Fix a group Gy fork € [K — 1] and the ith triangle in the group fori € {0,1,...(n —
h(k))/t(k)}. It is the case that at least £(k)/2 jobs j in] ; are disrupted at their corresponding time
stepsinT; j k.

Proor. For the sake of contradiction say that it is not the case. Let t = h(k) + (i + 1){(k) be the

latest time in T; i ; for all jobs j associated with the triangle. By Claim 2, job j must be processed at
a rate of szz(;,) =30 s 2 2c21h<k> at time ¢. The last inequality follows from Lemma 5. There are

{(k) jobs in Ji ;. If less than £(k)/2 are reallocated during their corresponding times in T; ; f, then
their total allocation at time ¢ is greater than the following.

Loty L

2 9eoh(l)

= Gk + 1)~ h(k)) - [Definition of £(k)]

2c2h(k)
> 2 [Definition of h(k + 1) = h(k) + 8¢2"¥)]

This contradicts the total available amount of resource being 1 at time ¢, and the lemma follows.
O

We are now ready to prove the lower bound in Theorem 1. Consider any group of triangles
Gy for k € [K — 1]. The jobs indexed 1 to ((n — h(k))/£(k) + 1){(k) are associated with the group.
Notice that h(k) < % for k € [K — 1] by definition of h(k). Thus, the number of jobs within each
group is at least n/2. By definition each job appears in at most one triangle in the group. Further,
by Lemma 6 half of the jobs associated with each triangle are disrupted at times associated with the
triangle. Thus, there are at least % disruptions at time job pairs associated with triangles in group
Gk Knowing that there are ©(log™ n) groups Gy, we have that the total number of disruptions is

Q(nlog" n), proving the lower bound.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 1, Article 19. Publication date: March 2020.

Dynamic Weighted Fairness with Minimal Disruptions 19:13

Gy

"
" Gy

Gy

jobs

Time

Fig. 3. Disjoint triangles within the lower triangle matrix A. Here, each triangle includes no entries on the
diagonal edge. Triangles are grouped into G1, G2, Gs, . .., Gg. All triangles in G has length h(k + 1) — h(k).
For better visualization, this figure assumes that h(k) = 2% — 1 but the actual function h(k) we use in the
formal proof is very similar to log*~! k, which grows much faster. Also, this figure assumes K = 4.

10,000, .. J

Fig. 4. Inthis figure, a triangle T in group Gy, is shaded. Note that the triangle has length exactly h(k +1)— h(k).
The job j participates in the triangle, as the horizontal line [includes j intersects the triangle T. This figure
illustrates how we can show that j has a significantly large allocation at time t;, which is the ending time of
T, if j is not disrupted within T. This is why the line [has no 1s within T in the figure. Since j is not disrupted

during (t1, 2], j’s allocation must be at least C.‘;’/'tl = 2c21’1’j = 2c21h<’<) . The fact t; — j = h(k) is immediate

from the three edges indicated by arcs.

3 WEIGHTED FAIRNESS: DEPARTURES AND PROOF OF THEOREM 2

This section is devoted to proving Theorem 2. We first discuss intuitions on why minimizing
the number of disruptions is more challenging if jobs can both arrive and depart. Recall that in
the arrival model a job’s allocation has to change if its fair share significantly changes — say from
1/s to 1/2°. In other words, this requires the arrival of many new jobs of higher weights. The next

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 1, Article 19. Publication date: March 2020.

19:14 S.Im et al.

reallocation requires even many more new jobs’ arrival to further increase the total weight of jobs.

However, if jobs can depart we can repeat this process without keeping increasing the total weight.

Thus, we can effectively create an instance where a large number of jobs are repeatedly disrupted.
Before we prove the theorem, we reproduce it for convenience.

THEOREM. Consider weighted fair share policies with both job arrivals and departures. For every
c-approximate deterministic algorithm A, there is an instance that causes A to make Q(n'*1/(4et1))
disruptions.

Time will be divided into phases. At each time ¢ in a phase, other than the last time, a batch of
jobs arrive, and no jobs depart. Batches will be of different types. A type k batch consists of M/b*
jobs, each with weight a. Here a = 2b > 4. There will be a most one batch of each type alive at
any time. So when the time is understood, we will use B to refer to the batch of type k alive at
that time. So By has a factor b more jobs than By, 1, but the jobs in By,; have aggregate weight
that is twice the aggregate weight of the jobs in B. We say a batch By is disrupted at a particular
time if at least half of the jobs in the batch have been disrupted since the last time that the largest
batch type of an alive batch was k.

Attime 0, a type 0 batch By arrives. Now consider a time ¢ > 0. If the alive batches are By, . . ., Bx_1,
and no batches have yet been disrupted in this phase, then a type k batch By arrives at time ¢. If on
the other hand, there was a batch that was disrupted at time ¢ — 1, let k be the smallest type such
that By was disrupted at time ¢ — 1. Then time ¢ is the last time in this phase, and jobs in batches
Bj, j > k, depart at time ¢. Thus heading into the next phase, the alive batches are By, ..., Bx. The
input terminates after the first phase where at least 3M jobs have arrived over all phases.

We begin the analysis by bounding A’s allocation of the resource to a batch By between a time r
such that By was the alive batch of highest type, until the next time s that By, is disrupted We claim
that in aggregate the jobs in By must be allocated a é fraction of the resource at each time in the
range [r, s]. To see why this is the case, consider the time r. The aggregate weight of the alive jobs

in batches By, . .. Bx_1 is Zk ! M‘,‘ < (Mb—‘,zk) (abTb) = Mb—‘;k. Thus the aggregate weight the jobs in

By is at least the aggregate weight of the jobs in batches By, . .., Bx_1. Thus as A is c-approximate,
in aggregate the jobs in By must be allocated a5, fract1on of the resource at time r. Thus at time r,

each job in By must be allocated a 5 3; fractlon of the resource. As long as By, is not disrupted, at

least half the jobs in By must thus be allocated a 537 fraction of the resource. Thus we conclude in
aggregate the jobs in the batch must be allocated a E fraction of the resource until By is disrupted.
Thus no batch of type 4c + 2 can ever arrive, as a batch of type 4c + 1 must cause a disruption.
Now consider the time s when By was disrupted, meaning the number of jobs disrupted in By
since time r is at least zhﬂk' Let the batches of higher type at time s be Bg.1, . . . B¢. These disruptions
in By are then charged equally to the departing jobs in Bk, ..., B¢. As the number of jobs in

Bk+1,. .Byis Zf_kHM/bj < Xk % = (ka) (757) each job in By, ... By is charged at least

S As Y2, b > < 2M when b > 2, there are at most 2M jobs at the end that have not been charged.
Thus at least M jobs have been charged at least bT. Thus the number of disruptions per arrival is
at least %.

In order for this construction to be well defined, we need that that highest type batch has at least
1 job. So we need that % > 1, as 4c + 1 is the highest possible batch type. This is equivalent to
b < MY(e*D) Thus we can conclude that the number of disruptions for A is Q(n!*1/“4¢*1)) And as
W < a**! = (2b)**!, the number of disruptions caused by A is also Q(nW1/(4¢+1),

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 1, Article 19. Publication date: March 2020.

Dynamic Weighted Fairness with Minimal Disruptions 19:15

4 WEIGHTED FAIRNESS: RANDOM WEIGHTS AND PROOF OF THEOREM 3

This section is devoted to proving Theorem 3, which we reproduce here for convenience.

THEOREM. Consider weighted fair share policies with both job arrivals and departures. Assume that
the weights wy, . .., w, of the jobs are arbitrary, but the assignment of these weights to the n jobs is
uniformly random.? In this setting there is an 4-approximate randomized algorithm A, for which the
expected number of disruptions per arrival and per departure is at most 5.

Let us for convenience assume that the smallest weight is 1. Consider the following algorithm A:

Description of Algorithm A: Initially let T be a random number in the range [1/2, 1]. Define a
threshold to be any weight of the form 2K T for some integer k. When a job j arrives, its allocation
is set to half of its weighted fair share. If this arrival causes the total weight in the system to cross a
threshold (that is to increase from below a threshold to above a threshold) then the allocation of
every job is reset to half of its weighted fair share. Similarly, if the departure of a job j causes the
total weight in the system to cross a threshold (that is to decrease from above a threshold to below
a threshold) then the allocation of every job is reset to half of its weighted fair.

Because the initial allocation for a job is half of its fair share, and a reset must happen by the time
that the total weight doubles, the resource will not be over allocated. Because the initial allocation
for a job is half of its fair share, and a reset happens must happen by the time that total weight
halves, the algorithm A maintains 4-approximate fairness.

Thus we are left to bound the expected number of disruptions per arrival and departure. We will
only give the analysis for arrivals, as the analysis for departures more or less follows by symmetry.
Assume that there are k — 1 jobs in the system when a new job arrives. For convenience let us
renumber the earlier arriving jobs to 1 to k — 1 and the new job to k. Let us condition on the weights
of these k jobs being w; < wy... < wi. Let W = Z}C:l w;j. Let w be the random variable denoting
the weight of job k. (Note that due to our random assignment assumption, w is not necessarily
wg.) Let D be the total number of disruptions caused by k’s arrival, and let Ex be the event that k’s
arrival caused a reset. Then

E[D] = E[D | w = wi] - P[w = wi]+

k-1
D EID | wi = k and Eg] - P[Eg | w = wj]- P[w = w)]
j=1
k-1
<k-(1/k)+ Zk - (4w; /W) - (1/k)
j=1

k-1
=1+ Z(4WJ/W)
j=1

<5

To elaborate, for all j € [k], P[w = w;] = 1/k. If w = wy then it is possible that k’s arrival caused
the total weight to cross a threshold, and and thus A would disrupt all k of the jobs in the system.
Still E[D | wx = k] < k. If w = wj, j < k, then we know that k’s arrival does not more than
double the weight. So before job k’s arrival, the total weight was at least W/2. As there can be
at most two threshold between W/2 and W, P[E; | w = w;] < (4w;/W). And again obviously
E[D | wx = kand Ei] < k.

Note that Theorem 3 would still hold if job weights were drawn i.i.d. from some distribution.

2This random permutation model clearly includes the case when jobs’ weights are sampled i.i.d.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 1, Article 19. Publication date: March 2020.

19:16 S.Im et al.

5 MONOTONE FAIRNESS: PROOF OF THEOREM 4

This section is devoted to proving Theorem 4, which we reproduced here for convenience.

THEOREM. Consider general monotone share policies in the arrival-only model. There is a (1 + €)-
approximate deterministic algorithm A such that the number of disruptions per job is O(log n). This
bound is tight, that is, for every deterministic O(1)-approximate algorithm A, there are instances that
cause A to make Q(nlog n) disruptions.

We will first design and analyze an algorithm A to prove the upper bound portion of the theorem.
As jobs arrive over time, we will maintain the invariant that for every job j, if A has allocated 1/c’
of the resource to j, then the fair share for that job will be 1/c**!. When a new job j arrives, its fair
share is set to 1/c. Because of the invariant, and the feasibility of A, the aggregate un-apportioned
fair share before j arrives is at least 1 — 1/c. So the fair share is not exceeded when job j arrives. By
the fairness of A, it must allocate at least 1/c? fraction of the resource to job j. Note that for any
job i disrupted when job j arrives, A’s allocation to i can decrease by at most a factor of ¢?, or this
would contradict the fairness of A.

After the algorithm A decides how much to allocate to each of the jobs after j’s arrival then the
adversary updates the fair share allocations of the jobs. The fair share of job j, and any jobs that
A disrupted in response to j’s arrival, is set to 1/c of whatever A’s allocation is at this time. The
process then proceeds with the arrival of job j + 1.

Now note that after n jobs arrive, at least n/c jobs have fair share no more than c/n. This follows
by an averaging argument and the fact that at most a unit of fair share is allocated in aggregate to
the jobs. Since these n/c jobs started with allocation at least 1/c?, and decreased by a factor of at
most c? per disruption, the number of disruptions d for each of these jobs satisfies (%)(%) <4,

C
or equivalently d > (log, n — 3)/2. The theorem follows.

We now turn to proving a lower bound for an arbitrary algorithm A. Assume for the moment
that n is known a priori. A job is called light if its fair share is at most 5, and is called heavy
otherwise. When a new job arrives, A allocates that job its fair share divided by 1 + €. If a job j’s
fair share is lowered, there are three possible responses. If j was already light before its fair share
was lowered, then A doesn’t change its allocation. Otherwise, if the new fair share is still greater
than a 1 + €/2 factor of A’s allocation, then again A doesn’t change its allocation. Finally, if the fair
share of heavy job is ever lowered to be less than a 1 + €/2 factor of A’s current allocation, then A
resets its allocation for this job to its be its new fair share divided by 1 + €.

The total allocation of A on light jobs is at most . At any particular time, let F be the total fair
share of the heavy jobs, and U the unallocated fair share. Thus the total unallocated portion of
the resource for A is always at least % — £ +U 2 0. Thus A never overuses the resource. Also its
obvious that A has O(log n) disruptions per job. If n is not known a priori, then the standard guess-
and-double technique can be used; So when A’s estimation of n doubles, it doubles its estimation,
and resets all allocations to be what they would have been with the new estimate.

6 CONCLUSIONS

We have presented simple policies for minimizing the number of reallocations needed to maintain
fair resource shares under both arrival-only and arrival-departure models. We have shown that
in the worst case, no better policies exist. We have also presented a stochastic model where the
assignment of weights is independent of arrival and departure times, and have shown improved
results in this model.

We conclude with some open questions. First, though we have a result for general monotone
allocations with D resources, it would be interesting to specialize it to specific classes of fair
share policies. More specifically, we conjecture that the number of disruptions needed for DRF is

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 1, Article 19. Publication date: March 2020.

Dynamic Weighted Fairness with Minimal Disruptions 19:17

significantly better than our bound of O(nD log n) in the arrival only model. Secondly, our model
assumes the departure time of a job is independent of the rate allocated to it. In reality, the job
has a fixed amount of processing, so the departure time will depend on the rate allocated to the
job. Can we modify our model to handle this aspect? Finally, it would be interesting to study the
computational complexity of the offline setting, where all arrivals and departure times are known in
advance, and the goal is to compute the instance-optimal tradeoff between disruptions and fairness.

Acknowledgment. Im is supported in part by NSF grants CCF-1409130, CCF-1617653, and CCF-
1844939. Moseley is supported in part by a Google Research Award, a Infor Research Award, A
Carnegie Bosch Junior Faculy Chair and NSF grants CCF-1733873, CCF-1824303, CCF-1845146
and CMMI-1938909. Munagala is supported in part by NSF grants CCF-1408784, CCF-1637397,
and IIS-1447554, ONR award N00014-19-1-2268, and awards from Adobe and Facebook. Pruhs is
supported in part by NSF grants CCF-1421508 and CCF-1535755, and an IBM Faculty Award.

REFERENCES

[1] Gerdus Benade, Aleksandr M. Kazachkov, Ariel D. Procaccia, and Christos-Alexandros Psomas. How to make envy
vanish over time. In Proceedings of the 2018 ACM Conference on Economics and Computation, Ithaca, NY, USA, June
18-22, 2018, pages 593-610, 2018.

[2] Arka A. Bhattacharya, David Culler, Eric Friedman, Ali Ghodsi, Scott Shenker, and Ion Stoica. Hierarchical scheduling
for diverse datacenter workloads. In Proceedings of the 4th Annual Symposium on Cloud Computing, SOCC ’13, pages
4:1-4:15, New York, NY, USA, 2013. ACM.

[3] Bryan L. Deuermeyer, Donald K. Friesen, and Michael A. Langston. Scheduling to maximize the minimum processor
finish time in a multiprocessor system. SIAM Journal on Algebraic Discrete Methods, 3(2):190-196, 1982.

[4] Danny Dolev, Dror G. Feitelson, Joseph Y. Halpern, Raz Kupferman, and Nathan Linial. No justified complaints: On
fair sharing of multiple resources. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference,
ITCS ’12, pages 68-75, New York, NY, USA, 2012. ACM.

[5] Jeff Edmonds and Kirk Pruhs. Scalably scheduling processes with arbitrary speedup curves. In ACM-SIAM Symposium
on Discrete Algorithms, pages 685-692, 2009.

[6] Rupert Freeman, Seyed Majid Zahedi, and Vincent Conitzer. Fair and efficient social choice in dynamic settings. In
Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, I[JCAI-17, pages 4580-4587, 2017.

[7] Eric Friedman, Ali Ghodsi, and Christos-Alexandros Psomas. Strategyproof allocation of discrete jobs on multiple
machines. In Proceedings of the Fifteenth ACM Conference on Economics and Computation, EC *14, pages 529-546, New
York, NY, USA, 2014. ACM.

[8] Eric Friedman, Christos-Alexandros Psomas, and Shai Vardi. Dynamic fair division with minimal disruptions. In
Proceedings of the Sixteenth ACM Conference on Economics and Computation, EC ’15, pages 697-713, New York, NY,
USA, 2015. ACM.

[9] Eric Friedman, Christos-Alexandros Psomas, and Shai Vardi. Controlled dynamic fair division. In Proceedings of the

2017 ACM Conference on Economics and Computation, EC *17, pages 461-478, New York, NY, USA, 2017. ACM.

Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker, and Ion Stoica. Dominant resource

fairness: Fair allocation of multiple resource types. In Proceedings of the 8th USENIX Conference on Networked Systems

Design and Implementation, NSDI'11, pages 323-336, Berkeley, CA, USA, 2011. USENIX Association.

[11] R.L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on Applied Mathematics, 17(2):416-429,

1969.

Aanund Hylland and Richard Zeckhauser. The efficient allocation of individuals to positions. Journal of Political

Economy, 87(2):293-314, 1979.

Sungjin Im, Janardhan Kulkarni, and Kamesh Munagala. Competitive algorithms from competitive equilibria: Non-

clairvoyant scheduling under polyhedral constraints. In Proceedings of the Forty-sixth Annual ACM Symposium on

Theory of Computing, STOC ’14, pages 313-322, New York, NY, USA, 2014. ACM.

[14] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal Talwar, and Andrew Goldberg. Quincy: Fair

scheduling for distributed computing clusters. In Proceedings of the ACM SIGOPS 22Nd Symposium on Operating

Systems Principles, SOSP ’09, pages 261-276, New York, NY, USA, 2009. ACM.

Ian Kash, Ariel D. Procaccia, and Nisarg Shah. No agent left behind: Dynamic fair division of multiple resources. In

Proceedings of the 2013 International Conference on Autonomous Agents and Multi-agent Systems, AAMAS ’13, pages

351-358, Richland, SC, 2013. International Foundation for Autonomous Agents and Multiagent Systems.

[10

[t}

(12

—

(13

—

(15

[

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 1, Article 19. Publication date: March 2020.

19:18 S.Im et al.

[16] Bo Li, Wenyang Li, and Yingkai Li. Dynamic fair division problem with general valuations. In Proceedings of the 27th
International Joint Conference on Artificial Intelligence, JCAI'18, pages 375-381. AAAI Press, 2018.

[17] Bo Li and Yingkai Li. Dynamic fair division problem with general valuations. CoRR, abs/1802.05294, 2018.

[18] Dejan S. Miloji¢i¢, Fred Douglis, Yves Paindaveine, Richard Wheeler, and Songnian Zhou. Process migration. ACM
Comput. Surv., 32(3):241-299, September 2000.

[19] David C. Parkes, Ariel D. Procaccia, and Nisarg Shah. Beyond dominant resource fairness: Extensions, limitations, and
indivisibilities. ACM Trans. Econ. Comput., 3(1):3:1-3:22, March 2015.

[20] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John Wilkes. Omega: flexible, scalable schedulers
for large compute clusters. 2013.

[21] Hal R Varian. Equity, envy, and efficiency. Journal of Economic Theory, 9(1):63 — 91, 1974.

[22] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric Tune, and John Wilkes. Large-scale
cluster management at google with borg. In Proceedings of the Tenth European Conference on Computer Systems, EuroSys
’15, pages 18:1-18:17, New York, NY, USA, 2015. ACM.

[23] T. Walsh. Online Cake Cutting (published version). ArXiv e-prints, June 2011.

[24] W. Wang, B. Li, and B. Liang. Dominant resource fairness in cloud computing systems with heterogeneous servers. In
IEEE INFOCOM 2014 - IEEE Conference on Computer Communications, pages 583-591, April 2014.

[25] S. M. Zahedi and B. C. Lee. Sharing incentives and fair division for multiprocessors. IEEE Micro, 35(3):92—-100, May
2015.

Received October 2019; revised December 2019; accepted January 2020

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 1, Article 19. Publication date: March 2020.

	Abstract
	1 Introduction
	1.1 Background and Weighted Fairness
	1.2 Our Results
	1.3 Summary and Related Work

	2 Weighted Fairness: Arrival Model and Proof of Theorem 1
	2.1 Upper Bound
	2.2 Lower Bound

	3 Weighted Fairness: Departures and Proof of Theorem 2
	4 Weighted Fairness: Random Weights and Proof of Theorem 3
	5 Monotone Fairness: Proof of Theorem 4
	6 Conclusions
	References

