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Abstract: We study theoretically and numerically chirality and saddle-splay elastic constant (𝐾𝐾24) 11 
enabled stability of multiple-twist-like nematic liquid crystal (LC) structures in cylindrical 12 
confinement. We focus on the so-called radially-z-twisted (RZT) and radially-twisted (RT) 13 
configurations, which simultaneously exhibit twists in different spatial directions. We express free 14 
energies of the structures in terms of dimensionless wave vectors, which characterise the structures 15 
and play the role of order parameters. The impact of different confinement anchoring conditions is 16 
explored. A simple Landau-type analysis provides insight into how different model parameters 17 
influence the stability of structures. We determine conditions for which the structures are stable in 18 
chiral and also nonchiral LCs. In particular, we find that the RZT structure could exhibit 19 
macroscopic chirality inversion on varying the relevant parameters. This phenomenon could be 20 
exploited for measurements of 𝐾𝐾24. 21 
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 23 

1. Introduction 24 
Chirality is pervasive in nature and refers to cases where an object and its mirror image are 25 

different [1–3]. It signals the absence of inversion symmetry, giving rise to right-handed and left-26 
handed appearance and behaviour. Chirality is present throughout physics and often impacts or even 27 
dominates numerous important natural phenomena. For example, chiral symmetry plays an 28 
important role in the Standard Model of physics [4]. Functionalities of several essential components 29 
of biological cells rely heavily on chirality [3]. Furthermore, it could be exploited in various 30 
technological and medical applications [5,6,7]. By exploiting chirality one could engineer new 31 
materials with extraordinary properties (e.g., metamaterials exhibiting negative refractive index [8]). 32 
Therefore, a deep understanding of chirality and related emergent behaviours are of interest 33 
throughout the physical and biological sciences. 34 

However, several issues related to chirality remain unresolved even at a fundamental level. For 35 
instance, the molecular origins of chirality and the relative role of chiral symmetry breaking remain 36 
an open problem [9]. In particular, mechanisms involved in the transfer of chirality from microscopic 37 
to macroscopic level [10] are not sufficiently understood. A convenient system with which to gain a 38 
deeper understanding of the latter feature are chiral uniaxial nematic liquid crystals (NLCs; a list of 39 
abbreviations appears at the end), one of the simplest representatives of anisotropic soft materials 40 
[11,12]. These systems are relatively easily accessible experimentally, structural changes can be 41 
triggered by relatively weak external stimuli, and a macroscopic chiral response can be achieved 42 
using different pathways.  43 

Uniaxial NLCs consist of approximately rod-shaped objects that in bulk equilibrium exhibit 44 
long-range orientational order and the absence of translational order [11]. The local orientational 45 
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order is commonly described by the mesoscopic nematic director field 𝑛𝑛�⃗ , exhibiting head-to-tail 46 
invariance – the states ±𝑛𝑛�⃗  are physically equivalent. In the classical Oseen-Frank approach [11] the 47 
elastic free energy is expressed as the sum of the so-called splay, twist, bend, and saddle-splay 48 
contributions, weighted by Frank splay (𝐾𝐾11), twist (𝐾𝐾22), bend (𝐾𝐾33), and saddle-splay (𝐾𝐾24) elastic 49 
constants. These contributions penalize different elastic distortions and determine equilibrium 50 
nematic director field patterns.   51 
    In the bulk achiral nematic phase 𝑛𝑛�⃗  is spatially homogeneously aligned along a single 52 
symmetry breaking direction. In a simple chiral nematic (also referred to as the cholesteric) phase, in 53 
the bulk equilibrium structure 𝑛𝑛�⃗  twists in space describing a helix, where 𝑛𝑛�⃗  is always perpendicular 54 
to the helix axis. This structure exhibits only a single twist (i.e., it twists only along one spatial 55 
direction) deformation.     56 
    Even more complex structures could be formed in chiral materials exhibiting propensity for 57 
saddle-splay deformations [13,14], which in LCs is controlled by the saddle splay elastic constant 58 
𝐾𝐾24. The energy elastic term weighted by 𝐾𝐾24 equals the Gaussian curvature of a hypothetical local 59 
surface [11], whose surface normal is determined by 𝑛𝑛�⃗ . This term is different from zero for the 60 
nematic structures displaying, e.g., double twist like deformations, in which is 𝑛𝑛�⃗  varying in two 61 
orthogonal directions. Consequently, such structures could decrease the overall free energy for a 62 
large enough value of 𝐾𝐾24 . Note that the saddle-splay elastic term can be expressed as pure 63 
divergence, and can be mathematically integrated out to the surface confining the LC. Therefore, it 64 
affects LC order through boundary conditions. In most cases the saddle-splay enforced boundary 65 
tendency is masked by stronger surface anchoring conditions. For this reason, the 𝐾𝐾24 contribution 66 
is often ignored in theoretical modelling [11,14]. Its magnitude range is determined by Ericksen’s 67 
inequality [15] 0 < 𝐾𝐾24 < 𝐾𝐾1,2

(𝑚𝑚𝑚𝑚𝑚𝑚), where 𝐾𝐾1,2
(𝑚𝑚𝑚𝑚𝑚𝑚)  corresponds to the lower elastic modulus of the 68 

twist (𝐾𝐾22 ) and splay (𝐾𝐾11 ) elastic deformations. Furthermore, due to the anchoring strength 69 
“masking” effect it is relatively difficult to measure the magnitude of 𝐾𝐾24. Namely, for  strong 70 
enough anchoring [11] (i.e. RW/K>>1, where R is the characteristic confinement length, K stands for 71 
the average Frank elastic constant, and W is the surface anchoring strength coefficient), the surface 72 
anchoring contribution overrides the competing 𝐾𝐾24  contribution in the relevant surface Euler-73 
Lagrange equilibrium equations. Consequently, only a few experimental measurements of 𝐾𝐾24 are 74 
reported [16,17,18]. Several of these measurements report values of 𝐾𝐾24 that are close to 𝐾𝐾1,2

(𝑚𝑚𝑚𝑚𝑚𝑚). 75 
   We note that a natural decomposition of representative nematic elastic distortions was recently 76 
proposed by Selinger [19]. Four bulk elastic normal modes were introduced representing distinct 77 
irreducible representations of the rotational symmetry group, characterising NLC symmetry. These 78 
are referred to as the double splay, double twist, bend, and biaxial splay mode, which could be separately 79 
and independently excited. On the contrary, the classical (single) splay, (single) twist, bend, and 80 
saddle-splay distortions [11,19] are, in general, coupled. Namely, the saddle-splay term can be 81 
expressed as a sum of double splay, double twist, and biaxial splay mode.      82 
   Nematic structures exhibiting nonplanar 3D nematic distortions (e.g., double twist deformations) 83 
impose elastic frustrations, which can be in bulk resolved by introducing assemblies of topological 84 
defects [20,21], as manifested in Blue Phases (BPs) [22,23,24]. In NLCs, description of defects would 85 
require more complex structural description in terms of the tensor nematic order parameter [11], 86 
which allows local melting of LC order and presence of biaxial states [25]. On the other hand, such 87 
deformation could be realized without defects in appropriate confinement geometries, where most 88 
often cylindrical confinements [26,27,28,29,30,31] are used. Note that stable 3D realisations of 89 
topological defects are of interest for science in general. For instance, if physical fields represent 90 
fundamental entities of nature [32], than topological defects might represent [33] fundamental 91 
particles in the conventional “particle”-based natural description.       92 
    In this contribution, we consider nematic structures in chiral LCs in cylindrical confinement. We 93 
focus on (meta) stability of multiple-twist-type structures, which exhibit variations of the nematic 94 
molecular field simultaneously in at least two orthogonal spatial directions. We show that several 95 
structural properties can arise in the context of a simple Landau-type model. A more general analysis 96 
is carried out numerically. We determine regimes where one could observe a change in the 97 
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handedness of structures by varying relevant material parameters. Furthermore, we determine 98 
regimes in which the saddle-splay elasticity sensitively controls the stability of competing structures. 99 

2. Results 100 
Of our interest are defect-free spontaneously twisted NLC structures within an infinitely long 101 

cylinder of radius R. For this reason, we use cylindrical coordinates {𝑟𝑟,𝜑𝜑, 𝑧𝑧}, defined by the unit vector 102 
triad {𝑒𝑒𝑟𝑟 , 𝑒𝑒𝜑𝜑, 𝑒𝑒𝑧𝑧 }. We consider two different ansatzes, which approximate well two qualitatively 103 
different families of solutions that are expected to be stable for geometries and boundary conditions 104 
of our interest [26,27]. 105 

The first class is represented by [26,27] 106 
𝑛𝑛�⃗ (𝑖𝑖) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠Ω 𝑒𝑒𝑟𝑟+𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠Ω 𝑒𝑒𝜑𝜑 + 𝑐𝑐𝑐𝑐𝑐𝑐Ω 𝑒𝑒𝑧𝑧,     (1a) 107 

𝜓𝜓 = 𝑞𝑞1𝑧𝑧 − 𝜑𝜑,  Ω = 𝜋𝜋
2
− 𝑞𝑞2𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,        (1b) 108 

where the wave vectors 𝑞𝑞1  and 𝑞𝑞2  are variational parameters. A typical representative 109 
structure is shown in Figure 1a and in the Supplementary material. 110 

In the Cartesian coordinates {x, y, z} the ansatz reads 111 
𝑛𝑛�⃗ (𝑖𝑖) = cos (𝑞𝑞1𝑧𝑧) 𝑠𝑠𝑠𝑠𝑠𝑠Ω 𝑒𝑒𝑥𝑥+𝑠𝑠𝑠𝑠𝑠𝑠(𝑞𝑞1𝑧𝑧) 𝑠𝑠𝑠𝑠𝑠𝑠Ω 𝑒𝑒𝑦𝑦 + 𝑐𝑐𝑐𝑐𝑐𝑐Ω 𝑒𝑒𝑧𝑧.  112 

Cases 𝑞𝑞1 ≠ 0 and 𝑞𝑞2 ≠ 0 determine multiple-twisted solutions. In these patterns, to which we 113 
refer to as radially−z−twisted (RZT) structures, twist deformation is realized both along the 𝑒𝑒𝑟𝑟 and 114 
𝑒𝑒𝑧𝑧 directions [26]. This ansatz also encompasses single twisted structures. For example, for 𝑞𝑞2 = 0 a 115 
structure twisting around the z axis is expressed as 116 

𝑛𝑛�⃗ (𝑖𝑖) = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑞𝑞1𝑧𝑧 − 𝜑𝜑)  𝑒𝑒𝑟𝑟+ sin(𝑞𝑞1𝑧𝑧 − 𝜑𝜑) 𝑒𝑒𝜑𝜑,      (2)  117 

Which corresponds to a classical cholesteric solution with wave vector 𝑞𝑞1. 118 
The second family of solution corresponds to the radially-twisted (RT) structures [26,27], where 119 

the twist is realised along 𝑒𝑒𝑟𝑟, see Figure 1b. For this purpose, we use the ansatz  120 
𝑛𝑛�⃗ (𝑖𝑖𝑖𝑖) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝜑𝜑 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑒𝑒𝑧𝑧.         (3a)  121 

Here 𝛼𝛼 = 𝛼𝛼(𝑟𝑟) and to avoid a singularity at the cylinder axis we impose the condition α(0) = 0. 122 
Previous numerical studies [26,31] have revealed that the dependence of α(r) is roughly linear in r, 123 
even for large twists of n . Consequently, we use the approximation 124 

𝛼𝛼 = 𝑞𝑞𝑅𝑅𝑅𝑅𝑟𝑟.             (3b) 125 

    These structures were numerically studied in Refs. 26,27, and 31, where their stability was 126 
analysed. Our proposed ansatzes well mimic numerically obtained structures for anchoring 127 
conditions of our interest for relatively small wave vectors and in the approximation of equal Frank 128 
elastic constants 𝐾𝐾11 = 𝐾𝐾22 = 𝐾𝐾33. In the cases examined, the free energies of structures obtained i) 129 
numerically by solving relevant Euler Lagrange equations or ii) using our ansatzes differ by less than 130 
10%. By using the analytical ansatzes, we were able to carry out a Landau-type approach, which 131 
enabled a more detailed insight into the stability of structures of interest on varying different material 132 
dependent parameters.     133 

In the following we use the approximation of equal elastic constants 𝐾𝐾 ≡ 𝐾𝐾11 = 𝐾𝐾22 = 𝐾𝐾33, but 134 
allow 𝐾𝐾24 ≠ 𝐾𝐾. At the cylinder’s lateral wall, 𝑟𝑟 = 𝑅𝑅, we impose for the positive anchoring strength  135 
W>0 (see Eq.(19) in Methods) either a) homeotropic anchoring (𝑒𝑒 = 𝑒𝑒𝑟𝑟), b) tangential anchoring along 136 
𝑒𝑒𝑧𝑧 (i.e., (𝑒𝑒 = 𝑒𝑒𝑧𝑧), or c) tangential anchoring along 𝑒𝑒𝜑𝜑(𝑒𝑒 = 𝑒𝑒𝜑𝜑). We henceforth refer to these cases as 137 
a) homeotropic, b) zenithal tangential), and c) azimuthal tangential anchoring, respectively. For 138 
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𝑊𝑊 < 0 these cases correspond to isotropic tangential anchoring in a plane with the surface normal in 139 
the direction 𝑒𝑒. Note that in our study the latter case in sensible only for the condition (a). 140 

For later convenience we introduce the following dimensionless quantities: Q = qR, Q1 = q1R, Q2 141 
= q2R, QRT = qRTR, k24 = K24/K, w = RW/K, and the dimensionless free energy is scaled in units of 𝐹𝐹0 =142 
𝜋𝜋𝜋𝜋𝜋𝜋. Therefore 𝐹𝐹 → 𝐹𝐹/𝐹𝐹0, where H is the height of cylinder. For numerical convenience, we suppose 143 
that H is either large in comparison with the period 𝑝𝑝 = 2𝜋𝜋/𝑞𝑞1, or an integer number of p. 144 

2.1. Free energies of structures 145 
Using the ansatzes Eq. (1) and Eq. (3) and the scaling described above, we calculate free energies 146 

F of the structures (see Eq. (1)). For later convenience the energies are decomposed as 𝐹𝐹(𝑖𝑖) = 𝐹𝐹𝑒𝑒
(𝑖𝑖) +147 

𝐹𝐹𝑠𝑠
(𝑖𝑖) and 𝐹𝐹(𝑖𝑖𝑖𝑖) = 𝐹𝐹𝑒𝑒

(𝑖𝑖𝑖𝑖) + 𝐹𝐹𝑠𝑠
(𝑖𝑖𝑖𝑖) for the first (RZT) and second class (RT) of solutions, respectively. 148 

We consider first the family of solutions labelled by 𝑛𝑛�⃗ (𝑖𝑖) (Eq. (1)). The elastic contribution is 149 

𝐹𝐹𝑒𝑒
(𝑖𝑖) = (𝑄𝑄−𝑄𝑄2)2

2
+ 𝑄𝑄1

2𝑄𝑄2
2

8
+ 𝑄𝑄1

2
�𝑄𝑄1
2

+ (1 − 𝑘𝑘24)𝑄𝑄2 − 𝑄𝑄� �1 + 𝐽𝐽1(2𝑄𝑄2)
𝑄𝑄2

�   (4)  150 

Now let 𝐹𝐹𝑠𝑠
(𝑖𝑖) stand for the interface contribution, which is different for a) homeotropic (𝐹𝐹𝑠𝑠

(𝑖𝑖) =151 
𝐹𝐹𝑠𝑠,ℎ

(𝑖𝑖)), b) zenithal (𝐹𝐹𝑠𝑠
(𝑖𝑖) = 𝐹𝐹𝑠𝑠,𝑧𝑧

(𝑖𝑖)), and c) azimuthal 𝐹𝐹𝑠𝑠
(𝑖𝑖) = 𝐹𝐹𝑠𝑠,𝜑𝜑

(𝑖𝑖) anchoring: 152 

𝐹𝐹𝑠𝑠,ℎ
(𝑖𝑖) = 3𝑤𝑤

4
− 𝑤𝑤

4
𝐽𝐽1(2𝑄𝑄2)
𝑄𝑄2

,           (5a) 153 

𝐹𝐹𝑠𝑠,𝑧𝑧
(𝑖𝑖) = 𝑤𝑤

2
− 𝑤𝑤

2
𝐽𝐽0(2𝑄𝑄2),           (5b) 154 

𝐹𝐹𝑠𝑠,𝜑𝜑
(𝑖𝑖) = 3𝑤𝑤

4
+ 𝑤𝑤 �𝐽𝐽1(2𝑄𝑄2)

4𝑄𝑄2
− 𝐽𝐽0(2𝑄𝑄2)

2
�.         (5c) 155 

Here J0 and J1 stand for the Bessel functions of order 0 and 1, respectively.  156 
The second class of solutions is determined by the elastic term 157 

𝐹𝐹𝑒𝑒
(𝑖𝑖𝑖𝑖) =  1

2
(𝑄𝑄 + 𝑄𝑄𝑅𝑅𝑅𝑅)2 + �1 − 𝑘𝑘24 + 𝑄𝑄

𝑄𝑄𝑅𝑅𝑅𝑅
� 𝑠𝑠𝑠𝑠𝑠𝑠2𝑄𝑄𝑅𝑅𝑅𝑅 + ∫ 𝑠𝑠𝑠𝑠𝑠𝑠2(𝑄𝑄𝑅𝑅𝑅𝑅𝑥𝑥)

𝑥𝑥
1
0 𝑑𝑑𝑑𝑑,  (6)                             158 

and surface contributions 159 
𝐹𝐹𝑠𝑠,ℎ

(𝑖𝑖𝑖𝑖) = 𝑤𝑤,              (7a) 160 

𝐹𝐹𝑠𝑠,𝑧𝑧
(𝑖𝑖𝑖𝑖) = 𝑤𝑤 𝑠𝑠𝑠𝑠𝑠𝑠2𝑄𝑄𝑅𝑅𝑅𝑅 ,            (7b) 161 

𝐹𝐹𝑠𝑠,𝜑𝜑
(𝑖𝑖𝑖𝑖) = 𝑤𝑤 𝑐𝑐𝑐𝑐𝑐𝑐2𝑄𝑄𝑅𝑅𝑅𝑅 .            (7c)   162 

We obtain solutions by varying the variational parameters 𝑄𝑄1,𝑄𝑄2 and 𝑄𝑄𝑅𝑅𝑅𝑅  for given material 163 
properties (determined by Q, 𝑘𝑘24,𝑤𝑤) and boundary conditions. 164 

Of interest is the determination of regimes where radially−z−twisted (RZT) or radially-twisted 165 
(RT) structures are stable. We first perform an analytic analysis of structures where we expand the 166 
free energies in the limit of relatively small dimensionless wave numbers 𝑄𝑄1,𝑄𝑄2 and 𝑄𝑄𝑅𝑅𝑅𝑅 . Then we 167 
shall perform a more detailed stability analysis numerically. 168 

2.2. Landau-type analysis 169 
We first consider RZT (class 1) structures using the ansatz Eq. (4). By minimizing the total free 170 

energy 𝐹𝐹(𝑖𝑖) with respect to 𝑄𝑄1 it follows that 171 
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𝑄𝑄1 = 𝑄𝑄+(𝑘𝑘24−1)𝑄𝑄2

1+
𝑄𝑄2
2

2�1+𝐽𝐽1
(2𝑄𝑄2)
𝑄𝑄2

�

.            (8) 172 

In the following we examine regimes only of relatively low wave vectors 𝑄𝑄2 (i.e. 𝑄𝑄2 ≪ 1), for 173 
which Eq. (8) yields 174 

𝑄𝑄1~𝑄𝑄 + (𝑘𝑘24 − 1)𝑄𝑄2 −
𝑄𝑄2
2𝑄𝑄
4

 .          (9)  175 

Taking this into account, we expand 𝐹𝐹(𝑖𝑖) up to the fourth power in 𝑄𝑄2. It follows that 176 

𝐹𝐹ℎ
(𝑖𝑖) = 𝑤𝑤

2
+ (𝑄𝑄−𝑄𝑄2)2

2
− 𝑘𝑘24𝑄𝑄𝑄𝑄2 + 8𝑘𝑘24−4𝑘𝑘24

2 +2𝑄𝑄2+𝑤𝑤
8

𝑄𝑄22 + 𝑄𝑄(𝑘𝑘24−1)
2

𝑄𝑄23 + 24−48𝑘𝑘24+24𝑘𝑘24
2 −5𝑄𝑄2−2𝑤𝑤

96
𝑄𝑄24, (10a) 177 

𝐹𝐹𝑧𝑧
(𝑖𝑖) = (𝑄𝑄−𝑄𝑄2)2

2
− 𝑘𝑘24𝑄𝑄𝑄𝑄2 + 4𝑘𝑘24−2𝑘𝑘24

2 +𝑄𝑄2+2𝑤𝑤
4

𝑄𝑄22 + 𝑄𝑄(𝑘𝑘24−1)
2

𝑄𝑄23 + 24−48𝑘𝑘24+24𝑘𝑘24
2 −5𝑄𝑄2−12𝑤𝑤

96
𝑄𝑄24,  (10b) 178 

𝐹𝐹𝜑𝜑
(𝑖𝑖) = 𝑤𝑤

2
+ (𝑄𝑄−𝑄𝑄2)2

2
− 𝑘𝑘24𝑄𝑄𝑄𝑄2 + 8𝑘𝑘24−4𝑘𝑘24

2 +3𝑤𝑤
8

𝑄𝑄22 + 𝑄𝑄(𝑘𝑘24−1)
2

𝑄𝑄23 + 24−48𝑘𝑘24+24𝑘𝑘24
2 −10𝑤𝑤

96
𝑄𝑄24.  (10c) 179 

 Here 𝐹𝐹ℎ
(𝑖𝑖) , 𝐹𝐹𝑧𝑧

(𝑖𝑖) , and 𝐹𝐹𝜑𝜑
(𝑖𝑖)  denote 𝐹𝐹(𝑖𝑖) for homeotropic, zenithal, and azimuthal anchoring, 180 

respectively. We thus obtain a Landau-type expansion of the form 𝐹𝐹(𝑖𝑖) = 𝐹𝐹0
(𝑖𝑖) + 𝛼𝛼1𝑄𝑄2 + 𝛼𝛼2𝑄𝑄22 +181 

𝛼𝛼3𝑄𝑄23 + 𝛼𝛼4𝑄𝑄24 where 𝑄𝑄2 and {𝛼𝛼1,𝛼𝛼2,𝛼𝛼3,𝛼𝛼4} play the role of order parameter and Landau expansion 182 

coefficients, respectively.    183 

For achiral LCs (𝑄𝑄 = 0) one obtains 184 

𝐹𝐹ℎ
(𝑖𝑖) = 𝑤𝑤

2
+ 8𝑘𝑘24−4𝑘𝑘24

2 +𝑤𝑤+4
8

𝑄𝑄22 + 24−48𝑘𝑘24+24𝑘𝑘24
2 −2𝑤𝑤

96
𝑄𝑄24,     (11a)  185 

𝐹𝐹𝑧𝑧
(𝑖𝑖) = 4𝑘𝑘24−2𝑘𝑘24

2 +2𝑤𝑤+4
4

𝑄𝑄22 + 24−48𝑘𝑘24+24𝑘𝑘24
2 −12𝑤𝑤

96
𝑄𝑄24,      (11b) 186 

𝐹𝐹𝜑𝜑
(𝑖𝑖) = 𝑤𝑤

2
+ 8𝑘𝑘24−4𝑘𝑘24

2 +3𝑤𝑤+4
8

𝑄𝑄22 + 24−48𝑘𝑘24+24𝑘𝑘24
2 −10𝑤𝑤

96
𝑄𝑄24.     (11c) 187 

The spatially homogeneous order becomes unstable with respect to the RZT class of solutions 188 
where the coefficients 𝛼𝛼2  that weight the 𝑄𝑄22  contribution in Eq. (11) change sign. From the 189 
condition 𝛼𝛼2 = 0 one could deduce a critical value 𝑘𝑘24  above which the RZT structures become 190 
stable: 191 

𝑘𝑘24
(ℎ) = 1 + �1 + 𝑤𝑤

4
,            (12a) 192 

𝑘𝑘24
(𝑧𝑧) = 1 + √1 + 𝑤𝑤,            (12b) 193 

𝑘𝑘24
(𝜑𝜑) = 1 + �1 + 3𝑤𝑤

4
.           (12c) 194 
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Here 𝑘𝑘24
(ℎ), 𝑘𝑘24

(𝑧𝑧), and 𝑘𝑘24
(𝜑𝜑)  determine the critical values of 𝑘𝑘24  for homeotropic, zenithal, and 195 

azimuthal anchoring, respectively. Note that in the approximation of equal elastic constants the 196 
Ericksen’s critical value of 𝐾𝐾24 is given by 𝑘𝑘24

(𝑒𝑒) = 2. Therefore, in the absence of chirality  𝐾𝐾24 could 197 
trigger twisted structures only for 𝑤𝑤 < 0, which in our modelling is physically meaningful for the 198 
case given by Eq. (12a).  199 

Next, we focus on the RT structures using the ansatz of Eq. (3). When 𝑄𝑄𝑅𝑅𝑅𝑅 ≪ 1 it follows 200 

𝐹𝐹𝑒𝑒
(𝑖𝑖𝑖𝑖)~ 𝑄𝑄2

2
+ 2𝑄𝑄𝑄𝑄𝑅𝑅𝑇𝑇 + (2 − 𝑘𝑘24)𝑄𝑄𝑅𝑅𝑅𝑅2 − 𝑄𝑄𝑄𝑄𝑅𝑅𝑅𝑅

3

3
+

�𝑘𝑘24−
5
4�

3
𝑄𝑄𝑅𝑅𝑅𝑅4 .    (13)         201 

It is easy to estimate the equilibrium value of the chirality wave number QRT of the RT structure 202 
if both Q and QRT are small. We use Eq. (13) and Eq. (7) and free energy minimization yields 203 

𝑄𝑄𝑅𝑅𝑇𝑇 = −𝑄𝑄/(2 + ∆ − 𝑘𝑘24),          (14) 204 

with ∆= 0  for homeotropic anchoring, and ∆= ±𝑤𝑤  for tangential anchorings (positive sign for 205 
zenithal anchoring and negative sign for azimuthal anchoring). Note the Eq. (14) is valid only in the 206 
limit when |𝑄𝑄𝑅𝑅𝑅𝑅| < 1. 207 

For achiral LCs it follows 208 

𝐹𝐹ℎ
(𝑖𝑖𝑖𝑖)~𝑤𝑤 + (2 − 𝑘𝑘24)𝑄𝑄𝑅𝑅𝑅𝑅2 +

(𝑘𝑘24−
5
4)

3
𝑄𝑄𝑅𝑅𝑅𝑅4 .        (15a) 209 

𝐹𝐹𝑧𝑧
(𝑖𝑖𝑖𝑖)~(2 − 𝑘𝑘24 + 𝑤𝑤)𝑄𝑄𝑅𝑅𝑅𝑅2 +

(𝑘𝑘24−
5
4−𝑤𝑤)

3
𝑄𝑄𝑅𝑅𝑅𝑅4 .       (15b) 210 

𝐹𝐹𝜑𝜑
(𝑖𝑖𝑖𝑖)~𝑤𝑤 + (2 − 𝑘𝑘24 −𝑊𝑊)𝑄𝑄𝑅𝑅𝑅𝑅2 +

(𝑘𝑘24−
5
4+𝑤𝑤)

3
𝑄𝑄𝑅𝑅𝑅𝑅4 .      (15c) 211 

The critical conditions read 212 
𝑘𝑘24

(ℎ) = 2,              (16a) 213 

𝑘𝑘24
(𝑧𝑧) = 2 + 𝑤𝑤,             (16b) 214 

𝑘𝑘24
(𝜑𝜑) = 2 − 𝑤𝑤.             (16c) 215 

Therefore, in achiral LCs the saddle splay elasticity may trigger the RT structure below 𝑘𝑘24
(𝑒𝑒) = 2 216 

only for the case of azimuthal anchoring. 217 
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 218 
Figure 1. Twisted nematic structures. (a) The radially-z-twist deformation. Q1 = 1.0, Q2 = 1.0. Twist is 219 
realised both along the 𝑒𝑒𝜑𝜑 and 𝑒𝑒𝑧𝑧 directions. (b) The radially-twisted structure. Here, the twist is 220 
realised along 𝑒𝑒𝑟𝑟. QRT = 1.1. 221 

2.3. Numerical analysis 222 
We next explore the (meta) stability of double-twist structures in chiral LCs. Of particular 223 

interest is the determination of regimes in which the reversal of macroscopic chirality could be 224 
realised by varying a relevant parameter. Note that our estimates work well for dimensionless wave 225 
vectors less than one. Most of the “interesting” phenomena are realized in this regime. Therefore, 226 
results obtained for wave vectors larger than one are only indicative.  227 

2.3.1. RZT structure: homeotropic anchoring 228 
We focus first on RZT (class 1) structures and homeotropic anchoring. Of interest is the 229 

exploration of the impact of the saddle−splay constant k24 and intrinsic chirality Q for relatively weak 230 
anchoring, for which we set to w = 1. In Figure 2 we plot Q1 and Q2 equilibrium values (i.e., they 231 
determine local minima in F) on varying Q between 0 and 1. For the case Q = 0 (achiral nematic) the 232 
RZT structures could be triggered only in the regime  𝑘𝑘24 > 𝑘𝑘24

(𝑒𝑒) ≡ 2. However, for chiral LCs, 𝑘𝑘24 233 
efficiently promotes the stability of RZT structures well below 𝑘𝑘24

(𝑒𝑒).  Furthermore, for 𝑘𝑘24= 0, it holds 234 
that Q2 = 0 and Q1 = Q. This solution corresponds to the classic cholesteric structure, see Eq. (2). Graphs 235 
in Figure 2 also reveal that a value of k24 can be extracted experimentally.  236 
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 237 
Figure 2. Dependence of equilibrium values of Q1 (left) and Q2 (right) on k24 for five different values of 238 
the intrinsic chirality Q (denoted by numbers in graphs). Homeotropic anchoring, w = 1. 239 

2.3.2. RZT structure: tangential anchoring 240 
For tangential anchorings the configurational variability of RZT structures is much more 241 

complex. This is illustrated in Figure 3, where we plot the dependencies of Q1(k24) and Q2(k24) on all 242 
studied anchoring conditions for two significantly different values of Q, viz., Q = 0.125 and Q = 1. The 243 
behavior is roughly similar for homeotropic and azimuthal anchoring, whereas for zenithal 244 
anchoring qualitatively different features emerge. In particular, Q1 could even change sign at a critical 245 
value of k24, which we denote by 𝑘𝑘24

(𝑐𝑐) . Similarly, for a given value of k24 this crossover could be 246 
achieved by varying Q, and we label the corresponding critical value by  𝑄𝑄𝑐𝑐 . 247 
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 248 

Figure 3. Dependence of Q1 (solid lines) and Q2 (dashed lines) on k24 for Q = 0.125 (left figure) and Q 249 
= 1 (right figure) and different types of anchoring, labelled by “h” (homeotropic), “φ” (azimuthal) and 250 
“z” (zenithal). w = 1. 251 

Note that a value of 𝑘𝑘24
(𝑐𝑐) depends relatively strongly on Q. Because the uniaxial twist with Q1 = 252 

0 can be observed easily by polarized optical microscopy, this phenomenon may be exploited to 253 
measure the splay−bend elastic constant. This is illustrated Figure 4, where we plot the Qc(k24) 254 
dependence for different anchoring strengths. Experimentally, one could vary Q by adding a chiral 255 
dopant to LC. The reversal of the sign of Q1 exists in the interval 0 < 𝑘𝑘24< 1 well below 𝑘𝑘24

(𝑒𝑒). In the 256 
strong anchoring limit W  ∞ the graph Qc(k24) approaches the straight line.  257 
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 258 

Figure 4. The dependence of the critical intrinsic chirality Qc (where Q1 = 0) on 𝑘𝑘24 in the case of 259 
zenithal anchoring for different values of anchoring strength. Results were calculated in points 260 
labelled with symbols and lines serve as quides for the eye. From the left to right: w = 0.2 (circles), 0.5 261 
(diamonds), 1 (open circles), 2 (stars) and 5 (triangles). 262 

2.3.3. Relative stability of RZT and RT structures 263 
The minimum energies (corresponding to local minima on varying variational parameters) of 264 

both types of structures (RZT and RT) were compared for different sets of parameters. In general, 265 
homeotropic anchoring favours RZT configurations. This is obvious since the nematic director of the 266 
RT structure is always parallel to the boundary plane at the cylinder boundary. On the other hand, 267 
for both types of tangential anchoring stability regimes of different structures depend on specific set 268 
of parameters k24, Q and w. Due to a broad parameter space we limit our analysis to a few cases 269 
relevant for our study. For example, Figure 4 reveals the parameters for which Q1 = 0 (chirality 270 
reversal) is realised for the RZT configuration for zenithal anchoring. It is essential to compare its free 271 
energy with the competitive RT structure. Some representative examples are depicted in Figure 5 and 272 
Figure 6. In Figure 5 we plot the minimum energies of the competing structures on varying Q for k24 273 
= 0.5 and weak (w = 1) zenithal anchoring for the case exhibiting chirality reversal. In this case the 274 
RZT structure with Q1 < 0 is metastable with respect to RT. However, Figure 5 illustrates the existence 275 
of a regime for which the configuration with Q1 < 0 is stable for k24=0.25. Thus, chirality reversal may 276 
be found experimentally in this case. The arrows in Figure. 5 indicate approximately the energy of 277 
the RZT structure at the reversal of the sign of Q1, together with the calculated chirality parameters. 278 
For lower values of Q, it holds that Q1 < 0, and vice versa. Although the energies for the cases k24 = 279 
0.25 and 0.5 are not very different, the critical value of Q (Qc = Q, where Q1 changes sign) differs 280 
significantly: Qc = 0.554 for the case k24 = 0.5, whereas Qc = 1.097 for the case k24 = 0.25.   281 
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 282 

Figure 5. Dependence of the minimum energies (thick lines) and chirality parameters (thin lines) of the 283 
RZT structure (solid lines) and RT structure (dashed lines) on the intrinsic chirality Q. k24 = 0.5, zenithal 284 
anchoring with w = 1. 285 
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 286 

Figure 6. Dependence of the minimum energies of the RZT and RT structures on the intrinsic chirality 287 
Q. Solid lines: k24 = 0.5. Dashed lines: k24 = 0.25. Zenithal anchoring with w = 1. Arrows indicate the 288 
sign reversal of Q1 for both values of k24. For the case k24 = 0.25 the chirality Q1 reverses sign in the 289 
regime where FRZT < FRT. 290 

     Note that we have tested the stability of RZT and RT structures with respect to the nonchiral 291 
escaped radial structure [34], in which the director profile exhibits cylindrical symmetry. It tends to 292 
be radially oriented at the cylinder wall and gradually reorients along the z axis on approaching the 293 
cylinder axis. For homeotropic anchoring, it exists for 𝑤𝑤 = 𝑅𝑅𝑅𝑅/𝐾𝐾 > 1, and its free energy is given by 294 
[34] 295 

𝐹𝐹
𝜋𝜋𝜋𝜋𝜋𝜋

= 3 − 𝑘𝑘24 −
1
𝜎𝜎
,  296 

where 𝜎𝜎 = 𝑤𝑤 + 𝑘𝑘24 − 1 . In the region of our interest this structure is energetically costlier with 297 
respect to the competing RZT or RT structure.  298 

 299 
Finally, in Figure 7 and Figure 8 we show calculated optical polarising microscopy patterns for 300 

the competing RZT and RT structures for two different polarisation directions of polariser and 301 
analyser, where we set Q1 = Q2 = QRT = 1. Simulations details are described in [29,30]. The polarisations 302 
of polariser and analyser are mutually perpendicular. The angle between the polariser and x−axis 303 
(horizontal axis) is 0 or 45°. One sees that the textures are significantly different and that one could 304 
easily distinguish these structures by using polarising optical microscopy.  305 
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 306 

Figure 7. Calculated optical patterns for the RZT structure with Q1 = Q2 = 1. The transmitted 307 
polarisation of polariser is in the x−direction (left figure) and at the angle 45° with respect to 308 
x−direction (right figure). Optical data: R = 1 µm, laser light wavelength λ = 445 nm, refraction indices: 309 
no = 1.544, ne = 1.821, corresponding to NLC E7.  310 

 311 

Figure 8. The same as for Figure 7, but for RT structure with QRT = 1. 312 

3. Conclusions 313 
We studied the impact of chirality, the saddle-splay elastic constant and anchoring conditions 314 

on the (meta) stability on radially-z-twisted (RZT), and radially-twisted (RT) configurations realised 315 
in a cylindrically confined confinement of radius R. We used the Frank-Oseen uniaxial description in 316 
terms of the nematic director field. Such a description is sensible because we do not consider 317 
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configurations exhibiting topological defects, which would require local melting of nematic order or 318 
the presence of biaxiality. Furthermore, we used the approximation of equal Frank elastic constants 319 
𝐾𝐾11 = 𝐾𝐾22 = 𝐾𝐾33 ≡ 𝐾𝐾 . We expressed the free energy of structures in terms of dimensionless 320 
wavenumbers 𝑄𝑄1, 𝑄𝑄2, 𝑄𝑄𝑅𝑅𝑅𝑅 , which represent order parameters in our Landau-type analysis. The 321 
parameter space controlling the relative stability of the structures consists of the dimensionless 322 
chirality 𝑄𝑄 = 𝑅𝑅𝑅𝑅, dimensionless saddle-splay constant 𝑘𝑘24 = 𝐾𝐾24/𝐾𝐾, and dimensionless anchoring 323 
strength 𝑤𝑤 = 𝑅𝑅𝑅𝑅

𝐾𝐾
.  324 

We found that in the absence of chirality the RZT structure could be (meta) stable (fulfilling the 325 
Ericksen’s inequality 𝑘𝑘24 < 𝑘𝑘𝑒𝑒 ≡ 2) only for isotropic tangential anchoring, provided that 𝑘𝑘24 > 1 +326 
�1 − |𝑤𝑤|/4. On the other hand, the RT structure could be (meta) stable for azimuthal anchoring 327 
condition and 𝑘𝑘24 > 2 − |𝑤𝑤|. Yet chirality enables stability of RZT structures for 𝑘𝑘24 values in the 328 
interval 𝑘𝑘24 ∈ [0,2] . Furthermore, for  𝑄𝑄𝑅𝑅𝑅𝑅 < 1 we found that the RT structures exhibit the wave 329 
vector 𝑄𝑄𝑅𝑅𝑅𝑅~ − 𝑄𝑄/(2 + ∆ − 𝑘𝑘24) , where i) ∆= 0 , ii) ∆= |𝑤𝑤| , iii) ∆= −|𝑤𝑤|  for i) homeotropic, ii) 330 
zenithal, and iii) azimuthal anchoring, respectively. In addition, we observed that the RZT 331 
configuration could exhibit sign reversal of the wave vector for zenithal anchoring on varying a 332 
relevant control parameter. This approach could be exploited for experimental determination of 𝐾𝐾24 333 
values, which still require considerably more exploration. 334 

Note that multiple-twisted structures could be exploited in several applications because their 335 
wave vectors can be adjusted to the optically visible regime. In 3D such structures could stabilise 336 
lattices of disclinations, as manifested in the Blue Phases and related structures exhibiting Skyrmion-337 
like structures. The study of latter structures could also provide understanding into fundamental 338 
workings in nature which is still lacking.     339 

4. Methods 340 
We use the Frank-Oseen continuum approach [11] where nematic structures are expressed in 341 

terms of the nematic director field 𝑛𝑛�⃗ . The free energy of confined NLCs is expressed as 342 
𝐹𝐹 = ∭𝑓𝑓𝑒𝑒𝑑𝑑3𝑟𝑟 + ∬𝑓𝑓𝑠𝑠 𝑑𝑑2𝑟𝑟.         (17) 343 

The first and second integral are carried over the LC volume and over a NLC confining surface. 344 
The quantities 𝑓𝑓𝑒𝑒  and 𝑓𝑓𝑠𝑠 determine elastic and NLC-confining surface free energy density 345 
contributions.  346 

The elastic term reads 347 

𝑓𝑓𝑒𝑒 = 𝐾𝐾11
2

(∇.𝑛𝑛�⃗ )2 + 𝐾𝐾22
2

(𝑛𝑛�⃗ .∇ × 𝑛𝑛�⃗ + 𝑞𝑞)2 + 𝐾𝐾33
2

|𝑛𝑛�⃗ × ∇ × 𝑛𝑛�⃗ |2 −𝐾𝐾24
2
∇. (𝑛𝑛�⃗ ∇.𝑛𝑛�⃗ + 𝑛𝑛�⃗ × ∇ × 𝑛𝑛�⃗ ).  (18)  348 

The elastic response is determined by the splay (K11), twist (K22), bend (K33) and saddle−splay 349 
(K24) elastic constant, respectively. The wave vector 𝑞𝑞 reflects the inherent LC chirality.  350 

We model the surface interaction term using a simple Rapini-Papoular [11] description: 351 

𝑓𝑓𝑠𝑠 = 𝑊𝑊
2

(1 − (𝑛𝑛�⃗ . 𝑒𝑒)2).          (19) 352 

Here the unit vector 𝑒𝑒  is commonly referred to as the easy axis. Namely, for W>0 the 353 
corresponding free energy is locally minimized if 𝑛𝑛�⃗  is aligned along 𝑒𝑒. Furthermore, for W<0 the 354 
term is minimized for 𝑛𝑛�⃗ ⊥ 𝑒𝑒.       355 
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Supplementary files: Twisted nematic structures 363 

Q1Q2.mp4
    

Qrt.mp4
 364 

Q1Q2 movie shows the radially-z-twist deformation and here the twist is realised both along the 𝑒𝑒𝜑𝜑 365 
and 𝑒𝑒𝑧𝑧  directions. The values were used in the movie from Q1 = 0.0 to 3.0, and Q2 = 0.0 to 3.0. 366 
Similarly, Qrt movie shows the radially twisted structure, and here the twist is realised along 𝑒𝑒𝑟𝑟 . The 367 
values were used in the movie from QRT = 0.0 to 3.0. 368 

Abbreviations 369 
The following abbreviations are used in this manuscript: 370 

LC: liquid crystal 
BP: blue phase 
RZT: radially-z-twisted 
RT: radially twisted  
NLC: nematic liquid crystal  
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