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Abstract: We study theoretically and numerically chirality and saddle-splay elastic constant (K5,)
enabled stability of multiple-twist-like nematic liquid crystal (LC) structures in cylindrical
confinement. We focus on the so-called radially-z-twisted (RZT) and radially-twisted (RT)
configurations, which simultaneously exhibit twists in different spatial directions. We express free
energies of the structures in terms of dimensionless wave vectors, which characterise the structures
and play the role of order parameters. The impact of different confinement anchoring conditions is
explored. A simple Landau-type analysis provides insight into how different model parameters
influence the stability of structures. We determine conditions for which the structures are stable in
chiral and also nonchiral LCs. In particular, we find that the RZT structure could exhibit
macroscopic chirality inversion on varying the relevant parameters. This phenomenon could be
exploited for measurements of Kj,.

Keywords: liquid crystals; chirality; saddle-splay elasticity; double twist deformations

1. Introduction

Chirality is pervasive in nature and refers to cases where an object and its mirror image are
different [1-3]. It signals the absence of inversion symmetry, giving rise to right-handed and left-
handed appearance and behaviour. Chirality is present throughout physics and often impacts or even
dominates numerous important natural phenomena. For example, chiral symmetry plays an
important role in the Standard Model of physics [4]. Functionalities of several essential components
of biological cells rely heavily on chirality [3]. Furthermore, it could be exploited in various
technological and medical applications [5,6,7]. By exploiting chirality one could engineer new
materials with extraordinary properties (e.g., metamaterials exhibiting negative refractive index [8]).
Therefore, a deep understanding of chirality and related emergent behaviours are of interest
throughout the physical and biological sciences.

However, several issues related to chirality remain unresolved even at a fundamental level. For
instance, the molecular origins of chirality and the relative role of chiral symmetry breaking remain
an open problem [9]. In particular, mechanisms involved in the transfer of chirality from microscopic
to macroscopic level [10] are not sufficiently understood. A convenient system with which to gain a
deeper understanding of the latter feature are chiral uniaxial nematic liquid crystals (NLCs; a list of
abbreviations appears at the end), one of the simplest representatives of anisotropic soft materials
[11,12]. These systems are relatively easily accessible experimentally, structural changes can be
triggered by relatively weak external stimuli, and a macroscopic chiral response can be achieved
using different pathways.

Uniaxial NLCs consist of approximately rod-shaped objects that in bulk equilibrium exhibit
long-range orientational order and the absence of translational order [11]. The local orientational
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order is commonly described by the mesoscopic nematic director field 7, exhibiting head-to-tail
invariance — the states +7 are physically equivalent. In the classical Oseen-Frank approach [11] the
elastic free energy is expressed as the sum of the so-called splay, twist, bend, and saddle-splay
contributions, weighted by Frank splay (K;4), twist (K;,), bend (K33), and saddle-splay (K,,) elastic
constants. These contributions penalize different elastic distortions and determine equilibrium
nematic director field patterns.

In the bulk achiral nematic phase 7 is spatially homogeneously aligned along a single
symmetry breaking direction. In a simple chiral nematic (also referred to as the cholesteric) phase, in
the bulk equilibrium structure 7 twists in space describing a helix, where 7 is always perpendicular
to the helix axis. This structure exhibits only a single twist (i.e., it twists only along one spatial
direction) deformation.

Even more complex structures could be formed in chiral materials exhibiting propensity for
saddle-splay deformations [13,14], which in LCs is controlled by the saddle splay elastic constant
K;4. The energy elastic term weighted by K, equals the Gaussian curvature of a hypothetical local
surface [11], whose surface normal is determined by 7. This term is different from zero for the
nematic structures displaying, e.g., double twist like deformations, in which is # varying in two
orthogonal directions. Consequently, such structures could decrease the overall free energy for a
large enough value of K,,. Note that the saddle-splay elastic term can be expressed as pure
divergence, and can be mathematically integrated out to the surface confining the LC. Therefore, it
affects LC order through boundary conditions. In most cases the saddle-splay enforced boundary
tendency is masked by stronger surface anchoring conditions. For this reason, the K,, contribution
is often ignored in theoretical modelling [11,14]. Its magnitude range is determined by Ericksen’s
inequality [15] 0 < Ky, < K3, where K7™ corresponds to the lower elastic modulus of the
twist (K,,) and splay (Kj;) elastic deformations. Furthermore, due to the anchoring strength
“masking” effect it is relatively difficult to measure the magnitude of K,,. Namely, for strong
enough anchoring [11] (i.e. RW/K>>1, where R is the characteristic confinement length, K stands for
the average Frank elastic constant, and W is the surface anchoring strength coefficient), the surface
anchoring contribution overrides the competing K,, contribution in the relevant surface Euler-
Lagrange equilibrium equations. Consequently, only a few experimental measurements of K,, are
reported [16,17,18]. Several of these measurements report values of K,, that are close to Kl(glin).

We note that a natural decomposition of representative nematic elastic distortions was recently
proposed by Selinger [19]. Four bulk elastic normal modes were introduced representing distinct
irreducible representations of the rotational symmetry group, characterising NLC symmetry. These
are referred to as the double splay, double twist, bend, and biaxial splay mode, which could be separately
and independently excited. On the contrary, the classical (single) splay, (single) twist, bend, and
saddle-splay distortions [11,19] are, in general, coupled. Namely, the saddle-splay term can be
expressed as a sum of double splay, double twist, and biaxial splay mode.

Nematic structures exhibiting nonplanar 3D nematic distortions (e.g., double twist deformations)
impose elastic frustrations, which can be in bulk resolved by introducing assemblies of topological
defects [20,21], as manifested in Blue Phases (BPs) [22,23,24]. In NLCs, description of defects would
require more complex structural description in terms of the tensor nematic order parameter [11],
which allows local melting of LC order and presence of biaxial states [25]. On the other hand, such
deformation could be realized without defects in appropriate confinement geometries, where most
often cylindrical confinements [26,27,28,29,30,31] are used. Note that stable 3D realisations of
topological defects are of interest for science in general. For instance, if physical fields represent
fundamental entities of nature [32], than topological defects might represent [33] fundamental
particles in the conventional “particle”-based natural description.

In this contribution, we consider nematic structures in chiral LCs in cylindrical confinement. We
focus on (meta) stability of multiple-twist-type structures, which exhibit variations of the nematic
molecular field simultaneously in at least two orthogonal spatial directions. We show that several
structural properties can arise in the context of a simple Landau-type model. A more general analysis
is carried out numerically. We determine regimes where one could observe a change in the
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handedness of structures by varying relevant material parameters. Furthermore, we determine
regimes in which the saddle-splay elasticity sensitively controls the stability of competing structures.

2. Results

Of our interest are defect-free spontaneously twisted NLC structures within an infinitely long
cylinder of radius R. For this reason, we use cylindrical coordinates {r, ¢, z}, defined by the unit vector
triad {€,,é,,€,}. We consider two different ansatzes, which approximate well two qualitatively
different families of solutions that are expected to be stable for geometries and boundary conditions
of our interest [26,27].

The first class is represented by [26,27]

1® = cosyp sinQ é.+sinyY sinQ &, + cosQ é,, (1a)

lp =q1Z2— @, Q= g — 2T Sinlpa (lb)

where the wave vectors q; and ¢, are variational parameters. A typical representative
structure is shown in Figure 1a and in the Supplementary material.
In the Cartesian coordinates {x, y, z} the ansatz reads

® = cos(qyz) sinQ é,+sin(q,z) sinQ &, + cosQ é,.

Cases q; # 0 and g, # 0 determine multiple-twisted solutions. In these patterns, to which we
refer to as radially—z—twisted (RZT) structures, twist deformation is realized both along the €, and
é, directions [26]. This ansatz also encompasses single twisted structures. For example, for g, =0 a
structure twisting around the z axis is expressed as

0 = cos(q:z— @) é.+sin(qz— ) &, )

Which corresponds to a classical cholesteric solution with wave vector q;.
The second family of solution corresponds to the radially-twisted (RT) structures [26,27], where
the twist is realised along é,, see Figure 1b. For this purpose, we use the ansatz

1D = sina €, + cosa é,. (3a)

Here a = a(r) and to avoid a singularity at the cylinder axis we impose the condition ¢(0) = 0.
Previous numerical studies [26,31] have revealed that the dependence of o(r) is roughly linear in 7,
even for large twists of 7. Consequently, we use the approximation

a = qgyT. (3b)

These structures were numerically studied in Refs. 26,27, and 31, where their stability was
analysed. Our proposed ansatzes well mimic numerically obtained structures for anchoring
conditions of our interest for relatively small wave vectors and in the approximation of equal Frank
elastic constants K;; = K,, = K33. In the cases examined, the free energies of structures obtained i)
numerically by solving relevant Euler Lagrange equations or ii) using our ansatzes differ by less than
10%. By using the analytical ansatzes, we were able to carry out a Landau-type approach, which
enabled a more detailed insight into the stability of structures of interest on varying different material
dependent parameters.

In the following we use the approximation of equal elastic constants K = K;; = K,, = K33, but
allow K, # K. At the cylinder’s lateral wall, r = R, we impose for the positive anchoring strength
W>0 (see Eq.(19) in Methods) either a) homeotropic anchoring (€ = €,), b) tangential anchoring along
é, (i.e, (é = ¢€,), or c) tangential anchoring along é,(€ = é,). We henceforth refer to these cases as
a) homeotropic, b) zenithal tangential), and c) azimuthal tangential anchoring, respectively. For
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W < 0 these cases correspond to isotropic tangential anchoring in a plane with the surface normal in
the direction €. Note that in our study the latter case in sensible only for the condition (a).

For later convenience we introduce the following dimensionless quantities: Q = gR, Q1= qiR, Q>
= 2R, Qrr = gr1R, k24 = K2s/K, w = RW/K, and the dimensionless free energy is scaled in units of F, =
nKH. Therefore F — F/F,, where H is the height of cylinder. For numerical convenience, we suppose
that H is either large in comparison with the period p = 2m/q,, or an integer number of p.

2.1. Free energies of structures

Using the ansatzes Eq. (1) and Eq. (3) and the scaling described above, we calculate free energies
F of the structures (see Eq. (1)). For later convenience the energies are decomposed as F(®) = FY +
FY and F@ = F 4 FM for the first (RZT) and second class (RT) of solutions, respectively.

We consider first the family of solutions labelled by 7® (Eq. (1)). The elastic contribution is

2 2,2
F(L) (Q ;22) + Q1BQz + %(%+ 1- k24)Q2 _ Q) (1 + ]1(202)) (4)

Now let Fs(i) stand for the interface contribution, which is different for a) homeotropic (Fs(i) =
Fs(}l)), b) zenithal (Fs(l) (l)), and c) azimuthal F; O=F (8 anchoring:

S,

FO — 3w 211(202), (5a)
4 4 Q2
EQ =2 —2]0(2Q2), (5b)
@ _ 3w J1(2Q2) _ Jo(2Q2)
Fsp = . tW ( 4Q, 2 ) (5¢)

Here Jo and |1 stand for the Bessel functions of order 0 and 1, respectively.
The second class of solutions is determined by the elastic term

R — %(Q + ) + (1 —kys +_) 5in?Qpy +I1Md (6)

and surface contributions

Fs(jf) =w, (7a)
FY =w sin?Qgr, (7b)
FSES) =w c0s?Qgr. (7¢)

We obtain solutions by varying the variational parameters Q;,Q, and Qg for given material
properties (determined by Q, k4, w) and boundary conditions.

Of interest is the determination of regimes where radially—z—twisted (RZT) or radially-twisted
(RT) structures are stable. We first perform an analytic analysis of structures where we expand the
free energies in the limit of relatively small dimensionless wave numbers Q,,Q, and Qgr. Then we
shall perform a more detailed stability analysis numerically.

2.2. Landau-type analysis

We first consider RZT (class 1) structures using the ansatz Eq. (4). By minimizing the total free
energy F(® with respect to Q; it follows that
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Q+(kz24—-1)Q
Q, = LDl (8)
2

In the following we examine regimes only of relatively low wave vectors Q, (i.e. Q, < 1), for
which Eq. (8) yields

~Q + (kpy — 1)Q; — QzQ. ©)

Taking this into account, we expand F® up to the fourth power in Q,. It follows that

8k24—4k§4+2Q2+w

Q(kpq—1) Q3 +24—48k24+24k§4—502—2w
8

(Q-02)?
F(L) +—2— k>,Q0Q, + 2 96

2

QF + Qz, (10a)

24—48ky4+24k2,~5Q%—12w
96

4kp4—2k3,+Q%+2w
4

Qz, (10b)

D _ (Q-Q)? Q(kz4-1)
Y =S — 1400, + 03 + 52205 +

24-48ky4+24k2,—10w
96

8kpa—4k3,+3w
8

(Q-0Q2)?
Fo) =24 22— ke,00, +

Qk24-1)
: 0 + 24200z +

Q3. (10c)

Here Fh(i), Fz(i), and Fqsi) denote F®O for homeotropic, zenithal, and azimuthal anchoring,
respectively. We thus obtain a Landau-type expansion of the form F® = F® + a,Q, + a,0% +
a3Q;5 + a,Q7 where Q, and {a,, a,, as, a,} play the role of order parameter and Landau expansion
coefficients, respectively.

For achiral LCs (Q = 0) one obtains

8ka4— 4k24+w+4 24-48Kkg4+24k3,—2W

F(L) 2 Y4 Q3 + % Q (11a)
. _op2 _ z
FZ(L) _ 4kpy 2ki4+2w+4- Q% + 24 48k24';24-k24 12w Q;, (llb)
- 2 _
F(L) - Wy 8kaa— 4-k;4+3w+4 02 + 24 48"24‘;24’"24 1ow Q4. (11c¢)

The spatially homogeneous order becomes unstable with respect to the RZT class of solutions
where the coefficients @, that weight the Q% contribution in Eq. (11) change sign. From the
condition a, = 0 one could deduce a critical value k,, above which the RZT structures become

stable:
kD =1+ /1+§, (12a)

kD =1+vV1T+w, (12b)

kK =1+ /1 +— (12c)
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Here kgz),k(z), and kgf) determine the critical values of k,, for homeotropic, zenithal, and
azimuthal anchoring, respectively. Note that in the approximation of equal elastic constants the
Ericksen’s critical value of K,, is givenby kgi) = 2. Therefore, in the absence of chirality K,, could
trigger twisted structures only for w < 0, which in our modelling is physically meaningful for the
case given by Eq. (12a).

Next, we focus on the RT structures using the ansatz of Eq. (3). When Qzr < 1 it follows

. 2
F~ 2 4 2QQr + (2 — k2a)Q3r — QQ”+( 2= ot (13)

It is easy to estimate the equilibrium value of the chirality wave number Qrr of the RT structure
if both Q and Qrr are small. We use Eq. (13) and Eq. (7) and free energy minimization yields

Qrr = —Q/(2 + A — ky4), (14)

with A= 0 for homeotropic anchoring, and A= +w for tangential anchorings (positive sign for
zenithal anchoring and negative sign for azimuthal anchoring). Note the Eq. (14) is valid only in the
limit when |Qgr| < 1.

For achiral LCs it follows

(k24 o)

FE~w + (2 = kpa)QFr + Qtr. (15a)
i k
FO~(2 = keyy + w)Q3r + 2 0t (15b)
FSD w4 (2 = kpy — W)QRr + 222 “W) Qlr. (15¢)
The critical conditions read
K = 2, (16a)
KD =24+w (16b)
24 — 4
kK =2 —w. (16¢)

Therefore, in achiral LCs the saddle splay elasticity may trigger the RT structure below kgi) =2
only for the case of azimuthal anchoring.
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Figure 1. Twisted nematic structures. (a) The radially-z-twist deformation. Q1= 1.0, Q2= 1.0. Twist is
realised both along the &, and é, directions. (b) The radially-twisted structure. Here, the twist is
realised along €,. Qrr=1.1.

2.3. Numerical analysis

We next explore the (meta) stability of double-twist structures in chiral LCs. Of particular
interest is the determination of regimes in which the reversal of macroscopic chirality could be
realised by varying a relevant parameter. Note that our estimates work well for dimensionless wave
vectors less than one. Most of the “interesting” phenomena are realized in this regime. Therefore,
results obtained for wave vectors larger than one are only indicative.

2.3.1. RZT structure: homeotropic anchoring

We focus first on RZT (class 1) structures and homeotropic anchoring. Of interest is the
exploration of the impact of the saddle—splay constant k24 and intrinsic chirality Q for relatively weak
anchoring, for which we set to w = 1. In Figure 2 we plot Q1 and Q2 equilibrium values (i.e., they
determine local minima in F) on varying Q between 0 and 1. For the case Q = 0 (achiral nematic) the
RZT structures could be triggered only in the regime k,, > k;i) = 2. However, for chiral LCs, k,,
efficiently promotes the stability of RZT structures well below kgi). Furthermore, for k,,=0, it holds
that Q2=0and Q1= Q. This solution corresponds to the classic cholesteric structure, see Eq. (2). Graphs
in Figure 2 also reveal that a value of k24 can be extracted experimentally.
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Figure 2. Dependence of equilibrium values of Q1 (left) and Q2 (right) on ka4 for five different values of
the intrinsic chirality Q (denoted by numbers in graphs). Homeotropic anchoring, w = 1.

2.3.2. RZT structure: tangential anchoring

For tangential anchorings the configurational variability of RZT structures is much more
complex. This is illustrated in Figure 3, where we plot the dependencies of Qi(kz4) and Q2(k24) on all
studied anchoring conditions for two significantly different values of Q, viz., Q=0.125 and Q =1. The
behavior is roughly similar for homeotropic and azimuthal anchoring, whereas for zenithal
anchoring qualitatively different features emerge. In particular, Q1 could even change sign at a critical
value of kx, which we denote by kgi). Similarly, for a given value of kx this crossover could be
achieved by varying Q, and we label the corresponding critical value by Q..
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Figure 3. Dependence of Q1 (solid lines) and Q2 (dashed lines) on ka4 for Q = 0.125 (left figure) and Q
=1 (right figure) and different types of anchoring, labelled by “h” (homeotropic), “¢” (azimuthal) and
“z” (zenithal). w=1.

Note that a value of kgi) depends relatively strongly on Q. Because the uniaxial twist with Q1=
0 can be observed easily by polarized optical microscopy, this phenomenon may be exploited to
measure the splay—bend elastic constant. This is illustrated Figure 4, where we plot the Qc(k2s)
dependence for different anchoring strengths. Experimentally, one could vary Q by adding a chiral
dopant to LC. The reversal of the sign of Q1 exists in the interval 0 < k,,< 1 well below kgi). In the
strong anchoring limit W = o the graph Qc(k24) approaches the straight line.
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1.5

0.5

Figure 4. The dependence of the critical intrinsic chirality Q. (where Qi1 = 0) on k,, in the case of
zenithal anchoring for different values of anchoring strength. Results were calculated in points
labelled with symbols and lines serve as quides for the eye. From the left to right: w = 0.2 (circles), 0.5
(diamonds), 1 (open circles), 2 (stars) and 5 (triangles).

2.3.3. Relative stability of RZT and RT structures

The minimum energies (corresponding to local minima on varying variational parameters) of
both types of structures (RZT and RT) were compared for different sets of parameters. In general,
homeotropic anchoring favours RZT configurations. This is obvious since the nematic director of the
RT structure is always parallel to the boundary plane at the cylinder boundary. On the other hand,
for both types of tangential anchoring stability regimes of different structures depend on specific set
of parameters k4, Q and w. Due to a broad parameter space we limit our analysis to a few cases
relevant for our study. For example, Figure 4 reveals the parameters for which Q1 = 0 (chirality
reversal) is realised for the RZT configuration for zenithal anchoring. It is essential to compare its free
energy with the competitive RT structure. Some representative examples are depicted in Figure 5 and
Figure 6. In Figure 5 we plot the minimum energies of the competing structures on varying Q for k»
= 0.5 and weak (w = 1) zenithal anchoring for the case exhibiting chirality reversal. In this case the
RZT structure with Q1 <0 is metastable with respect to RT. However, Figure 5 illustrates the existence
of a regime for which the configuration with Q1 <0 is stable for k2¢=0.25. Thus, chirality reversal may
be found experimentally in this case. The arrows in Figure. 5 indicate approximately the energy of
the RZT structure at the reversal of the sign of Q1, together with the calculated chirality parameters.
For lower values of Q, it holds that Q1 <0, and vice versa. Although the energies for the cases ka =
0.25 and 0.5 are not very different, the critical value of Q (Qc = Q, where Q1 changes sign) differs
significantly: Q.= 0.554 for the case k21 = 0.5, whereas Q= 1.097 for the case k21 = 0.25.
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2.0

0.0 0.5 1.0 1.5 2.0

Figure 5. Dependence of the minimum energies (thick lines) and chirality parameters (thin lines) of the
RZT structure (solid lines) and RT structure (dashed lines) on the intrinsic chirality Q. k24=0.5, zenithal
anchoring with w = 1.
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0.0 0.5 1.0 1.5 2.0

Figure 6. Dependence of the minimum energies of the RZT and RT structures on the intrinsic chirality
Q. Solid lines: k2« = 0.5. Dashed lines: k2 = 0.25. Zenithal anchoring with w = 1. Arrows indicate the
sign reversal of Q1 for both values of k. For the case k2 = 0.25 the chirality Qi reverses sign in the
regime where Frzr < Frr.

Note that we have tested the stability of RZT and RT structures with respect to the nonchiral
escaped radial structure [34], in which the director profile exhibits cylindrical symmetry. It tends to
be radially oriented at the cylinder wall and gradually reorients along the z axis on approaching the
cylinder axis. For homeotropic anchoring, it exists for w = RW /K > 1, and its free energy is given by
[34]

F 1
L -
nKH 24

where 0 =w + k,, — 1. In the region of our interest this structure is energetically costlier with

respect to the competing RZT or RT structure.

Finally, in Figure 7 and Figure 8 we show calculated optical polarising microscopy patterns for
the competing RZT and RT structures for two different polarisation directions of polariser and
analyser, where we set Q1= Q2= Qrr=1. Simulations details are described in [29,30]. The polarisations
of polariser and analyser are mutually perpendicular. The angle between the polariser and x—axis
(horizontal axis) is 0 or 45°. One sees that the textures are significantly different and that one could
easily distinguish these structures by using polarising optical microscopy.
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P z/R z/R

x/R x/R
306
307 Figure 7. Calculated optical patterns for the RZT structure with Qi = Q2 = 1. The transmitted
308 polarisation of polariser is in the x—direction (left figure) and at the angle 45° with respect to
309 x—direction (right figure). Optical data: R =1 pum, laser light wavelength A4 =445 nm, refraction indices:
310 1o = 1.544, ne =1.821, corresponding to NLC E7.

A
A #P
P z/R 4 z/R
| X/R

311
312 Figure 8. The same as for Figure 7, but for RT structure with Qrr=1.
313 3. Conclusions
314 We studied the impact of chirality, the saddle-splay elastic constant and anchoring conditions

315 on the (meta) stability on radially-z-twisted (RZT), and radially-twisted (RT) configurations realised
316  ina cylindrically confined confinement of radius R. We used the Frank-Oseen uniaxial description in
317  terms of the nematic director field. Such a description is sensible because we do not consider
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configurations exhibiting topological defects, which would require local melting of nematic order or

the presence of biaxiality. Furthermore, we used the approximation of equal Frank elastic constants

Kiy = K,; = K33 =K. We expressed the free energy of structures in terms of dimensionless

wavenumbers Q;, Q,, Qrr, which represent order parameters in our Landau-type analysis. The

parameter space controlling the relative stability of the structures consists of the dimensionless

chirality Q@ = Rq, dimensionless saddle-splay constant k,, = K,,/K, and dimensionless anchoring
RW

strength w = —~

We found that in the absence of chirality the RZT structure could be (meta) stable (fulfilling the
Ericksen’s inequality k,, < k, = 2) only for isotropic tangential anchoring, provided that k,, > 1 +
\J1—|w|/4. On the other hand, the RT structure could be (meta) stable for azimuthal anchoring
condition and k,, > 2 — [w|. Yet chirality enables stability of RZT structures for k,, values in the
interval k,, € [0,2] . Furthermore, for Qzr <1 we found that the RT structures exhibit the wave
vector Qpr~—Q/(2+ A —k,,), where i) A=0, ii) A= |w]|, iii) A= —|w| for i) homeotropic, ii)
zenithal, and iii) azimuthal anchoring, respectively. In addition, we observed that the RZT
configuration could exhibit sign reversal of the wave vector for zenithal anchoring on varying a
relevant control parameter. This approach could be exploited for experimental determination of K,,
values, which still require considerably more exploration.

Note that multiple-twisted structures could be exploited in several applications because their
wave vectors can be adjusted to the optically visible regime. In 3D such structures could stabilise
lattices of disclinations, as manifested in the Blue Phases and related structures exhibiting Skyrmion-
like structures. The study of latter structures could also provide understanding into fundamental
workings in nature which is still lacking.

4. Methods

We use the Frank-Oseen continuum approach [11] where nematic structures are expressed in
terms of the nematic director field 7. The free energy of confined NLCs is expressed as

F = [[f fod®F + [[ fs d*7. (17

The first and second integral are carried over the LC volume and over a NLC confining surface.
The quantities f, and f; determine elastic and NLC-confining surface free energy density
contributions.

The elastic term reads

fo= (V)2 + (Y X+ q)7 + 2 [ X VX 7|2 =24V, (V.7 + 7 X V X 7). (18)

The elastic response is determined by the splay (K1), twist (Kz2), bend (K33) and saddle-splay
(Ko4) elastic constant, respectively. The wave vector q reflects the inherent LC chirality.
We model the surface interaction term using a simple Rapini-Papoular [11] description:

fi =7 - 8. (19)

Here the unit vector € is commonly referred to as the easy axis. Namely, for W>0 the
corresponding free energy is locally minimized if 7 is aligned along é. Furthermore, for W<0 the
term is minimized for 7 L é.
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Supplementary files: Twisted nematic structures

o |

Q1Q2.mp4 Qrt.mp4

Q1Q2 movie shows the radially-z-twist deformation and here the twist is realised both along the §¢
and é>z directions. The values were used in the movie from Q1= 0.0 to 3.0, and Q2= 0.0 to 3.0.

Similarly, Qrt movie shows the radially twisted structure, and here the twist is realised along €,.. The
values were used in the movie from Qrr= 0.0 to 3.0.

Abbreviations
The following abbreviations are used in this manuscript:
LC: liquid crystal
BP: blue phase
RZT: radially-z-twisted
RT: radially twisted

NLC:  nematic liquid crystal
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